变电站接地网设计范文

2024-07-04

变电站接地网设计范文第1篇

7月中旬,编辑部收到读者提供的整改文件图片共7页。这份由广西电网公司生技部便函发出的《关于加强变电站接地网质量监督检查的紧急通知》涉及到两家承包单位:广西南宁迪祥雷防雷工程有限责任公司和广西南宁雷电防护有限公司(南宁地凯科技有限公司)。

起初我们认为,广西电网公司的整改体现了抓安全生产、重工程质量的积极姿态,也正好契合了本刊正在着手进行的防雷接地工程质量的调研采访。为此,我们先后查询到了广西电网公司的行政事务部、总经办、生技部等部门电话,希望对事情有更直接准确的了解。遗憾的是,我们多次拨通广西电网公司有关部门的电话,大多数无人接听,偶尔有人接听,也对我们想了解的情况茫然不知。无奈之下,我们分别向“通知”中涉及的两家公司了解情况,结果却出乎我们的预料。

地凯:与我无关

广西地凯防雷工程有限公司及时做出了回应,该公司在回函中指出:“通知”中所针对的公司应为广西南宁迪祥雷防雷工程有限责任公司,“提到对我公司曾施工的工程进行测量,曾于2006年进行普查过,在我公司承接的二十多个工程中,只有柳州供电局220kV静兰变电站的电阻出现了回升,我公司已对现场进行勘测,因为地网地面全部种有甘蔗,无法检查地网是否遭受人为破坏或盗窃。我公司针对现场情况已向广西电网公司提交了整改方案。一旦广西电网公司同意该方案,我们将免费整改,直到满足客户要求为止。基于当地施工现场农民较难协调的情况,柳州供电局拟要求将接地电阻降至1Ω即可(原合同要求为接地电阻为R≤0.5Ω)。”

记者查阅了广西电网公司生技部便函“通知”,附件中列举了几个变电站接地网改造工程情况,其中第四项这样表述: “静兰变(电站)的接地网在施工投运前接地电阻为2.5Ω,后经广西南宁雷电防护工程有限公司(与电力开发公司签订协议)加装DK接地棒后,于2002年11月1日进行了接地电阻的测试,接地电阻试验结果为:0.274Ω,测试报告变为符合设计要求。

2004年11月9日,广西电力试验研究院与柳州供电局共同对静兰变接地电阻进行了测试,测试得到的接地电阻为1.4Ω。

静兰变地网降阻协议书中,广西南宁雷电防护工程有限公司保证10年,柳州供电局向开发公司(黄瑜)反映过,但不见回复。

柳州供电局于2006年自行安排资金约20万元对接地网进行了改造。”

迪祥雷:疑遭“暗算”(小题大做?)

记者也与广西南宁迪祥雷防雷工程有限责任公司总经理杨丹取得联系。杨总起初对本刊记者对此事的关注非常吃惊,“这点事情值得在杂志上报道吗?”他怀疑是有人在幕后指使,借题发挥,恶意炒作。他认为,如果仅仅是几个工程质量未达到合同指标而要求整改,事情何至于这么复杂?“一个生技部的便函文件,按理说只针对内部整改,为什么湖南电网公司和海南电网公司也都收到?”杨丹说,“我们做了上百个工程都验收合格了,有两个工程还没验收怎么就叫质量不好?施工质量差?即使是一两个工程有问题,也只占总数的1~2%,何况还没整改!”

因为这份便函“通知”作怪,导致参与竞标的地凯公司和迪祥雷公司在海南电网公司文昌宝邑110kV变电站地网投标中,双双落马。

与此同时,在与迪祥雷公司合作的广西来宾东糖纸业有限公司也先后六次收到便函“通知”文件(只有正文,没有附件),但并未损害与迪祥雷公司的信任和合作。

东糖公司收到的便函摘录,另一版本的便函摘录

在杨总看来,发函者用意很明显,就是要毁掉信誉,阻碍其业务开展。他说:“我们竞争来的工程已竣工,接地电阻是0.28Ω,而设计要求阻值是1Ω。东糖公司领导认为这个结果是相当好的,历年来均无这样低的阻值。半年来下雨打雷均没有雷害事故。”杨丹认为,良好的接地电阻,给客户带来了经济效益,东糖公司领导表示,“二期工程还是用我们的产品”。杨总坦言,目前在工程中采用的关键产品——离子接地棒是自主专利产品,在许多工程项目中运用,效果非常明显。目前在国内的防雷接地方面,地凯和迪祥雷两家是很好的。

迪祥雷有话要说

8月10日,广西迪祥雷防雷工程有限公司给本刊发来回函“说明”,对“通知”的指责进行了申辩。

“说明”指出,广西电网公司生技部便函[桂电生函(1007)41号]《关于加强变电站接地网质量监督检查的紧急通知》中所列出的“广西南宁迪祥雷防雷工程有限责任公司在公司系统多个变电站接地网建设、改造工程中施工不规范、施工质量差的事实”只有附件中的4个工程,而其中第4个工程是由广西地凯防雷工程公司施工的,“是真正的不合格,是柳州供电局花20万帮他们整改”!

回函对涉及迪祥雷公司的三个变电站接地网改造工程情况一一作了申辩。 (1)关于北海供电局110kV翁山变电站接地改造情况 “通知”附件:

翁山变电站是2004年8月投运的110kV变电站,原设计的接地网的接地电阻设计值0.5Ω,实测值1Ω,不符合设计要求。南宁迪祥雷防雷工程有限责任公司在原地网外围采用电解地极组成新的接地网与主地网连接以达到设计要求,但经查,竣工后的接地网没有提供地网改造竣工图。

2006年5月,南宁迪祥雷防雷工程有限责任公司对翁山变电站使用了电解地极的接地网进行了开挖并做了处理,2006年6月申请进行验收。该公司提供的试验数据表明地网接地电阻已低于设计要求的0.5Ω,并要求北海供电局按照其提供的测试方向进行测试,北海供电局测试人员未予以采纳。测试前,北海供电局对整个翁山变电站的防雷设备进行了导通测试,结果发现电解地极与主地网没有连接,反而有两基独立避雷针与主地网连接了。南宁迪祥雷防雷工程有限责任公司随时后再次对地网进行处理,处理后北海供电局组织了接地电阻复测,结果0.95Ω,仍未符合要求。”

迪祥雷公司的说明:

北海翁山110kV变电站2004年8月21日验收测试报告实测接地电阻0.48Ω小于设计要求0.5Ω,合格验收。2006年5月28日北海供电局实测,在验收合格方测试结果为0.463Ω,同时又在电流级与电压极的另一方向测电阻为0.691Ω,他们只认电阻大的方向(的结果),这与验收方向不一致。

2007年7月11日上午9时,由北海供电局测试队测试,结果是在三个方向测了四个点,第一点R=0.375Ω,第二点0.263Ω,第三点0.287Ω,第四点0.6105Ω,他们说他们自己测的不准,请以中试所测量为准。

(2)关于柳州供电局阳和变电站接地网改造情况 “通知”附件:

110kV阳和变接地工程由2个施工单位完成,建筑部分为博阳公司施工,完成后初步测试的接地电阻值为2.5Ω。之后由广西南宁迪祥雷防雷工程有限责任公司进行的DXL离子列阵电解地极深埋施工(与电力开发公司签的合同),施工过程有监理见证,事后迪祥雷公司说没得0.56Ω(未见报告也没有监理人员证明)。

2007年1月20日由广西电力试验研究院、柳州供电局、迪祥雷公司、监理单位共同选择测试路径并进行测试,测得接地电阻值为1.89Ω,和迪祥雷公司自测数据相比差别很大,对此迪祥雷公司认为是测试的方位(向)不同造成的。启委会要求迪祥雷公司合同进行整改施工。

几天后迪祥雷公司说已整改完毕复测,监理人员询问迪祥雷公司进行了什么内容的整改,是如何进行的。回答是对DXL离子列阵电解地极进行了浇水。监理人员认为整改不力,没必要安排复测。但柳州供电局和试研院还是在2007年2月8日再进行测试,测试结果与20日数据没有实质性的变化。启委会要求迪祥雷公司与设计部门联系后按设计修改意见进行整改施工。

迪祥雷公司的说明:

阳和110kV变电站6月26日测得接地电阻0.86Ω、0.87Ω、0.88Ω。他们没再组织测量。

(3)关于河池供电局100kV寻田变电站接地网改造情况 “通知”附件:

“河池供电局进行新建110kV寻田变电站常规地网的中间验收及调试时发现主地网及独立避雷针接地网敷设均满足有关要求,变电站接地电阻2.1Ω,随后南宁迪祥雷防雷工程有限责任公司对该站进行电解地极的安装(其隐蔽工程及接地网测量均未通知河池供电局参加验收)。

2007年3月12日,河池供电局在进行寻田变电站的竣工验收时发现变电站的四基独立避雷针针均与主地网接通,检查发现电解地极安装单位(南宁迪祥雷防雷工程有限责任公司)没有按照主地网设计图纸施工,擅自将四基独立避雷针接地网与主地网接通,施工前未将设计施工方案报送有关单位审查确认。”

迪祥雷公司的说明:

6月27日,我们对寻田110kv变电站进行接地电阻自测,两个方向分别测得0.91Ω、0.84Ω。他们朝第三个方向测出1.7Ω,因为第三方向是上坡而且加大了对角线长度由100m→135m,电流极是650m,电压极400m,增大了n值(n = 0.615 > 0.5~0.6)。

是有意刁难还是方法差异?

迪祥雷公司的“说明”中还表达了对广西电网公司在地网验收测试中的不满。“电流极长度,电压极长度,上坡方向并没有征求我们意见,……我们认为这样挑剔是很难共事的”,迪祥雷公司主张验收时只测一个方向,也就是验收报告中所提到的方向,或是建设时甲方测的接地电阻方向,也就是接地工程中土壤改良方向。在一个地网工程中,四周的土壤电阻率不一样,为了降低工程造价,必然选择土壤电阻率较低的地方进行地网改造。

从上面的对照中不难发现,双方的分歧主要集中在接地电阻的测量方法和接地电阻的数值选取上。迪祥雷公司认为,接地电阻的测量,应该在地网改造的方向进行,不应该四个方向都测量……如果在地网改造的方向测量是合格的,就应该验收合格。但广西电网公司在测量上要求在不同的方向进行,“接地电阻测量时不要按照……指定的方向进行测量,宜进行两个以上不同方向布线的测量”。

为此,记者请教了几位在防雷接地方面的资深人士。 专家评述

梅忠恕(云南电力公司原副总工程师):

甲方的要求是有点不合情理。要在四个方向上测量,不知这四个方向是指东南西北四方?是90度正方向,还是允许小于90度或大于90度?如果某一方向由于地质原因无法打辅助接地极,又如何办?因此,我认为,这样的要求是不切实际的,不能接受的。我从来也没有见到过如此要求的。

如果严格按测量接地电阻的要求测量,应该说,在任何方向的测量结果的误差都是在允许范围以内的。

对于使用三极直线法的测量方法和数值选取,我们摘取梅忠恕先生在《如何准确测量接地电阻》一文中有关论述:

三极直线法是接地电阻测试中使用最多和最普遍的方法,测试时被测接地网

1、电压辅助极

2、电流辅助极3三点(极)按一直线布置,如图1所示。

E 测试电源 A 电流表 V 电压表 1 被测接地装置,2 电压极, 3 电流极 D 接地网最大对角尺寸, d13 接地网到电流极的距离 d12 接地网到电压极的距离, d23 电压极与电流极的距离

图1 三极直线法测量接地电阻的接线

怎样获得准确的零电位点,是测准接地电阻的关键。

通常是采用试探法找寻大地零电位点的准确位置。其方法就是在三极连成的直线上,在比表1所列α的范围稍大的区域内,例如(0.5~0.7) d13范围内,以d13的3%为间距,连续打5~7个电压辅助极,进行5~7个点的测量。在具体操作上,可以打一点测一点,拔起电压极再打下一点位,测下一个数据。对于电压极的每一个点位,可以测得一个接地电阻值。

表1 在不同的d13距离下满足测量允许误差的α值范围 允许测量误差δ%下列d13距离下的α值范围 5D

3D

2D 50.56~0.670.59~0.650.59~0.63 100.50~0.710.55~0.680.58~0.66 注:D为接地装置最大对角长度。 接地电阻测试结果的判断方法是:以接地电阻为纵坐标,以距离为横坐标,将测得的几个接地电阻值描绘在一张坐标图上,形成一条接地电阻的曲线。如果其中有至少三个电阻值的连线趋势走平,那这个位置对应的接地电阻值就是其准确值。不绘图也可直接判断,在所有测得值中,如果有三个以上电阻值之间相对误差小于3%时,就取这几个值的平均值为最后的测量结果。

要准确测量接地电阻,辅助电流极距被测接地装置的距离d13不能太小,至少应大于接地装置最大对角尺寸的3倍以上。电压极的位置在0.618倍d13处,但测量时应前后移动电压极5~7个点位,测得5~7个接地电阻的数值,选择其中至少三个相互误差小于3%的数据,取其平均值为最后的测量结果。

潘忠林(福州大学客座教授、硕士导师):

接地电阻的测量,在条件许可的情况下,宜进行多点测试,然后取几个点的测试结果平均值作为接地电阻的值。“如果是真正合格的地网,正常情况下,无论从哪个方向测试,测试结果的误差都应该在允许范围之内。至于地网外的土壤电阻率高低对地网的接地电阻影响不会太大,因为我们测量的是改造过的接地网的接地电阻。在多点测量中,对于某个测试点偏差很大的特殊情况,可能是测试方法(仪表)、地下有异物等因素造成,解决的办法是在该点附近重新测量一次”。

测量应该避开附近的电磁干扰,尽可能在夜深人静的时候测量。 谢琦(湖南电信电磁防护支撑中心主任):

接地电阻的测量没有绝对的实际意义。在实际工作中。测量接地电阻值只是作为每年的测试比对数据,如果没有突变,认为地网是可靠的。因此,在测量接地电阻时,没有必要斤斤计较从几个方向测试。

对于接地电阻值较小(小于1欧)的地网测试,利用通信现有的摇表、钳表都不能测试其准确值,必须采用大电流注入法。如果是要我来评判,我会先利用数学计算的办法进行评估,如果评估结果在任何一个方向上得到测试验证,则认为是符合要求的。

另外还有一个折中的办法,就是在地网的几个不同方向分别测试,将其算术平均值作为地网的接地电阻值也是可行的。

后记

广西电网公司生技部便函《关于加强变电站接地网质量监督检查的紧急通知》不仅对接地网工程承包方提出了严厉的指责,而且宣布暂停这两家单位在广西电网公司所属系统承包防雷接地工程资格。作为当事者,迪祥雷公司认为:即使取消其承包资格,也是迪祥雷公司与电网公司之间的事情;但电网公司内部下发的便函,按理只能在本公司内部发行,那么是谁将这一便函(甚至篡改)到处传播发布,把一件小事的负面影响甚至扩大到了省外?迪祥雷公司感到非常不解,并希望通过第三方检测机构对整改通知中提到的有关变电站地网改造工程进行检测,以求得客观公正的结论。

变电站接地网设计范文第2篇

方利祥

(首钢京唐钢铁联合有限责任公司,河北 唐山 063200)

要:介绍了首钢京唐一冷轧110 kV变电站直流系统接地的事故概况,分析了交流串入直流回路及直流系统环路对直流系统绝缘监察的影响及解决方案。

关键词:交流串入直流;接地报警;事故原因

0 引言

直流系统是电力系统一次设备的操作、监控、保护、信号回路等综保装置的稳定不间断供电电源,直流供电的中断将造成二次设备的停运,使一次设备失去保护和监控,极端情况下将有可能造成变电站一次设备烧毁和供电系统瓦解。保证直流系统的正常运行是电力系统运行人员的重要职责。

1 事故概况

一冷轧110KV变电站直流系统运行方式为两组100Ah蓄电池各带一段直流母线分裂运行,保护及控制直流负荷按照对称原则分别由两段母线供电,如图1所示。变电站投入以后发现,直流接地检测开关打到检测仪表侧,直流屏偶尔报直流接地,并能及时自动恢复;直流接地检测开关打到继电器侧,直流屏一直报直流接地,无法恢复。

图1 110 kV变电站直流系统图

2 原因分析

2.1 直流接地监测原理

绝缘监察继电器由平衡电阻和监测电路组成,如图2所示。当两侧直流母线对地电阻值相等时,无电流流过监测电路,继电器不动作。当某一侧母线的绝缘电阻值下降时,不平衡电流流过监测电路,测量电路监测并显示电流的数值和方向,正母线接地时数值为正,负母线接地数值为负,当此电流大于设定的动作阀值时,继电器动作,发出报警信号。 +R1R2R1R2+R+KSRKS(a)原理图(b)等效电路图

图2 直流接地监测原理

2.2 直流系统环路及交流串入直流系统

两段直流母线分裂运行时,直流屏一段控制母线电流达到5A以上,二段控制母线电流基本为零,调高二段控制母线电压后,二段控制母线电流增加,一段控制母线电流降低。另测量直流母线对地电压时,均检测出90V左右交流分量。由此可以推断,变电站直流系统存在环路及交流串入直流系统现象,并打破了直流系统绝缘监察装置电桥平衡,导致直流系统报接地。

3 解决方案

3.1 直流系统环路问题

变电站直流系统由两组充电机带两段直流母线,两段母线间设置母线联络开关。其中Ⅰ段直流母线供10kVⅠ、Ⅲ开关柜直流电源,Ⅱ段直流母线供10kVⅡ、Ⅳ开关柜直流电源。 10kV开关柜Ⅰ、Ⅱ柜内直流电源通过柜内小母线直接相连,中间没有设置联络开关。Ⅲ、Ⅳ开关柜亦是如此,如图3所示。

图3 直流系统环路问题

由上图可见直流屏Ⅰ、Ⅱ段直流母线通过10kV开关柜ⅠⅡ段、ⅢⅣ段柜内小母线分别构成两条环路。分别解开10kVⅠⅡ段、ⅢⅣ段柜内小母线连接处,即可解决直流屏两段直流母线环路现象,直流屏Ⅰ、Ⅱ段控母电流均与分配。 3.2 交流串入直流系统问题

变电站10kVⅠ、Ⅱ、Ⅲ、Ⅳ段开关柜共4路交流电源分别引至低压配电屏2DP-

4、9DP-

4、2DP-

5、9DP-5。拉开10kVⅡ段开关柜交流电源9DP-4开关。测量10kV开关柜内直流电源端子X11:

3、

4、

5、6均无交流分量;测量直流屏Ⅰ、Ⅱ段直流母线亦均无交流分量;测量开关柜内交流电源端子X11:

1、2发现均存在负110V直流分量。由此可以推断直流系统里交流分量通过10kVⅡ段开关柜串入。分别查10kVⅡ段开关柜交流端子X11:

1、2接线,查至13GⅡ段滤波器2#柜时,发现X11:

1、2端子较其他开关柜多出3颗接线,X11:4端子较其他开关柜多出1颗接线。查看设计图纸及其他滤波器柜接线,发现滤波器柜X11:

1、2端子应该多出4颗接线,分别供滤波补偿装置2台隔离柜交流电源。13G柜内X11:4直流电源端子多出的一颗线应该改接至X11:2交流端子。完成改接后,测量X11:

1、2交流端子无直流分量。端子接线如图4所示。完成二次线改接后,直流系统接地报警消除。

图4 端子接线图

4 结语

(1)直流-直流串电。本文中直流系统环路现象就是两套直流系统发生直流-直流串电,即两套直流电源有一点连在一起。该故障属于变电站中常发生的直流接地报警故障。由于变电站中直流回路比较多,有的综保装置本身就有几组直流电源,还要给其它一次设备提供操作电源。这样就可能造成几组本应该相互独立的直流电源之间发生串接,打破直流绝缘监察装置电桥平衡,装置误报直流接地。直流串电使相互独立的直流回路之间发生关联,一组直流接地扩大到两组、三组直流接地,甚至造成整个变电站直流系统全部接地,扩大事故。所以,在变电站二次接线安装调试程中,直流电源一定要从直流馈线屏根源处分开,最好采用目前使用较多的辐射式馈电,避免产生电气联系而影响继电保护。

(2)交流串入直流。本文中交流串入直流只是引起直流系统接地报警,然而交流串入直流危害性远不止如此。由于二次接线中跳闸回路电缆较长,对地分布电容较大,一旦直流回路串入交流电压,将会引起开关误跳。因此,在变电站二次接线中一方面一定要杜绝交直流混接现象,另一方面可以在跳闸回路中加装大功率继电器,能够提高继电器交流电压的动作门槛,进而防止了跳闸继电器的误动。

[参考文献] [1] 朱声石.高压电网继电保护原理与技术[M].电力工业出版社,2005 [2] 韩天行.微机型继电保护及自动化装置检验调试手册[M].机械工业出版社,2004 [3] 国家电网生技400号文 国家电网公司十八项电网重大反事故措施[S],2005

变电站接地网设计范文第3篇

关键词:直流系统;接地故障;故障原因;故障排除

一、引言

发电厂、变电站直流系统所连接的设备多,线路复杂,在运行的过程中,由于受到外部环境的影响,电缆及其接头都出现不同的老化问题,极易发生直流故障。直流接地故障对变电站的运行有较大的危害,正接地也许会引发跳闸的情况,负接地则可能造成断路器拒动。一些地区由于直流接地的故障,引发了不少的事故和危险。因此,实践中,我们要不断分析发生障碍的原因,以便进一步提高变电站直流系统的稳定性和可靠性。

直流系统是变电站系统中的重要部分,它要给继电保护设备提供稳定可靠的直流电源,而继电保护设备的安全稳定运行是保障电力设备安全和防止及限制电力系统长时间大面积停电的最主要设备。如果直流电源无法安全稳定的运行,整个继电保护设备也不能有效的保护电力稳定供应。

直流系统主要是由蓄电池、充电机及其附属设备、馈线、事故照明等组成的。直流系统是接地最多的,所以,在系统的运行中,这也是出现故障的关键点。现新建变电站的直流系统中均装有直流接地巡检仪,其巡检装置在一般情况下均能报出接地情况,检测出接地线路,在拉路查找时,由于时间短,而接地巡检仪反应比较慢,所以应有专人用万用表对地测量,以便及时发现接地点。对于直流接地的查找只能视具体情况,遵循一定原则认真查找。

二、直流系统接地的定义

(一)直流系统接地定义

当直流系统的正极或负极与大地之间的绝缘水平降到某一整定值或低于某一规定值时,称为直流系统接地;当正极绝缘水平低于某一规定值时称为正接地;当负极绝缘水平低于某一规定值时称为负接地。

(二)直流系统接地产生原因

直流系统是个不停歇的长期供电系统,线路多,整体负荷大,同时还会受到外界环境的影响,这些因素都会引起电缆老化、接线端子老化、元件损坏以及设备本身等问题,导致绝缘水平下降。通常来将,运行的时间越久,接地的可能性就越大。

一般有以下几种分类:(1)电缆、设备、元器件老化造成绝缘水平下降,特别是遇到大雨、浓雾等特殊天气引发直流系统接地,天气好转时可能会消失;(2)设备检修或改造施工等原因造成直流系统回路线头松动、脱落并碰触金属外壳,造成直流系统接地;(3)变电站二次装置烧毁等情况引起直流系统接地,此类情况常常伴有保护动作,开关拒跳、拒合以及焦糊味等情况。

三、直流系统常见接地故障类型及其原因

变电站直流系统接地故障按故障极性分为正母线接地和负母线接地;按故障点数分为一点接地、两点接地和多点接地;按故障发生持续性分为转换性故障和持续性故障;按接地程度分为金属性接地和非金属性接地。

直流系统发生接地故障往往同多种原因引起,但总结起来主要有人为和自然两方面因素。人为因素如工作人员在二次回路带电工作,使直流电源碰到接地部分;人为的机械力造成电缆损伤,使带电芯线与屏蔽层碰到一起。如果是直接接地还比较容易发现,但像芯线绝缘损伤等不一定立即发出接地信号,等到天气发生变化,湿度增大后就可能引起接地。此外,在改造、检修过程中接错电缆芯号,使电缆一端接直流电源,另一端作为备用芯而不作任何保护处理,一旦备用芯碰到设备外壳,也会造成接地故障。

自然因素如设备质量不良,直流系统绝缘老化等可能引发接地;雨天或雾天导致室外的直流系统绝缘降低可能引发直流接地;室外开关场电缆其保护铁管中容易积水,时间长了可能造成接地;变压器的非电量回路,因变压器渗油或防水不严,造成绝缘损坏引发接地;设备端子受潮或积有灰尘等造成绝缘降低引起接地;断路器的操作线圈、电笛、电铃等,若引线不良或线圈烧毁后绝缘破坏引发接地。

四、直流系统接地的危害

当直流系统发生一点接地时,由于没有短路电流,熔断器不会熔断,仍可继续运行,但运行人员必须及时处理,否则,当发生另一点接地后,便可能构成接地短路,造成继电保护、信号、自动装置误动或拒动,或造成直流保险熔断,使保护及自动装置、控制回路失去电源。在复杂的保护回路中同极两点接地,还可能将某些继电器短接,不能动作于跳闸、越级跳闸,以至损坏设备,造成大面积停电,从而造成系统瓦解的严重后果。

现以图2为例说明直流接地的危害。当图中A点与C点同时有接地出现时,等于+WC、-WC通过大地形成短路回路,可能会使熔断器FU1和FU2熔断而失去保护电源;当点与C点同时有接地出现时,等于将跳闸线圈短路,即使保护正常动作,YT跳闸线圈短路,即使保护正常动作,YT跳闸线圈也不会起动,断路器就不会跳闸,因此在有故障的情况下就要越级跳闸;当A点与B点或A点与D点,同时接地时,就会使保护误动作而造成断路器跳闸。

五、直流系统接地预防措施

(一)变电站运行维护

单位应定期进行防雨、防潮、防异物的日常检查工作,发现问题及时消除。阴雨天气时应加大设备的检查次数,并重点检查易发生接地的重点部位,发现受潮或进水应立即处理。

(二)质量控制

施工单位在施工过程中应严格控制施工质量和工艺,并对回路进行检查测试,尤其是进行绝缘试验。发生接地后及时更换损伤电缆。

(三)仔细检查

施工单位在回路改造时应仔细核实每一根线,不用的回路及时拆除,并在二次安全措施票和图纸中详细反映。

(四)注意防潮

变电站运行维护单位应定期对蓄电池室通风,并在蓄电池室采取有效的防潮措施。

(五)加强监管

招标采购时严格把关,对质量不佳的产品坚决抵制,对运行时间长、元件老化严重的设备应及时更换。

总之,直流系统接地防范对直流系统的安全运行极为重要,要不断提高认识,总结经验,有效地查处接地、防范接地,以保证设备的健康运行,确保电网稳定运行。2直流接地故障处理的原则和方法

六、故障处理的原则

(一)处理故障过程中严禁二次回路有人工作,查找和处理必须由两人及以上同时进行,处理时不得造成直流短路和另一点接地,使故障进一步扩大。处理过程中应做出具体的安全措施,避免造成保护误动作。

(二)故障判断先微机后人工、先外后内、先次后重、先信号再控制,即在处理故障时先检查由直流系统绝缘监察装置查询到的故障支路。如果没有绝缘监察装置或发现绝缘监察装置提供的判断有误,再进行人工查找。故障点查找的范围一般先考虑室外,因为室外受环境影响比较大,室外排除了再找室内。在回路方面先检查对安全影响较小的信号回路,然后再检查控制回路;采用拉回路的方法时,要先拉次要的负荷回路,再拉重要回路。

七、故障处理的方法

变电站的直流系统是蓄电池组与浮充电装置并联供给直流负荷的运行系统,正常情况下,直流电源的正、负母线对地是绝缘的。直流系统接地故障往往在运行多年的变电站经常发生,对于运行环境差,运行时间长的设备,发生故障的机率更高。下面总结几种查找故障点的方法。

(一)绝缘监察装置查找法

目前,微机型绝缘监察装置在直流系统得到了普遍运用,它是直流系统实时在线监视的重要设备,能够实时监视并数字显示出直流系统的正常工作电压、母线对地绝缘状况等信息。其工作过程是各分支回路的绝缘监测用一低频信号源作为发生器,通过耦合电容向直流系统正负母线发送交流信号,用一小电流互感器同时套在各出线支路的正、负出线上。

由于通过互感器的直流分量大小相等、方向相反,产生的磁场相互抵消,但通过发生器发送给直流母线的低频交流电压信号,伏值相等,方向相同。这样在小互感器二次就能反映出正、负母线的对地绝缘电阻和分布电容的向量和,然后取出阻性分量经模数转换器送到中央处理器进行分析处理,最后显示结果值。

当系统发生接地故障时,处理器对每条线路所采集的信号进行分析,判断出故障线路号及接地电阻值,自动完成查找接地支路的功能,这为接地点的进一步准确定位提供了帮助。绝缘监察装置的最大优点在于它在不切断直流回路负荷的情况下进行查寻,因此提高了直流系统供电的可靠性。对于多点非金属性接地,这种方法也是非常有效的。但对于这些接地点中存在一个或一个以上的金属性接地点时,该装置只能先查到金属性接地支路。因为信号源发出的信号已被这条金属性接地支路短接,其它支路不再有信号通过,只有先将金属性接地支路查出,才能查询其它的非金属性接地支路。

(二)瞬时拉路法

根据负荷的重要程度,依次短时拉开直流屏所供各回路直流负荷。当切除某一回路时故障消失,则说明故障就在该回路之内,继续运用拉路法,可进一步确定故障在此回路的哪一支路中。此方法需要逐步拉掉各条支路,因此大大降低了直流供电的可靠性,如有重要负荷无法停电,则必须使用供临时电源先转移负荷,且要考虑到备用临时直流电源的容量。

八、结束语

直流接地故障特别是一点接地故障发生以后,一般不会马上引发不良反应,因此,容易被工作人员视忽视,以为不会发展成两点故障或引起继电保护等装置的误动作,从而放松了警惕,导致故障影响范围扩大,后果严重。所以快速、安全地查找到故障点非常重要。而这个查找的过程,就是对变电运行人员的考验过程,也是经验的积累和学习的过程。不断总结、积累直流接地故障方面的经验,便可逐步提高这方面的技术水平,将接地故障引起的损失降到最低。

参考文献:

[1]张晓毅,王志强.变电站直流接地故障的分析与查找[J].中国电力教育,2008,(S1).

[2]李海波.变电站直流接地人工查找方法的分析与流程化[J].云南水力发电,2008,(01).

[3]沈从树.浅谈变电站直流接地故障点的查找[J].河南电力,2008,(01).

[4]胡海琴.变电站直流接地故障分析与防范[J].电力安全技术,2008,(09).

[5]何铭宁.现行变电站直流接地检测及准确定位[J].电气应用,2008,(05).

[6]林俊杰,靳瑜红.变电站直流供电分析及接地查找方法[J].中州煤炭,2008,(02).

[7]叶炜,张文生,吴垂扬.变电站直流系统接地故障定位及检测装置选用[J].应用科技,2007,(12).

变电站接地网设计范文第4篇

变电站接地

变电站接地系统设计研究 1 前言

变电站的接地网上连接着全站的高低压电气设备的接地线、低压用电系统接地、电缆屏蔽接地、通信、计算机监控系统设备接地,以及变电站维护检修时的一些临时接地。接地网有工作(系统)接地、保护接地、防雷电和防静电接地等多项用途,它是维护变电站安全可靠运行,保障运行人员和电气设备安全运行的根本保证和重要措施。如果接地电阻较大,在发生电力系统接地故障或其他大电流入地时,可能造成地电位异常升高;如果接地网的网格设计不合理,则可能造成接地系统电位分布不均,局部电位超过规定的安全值,这会给出运行人员的安全带来威胁,还可能因反击对低压或二次设备以及电缆绝缘造成损坏,使高压窜入控制保护系统、变电站监控和保护设备会发生误动、拒动,酿成事故,甚至是扩大事故,由此带来巨大的经济损失和社会影响。如此重要的接地网在变电站建设的总投资中所占的比例,往往不到1%,可以说是微不足道,但绝不可以漠视它,而是要对它给予高度重视。

新建工程要少占或不占良田好土是我国现阶段基本建设的一项原则,因此,建在高土壤电阻率地区的变电站相当多。随着设备的发展和技术进步,变电站总平面布置上,充分利用场地,采用紧凑布置,使站区占地又比以前减少了许多;而电力系统的发展扩大,使接地短

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

路电流越来越大,这些因素给变电站接地设计和施工造成了很多困难。针对这些情况,如何做好变电站接地设计,使其达到安全运行的要求,是变电站设计所关心和要研究问题之一。

2 接地设计

2.1 设计原则

由于变电站各级电压母线接地故障电流越来越大,在接地设计中要满足电力行业标准DL/T621-1997《交流电气装置的接地》中第5.1.1条要求R≤2000/I是非常困难的。现行标准与原接地规程有一个很明显的区别是对接地电阻值不再规定要达到0.5Ω,而是允许放宽到5Ω,但这不是说一般情况下,接地电阻都可以采用5Ω,接地电阻放宽是有附加条件的,这就是需要满足接地标准第6.2.2条的规定,即:防止转移电位引起的危害,应采取各种隔离措施; 考虑短路电流非周期分量的影响,当接地网电位升高时,3~10kV避雷器不应动作或动作后不应损坏; 应采取均压措施,并验算接触电位差和跨步电位差是否满足要求, 施工后还应进行测量和绘制电位分布曲线。

在接地故障电流较大的情况下,为了满足以上几点要求,还是得把接地电阻值尽量减小。接地电阻的合格值既不是0.5Ω,也不是5Ω,而应根据工程的具体条件,在满足附加条件要求的情况下,不超过5Ω都是合格的。这就为我们接地设计和施工增加了灵活性,不必为满足0.5Ω的接地电阻值,在工程中花费巨额投资,或者说,接地网合格的判据不只是看接地电阻值,在接地电阻不满足R≤2000/I时,

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

还应按附加条件校验。现行标准虽然放宽了对接地电阻值的规定,但并没有降低对接地网整体性的严格要求,而是对接地网的安全性要求更高更全面了,这就是接地设计必须遵循的原则和对接地网的考核要求。

2.2 接地网型式

2.2.1 220kV及以下变电站地网

接地网的网格布置采用长孔网或方孔网,接地带布置按经验设计,水平接地带间距通常为5m~8m。除了在避雷针(线)和避雷器需加强分流处装设垂直接地极外,在地网周边和水平接地带交叉点设置2.5m~3m的垂直接地极,进所大门口设帽檐式均压带,接地网结构是水平地网与垂直接地极相结合的复合式地网。 2.2.2 500kV变电站地网

1) 部分工程仍按220kV变电站同样模式设计地网,因为500kV变电站占地面积大,把水平接地带间距加大到10 m以上,采用等间距的网格布置。并设置有大量的2.5m~3m的垂直接地极,这也是复合式接地网。

2) 另有一些工程采用不等间距网格布置,2.5m垂直接地极仅仅在避雷针(线)和避雷器引下线接地处设置,大门口设帽檐均压带……,是以水平接地带为主的地网。不等间距的网格布置尺寸的确定有两种方式:第一种是由计算机计算,输入土壤电阻率和入地故障电流等相关数据计算,计算机可输出地网布置图和电位分布曲线等相关结果;第二种是根据接地标准附录提供的比例关系,参照以往工程经验,尽

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

量将水平接地带靠近设备,以便缩短设备引下线长度。

2.3 接地网形式优劣分析

2.3.1 长孔与方孔地网

网格布置尺寸按经验确定,没有辅助的计算程序和对计算结果进行分析,设计简单而粗略。因为接地网边缘部分的导体散流大约是中心部分的3~4倍,因此,地网边缘部分的电场强度比中心部分高,电位梯度较大,整个地网的电位分布不均匀。接地钢材用量多,经济性差。在220kV及以下的变电工程中采用长孔网或方孔网,因为入地故障电流相对较小,地网面积不大,缺点不太突出。而在500kV变电站采用,上述缺点的表现会十分明显,建议500kV变电站不采用长孔或方孔地网。

2.3.2 不等间距地网

水平接地体采用不等间距布置,即地网中部间距大,地网边缘间距小。根据地网散流的特点,不等间距的网格布置,正好弥补了长孔或方孔地网的缺点,其优越性体现在以下几点:各网孔电势大致相等,各网孔电势与平均值相差不超过5%,最大网孔接触电势比长孔或方孔网低40%以上;与长孔或方孔地网比较,大大减少了电位梯度分布不均匀的危险,提高了地网对人身和设备的安全水平;接地导体散流能力的利用较为充分,节约钢材和相应的施工费可达30%~40%;

入地故障电流密度颁布比较均匀,有利于降低接地电阻;地表面电位颁布均匀,能有效降低接触电势与跨步电势。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

3 降低接地网电阻的措施

在工程中采用过的降阻的措施很多,如:利用地质钻孔埋设长接地级、局部换土、使用降阻剂、利用地下水的降阻作用、深井或超深井接地、引外接地、扩大接地网面积、使用低电阻模块以及深孔爆破接地技术和电解离子接地系统等,这些降阻措施的使用条件、降阻效果以及存在的问题,下面将分别作一些简介:

3.1 利用地质钻孔埋设长接地极

根据接地理论分析,接地网边缘设置长接地极能加强边缘接地体的散流效果,可以起到降低接地电阻和稳定地网电位的作用。如果用打深井来装设长接地极,则施工费很高,如利用地质勘察钻孔埋设长接地极,施工费将大大节省。但需注意:利用地网边缘的地质钻孔,间距不小于接地极长的两倍;钻孔要伸入地下含水层方可利用,工程中我们曾经进行过实测,未插入到含水层的长接地极降阻效果差。

3.2 局部换土

用换土的方法来降低高土壤电阻率区接地网接地电阻,这是大家公认的有效措施之一。据了解,贵州铝厂220kV变电站,整个所区换土2m深,另外打有一口200m深的超深接地井,钢管直径100mm,地网实测电阻达到0.2Ω,效果非常好。这两项措施的施工费相当高,其他工程很少采用。

500kV变电站占地面积大,要对整个所区实施换土,是不可能的。通常采用局部换土,只对水平接地带和垂直接地极的全部或部分实施换土,我们已在多个工程中应用。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

(1)局部水平接地带换土

贵阳变是高土壤电阻率,如对水平接地带实施全部换土,需要低电阻率的田园土1万多方,买土量大,当地特殊的环境条件:石头多,土质少,找不到合适的取土点,故采用部分接地带换土的方式。220kV配电装置场地是岩石区,35kV配电装置场地大部分位于填方区,填入了大量的石块和碎石,仅对这两个区域实施换土。平整场地时,施工单位将地表土也收集起来利用,最后买土不到3000m3,减少了买土和运土费用。

(2)全部水平接地带换土

贵州安顺变土壤电阻率高达2500Ω.m,经计算,在采取电位隔离措施,验算接触电位差和跨步电位差,接地电阻的目标值为1.1Ω。本所的地质和环境中没有可以综合利用的条件,要达到接地电阻的目标值困难很大,采用的降阻措施是对全部水平接地带换土。换土量约1万多方田园土,取土点的土壤电阻率为50Ω.m,在全所接地尚未完工时测过一次接地电阻,约为1Ω,已达到了目标值,接地施工完成后,进行了最后测量,测量值小于0.8Ω.m,这是水平接地带换土成功应用的范例。

3.3 使用降阻剂

在高土壤电阻率区的接地网施工中使用降阻剂,无论是变电还是发电工程例子都很多。20世纪的70年代到80年代,使用较多的是膨润土降阻剂和碳基类降阻剂。据了解,多个使用降阻剂的工程,接地完工后测量接地电阻情况都不错,但由于缺乏长期的跟踪监测,对

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

降阻剂性能的长效性和对接地极材料的腐蚀性的信息返回少。确实也有质量差的降阻剂,降阻效果不能持久,对接地网造成腐蚀,引起各地对降阻剂使用意见分岐。

3.4 利用地下水的降阻作用

利用站区地下水和地下含水层来降低接地电阻是非常经济有效的措施。下面是贵阳变工程的两个实例:

实例一:在站区西侧35kV配电装置场地边,有一个泉水坑,为了充分利用地下水的降阻作用,回填土前,在坑底作了一个大约20m2的小地网,距平场后的地面约3m,由于回填土不够密实,第一次测小地网的接地电阻约3Ω,但第4次测量时,已有40多天没有下雨了,测得的接地电阻值降到1.4Ω,效果很好。

实例二:500kV并联电抗器基础施工时,基础开挖形成一个稀泥塘,深度2m多,在下方也作了一个小地网,面积约20m2,第一次测量为2.4Ω,第三次测量时降到了1.4Ω,效果也很好。

220kV配电装置场地接地网施工,在铺设了三分之二还未与其他部分的地网连接时,测量接地电阻,阻值约为3.3Ω。也就是说,1000m2的地网电阻比20m2的小地网电阻还大。由此可见,两个小地网利用了地下水的降阻作用,收到了良好的效果。

3.5 深井接地

采用深井或超深井(井深超过100m)接地来降低接地电阻,在西南地区虽然有多个工程,但每口井的施工费超过5万元,而且,效果的可预见性差,应用并不普遍。有一个变电工程一期完工时接地电

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

阻测量值为0.58Ω,接触电位差和跨步电位差计算结果均能满足标准要求,同时也作好了电位的安全隔离措施。工程投运后,建设单位为了进一步提高接地网的安全性,在所区西侧的围墙附近打了两口超深井,由于没有打到含水层,也就未达到预想的效果。云南宝峰变,土壤电阻率高达1600Ω.m,站区地质和环境,没有降阻的自然条件可利用。采用的降阻措施是在站区四角打超深井,深井超过100m,地下有含水层,降阻效果相当不错,联网后的接地电阻小于0.5Ω。据调查,贵州地区的水电站工程中采用深井接地有4个工程,井深40m~70m,完工后实测接地电阻都不超过0.5Ω,最小的为0.125Ω;川西地区有多个110kV变电站,接地电阻不满足要求,采用60m~135m深井或超深井接地,国为地下有含水层,接地电阻降到了0.5Ω以下,由此可见,在地下有含水层时,深井或超深井接地,是十分有效的降阻措施。在实施之前,应进行地质勘察,同时,要与其他措施作技术经济比较,特别要避免打井无效造成的浪费。

3.6 引外接地

当变电站附近有低土壤电阻率区(水塘、水田、水洼地……),可以敷设辅助接地网与所内主接地网连接,这种方式叫引外接地。这也是降低接地电阻的有效措施。福建红山220kV变电站,站址位于花岗岩石的山坡上,220kV设备为GIS,站区占地面积小,接地十分困难,好在站区山下有水田,铺设了辅助接地网与所内主网相连,施工完成后测量接地电阻未超过0.5Ω,这是采用引外接地的一个成功范例。据了解,引外接地在国内应用比较多,有的变电站占地面积小,

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

即使站区土壤电阻率不高,接地电阻也难以满足要求,于是就将接地网延伸到站区附近的水塘边、小河边、绿化带、水田边……引外接地需注意:距离不能太远,接地体要深埋,要作好安全保护措施,防止因跨步电位差引起人员和牲畜的触电事故发生,必须保证引外接地的安全性。

3.7 扩大接地网面积

我们知道,在均匀分布的土壤电阻率条件下,接地电阻与接地网面积的平方成反比,接地网面积增大,则接地电阻减小,因此,利用扩大接地网面积来降低接地电阻是可能预见的有效降阻措施。中南地区凤凰山变是利用这种措施的一个范例,但是具有这种条件的工程是不多的。

4 相关问题的讨论

4.1 接地网材料和寿命

接地网寿命与接地网材料和土壤的腐蚀性有关,下面将分别予以讨论:

(1)接地网材质

长期以来,我国接地网材料主要是用钢材,因为我国的铜产量少。在选择接地导体时,一要考虑材质,用钢材或是用铜材;二是计算导体的截面尺寸。欧美和日本都是用铜材,为了提高地网的安全可靠性,我国经济发达的上海,在2002年就开始推荐地网采用铜材。铜材的性能比钢材好:导电率高、热容量大、耐腐蚀性强,铜是无磁性材料,

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

电感小。从耐受短路电流能力比较用材量,钢材为铜材的3倍;从接地阻抗比较用材量,则钢材为铜材的8倍,铜地网的接地电阻和地电位差比钢地网小。铜材的性能虽然好,但其价格却较昂贵,差不多是钢材的7~8倍,接地网综合造价约相差2~3倍。因此土质腐蚀性强的地方可考虑采用铜地网,建议研制比铜材便宜的铜包钢材料供工程中选用。但是,在酸性土壤地区,建议不使用铜材,可考虑采取其他防腐措施。

(2)土壤腐蚀性

埋在地中的钢材,常因土壤的腐蚀作用而使截面变小,接触电阻增大,电气性能变坏,接地电阻增高,安全可靠性降低。因地网腐蚀或发生断裂而引起的事故时有发生,每次事故造成的经济损失都在几百万元甚至是数千万元。为了安全运行,每年都有变电站的接地网进行改造,由于要保证变电设备的正常运行,地网改造,不但施工困难很多,投资也很大。所以,新建工程我们对地网设计,必须足够重视。按动热稳定要求计算接地导体截面尺寸时,应考虑材料腐蚀,对腐蚀强的土壤要特别注意。腐蚀与接地体的埋设深度有关,增加地网的埋设深度腐蚀性将减弱,但施工费用又会相应增加。特别说明,铜接地网与变电站混凝土基础内的钢筋、 地下的钢管和钢构件会产生电腐蚀,需要采用比较昂贵的阴极保护措施,否则会产生相互关联的事故。

要考虑金属腐蚀,就需要知道金属的年腐蚀率,由于各地土壤情况差别较大,年腐蚀率是一个无法准确给出出定值的参数,各工程应按勘测情况确定。一般来说,土壤电阻率越低,年腐蚀率越大,高土

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

壤电阻率的土壤对金属的腐蚀相对较慢。

(3)接地网寿命

变电站的电气设备寿命一般按30年要求,考虑到接地网埋入地中更换相当困难。接地网的使用年限不能低于电气设备的寿命,建议按40~50年考虑。也就是说,地面上的设备即便是更换了,地网仍是安全可靠的,可以继续运行。因此,在选择接地网导体截面时,应按热稳定需要的最小截面再加上30年以上的腐蚀截面。

4.2 入地故障电流

电网中发生接地短路故障时的短路电流可以分成两部分:一部分是经架空线路的避雷线(地线)回流至电源;另一部分是经变电站接地网和大地回流到电源。前者为架空地线的分流电流,后者即是入地故障电流,它是计算地电位、接触电位差、跨步电位差,以及计算接地网导体截面尺寸的重要参数。我们希望架空地线分流越多越好,这样入地故障电流就小了。入地故障电流减小,则地电位就会降低,接触电位差和跨步电位差也相应降低。 由此可见,避雷线的分流

系数越大越好。影响分流系数的因素有以下几个:

1) 出线回路数。出线回路多,分流系数成比例地增加;

2) 出线杆塔的接地电阻。随着杆塔接地电阻增加,分流系数逐渐减小,对于高土壤电阻率地区,杆塔接地电阻达到20Ω时,分流系数趋于稳定:

3) 变电站接地网电阻。随着地网接地电阻的增加,分流系数随之增大,即经接地网和大地流回电源的电流随之减少;

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

4) 避雷线参数。避雷线的导电性对分流系数的影响很大,导电性能越好(加大截面,采用良导体地线),分流系数越大,反之,分流系数越小。当避雷线对地绝缘时(采用绝缘地线),无分流能力,分流系数为零。因此,当变电站地网接地电阻偏大时,各级电压架空出线的避雷线不应采用绝缘方式,同时建议接地电阻偏大的变电站,其架空出线的避雷线在距变电站2~3km范围内各基杆塔均应接地,距离电站最近的几基杆塔,应采取措施将杆塔的接地电阻尽量降低,以便增加分流电流,这一点值得注意,变电设计与线路设计时应相互配合协调解决。

4.3 接触电位差和跨步电位差允许值

接触电位差和跨步电位差的允许值可以按电力行业标准中的公式计算,决定计算值大小的是下面两个参数取值。

1) 站立处的地表面土壤电阻率。为提高接触电位差的允许值,有时需要在设备和构(支)架周围铺设砾石或碎石,以提高人脚站立处地表面的ρ值,取值以不超过2500Ω.m为宜。以此为条件计算的接触电位差允许值应作为限制值,地网的实际接触电位差不应超过限值,否则,将影响人身安全。

工程投运后出现的两种情况值得重视:基一是碎石小道缺少维护,混入了泥土,长出了杂草,没有进行清理;其二是碎石小道被拆除,取而代之的是草坪。这必将导致接触电位差和跨步电位差允许值的降低,尤其是雨季和潮湿季节,从保证运行人员安全考虑,这种现象很值得商榷,环境美化必须在保障安全的条件下实施,这一点应充分认

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

识。

2) 接地(故障)电流持续时间。它是计算接触电位差和跨步电位差的参数,它有别于接地装置的热稳定校验计算用短路等效持续时间,而标准中又没有给出定量规定。时间取值短,容易满足要求,时间取值长,则偏于保守,有时会增加接地网的处理措施费。鉴于长期以来,我们尚未见到大接地短路电流系统中,有关接触电位差和跨步电位差使人产生触电伤亡的报道,事实上各种最不利情况同时出现的几率本来就很小,我们没有必要过于保守,那样反而给接地设计和施工带来困难。建议接地电流持续时间取继电保护主保护动作时间为计算条件。

4.4 垂直接地极与深井接地

由垂直接地体降阻作用的理论分析可知,即使在接地网下密密麻麻的设置很多垂直接地体,形成一块以垂直接地体为厚度的一块大铁板,由于铁板厚度与其等效半径相比小得多,其降阻作用很小。如:在100×100(m2)和200×200(m2)地网中密集打入3m长的垂直接地极,前者降阻率不超过4%,后者不超过2%,如果采用深井接地,垂直接地极长度取50m,则降阻率可以达到22%。因此,变电站的接地装置,应以水平地网为主,若想以增加短垂直接地极来降低接地电阻,从性能价格比来看,很不划算,既浪费钢材又增加施工费,这种方式不可取。要想用垂直接地极降阻,就应采用深井接地极,实施要点和优点如下:

(1)一般来说,采用深井接地,井深要达到或超过接地网面积

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

的等效半径。为了避免相互之间的屏蔽作用,接地井的间距不应小于井深的两倍,否则,降阻效果将受到影响;

(2)用深井和超深井接地时,要事前调查站区和附近的土壤地质情况,了解地下深层地质结构,特别是要查明地中土壤电阻率变化情况。如地下有低土壤电阻率岩土层或含水层,则具备深井接地的条件;若地下土壤电阻率比地表高,就不应采用深井接地;

(3)深层的土壤电阻率不受气候、季节影响,数值稳定。因此,接地电阻值也不会随气候、季节变化,这是深井接地最大的优点。

4.5 降阻剂的使用

早在20世纪的60年代,已经开始使用降阻剂,到20世纪80年代,各地出现了很多降阻剂生产厂。起初只是在一些小面积地网中(线路杆塔接地、微波站接地、建筑物接地……)使用较多,后来一些变电站接地网也开始使用了。由于降阻剂的质量问题:降阻效果不能长久,对接地钢材有腐蚀性,促使20世纪70年代中期以后,生产厂家开始了提高和改进性能的研究,然而,生产的降阻剂产品并没有达到较为理想的性能,工程中使用以后,仍然暴露出一些问题,使降阻剂应用受阻,变电工程中使用降阻剂的已经很少。

理想化的降阻剂应具备的性能是:降阻效果好,对接地体无腐蚀或腐蚀性小,有效使用年限长(长效性),无毒不污染环境(不影响地下水源),施工操作简便。目前对降阻剂应用研究的意见不完全一致,有肯定的,也有否定的,鉴于其安全性和长效性难于保证,对大中型地网的降阻效果小。因此,建议变电站不要使用降阻剂作为主要

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

的降阻措施。

4.6 深孔爆破接地技术

爆破接地技术是近期科研成果,它值得在具备条件的地区应用和推广。具体施工方法是:采用钻孔机在地中垂直钻一定直径、一定深度的孔,孔深一般在30m~120m。在钻孔中插入接地电极,然后沿孔的整个深度,隔一定的距离,放置定量的炸药,实施爆破,将岩石爆裂,爆松,然后将调成浆糊状的低电阻材料,用压力机压入深孔中和爆破制裂产生的缝隙中,从而达到通过低电阻率材料将地下大范围的岩石内部构通,加强接地极与岩土的接触,达到较大辐度降低接地电阻的目的。为了验证爆破技术的效果,通过试验现场开挖,发现填充的低电阻材料呈树状分布在爆破制裂产生的缝隙中,延伸很远,最远的达40m,这就达到了利用地下电阻率较低的岩土层或含水层,贯通岩石中的固有裂缝,改善土壤的散流能力,相当于在大范围内将高电阻率的岩土,置换为广泛分布低电阻率材料通道的岩土,从而使接地电阻降低。

爆破接地技术技术已经在我国北方的发变电工程中应用,需注意的是,由于不同地质条件下爆破裂缝的等效计算半径不一样,不同地区应用此项技术时,需进行一些试验,了解本地区的地质特点以及用药量,摸清爆破制裂的规律,使此项技术充分发挥作用。

4.7 电位隔离措施

根据现行接地标准,放宽对接地电阻值要求的附加条件之一是采取电位隔离措施,防止电位转移,即防止变电站内在接地短路时的高

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

地电位通过各种途径传到所外,或者说,将所外的低电位引入所内。变电站内一般没有铁路进入,但供水管路、低压线路、通信线路进入变电站是比较常见的。供水管道进入变电站的方式有架空、贴着地面铺设、地下埋设三种方式。架空敷设的水管道很少见,通常为后两种敷设方式。地下埋设的水管电位转移小,无需采用电位隔离措施。贴着地面铺设的水管,应有隔离措施,即:在变电站围墙处应设法兰连接,对接处装橡皮垫,连接螺栓穿在绝缘套内并加装绝缘垫圈。由变电站对所外深井泵房供电时,电源中性点不在所内接地,要改在泵房处接地,供电线路最好使用加强绝缘的架空线路。当采用电缆线路时,最好使用全塑电缆,如采用铠装电缆。电缆在进入泵房处,应将钢铠或铅(铝)外皮剥掉0.5~1m。对于通信线路,如果采用的是光纤电缆,因为没有电路的直接联系,不会产生电位转移,否则,应设置隔离变压器,隔断电路的直接联系,切断电位转移通路。总之,在接地电阻较大的变电站防止电位转移关系到人身和设备安全,设计时必须考虑采取适当的措施。

4.8 敷设双层地网

据某供电局介绍,为了降低占地面积较小的变电站的接地电阻值,有一个110kV变电站,想扩大接地网面积,把地网作成双层,两层地网之间相距仅2m多一点,可能是双层地网产生的屏蔽作用,降阻效果并不理想。在其他工程中也采用过双层地网,降阻效果仍然很小。因此,在没有得到确切的理论根据和试验验证之前,建议不采取这种方式,以免造成钢材和资金浪费。

精心收集

精心编辑

精致阅读

如需请下载!

演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案

5 结论

1) 变电站接地网是维护变电站安全可靠运行,保障运行人员和电气设备安全运行的根本保证和重要设施。接地网设计与施工必须予以高度重视;

2) 高土壤电阻率区的变电站,应根据所区地质和环境条件,采用效果好、经济、合理、安全、可靠的辅助措施,因地制宜,综合治理来降低接地电阻。同时,应当把降低地面电位梯度与降低接地电阻视为同等重要,不应片面追求小接地电阻值而投入巨额资金;

3) 接地网设计要推广采用不等间距的网格布置;大中型变电站的接地网应以水平接地网为主;为降低接地电阻为目的而增加短垂直接地是不可取的;双层地网降阻效果小;实施深井接地的条件应是地下具有含水层或低电阻率的岩土层;

4) 由于已经使用过的各种降阻剂,在降阻效果和多项性能,以及经济性等方面不能完全令人满意,因此,大中型地网不宜使用。建议开展对接地工程的实验研究工作,研制新材料(降阻效果好、腐蚀性小、无污染、性能稳定、价格便宜),探索经济合理的新方法,并做好科研成果的应用与推广工作.

精心收集

精心编辑

精致阅读

变电站接地网设计范文第5篇

1 直流接地产生原因

变电站直流系统所接设备多、回路复杂, 其特点是:分布范围广、外露部分多、电缆多、且较长。在长期运行过程中会由于环境的改变、气候的变化、尘土、潮气的腐蚀, 容易造成某些绝缘薄弱元件绝缘降低, 电缆以及接头的老化, 设备本身的问题等等, 而不可避免的发生直流系统接地。特别在变电站建设施工中或扩建过程中, 由于施工及安装的种种问题, 难以避免的会遗留电力系统故障的隐患, 直流系统更是一个薄弱环节。投运时间越长的系统接地故障的概率越大。分析直流接地的原因有如下几个方面: (1) 二次回路绝缘材料不合格、绝缘性能低, 或年久失修、严重老化;另外外力破坏如磨伤、砸伤、压伤、扭伤或过流引起的烧伤等也会造成直流接地现象。 (2) 二次回路及设备严重污秽和受潮、接地盒进水, 使直流对地绝缘严重下降。 (3) 小动物爬入或小金属零件掉落在元件上造成直流接地故障, 如老鼠、蜈蚣等小动物爬入带电回路;某些元件有线头、未使用的螺丝、垫圈等零件, 掉落在带电回路上。 (4) 施工过程遗留的缺陷。由于设备生产厂家或安装单位的工作人员在校线、压线过程中工作不认真, 接线错误而造成直流系统接地。

2 直流接地查找耗时长的分析

据统计, 在直流接地故障处理工作中, 故障处理的时间一般超过8小时, 超时的主要原因, 是接地故障点的查找过程耗时长, 平均占总的处理时间的82%。而导致故障点查找耗时长的原因主要有以下四点: (1) 沿用拉路寻找方法。采用拉路寻找接地故障点的方法, 操作麻烦费时, 而且不能完全有效正确判断接地鼓掌范围, 对于充电装置、蓄电池本身或直流母线的接地故障, 还有直流串电、同极两点接地、直流系统绝缘不良而多处出现虚接地点等情况不能加以判断。 (2) 检测工具功能简单。由于仍然使用旧式的检测仪器, 不单操作复杂费时, 而且功能的单一, 不能够方便而精确地测量所需数据, 以致故障范围不明确, 只能靠外观检查, 依靠处理人员经验。 (3) 直流设备分布广。由于直流系统遍布整个变电站, 查找过程中, 往往需要多次对室内室外的设备来回检查, 耗费一定的时间。 (4) 缺少现场经验。由于直流系统相当复杂, 而且易受到环境和人为因素的影响, 导致接地故障原因的多样性。所以, 要迅速正确判断, 除了要对直流系统熟悉外, 还要有充足的现场处理经验。而丰富的经验是需要长时间的积累的。

3 目前常见的直流接地查找方法

从目前现场实际中的情况和经验所得, 大致有以下三种方法: (1) 直流接地选线装置监测法。目前市场上出现了众多厂家的直流接地选线装置。一般以“信号注入法”、“霍尔传感器监测法”、“磁饱和监测法”三种原理设计生产的, 大致情况是在直流的各分支回路上安装一个穿心式的电流互感器, 各互感器感应到的信号经过直流接地选线装置分析判断, 确定直流接地的分支回路, 其安装在支路回路上的传感器编号和接地检测仪显示部分回路对应编号。该装置的优点是能在线监测, 随时报告直流系统接地故障, 并显示出接地回路编号。缺点是该装置只能监测直流回路接地的具体接地回路或支路, 但对具体的接地点无法定位。此类装置还普遍存在检测精度不高, 抗分布电容干扰差, 误报较多、各现场情况不一致等的问题。 (2) 拉路法。拉路法直流接地回路一旦从直流系统中脱离运行, 直流母线的正负极对地电压就会出现平衡。所以人们通常从直流接地回路瞬间停电, 确定直流接地点是否发生在该回路, 这就是所谓的“拉路法”。人们不能随意停电。近年来随计算机的大量使用, 微机保护同样也不允许人们随意断开直流电源。现场排除故障中, 经常发生非正常的闭环回路, 采用双电源供电回路, 以及变电站在现场施工、扩建、修试过程中遗留了直流负载的信号回路、控制回路和保护回路之间没有区分等等, 使直流接地故障查找难度更加困难。“拉路法”往往造成了控制回路或保护回路跳闸等事故。 (3) 便携式直流接地故障定位装置故障定位法。该装置是近几年开始在电力系统较为广泛应用的产品。使用便携式的直流接地故障查找仪, 查找直流接地不失为一种好方法, 可作为拉回路法的辅助测试仪, 对接地故障的排除在时间上和安全上都是好帮手。该装置的特点是无需断开直流回路电源, 可带电查找直流接地故障。完全可以避免再用“拉回路”的方法, 极大地提高了查找直流接地故障的安全性。而且该装置可将接地故障定位到具体的点, 便于操作。这种设备在使用上是十分科学的。在原理上基本和在线装置的信号注入法原理相似。由于其采集传感器可以任意移动, 利用其移动的优点还可以更具体地查找到各接地点。

4 直流接地故障查找的技巧

(1) 查找及时。因直流接地故障常常随环境、气候的变化而变化, 十分不稳定, 造成难以查找的事故隐患, 只要出现故障应立即查找。 (2) 按序查找, 先信号回路, 事故照明回路, 再操作回路, 控制回路, 保护回路。先重点检测绝缘情况较差的回路。 (3) 对环路供电的直流系统应先断开环路开关, 如果客观上已断不开的环路, 应对检测到的接地故障回路其接地精度仔细分多样, 找出接地更严重的回路, 继续查找。 (4) 选用高精度的查找装置, 对接地告警比较严重的, 大部分情况都并非一点接地, 应用精度较高的检测装置区分不同故障程度的回路, 从接地故障严重的回路的入手。

5 结语

本文通过对变电站运行中各种故障的分析, 为管理人员提供了快速便捷的解决方案, 有利于变电站发生故障时的及时解决。其中, 便携式直流接地故障定位装置故障定位法是目前最先进和安全的方法, 该装置的厂家和型号较多, 随着查找技术的不断提升, 查找的准确率也有所提高, 是现行直流接地查找仪器的使用首选。变电站运行维护较为复杂, 同时还需要工作人员根据实际情况, 因地制宜, 正确解决问题。

摘要:直流系统是不接地系统, 本文介绍直流接地的产生、分析直流接地的危害性、探讨直流接地的查找方法和技巧, 希望为尽快安全排除直流系统接地故障提供帮助。

关键词:直流系统,直流接地,查找,装置

参考文献

[1] 崔站涛, 樊丽君.直流接地故障的分析与探索[J].宁夏电力, 2007.

[2] 尹希泉, 勒力, 陶红军.快速查找变电站二次回路直流接地的方法[J].东北电力技术, 2007.

[3] 黄瑞莲.浅谈变电所直流系统接地的人工查找[J].六安供电局.

[4] 沈华松.变电所直流系统接地的危害及原因分析[J].安徽电力, 2000.

变电站接地网设计范文第6篇

(1) 沿大地表面的危险电位梯度。

(2) 由于过电压上升而造成的电力设备绝缘损坏。

(3) 电力系统的中性点的偏移。

(4) 电力继电保护装置误动。

(5) 通过管线和低压电路等装置的高压转移。

(6) 电力设备机壳上的危险电压。

(7) 接地体周围的土壤风干。

由此可见, 接地网的故障已是电力系统安全运行的心腹大患, 诊断接地网的断点及接地网的腐蚀情况已成为电力部门的一项重大反事故措施。尤其是前几年美国电网出现大面积停电事故后, 引起世界各国对电网保护的高度重视, 我国政府和电力企业更加重视接地网的防腐安全问题。例如1985年3月13日在胡集变电站和1986年4月25日在潜江变电站发生的接地故障, 都因35kV小电流接地系统发生两相短路接地与异相异点接地形成短路, 使接地网部分或整个接地网通过大电流, 烧断接地引线和部分接地网水平导体。设备外壳和端子箱上出现工频高压, 造成工频高压进入主控室损坏设备, 使直流保险熔断大大延长短路故障的切除时间, 造成主变压器损坏, 使事故扩大。

1 接地网腐蚀诊断的基本思想

当接地网运行多年后, 某些导体就会发生不同程度的腐蚀甚至断裂, 其相应支路的电阻值增大, 这样, 腐蚀前后就得到两个拓扑结构相同、支路电阻值不同的电阻网络。如图1, 当对这两个网络施加相同的恒定直流电流源时, 原网络节点电压因拓扑结构、支路电阻及激励已知, 可根据电网络理论计算得到。对于腐蚀后的接地网, 因电气设备都有和接地网相连的接地引线, 其与地网连接点为可测节点, 直接测量这些接地引线对参考节点的电压就得到腐蚀后接地网节点电压值。

2 接地网腐蚀机理

接地装置长期处于地下阴暗、潮湿的环境中, 最容易发生腐蚀。金属在土壤中的腐蚀按机理的不同分为下列几种:化学腐蚀、电化学腐蚀和微生物腐蚀。

2.1 化学腐蚀

发生在金属与介质相接触的界面上, 腐蚀时没有电流产生, 钢材表面在高温下与空气中的氧气接触, 发生化学反应, 生成一层氧化膜, 这就是一种化学腐蚀。化学腐蚀主要与环境温度、环境中含有化学腐蚀物质的量和环境中的空气湿度有关。环境温度越高, 环境中含有化学腐蚀物质的量就越多。空气湿度越大, 化学腐蚀就越严重。

2.2 电化学腐蚀

土壤是由固态、液态和气态三种物质构成的复杂混合物, 土壤胶体带有电荷, 并吸附一定数量的阴离子, 当土壤中存在少量水分时, 土壤水即成为一种电解质溶液, 土壤中的部分氧气溶解在水中, 与接地体构成一个氧化还原电池。当接地装置发生腐蚀时, 钢材作为原电池的负极 (阳极) , 发生氧化反应;而钢材中含有能导电的杂质则作为原电池的正极 (阴极) , 发生还原反应。但由于钢材接触到的电解质溶液的酸性强弱不同, 正极上的反应有析氢腐蚀和吸氧腐蚀两种情况, 因而使腐蚀过程有所差异。

3 接地网故障诊断的影响因素

地网在施工时由于地域、土壤等原因, 没能严格按照设计图纸敷设接地网, 或在引上线的布置位置上有所限制, 导致接地网与设计时有一定的偏差, 对地网的诊断也带来了影响, 本章就研究利用上述理论方法是否能准确诊断出当接地网存在影响因素时的故障。

3.1 节点虚焊漏焊

在实际工程中, 当接地网敷设完毕后, 由于不严格的施工质量, 接地网可能存在漏焊和虚焊的情况。这从理论可以分析出因为接地网某节点虚焊后, 由于并联的导体数目减少, 节点的电压值必然有所增大计算得到的支路电阻必然增大, 判断出的腐蚀程度也因此变大。

3.2 接地引线偏移

接地网节点在仿真计算中, 接地引线总是从网络交汇的节点上引出的。而在实际工程中, 接地引线和接地网不一定会在网络的节点上相连, 而是就近与接地网的支路相焊接, 加上常常缺乏严格完整的竣工图和改造图, 所以, 接地引线和接地网的连接节点往往不能确定, 在计算时用的接地网拓扑图按照就近的原则设定接地引线和接地网的连接点在网络的节点上, 这种假定必然会使计算结果与实际情况存在一定的误差。

3.3 接地网网格偏移

由于施工过程中各种原因, 没能严格按照设计图纸敷设接地网, 有可能导致某些段导体发生偏移, 而计算时依据的是设计图纸的拓扑结构, 这样可能对诊断结果造成一定误差。

(1) 节点虚焊漏焊的影响:由于并联的导体数目减少, 节点的电压值会有所增大计算得到的支路电阻必然增大, 判断出的腐蚀程度由此也变大。

(2) 接地引线偏移接地网节点的影响分别对节点向四个不同方向节点偏移进行了仿真计算, 均与假设结果一致。

(3) 接地网网格偏移的影响:初步诊断出电阻增量最大支路, 增加节点后将故障支路准确诊断出来, 还把部分因网格偏移而改变电阻的支路诊断出来。

摘要:本文主要介绍接地网腐蚀诊断方法的基本原理, 包括电网络理论、故障诊断理论、接地网在土壤中的腐蚀机理等。在这些理论的基础上, 结合本文的目的和接地网的实际情况, 做出一些必要的分析。

关键词:变电站接地网,腐蚀,故障诊断

参考文献

[1] 解广润.电力系统接地技术[M].中国电力出版社, 1991.

[2] 胡学文, 许崇武.接地网腐蚀与防护的研究[J].湖北电力, 2002, 26 (3) :31~34.

[3] 刘洋, 崔翔, 卢铁兵.变电站接地网的断点诊断方法[J].电网技术, 2008, 32 (2) :356~359.

[4] IEEE Std 80~2000, IEEE guide forsafety in AC substation grounding.

上一篇:变更法人股东决定范文下一篇:百合婚礼策划文案范文