数字图像处理课程报告

2023-04-10

报告是在工作或项目事后编写的,所以报告具有总结性、叙述性的特点,只有按照报告格式编写,才能编写出有效的报告。以下是小编整理的《数字图像处理课程报告》,供大家参考借鉴,希望可以帮助到有需要的朋友。

第一篇:数字图像处理课程报告

《数字图像处理》课程教学大纲

Digital Image Processing 课程编号:

适用专业:电类、计算机类

学时数: 40

学分数:2 执笔者:何家峰

编写日期:2005年8月

一、课程的性质和目的

本课程是电类、计算机类的一门技术性和应用性很强的专业课。学习本课程的目的在于:使学生掌握数字图像处理的基本概念、基本理论和基本方法,并了解数字图像处理的发展方向和应用情况。学习完本课程并结合相应的实验,学生应达到以下要求:①掌握常用的数字图像处理方法,包括图像增强方法、频域处理方法、图像分割方法、图像特征描述方法和数学形态学方法等;②能较为熟练地用Matlab或VC++语言编写常用的数字图像处理算法。

二、课程教学内容

第一章 绪论 (2学时) 掌握数字图像处理的一般概念。重点是数字图像处理的主要内容、图像工程的三个层次及其数字图像处理系统的组成,并了解数字图像处理的应用和发展动向。

本章知识点为:图像、数字图像、数字图像处理的定义;数字图像处理的目的和主要内容;图像工程与相关学科;数字图像处理系统的组成;数字图像处理的应用和发展方向。

第二章 数字图像处理基础 (2学时)

掌握数字图像处理的一些基础知识。重点是采样和量化的概念、BMP图像文件格式、RGB颜色模型和HIS颜色模型,理解RGB颜色模型和HIS颜色模型的色度学基础和适用范围。

本章知识点为:图象数字化技术;数字图像类型;图象文件格式;色度学基础与颜色模型。 第三章 图像增强 (10学时) 学习多种图像增强方法。重点是掌握直方图均衡化方法、空域图象平滑与锐化方法。为使学生更深刻理解直方图拉伸和直方图均衡化的原理,应把相应的数学推导讲解透彻。

本章知识点为:直方图的拉伸和均衡化;灰度线性变换和非线性变换;图像噪声分类与特点;模板操作、邻域平均、中值滤波和其他去噪技术;图像锐化:微分法、拉普拉斯变换和高通滤波;图像的伪彩色处理。

本章安排实验:图像增强实验。 第四章 图像分割 (8学时)

掌握图像分割方法、边缘检测方法、轮廓跟踪、图像匹配、投影法、差影法等的基本原理。轮廓跟踪是本章的难点内容,应结合具体的阈值化图像矩阵进行讲解。

本章知识点为:区域分割:阈值分割、区域生长、区域聚合;边缘检测:微分运算、LOG算子;轮廓

1 跟踪与提取;图像匹配:莫把面匹配、直方图匹配、形状匹配;投影法与差影法。

本章实验安排:图像分割实验。 第五章 图像的几何变换 (4学时) 掌握几何变换的数学基础,以及几种常见的几何变换方法,包括平移变换、比例变换、旋转变换、镜像变换、复合变换和透视变换。其中,几何变换的数学基础和比例变换可以作为本章的重点内容。

本章知识点为:齐次坐标与二维图像几何变换矩阵;图像比例缩放变换;图像平移变换;图像镜像变换;图像旋转变换;图像复合变换;透视变换。

自学内容:透视变换可以安排学生自学。 第六章 频域处理 (2学时)

掌握可分离变换原理,重点掌握傅立叶变换和余弦变换的原理和应用。

本章知识点:傅立叶变换;可分离变换;离散余弦变换;WHT变换。傅立叶变换在数字信号处理中已经学过,这里只是由一维变换扩展为二维变换,可以不讲。

自学内容:小波变换及其他可分离变换作为学生自学了解内容。 第七章 数学形态学处理 (4学时) 掌握二值形态学和灰度形态学的几种基本操作,了解形态学在图像处理中的应用。

本章知识点:数学形态学的基本概念与术语;二值形态学:腐蚀、膨胀、开闭运算、击中/击不中变换;灰度形态学:灰度腐蚀、灰度膨胀、灰度开闭运算;形态学的应用:形态学滤波、骨架抽取。

第八章 图像特征 (8学时) 掌握图像的几何特征、形状特征、纹理特征、中轴变换与骨架提取、曲线与表面的拟合以及其他特征。其中,不变矩、几种纹理描述、四叉树应作为重点内容讲解。

本章知识点:图象的几何特征:位置与方向、周长、面积、长轴和短轴;形状特征:矩形度、圆形度、球状性、不变矩、偏心率、形状描述子;纹理分析:统计法、空间自相关纹理测度、联合概率矩阵法、纹理的句法结构分析法;中轴变换与骨架提取;曲线与表面的拟合;其他特征或描述:标记、欧拉数、四叉树。

本章实验安排:图象特征提取与识别。

三、课程教学的基本要求

本课程是电类、计算机类专业的专业程,实践性较强。在教学方法上,采用课堂讲授,结合课后自学、实验、习题等教学形式。

(一)课堂讲授

本课程在讲解上着重数学公式物理含义的阐述,对于难点内容,可以结合一个人为构造的图像矩阵来解释。力求做到重点突出,由浅入深,便于学生理解和掌握。

在应用方面,主要结合自己和他人的研究成果,介绍一些图像处理方法的应用实例,增强学生的直观

2 体验,培养学生的学习兴趣。

(二)课后自学

为了拓展学生的知识面,以及培养学生的自学能力,安排部分内容,课后学生自学。

(三)习题课

安排2学时习题课(已包括在前述学时分配中),讲解综合性例题及布置作业中的共性错误。

(四)课外作业

课外作业以编程题目为主,平均每章1~3道题,以加深对所学基本图像处理方法和算法的理解,加强Matlab或VC编程能力。

(五)实验

结合本课程的内容开设3个的相应实验。教学实验内容以验证性实验和综合性为主,以巩固课堂所学图像处理技术,培养科学实验研究能力。

(六)考试

本课程采用闭卷或开卷形式考试,试题题型可采用填空、判断、简答、程序设计等。主要考察学生对基本概念、基本方法的掌握及综合应用情况。

总评成绩:课外作业、平时考勤、实验占30%;期末考试占70%。

四、本课程与其它课程的联系与分工

先修课程:高等数学、概率论与数理统计、信号与系统、数字信号处理。

五、建议教材与教学参考书

[1]何东健主编,《数字图像处理》,西安电子科技大学出版社,2005.3 [2]章毓晋编著,《图像处理与分析》,清华大学出版社,2002.5 [3]朱秀昌编著,《图像处理与图像通信》,北京邮电大学出版社,2005.5 [4]M. Petrou, P. Bosdogianni,《数字图像处理疑难解析》,机械工业出版社,2005.4

第二篇:数字信号处理课程设计

目 录

要........................................................................................................................................... 1 1 绪论 .............................................................................................................................................. 2

1.1 DSP系统特点和设计基本原则 ...................................................................................... 2 1.2 国内外研究动态 ............................................................................................................. 2 2系统设计........................................................................................................................................ 3 3硬件设计........................................................................................................................................ 5

3.1 硬件结构 ........................................................................................................................... 5 3.2 硬件电路设计 ................................................................................................................... 7

3.2.1 总输入电路 ........................................................................................................... 7 3.2.2 总输出电路 ........................................................................................................... 7 3.2.3 语音输入电路 ....................................................................................................... 9 3.2.4 语音输出电路 ....................................................................................................... 9

4 实验结果及分析 ......................................................................................................................... 10 4.1 实验结果 ......................................................................................................................... 10 4.2 实验分析 ......................................................................................................................... 12 5 总结与心得体会 ......................................................................................................................... 13 参考文献......................................................................................................................................... 14 致谢 ................................................................................................................................................ 15

基于DSP的语音信号处理系统,该系统采用TMS320VC5509作为主处理器,TLV320AIC23B作为音频芯片,在此基础上完成系统硬件平台的搭建和软件设计,从而实现对语音信号的采集、滤波和回放功能,它可作为语音信号处理的通用平台。

语音是人类相互之间进行交流时使用最多、最自然、最基本也是最重要的信息载体。在高度信息化的今天,语音信号处理是信息高速公路、多媒体技术、办公自动化、现代通信及智能系统等新兴领域应用的核心技术之一。通常这些信号处理的过程要满足实时且快速高效的要求,随着DSP技术的发展,以DSP为内核的设备越来越多,为语音信号的处理提供了良好的平台。本文设计了一个基于TMS320VC5509定点的语音信号处理系统,实现对语音信号的采集、处理与回放等功能,为今后复杂的语音信号处理算法的研究和实时实现提供一个通用平台。

关键词:语音处理;DSP;TMS320VC5509;TLV320AIC23B

1 1 绪论

语音是人类相互间所进行的通信的最自然和最简洁方便的形式,语音通信是一种理想的人机通信方式。语音通信的研究涉及到人工智能、数字信号处理、微型计算机技术、语言声学、语言学等许多领域,所以说语音的通信是一个多学科的综合研究领域,其研究成果具有重要的学术价值。另外通过语音来传递信息是人类最重要的、最有效、最常用的交换信息的形式。语言是人类特有的功能,声音是人类常用的工具,是相互传递信息的主要手段。同时也是众构成思想交流和感情沟通的最主要的途径。

1.1 DSP系统特点和设计基本原则

DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。其工作原理是接收模拟信号,转换为0或1的数字信号。再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。

1.2 国内外研究动态

语音信号处理作为一个重要的研究领域,已经有很长的研究历史。但是它的快速发展可以说是从1940年前后Dudley的声码器和Potter等人的可见语音开始的;20世纪60年代中期形成的一系列数字信号处理的理念和技术基础;到了80年代,由于矢量量化、隐马尔可夫模型和人工神经网络等相继被应用于语音信号处理,并经过不断改进与完善,使得语音信号处理技术产生了突破性的进展。一方面,对声学语音学统计模型的研究逐渐深入,鲁棒的语音识别、基于语音段的建模方法及隐马尔可夫模型与人工神经网络的结合成为研究的热点。另一方面,为了语音识别实用化的需要,讲者自适应、听觉模型、快速搜索识别算法以及进一步的语言模型的研究等课题倍受关注。

在通信越来越发达的当今世界,尤其最近几十年,语音压缩编码技术在移动

2 通信、IP电话通信、保密通信、卫星通信以及语音存储等很多方面得到了广泛的应用。因此,语音编码一直是通信和信号处理的研究热点,并其取得了惊人的进展,目前在PC机上的语音编码已经趋于成熟,而如何在嵌入式系统中实时实现语音压缩编码则是近些年来语音信号处理领域的研究热点之一。

2系统设计

在实际生活中,当声源遇到物体时会发生反射,反射的声波和声源声波一起传输,听者会发现反射声波部分比声源声波慢一些,类似人们面对山体高声呼喊后可以在过一会儿听到回声的现象。声音遇到较远物体产生的反射会比遇到较近的反射波晚些到达声源位置,所以回声和原声的延迟随反射物体的距离大小改变。同时,反射声音的物体对声波的反射能力,决定了听到的回声的强弱和质量。另外,生活中的回声的成分比较复杂,有反射、漫反射、折射,还有回声的多次反射、折射效果。

当已知一个数字音源后,可以利用计算机的处理能力,用数字的方式通过计算模拟回声效应。简单的讲,可以在原声音流中叠加延迟一段时间后的声流,实现回声效果。当然通过复杂运算,可以计算各种效应的混响效果。如此产生的回声,我们称之为数字回声。

本次实验的程序流程图如下:

图2.1 程序流程图

3

本次实验的系统框图如下:

图2.2 系统框图

4

3硬件设计

3.1 硬件结构

图3.1是系统的硬件结构框图, 系统主要包括VC5509和A IC23 两个模块。

图3.1系统硬件结构框图

利用VC5509 的片上外设I2C( Inter - Integrated Circuit, 内部集成电路)模块配置AIC23 的内部寄存器; 通过VC5509 的McBSP (Multi channel Buffered Serial Ports, 多通道缓存串口)接收和发送采样的音频数据。控制通道只在配置AIC23 的内部寄存器时工作, 而当传输音频数据时则处于闲置状态。

AIC23通过麦克风输入或者立体声音频输入采集模拟信号, 并把模拟信号转化为数字信号, 存储到DSP的内部RAM中,以便DSP处理。

当DSP完成对音频数据的处理以后, AIC23再把数字信号转化为模拟信号, 这样就能够在立体声输出端或者耳机输出端听到声音。

5 AIC23能够实现与VC5509 DSP的McBSP端口的无缝连接, 使系统设计更加简单。接口的原理框图, 如下图所示。

图3.2 AIC23与VC5509接口原理图

系统中A IC23的主时钟12 MHz直接由外部的晶振提供。MODE接数字地, 表示利用I2 C控制接口对AIC23传输控制数据。CS接数字地, 定义了I2 C总线上AIC23的外设地址, 通过将CS接到高电平或低电平, 可以选择A IC23作为从设备在I2 C总线上的地址。SCLK和SDIN是AIC23控制端口的移位时钟和数据输入端,分别与VC5509的I2C模块端口SCL和SDA相连。

收发时钟信号CLKX1和CLKR1由A IC23的串行数据输入时钟BCLK提供, 并由A IC23的帧同步信号LRCIN、LRCOUT启动串口数据传输。DX1和DR1分别与A IC23 的D IN 和DOUT 相连, 从而完成VC5509与AIC23间的数字信号通信。

6 3.2 硬件电路设计

3.2.1 总输入电路

图3.3 总输入电路

从左到右各部分电路为:

话筒,开关,语音输入电路,UA741高增益放大电路,有源二阶带 通滤波器。

3.2.2 总输出电路

图3.4 总输出电路

从左到右各部分电路为:

LM386高频功率放大器及其外围器件连接电路,语音输出电路,开关,扬声器。

8 3.2.3 语音输入电路

图3.5语音输入电路

3.2.4 语音输出电路

图3.6 语音输出电路

语音信号通道包括模拟输入和模拟输出两个部分。模拟信号的输入输出电路如图所示。上图中MICBIAS 为提供的麦克风偏压,通常是3/4 AVDD,MICIN为麦克风输入,可以根据需要调整输入增益。下图中LLINEOUT 为左声道输出,RLINEOUT为右声道输出。用户可以根据电阻阻值调节增益的大小,使语音输入输出达到最佳效果。从而实现良好的模拟语音信号输入与模拟信号的输出。

9 4 实验结果及分析

4.1 实验结果

按“F5”键运行,注意观察窗口中的bEcho=0,表示数字回声功能没有激活。这时从耳机中能听到麦克风中的输入语音放送。将观察窗口中bEcho的取值改成非0值。这时可从耳机中听到带数字回声道语音放送。

分别调整uDelay和uEffect的取值,使他们保持在0-1023范围内,同时听听耳机中的输出有何变化。

当uDelay和uEffect的数值增大时,数字回声的效果就会越加的明显。

图4.1 修改前程序图

图4.2 修改前程序图

图4.3 频谱分析

图4.4 左声道及右声道波形

11 4.2 实验分析

所以,从本实验可知当已知一个数字音源后,可以利用计算机的处理能力,用数字的方式通过计算模拟回声效应。简单的讲,可以在原声音流中叠加延迟一段时间后的声流,实现回声效果。当然通过复杂运算,可以计算各种效应的混响效果。

声音放送可以加入数字回声,数字回声的强弱和与原声的延迟均可在程序中设定和调整。

12 5 总结与心得体会

通过本次课程设计,我明白了细节决定成败这句话的道理,在实验中,有很多注意的地方,都被忽视了,导致再花费更多的时间去修改,这严重影响了试验的进度。同时,在本次实验中我了解了ICETEK – VC5509 – A板上语音codec芯片TLV320AIC23的设计和程序控制原理,并进一步掌握了数字回声产生原理、编程及其参数选择、控制,以及了解了VC5509DSP扩展存储器的编程使用方法。

这一学期的理论知识学习加上这次课程设计,使我对DSP有了更加深刻的了解,对数字信号的处理功能,软硬件相结合,语音信号的采集与放送等等方面都有了很深的了解,相信本次课程设计,无论是对我以后的学习,还是工作等方面都有一个很大的帮助。因此,本次课程设计让我受益匪浅。

参考文献

[1]李利.DSP原理及应用[M].北京:中国水利水电出版社,2004. [2]王安民,陈明欣,朱明.TMS320C54xxDSP实用技术[M].北京:清华大学出版社,2007 [3]彭启琮,李玉柏.DSP技术[M].成都:电子科技大学出版社,1997 [4]李宏伟,等.基于帧间重叠谱减法的语音增强方法[J].解放军理工大学学报,2001(1):41~44 [5]TexasInstrumentsIncorporated.TMS320C54x系列DSP的CPU与外设[M].梁晓雯,裴小平,李玉虎,译.北京:清华大学出版社,2006 [6]赵力.语音信号处理[M].北京:机械工业出版社,2003比较图4和图5,可以看到1200Hz以上的频谱明显得到了抑制。

[7]江涛,朱光喜.基于TMS320VC5402的音频信号采集与系统处理[J].电子技术用,2002,28(7):70~72[8]TexasInstrumentsIncorporated:TMS320VC5402Datasheet,2001

致谢

在本次课程设计的即将完成之际,笔者的心情无法平静,本文的完成既是笔者孜孜不倦努力的结果,更是指导老师樊洪斌老师亲切关怀和悉心指导的结果。在整个课程设计的选题、研究和撰写过程中,老师都给了我精心的指导、热忱的鼓励和支持,他的精心点拨为我开拓了研究视野,修正了写作思路,对课程设计的完善和质量的提高起到了关键性的作用。另外,导师严谨求实的治学态度、一丝不苟的工作作风和高尚的人格魅力,都给了学生很大感触,使学生终生受益。在此,学生谨向老师致以最真挚的感激和最崇高的敬佩之情。

另外,还要感谢这段时间来陪我一起努力同学,感谢我们这个小团队,感谢每一个在学习和生活中所有给予我关心、支持和帮助的老师和同学们,几年来我们一起学习、一起玩耍,共同度过了太多的美好时光。我们始终是一个团结、友爱、积极向上的集体。

第三篇:数字信号处理课程总结(推荐)

数字信号处理课程总结

信息09-1班 陈启祥 金三山 赵大鹏 刘恒

进入大三,各种专业课程的学习陆续展开,我们也在本学期进行了数字信号处理这门课程的学习。

作为信心工程专业的核心课程之一,数字信号处理的重要性是显而易见的。在近九周的学习过程中,我们学习了离散时间信号与系统的时域及频域分析、离散傅里叶变换、快速傅里叶变换、IIR及FIR数字滤波器的设计及结构等相关知识,并且在实验课上通过MATLAB进行了相关的探究与实践。总体来说,通过这一系列的学习与实践,我们对数字信号处理的有关知识和基础理论已经有了初步的认知与了解,这对于我们今后进一步的学习深造或参加实际工作都是重要的基础。

具体到这门课程的学习,应当说是有一定的难度的。课本所介绍的相关知识理论性很强,并且与差分方程、离散傅里叶级数、傅里叶变换、Z变换等数学工具联系十分紧密,所以要真正理解课本上的相关理论,除了认真聆听老师的讲解,还必须要花费大量时间仔细研读课本,并认真、独立地完成课后习题。总之,理论性强、不好理解是许多同学对数字信号处理这门课程的学习感受。

另外,必须要说MATLAB实验课程的开设是十分必要的。首先,MATLAB直观、简洁的操作界面对于我们真正理解课堂上学来的理论知识帮助很大;其次,运用MATLAB进行实践探究,也使我们真正意识到,在信息化的今天,研究数字信号离不开计算机及相关专业软件的帮助,计算机及软件技术的发展,是今日推动信息技术发展的核心动力;最后,作为信息工程专业的学生,在许多学习与实践领域需要运用MATLAB这样一个强大工具,MATLAB实验课程的开设,锻炼了我们的实践能力,也为我们今后在其他领域运用MATLAB打下了基础。

课程的结束、考试的结束不代表学习的结束,数字信号处理作为我们专业的基础之一,是不应当被我们抛之脑后的。

最后感谢老师这几周来的教诲与指导,谢谢老师!

2012年5月7日

第四篇:数字信号处理教语音信号处理课程设计心得

这次课程设计虽然遇到了很多问题,很多困难,但是也学到了很多东西。不仅学到了书本上的东西,而且学到了很多课本上没有的东西,很多程序里的东西,特别是程序语法,总是有错误,但是总是不知道错在哪里,在细心的检查下,终于找出了错误和警告,排除困难后,程序编译就通过了,心里终于舒了一口气。还有各种各样问题,通过查网络和请教同学来弄明白,这个过程是痛苦的,有时候有些问题不能马上解决,感到很头痛,真想放弃这个问题,但是坚持下来,并且解决这些问题的时候,真的有种苦尽甘来的感觉。

应用MATLAB进行语音信号的处理是与我们所学课程及专业紧密相连的,有着很强的实践性。做这个课程设计的时候,并不是非常的顺利,我也有遇到很多困难。刚开始,我用自己的mp3录制的一个wav文件做语音信号处理,程序始终现实如下错误提示:

??? Error using ==> wavread Error using ==> wavread Data compression format (IMA ADPCM) is not supported.

我在查阅了很多资料,在网上也查阅相关信息,花费了大量时间也没找出结果,最后发现在WAV格式的语音文件有两种格式,即PCM格式和IMA ADPCM格式,而在MATLAB中用wavread函数进行语音处理时,并不能直接处理IMA ADPCM格式的语音信号,经过格式转换之后(选择PCM格式),我运行出了正确的结果。刚开始由于对滤波器的滤波原理并不是很了解,于是我又翻出学过的数字信号处理课本,认真研究起各种滤波器了,这才使我明白了大多数滤波器是如何工作地,不再单单只是懂理论,理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论。实验过程中,我感觉到初始语音信号和滤波输出后的语音信号在音色上有一定的差别,这说明了信号在处理、传输过程中有损耗。不管对于什么样的课题,其实也是有很多东西可以发掘的,这需要我们在平时多积累,多思考,只有这样,才能取得更大的进步,才能学有所用,学有所长。

通过这次设计,进一步加深了对数字信号处理的了解,让我对它有了更加浓厚的兴趣。通过这次课程设计使我懂得了,平时的理论知识只有通过自己动手做一个课题,从做这个课题的过程中发现问题,解决问题,这个学习的过程,会比我们平时只通过课堂上听讲得到的知识更加生动立体,跟让人记忆深刻。在设计的过程中,我发现同学间的互帮互助真的很重要。当我们有问题的时候,大家一起讨论,将自己的观点表达出来,当发现别人的观点与自己的不同的时候,我们通过查阅资料找到最终正确的答案,这个过程是互利互惠的。这也培养了我们以后走上工作岗位后的团队精神,对我们以后的为人处世都有很大帮助。同时我们在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固。

总的来说,通过这次的课程设计我对语音信号有了全面的认识,对数字信号处理的知识又有了深刻的理解,让我感受到只有在充分理解课本知识的前提下,才能更好的应用这个工具;并且熟练的应用MATLAB也可以很好的加深我对课程的理解,方便我的思维。这次设计使我了解了MATLAB的使用方法,学会分析滤波器的优劣和性能,提高了分析和动手实践能力。同时我相信,进一步加强对MATLAB的学习与研究对我今后的学习将会起到很大的帮助!

第五篇:《数字信号处理原理及实现》课程小结

时间过得好快,转眼半学期结束了。这半学期数字信号的学习让我受益匪浅。前两章和信号与线性系统相关,介绍了离散时间信号与系统的时域分析方法最深刻的是采样,时域采样定理与采样恢复和采样内插公式。第二章介绍了离散时间信号与系统的频域分析,DTFT与Z变换,系统函数的零极点分布。第三章主要讲了离散傅里叶变换DFT及其性质,和频域采样定理。第四章介绍了傅里叶快速变换FFT,熟悉了其原理特点及方法。五六两章分别介绍了IIR和FIR滤波器,知道了IIR的脉冲响应不变法与双线性变换法及其优缺点,并学会其MATLAB应用设计滤波器,FIR的窗函数法与频域采样法设计滤波器及其MATLAB实现。第七章主要介绍了IIR和FIR滤波器的基本网络结构,通过老师上课习题的练习基本掌握了其结构图的画法。

先说说对课程的建议吧,张晓光老师是个很负责讲课思路也很清晰的老师,知道从学生的角度来讲问题,根据学生的反应来调整课程进度。我们都很喜欢这样的老师,老师开新课之前总是列提纲复习上节课讲的知识,每章结束都根据章节的重要性开一节总结课,这种方式个人觉得很好,希望老师坚持。但是,感觉老师讲题讲的不是很多,或许是课时原因,但我觉得每章结束后开一节例题课,把知识点融进去,毕竟大学生现在做题比较少,这样强制一下效果会更好。这次考试的试题觉得有不少都见过,有的是课后题,但做起来还是有点吃力,应该就是习题练的少,计算跟不上去。至于教材,我觉得编的很好,每章都有相关的MATLAB编程方法,在原理讲清之后就来实践,免去了学生盲目做实验,提高了效率。还有就是老师也很重视实验,总是把相关的MATLAB语句语义讲解清楚,这样我们在编程序时也就相对容易点。但好像老师讲程序时都注重程序的意思了,希望老师以后再讲程序时把它先部分后整体,就是在讲完程序意思后把程序设计思路或框架结构,及各部分要实现什么再讲讲,这样有助于学生设计时设计思路更清晰。再说说考试,老师分卷面成绩和实验成绩及平时成绩,将实验单独考试,可见对实验的重视,也说明MATLAB的重要性,这样确实提高了学生的重视心理,虽然实验做完了,但做完50道题并看完相关讲解,我又收获了不少,理清了设计方法与思路,所以我觉的考试方式还是挺不错的,锻炼了我们各方面的知识。

数字信号课程结束了,真希望您还能教我们别的课。

小组成员:陈文斌、李亚伟、王猛、汪子雄、吴官宝

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:淘宝网店的创业计划书下一篇:苏州再生资源回收方案