35kv变电站的选择

2022-12-06

第一篇:35kv变电站的选择

35kV变电站电气主接线的设计选择

新疆伊犁河流域开发建设管理局 陈建忠 阅读次数:1066

摘要:该文根据原始资料简述了变电站电气主接线设计选择的原则、特点,并对某变电站电气主接线的设计选择过程进行了分析,并从经济性、可靠性方面来考虑,选择最优方案。

关键词:变电站;电气主接线;设计选择

中图分类号:TM631+.2 文献标志码:B 文章编号:1003-0867(2008)09-009-02 1 设计原始资料

为保证某地区铁路沿线供电需要,需设计一座35kV降压终端变电站,其10kV架空线给锅炉、车站、货场、南铁大厦、体训中心、公园等铁路设施及生活供电,二类负荷占18.8%,其余为三类负荷。

距本变电站20km和16km处各有一110kV变电站,由这两个变电站以35kV架空线路向待建的35kV变电站供电,考虑一回线路故障或检修时,由另一回线供电的运行方式。

本变电站10kV母线到各出线终端杆均采用10kV电缆供电,出线负荷除#

2、#7为二类负荷,其余出线为三类负荷,各馈线负荷如表1所示。

表1 变电站10kV出线负荷表

该变电站站址地势平坦、地形开阔,交通运输方便。地层简单,无洪水威胁,平均海拔为900~1000m,年平均气温为11.65℃,极端最高气温为40℃,极端最低气温为-28℃。主导风向为东北风,最大风力为32~40m/s,地震裂度为7度。历年最多沙尘暴日数为19天,导线覆冰厚度为10mm,适宜建设变电站。

2 电气主接线设计选择

2.1 变电站35kV侧接线型式的确定 按照《变电站设计技术规程》的第23条规定:“35~60kV配电装置中,当出线为2回时,一般采用桥形接线;当出线为2回以上时,一般采用单母线分段或单母线接线。出线回路数较多、连接的电源较多、负荷大或污秽环境中的35~60kV室外配电装置,可采用双母线接线”。本变电站35kV侧可考虑以下3种方案,并进行经济和技术分析。

方案1:采用单母线分段接线,如图1所示。

图1 单母线分段接线

优点:用断路器把母线分段后,重要用户可从不同母线分段引出双回线供电;当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电,保证重要用户不停电。

缺点:当一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期间内停电;当出线为双回路时,常使架空线路出线交叉跨越;扩建时需向两个方向均衡扩建;分段断路器故障造成35kV两段母线停电。

适用范围:

·6~10kV配电装置出线回路数为6回及以上时; ·35~60kV配电装置出线回路数为4~8回及以上时; ·110~220kV配电装置出线回路数为3~4回时。 方案2:采用单母线接线,如图2所示。

图2 单母线接线

优点:接线简单清晰,设备少,操作方便,便于扩建和采用成套配电装置。

缺点:不够灵活可靠,任一元件(母线及母线隔离开关等)故障或检修,均需使整个配电装置停电。单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障的母线段分开后才能恢复非故障段的供电。

适用范围:

·6~10kV配电装置出线回路数不超过5回; ·35~60kV配电装置出线回路数不超过3回; ·110~220kV配电装置出线回路数不超过2回。 方案3:采用外桥接线,如图3所示。

图3 外桥接线

外桥接线的特点:当变压器发生故障或运行中需要切除时,只断开本回路的断路器即可,不影响其他回路的工作。当线路故障时,例如引出线1U故障,断路器1DL和3DL都将断开,因而变压器1B也被切除。为了恢复变压器1B的正常运行,必须在断开隔离开关2G后,再接通断路器1DL和3DL。

外桥接线适用于线路较短和变压器按经济运行需要经常切换的情况。以上三个方案,所需35kV断路器和隔离开关数量如表2所示。

表2 35kV断路器和隔离开关数量表

对以上三种方案分析比较。

从经济性来看:由于3种方案所选变压器型号和容量相同,占地面积基本相同,所以只比较设备,方案1所用设备最多,造价最高,故最不经济;方案3所用设备最少,造价最低,故最经济;方案2介于方案1和方案3之间较经济。 从可靠性来看:方案1,当一段母线发生故障,分段断路器自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电,可以满足

一、

二、三类用户负荷的要求,可靠性高;方案2,任一元件(母线及母线隔离开关等)故障或检修,均需使整个配电装置停电,不能满足

一、二类用户负荷的要求。方案3当线路发生故障时,需动作与之相连的两台断路器,从而影响一台未发生故障的变压器运行。因此方案

2、方案3可靠性均不如方案1。

从改变运行方式的灵活性来看:方案1因接线简单,所以投切变压器,倒闸操作最简便。

通过以上比较,可以发现方案1以供电可靠性高为主要优点;方案2以设备少,较经济,倒闸操作简便为主要优点;方案3以投资少,经济性好为主要优点。因本变电站无一类负荷,二类负荷所占比例较少(18.8%),所以考虑综合因素,选方案2单母线接线为本变电站的35kV侧主接线。

2.2 变电站10kV侧接线型式的确定

变电站10kV母线侧的馈线多,在保证供电可靠性的情况下,如果采用双母线接线,设备多,投资大,运行操作不便,不满足灵活性和经济性;如果采用单母线分段接线,在母线故障或检修时,不致对所有出线全部停电,对重要的二类负荷出线,采用双回路送电,分别接在10kV的一段和二段,在满足可靠性和灵活性的前提下,比双母线接线经济,故推荐采用单母线分段接线的方式。正常运行时,分段断路器处于断开位置,即两台变压器各带一段母线。当负荷小于6300kVA或1台变压器故障、检修时,则断开该变压器低压侧断路器,合分段断路器,由一台主变向两段母线供电。

3 结束语

变电站电气主接线是变电站电气设计的首要部分,也是构成电力系统的重要环节。电气主接线是由高压电器设备通过连接组成的接受和分配电能的电路,反映各设备的作用、连接方式和各回路间相互关系,从而构成变电站电气部分的主体。它直接影响运行的可靠性、灵活性,并对配电装置的布置、继电保护的配置、自动装置和控制方式的选择,起决定性作用。因此,在确定主接线时,电气主接线要满足必要的供电可靠性、经济性、保证供电的电能质量,另外主接线应能适应各种运行方式,具有发展和扩建的可能性。

第二篇:35kV变电站的设计与研究

随着我国经济建设的高速发展,现代电网结构日趋复杂,电网容量不断扩大,电网实时信息传送量成倍增多,对电网运行的可靠性要求也越来越高。35kV变电站现在虽然在用电量大的城市和经济发达的城市,但由于它具有投资少、见效快、建设周期短、安装、运行、维护、检修技术较容易解决等特点,在广大的农村地区这种供电方式仍将长期存在。

一、35kV变电站的设计原则:

1、 变电站设计必须认真执行国家的技术经济政策。并做到,保障人身安全、供电可靠、电能质量合格、技术先进和经济合理。

2、 变电站设计,应根据工程特点、规模和发展规划,正确处理近期建设和远期发展的关系,做到近、远期结合,以近期为主,适当考虑扩建的可能。

3、 变电站设计,在执行本标准的同时原则上尚应符合现行的国家规范、规程和标准规定。

二、35kV变电站的站址选择

1、 站址应尽量靠近已有公路,并充分利用水文地质条件较好的荒地、坡地、劣地,不占或少占农田。

2、 站址应接近负荷距中心,并便于各级电压线路的引入引出,架空线路走廊应与站址同时确定。

3、 站址应尽量避开空气污秽地区,否则应采取有效的防污措施。

4、 站址选择应考虑对邻近设施的影响。

5、 站内地面应有适当的坡度,以利排水。

6、 变电站占地面积不超过1000平方米。

三、常见的常规35kV变电站设计

我们日常生活中常见的35kV 变电站设计一般采用的都是户外装置,设计安装有D W 12-35 户外型多油断路器,至于10kV 高压配电装置则以户内装置为主,设计过程中主要采用GG-1A (F) 高压开关柜,选用的是 SN 10-10 型少油断路器设备,也有设计过程中选用ZN -10 型户内高压真空断路器,而实际设计过程中以前者较为常见。至于35kV 变电站的继电保护屏或是控制屏基本采用的都是PK 型,以电磁式继电器来实现对继电设备的维护。这一设计过程从整体运行来看是较为安全可靠的,无论是设备安装还是维修保护都相对简单,这一常规35kV 变电站设计如今仍在乡镇或是山区得以沿用。然而,这套设备的问题就在于设备的整体性能较为落后,从占地面积、造价投资、结构能耗等方面来看都表现出极大的不合理性,整体设计方案与实际的电能消耗存在着较大差距,不利于电力系统的节能与环保。

四、主接线和主设备选择

1 、主接线选择

对于经济基础较弱工业性用电比例较小且农业负荷比例较大的用电地区,用电最大负荷处在第三季度或者冬季,

二、三季度在圩区防汛抗旱期间负荷较大,且必须保证供电,因此要保持一定水准的负荷平台。设计时主接线一般分两期实施,终期按两台主变考虑。首期工程电气主接线:35 kV 变电站首期工程一般采用一条 35 kV 进线和一台主变,因此首期工程电气主接线宜采用线路――变压器单元接线。在布置上应对二期工程位置作预留,首期不上的断路器、隔离开关等利用瓷柱过渡跳线;根据计量管理和电网位置情况决定是否上 35 kV 电压母线变压器;35 kV 站变可接在35 kV 进线侧,若是10 kV 站变,也可接在10 kV 母线上;10 kV 侧电气主接线采用单母线接线。二期工程电气主接线:二期工程安装两回进线,两台主变压器的主接线。35 kV 侧可采用桥形接线。对主变压器运行方式相对比较稳定,操作较少的35 kV 变电站,宜采用内桥接线;对主变压器操作较多的 35 kV变电站,宜采用外桥接线。桥形接线和单母线接线相比较可节省一台断路器,但操作复杂。

2、主设备选择

主变压器的选择,主变压器的台数和容量,应根据地区供电条件、负荷性质、用电容量和运行方式等条件综合考虑确定。在有

一、二级负荷的变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的

一、二级负荷。具有三种电压的变电所,如通过主变压器各侧线圈的功率均达到该变压器容量的 15%以上,主变压器宜采用三线圈变压器。若运输条件允许,优先选用全密封变压器。高压断路器应选择 35kV 等级优先的SF6国产断路器,10kV等级户外布置的断路器优先采用柱上真空断路器,10kVSF6断路器在解决压力指示表、密度继电器等易引起漏气的问题后也可选用,高压隔离开关应选择35kV高压隔离开关,优先选用防污型、材质好、耐腐蚀的产品;无人值守变电站优先选用GW4 型带电动机构的隔离开关。互感器和避雷器:为防止铁磁出现谐振,优先选择干式电压互感器,过励磁时呈容性。若选择电容器式电压互感器,可省去高压侧熔断器。选择带0.2级副线圈专用电流互感器。保护用电流互感器选择独立式的,但断路器附带的套管式电流互感器也可在电气伏安特性满足二次要求的情况下采用。直流电源:优先选择带微机检测和远传接口的高频开关电源的成套直流电源装置,采用5~10A2块模块。蓄电池可选阀控全密封铅酸蓄电池,容量40~80Ah。二次设备:优先选用具有与变电站综合自动化或RTU灵活接口的微机型继电保护设备,分散布置10kV保护;35kV保护备用电源发挥联络线功能时需配备线路保护,集中组屏布置馈线保护;根据实际情况考虑配置主变纵差动保护。变电站自动化系统:设备选型要求满足无人值守需要。综合自动化系统应具备微机“五防”闭锁及接入火警信号等功能。通信采用数字式载波通信,条件允许可选扩频、光纤等方式。

五、突出35kV 变电站的综合性与自动化处理。

35kV 变电站设计中的综合性主要体现在其系统类别的集中式和分布式方面,无论是其中的管理层还是间隔层都需要通过独立的操作系统来对系统单元装置进行系统规划,以体现必要的工程建设标准。运行人员在对变电站基本数据进行整理与分析时能够通过简单的画面打印实现对控制系统的电能计算,进而更好地促进变电站现场的总线控制与测量结构规划。

六、结语

35kV电压登记在我国电力网中是一个重要的电压等级,35kV变电站在我国县级电力网中将长期使用。随着产品不断更新,相应的新型设备层出不穷,设计方案应力求结线简单、清晰、操作方便,提高可靠性,限制工程造价,节约土地,减少生产和生活办公设施建筑物的土建面积。发展方向应是向小型化、综合自动化和无人值班方向发展。在实际设计工作中,必须按照负荷的性质、用电容量、环境条件、工程特点和地区供电条件及用户的经济承受能力,安装、运行、维护、检修的技术力量,备品备件购置是否方便,抢修、操作、交通是否便利,将来是否升压扩建,与调度自动化配合等方面的因素。因此,我们应致力于去优化改善35kV变电站的设计,使之更好的为我们所用。

参考文献:

【1】 章盛 李江,几种35kV变电站设计方案的讨论,新疆电力,2005(4);

【2】 河北省电力局,农村35kV小型化变电站议计标准,农村电气化,1994(11);

【3】 李玉平,对35 kV 变电站设计的建议,电网建设,2006(8)

第三篇:关于35kV变电站设计中的问题研究

【摘要】文章以35kV变电站设计程序作为主要研究对象,通过分析与探讨35kV变电站设计中的问题,并从严格把握环保设计程序、节能设计程序以及无功补偿设计程序等方面详细介绍35kV变电站设计方案及程序,期待能够成为业内人士参考以及学习的指标,从而不断改善与优化35kV变电站设计程序,为国家经济发展作出重要贡献。

【关键词】35kV变电站;环保设计;节能设计;无功补偿设计

1. 前言

近年来,国内相关部门与机构在35kV变电站设计环节与建设环节都投入了较多的关注度,基于35kV变电站而言,设计程序不仅是建设环节的主要构成要素之一,同时还是建设中存在最为重要的难点部分,设计质量的优劣会对其利用效率、建设水平等造成直接影响,因此必须严格把握其难点,通过全面把握环保设计、节能设计、以及无功补偿设计等设计环节,确保35kV变电站能够充分体现其存在价值。

2.35kV变电站设计环节中的相关注意事项

近年来,国内在电网改造方面的力度越来越大,并将改造重点与目标放在安全用电以及优质用电等方面,旨在为服务区域内提供更加优质的供电服务。35kv变电站设计基本方案呈现出多样化特征,在技术布局层面、工程造价层面都得到了合理优化[1]。尽管如此,35kv变电站设计实践程序中,为了提升变电站综合使用价值,确保供电环节的稳定性以及安全性,还需要相关部门及人员充分把握其各个设计程序,并且严格把握以下诸多方面。

第一,合理把握35kV变电站设计中的主设备选取程序与主接线选取程序。一般情况之下,在开展首期工程时,其主接线方面需要使用的设备包括主变压器一台、35kV电源进线一条。而必须强调的是,在二期工程尚未开始之前,首期工程就要为其预留一些设备,除了要使瓷柱在空间过渡环节的效果得以有效展现之外,还需要严格把握隔离开关以及断路器的选择程序[2]。鉴于此,在具体设计环节,需要以桥型接线对两条线路进行分别设计,具体是外桥接线以及内桥接线,并在母线接线上对主变压器进行合理利用,从而有效提升单母线类接线方案的使用价值。与此同时,在设计变电站设备选择程序时,应当充分考虑能耗、自冷以及油浸等方面,确保变压器以及调压器都能满足电网运行、节能减排等方面的基本需求,使容量始终处于2 MVA-10MVA的可控范围内[3]。除此之外,在设备材质方面,必须选择具有较强抗腐蚀功能的材质,建议优先考虑35kV户外干式电压互感器。

第二,合理把握35kV变电站设计中平面布局方面的问题。基于35kV变电站设计而言,其设备在平面布局方面通常会涉及到控制保护、配电装置等方面的问题。譬如,如果35kV变电站平面布局以屋外中型的配电装置为主要选择,为了控制能耗消费,应当以双列布置为主要方案,在某单层建筑上方设置一间总控制室[4]。一般说来,35kV变电站设计中建议考虑集中式的控制保护方案,该保护模式除了能够提升设备的整体运行效率之外,在日常维护以及检修等程序上也能节省时间与金钱。

第三,35kV变电站设计中的要充分考虑到自动化、综合化处理程序。国内35kV变电站设计强调综合性特征,在系统类别方面可以采取分布式或者是集中式。与此同时,基于管理层以及间隔层来说,均要设置独立操作系统,用以全面性规划各个系统单位的内部装置,确保各项设计方案都能够满足国家相关标准与图纸设计既定要求[5]。除此之外,对于运行工作人员来说,除了要定期整理35kV变电站内部各项数据之外,经由画面打印之后,还应当对各个控制系统进行电能计算,有助于提升35kV变电站施工现场测量结构以及总线控制等方面的合理性与有效性。

3.35kV变电站设计基本内容

35kv变电站设计实践程序中,为了提升变电站综合使用价值,必须充分考虑各个设计程序。笔者结合自身多年实践经验,详细介绍35kV变电站设计基本内容。

3.135kV变电站环保设计

环保已经成为国家方针政策中重点强调的话题,也受到了各行各业的高度重视,35kv变电站设计同样不例外。而35kV变电站环保设计需从以下几个程序进行。

3.1.1严格把握降噪设计程序 基于35kv变电站而言,其噪声来源包括轴流风机、断路器以及变压器等。(1)轴流风机。轴流风机通常会产生大量振动噪声,因此在35kv变电站设计环节,建议将轴流风机的放置方位设计在室内,并优先考虑低噪音轴类流通风机,于其外部加用消声弯头,确保其噪音低于主变压器[5]。除此之外,轴流风机外部还需要安装一个吸声管道以及消声器,实现对排风口噪声的有效控制,而通过距离以及隔声设备的衰减,即可有效控制噪声。

(2)断路器。断路器通常会产生大量电机噪声以及电冲击噪声。

(3)变压器。变压器会产生持续性交流噪声。而为了减弱、控制这些噪声,建议35kv变电站设计环节优先考虑低噪声类设备,在设计主变压器时,将其放置方位设计在室内,并于其底部安装一个刚性的弹簧或者是弹性的防震支架,从而实现消振目标。与此同时,在主变压器出风口位置、进风口位置都设置相应的消音设备,其室内墙面上需要加装一定数量的吸音砖以及吸音板等,有助于提升其整体吸声系数[6]。

3.1.2严格把握电磁污染的防护设计程序

35kv变电站除了会受外界影响之外,同时也会直接影响周围环境影响,具体涉及到无线电干扰、工频电场以及工频磁场等。国内35kv变电站在交流电的输变电设备频率方面通常是50Hz,同时,随着工频电场和导线之间距离的加大,或者是受到房屋及树木的直接屏蔽,工频电场度往往会受到影响而降低,因此必须严格把握电磁污染的防护设计程序。首先,重视电磁屏蔽设计。电磁屏蔽即在某个空间内固定电磁辐射,主要涉及到屏蔽主变压器辐射源以及工作空间等。其次,重视设备设计程序。由于某些设备会出现大量电磁污染,因此针对这些设备,需要予以自动控制或者是远距离控制[6]。再次,重视个体防护设计。当技术人员操作各种设备时,应当根据相关规定严格穿戴防护服装、防护头盔以及防护眼镜等。最后,重视植树绿化设计。于35kv变电站附近应当种植大量花草树木,通过对辐射进行有效控制,有助于保护附近居民及变电站工作人员的健康。 3.1.3严格把握三废处理程序设计

35kv变电站设计中还应当严格把握三废处理程序设计。所谓三废,主要涉及到固体废弃物、废气以及废水。(1)固体废弃物的处理程序设计。35kv变电站设计中,应当考虑到修建一个危急事故的排油坑,在出现任何事故的情况下,变压器油都能够经由该管道进入至贮油池内,再由变电站内部电力部门对废油进行回收及处理,防止出现大量废油造成经济损失。与此同时,35kv变电站日常所用直流电源需要选取全密闭性免维护铅酸蓄电池。究其原因,主要由于该电池使用寿命较长,通常可以达到8年-10年,而且在其使用期限之内都可以省略维护保修等程序,待其使用期限正式到期之后,直接更换整组电池即可,而换下来的废旧电池还可以送至厂家进行回收处理,除了能够节省日常维修费用之外,还能够达到环保目标,具有较高可行性[7]。

(2)废气的处理程序设计。35kv变电站施工环节,还需要严格把握废气的处理程序设计。35kv变电站内部开关设备通常会选择使用一种绝缘性气体,即为六氟化硫气体。六氟化硫气体在灭弧性能以及绝缘性能等方面都存在着绝对性优势,因此已经被广泛应用于电力系统中。然而,六氟化硫气体本书属于非CO2温室效应类气体,会长时间稳定地存在于大气中,其分解的唯一方式是缓慢光解以及沉降。在此背景之下,控制六氟化硫气体整体排放量、加强六氟化硫气体回收效率以及对六氟化硫气体进行回收再利用显得十分关键。鉴于此,在废气的处理程序设计环节,应当严格把握六氟化硫气体控制程序,在对六氟化硫设备进行日常检修时,应当对六氟化硫气体进行回收,禁止直接排放等情况的出现[7]。而回收到的六氟化硫气体应当统一放置于液化钢瓶中,或者是以净化装置对其进行有效处理之后,实现对六氟化硫气体的循环使用。

(3)废水的处理程序设计。35kv变电站施工环节会产生大量废水,其来源是洗刷设备的污水、车辆冲洗水以及施工人员日常生活污水等。其中,洗刷设备的污水和车辆冲洗水中的成分偏为简单,不仅其污染物的整体浓度相对较低,同时水量也偏少,通常以瞬时排放为主要形式[8]。对于这些废水,可以在35kv变电站施工现场修建一个沉淀池,用于废水的沉淀及处理,当废水经处理且到达排放标准后,即可将其排入至市政污水处理管网中,有助于控制废水污染范围及污染力度。

3.2.35kV变电站节能设计

35kV变电站节能设计具体体现在供电照明、建筑节能、供热工程、空调工程以及供水节能等方面。 3.2.1供电照明的节能设计 35kV变电站内部通常需要设置配电室,并在配电室中装设一定数量功率因数自动补偿控制器,用以对功率因素的有效控制,达到节约电能等目标。除此之外,在户外照明方面的设计程序中,应当优先考虑光控开关,而建筑物的内部则需要选择声控延时类开关,实现供电照明的节能目标。 3.2.2空调工程及供热工程的节能设计

35kV变电站空调工程方面,其设计程序必须以2003版采暖通风与空气调节设计规范为主要参考指标与执行标准[8]。同时,在空调设备方面,应当以变频控制多联式空调系统为主要选择,而且空调设备还需要选择高效节能类产品,最大限度控制其耗损量。 3.2.3 建筑节能设计

一般情况之下,如果35kV变电站修建于寒冷地区,其建筑节能设计程序除了要考虑到冬季保温措施之外,同时还有考虑到夏季的防热设计。基于35kV变电站建筑物的朝向方面,以南北向为主要设计选择。与此同时,在35kV变电站建筑物屋顶以及墙体方面,必须严格控制其保温材料质量,优先考虑选择密度较低且导热系数相对较小的材料,包括无机轻集料保温砂浆以及挤塑聚苯乙烯泡沫板等[9]。除此之外,在对建筑物门窗型式进行设计时,优先考虑选择两层窗等形式,通过对系统整体传热系数进行有效控制,有助于提升节能效率。 3.2.4供水节能设计

35kV变电站建筑物内部供水以水表计量为主要形式,并且不断加强、规范计量程序。而在35kV变电站设计中,其建筑物内还应当设计雨水收集体系,通过水天然雨水进行有效收集,并将收集到的雨水用作附近绿地的浇灌,有助于节省绿地浇灌用水,实现节水目标。 3.335kV变电站无功补偿设计

3.3.1严格把握无功补偿相关设备优化设计程序

基于35kV变电站电网来说,其电力负荷主要涉及到变压器、电动机以及输电线路等,且以感性负荷最为普遍。35kV变电站内部都是以无功功率类型的设备为主要消耗源,如果要使这些设备充分发挥其价值,并始终处于正常运行状态,就需要为其提供大量无功功率。而在35kV变电站电力系统内部,无功功率型电源除了有电动机之外,线路电容同样会产生大量无功功率[9]。鉴于此,当无功电源无法达到电网内部无功功率基本需求时,必须实施无功补偿设计。对于35kV变电站在无功补偿相关设备而言,其基本任务是为主变压器提供补偿。为了达到无功功率基本补偿标准,其实现途径有两个,分别是优化电压、采取全网无功补偿等形式,确保电压能够达到既定标准,有助于最大限度控制电网耗损量,对于提升35kV变电站整体经济效率具有重要意义。 3.3.2无功补偿设计环节的基本原则

35kV变电站设计中,还应当合理选择无功功率各项补偿设备。一般情况之下,无功补偿设计环节的基本原则涉及到以下诸多方面:第一,平衡原则。针对平衡层面来说,除了要加强全网平衡和局部平衡之间的有机结合之外,更重要的是加强全网范围内无功功率整体平衡,并且保证分站无功功率以及分线无功功率都保持平衡状态。

第二,补偿原则。在补偿设计中,除了提升分散补偿的基本地位之外,还需要有机结合分散补偿以及集中补偿等形式,确保集中补偿能够充分发挥其辅助性功效。为了达到这一标准,需要将补偿范围设计在负荷十分集中的区域,同时还需要35kV变电站各个大功率设备覆盖范围内予以集中式无功补偿,并在变压器、输电线路等位置开展分散补偿,以此方式实现无功功率之间的平衡性,以免远距离输电条件下使无功功率出现大量耗损。

第三,结合原则。35kV变电站设计中,不仅要有机结合低压补偿及高压补偿,通过有效发挥低压补偿主要工作,确保高压补偿能在其中发挥其辅助功效。而且还需要有机结合电压调节程序与降低耗损程序等[10]。究其原因,主要由于35kV变电站输电线路普遍偏长,加之其分支十分繁多,在输电负荷方面也呈现出分散状,同时其功率因素也相对偏低。对于这些范围,都需要有机结合电压调节程序与降低耗损程序,最终实现无功补偿、降低耗损等整体目标。

4.结束语

35kV变电站设计中,在谨慎性、合理性严谨性、环保性可行性、节能性、科学性、可持续性以及实践性等方面都提出了较高要求,对于提升35kV变电站整体使用价值起着十分重要的促进作用。就目前而言,35kV变电站设计中还存在着许多难点需要去攻破,改善设计技术也显得迫在眉睫。在此背景之下,需要相关部门与机构严格把握环保设计程序、节能设计程序以及无功补偿设计程序等,通过对35kV变电站实际情况进行仔细调研与分析,并且不断优化设计手段,有助于提升35kV变电站设计实践活动的整体效率,为35kV变电站带来更多经济效益,并且不断推动35kV变电站又好又快地发展。 【参考文献】

[1]曲仪昂.高压电器选择在变电所电气设计中的重要性——以某35kV降压变电站继电保护设计为例[J].企业技术开发:中旬刊,2012,31(08):104-105. [2]闫英.试论35KV变电站关于自动无功补偿装置的设计及应用[J].科技创新与应用,2012,30(30):163. [3]黄峰远,杨超.基于滚球法的35kV模块化变电站直击雷防护设计[J].现代机械,2013,01(01):47-50. [4]徐鹏,梁少华.可调间隙防雷装置在35kV变电站防雷中的应用研究[J].高压电器,2012,48(09):7-15. [5]董建宏,吴伟强,刘金桂.新郑卷烟厂35KV变电站增容扩建设计及实现[J].电脑知识与技术,2012,08(05):1176-1177. [6]叶丽,杨艳玲.35kV分布式数字化变电站综合自动化系统设计[J].科学时代,2014,01(01):1-4. [7]陈本周,陈新.基于35kV变电站电气系统设计与方案研究[J].企业技术开发(下半月),2013,32(02):112-113. [8]王清华,杜威,路凯军.35kV变电站一次和二次设备的技术改造分析[J].科技风,2012,09(09):142-143. [9]吕帅.浅析35kV综合自动化变电站二次系统及问题[J].城市建设理论研究(电子版),2012,20(20):254-255. [10]胡玲华.试议小型化35kV变电站的设计[J].城市建设理论研究(电子版),2013,14(14):142-143.

第四篇:板桥35kV变电站综合自动化系统的开发

1、选题意义 1.1理论意义

随着计算机技术、微电子技术和通信技术的高速发展,变电站的装置都开始采用微机技术。微机化后的变电站设备体积缩小,可靠性提高。这些微机型的装置尽管功能不一样,其硬件配置都大体相同。除微机系统本身外,无非是对各种模拟量的数据采集,以及输入/输出接口电路,并且装置要采集的量和要控制的对象还有许多是共同的,因而设备重复、数据不共享、通道不共用、模板种类多、电缆依旧错综复杂等问题依然存在。因此,人们自然的提出这样一个问题:在当今的技术条件下,是否应该从技术管理的综合自动化来考虑全微机化的变电站二次部分的优化设计,合理的共享软件资源和硬件资源。这就是变电站综合自动化名称的来历。

变电站综合自动化是将变电站的二次设备(包括测量仪表、信号系统、继电保护、自动装置和远动装置等)经过功能的组合和优化设计。利用先进的计算机技术、现代电子技术、通信技术和信号处理技术,实现对全变电站的主要设备和输、配电线路的自动监视、测量、自动控制和微机保护,以及与调度通信等综合性的自动化功能。

1.2现实意义

通过对板桥35KV变电站综合自动化系统的现状的分析,解决当前存在的问题,对当地各级电力公司以及设备制造商等进行资源优化组合,充分发挥各自的资源优势,保证板桥35KV变电站综合自动化系统的安全、稳定、可靠地运行。

将板桥变电站运行的状态信息,迅速、准确、全面地进行采集,实现继电保护功能,且把相关信息可靠地传送到主站端计算机系统,由计算机系统进行处理,通过人机对话方式在图形显示终端上显示,将处理和运算的结果及时告知调度员,以便及时作出有关决策或采取相应的措施,实现无人值班要求。为此本系统提供了数据采集、继电保护、开关遥控、事故追忆和事件顺序记录、人机对话、语言报警等功能。 变电站综合自动化的历史发展以及优缺点 2.1历史发展

国际上随着微机计算机技术的发展,变电站综合自动化的研究工作于七十年代中、后期开始。最早是用微机型远动装置代替布线逻辑型的远动装置;同时变电站监控系统的功能在扩大,供电网的监控功能正以综合自动化为目标迅速发展。

80年代以后,研究变电站综合自动化系统的国家和公司越来越多。我国变电站综合自动化的研究工作开始于80年代中期。1987年,清华大学电机工程系研制成功第一个符合国情的变电站综合自动化系统,在山东威海望岛变电站成功投入运行,该系统主要由3台微机及其外围接口电路组成。80年代后期,投入变电站综合自动化研究的高等院校、研究单位和生产厂家逐步增加。90年代,变电站综合自动化已成为热门话题,研究单位和产品如雨后春笋般蓬勃发展。

2.2变电站综合自动化的优越性

2.2.1提高供电质量,提高电压合格率。

由于在变电站综合自动化系统中包括有电压、无功自动控制功能,对于具备有载调压变压器和无功补偿电容器的变电站,可以大大提高电压合格率,保证电力系统主要设备和各种电器设备的安全,使无功潮流合理,降低网损,节约电能损耗。 2.2,2提高变电站的安全、可靠运行水平 变电站综合自动化系统中的各个子系统,绝大多数都是由微机组成,它们多数具有故障诊断功能。除了微机保护能迅速发现被保护对象的故障并切除故障外,有的自控装置并兼有件事其控制对象工作是否正常的功能,发现其工作的不正常及时发出告警信息,更为重要的是,微机保护装置和微机型自动装置具有故障自诊断功能,这是当今的综合自动化系统比起常规的自动装置或四遥装置突出的特点,这使得采用综合自动化系统的变电站

一、二次设备的可靠性大大提高。

2.2.3提高电力系统的运行、管理水平

变电站实现自动化后由计算机自动运行,即提高了测量精度,又避免了人为的主观干预,运行人员只要通过观看CRT屏幕,对所有情况和运行参数一目了然。 2.2.4缩小变电站占地面积,降低造价,减少总投资

实现了综合自动化的变电站与传统变电站相比,在一次设备方面,目前还没有多大的差别,而差别较大的是二次设备。传统的变电站二次设备多采用电磁式或晶体管式,体积大、笨重,因此,主控室、继电保护室占地面积大。而变电站综合自动化可以大大减少二次设备所占空间。

2.2.5减少维护工作量,减少值班员劳动,实现减人增效。 微机保护和自动装置的定值又可在线读出检查,可节约定期核对定值的时间,而监控系统的抄表、记录自动化,值班员可不必定时抄表、记录,可实现少人值班,如果配置了与上级调度的通信功能,能实现遥测、遥信、遥控、遥调,则完全可实现无人值班。 组态软件的功能

WinCC是视窗控制中心(Windows Control Center)的简称,它是数据采集监控系统SCADA的软件平台工具,是工业应用软件的一个组成部分。它具有丰富的设置选项,使用方式灵活,功能强大。运用组态软件模拟S7-300/400PLC的CPU中用户程序的执行过程,可以在开发阶段发现和排除错误,提高调试效率。因为一方面S7-300/400的硬件价格较高,另一方面具体的控制对象体积大、价值贵、结构复杂,一般的单位和个人都很难配备较为齐全的实验装置。采用组态软件的过程监控画面,配合S7-PLCSIM仿真软件,可以生动形象地表现控制对象的控制过程,是学习S7-300/400PLC的编程和调试的有力工具。

WinCC V6.0采用标准Microsoft SQL Server2000数据库进行生产数据的归档,同时具有Web浏览器功能,可以在办公室内看到生产过程的动态画面,能实现对工业控制系统中的各种资源进行配置和编辑,处理数据报警和系统报警,存储历史数据并支持历史数据的查询,完成各类报表的生成和打印输出,从而更好地调度指挥生产WinCC提供了所有与PLC系统的通讯通道。作为标准,WinCC支持所有连接SIMATIC S5,S7系列控制器的通讯通道,还包括PROFIBUS-DP,DDE和OPC等非特定控制器的通讯通道。 4变电站综合自动化系统构成及其功能

目前,变电站综合自动化系统均按模块化设计,也就是说对于成套的综合自动化系统中,微机保护系统、监控系统、自动控制系统等装置都是若干模块组成的。它们的硬件结构都是大同小异,所不同的是软件及硬件模块化组合方式构成。 4.1监控子系统

监控子系统应取代常规的测量系统,取代指针式仪表;改变常规的操作机构和模拟盘,取代常规的告警、报警、中央信号、光子牌等;取代常规的远动装置等等。总之,其功能包括:数据采集(开关量的采集、电能计量、模拟量的采集)、事件顺序记录SOE、故障记录、故障录波和测距、操作控制功能、安全监视功能、人机联系功能、数据处理与记录功能、打印功能、谐波分析与监视。 4.2微机保护子系统

微机保护子系统包括全变电站主要设备和输电线路的全套保护,具体有:高压输电线路的主保护和后备保护、主变压器的主保护和后备保护、无功补偿电容器组的保护、母线保护、配电保护和不完全接地系统的单相接地选线。 4.3电压、无功综合控制子系统

其控制方法有如下三种:集中控制、分散控制和关联分散控制。对电压和无功进行合理的调节,不仅可以提高电能质量,提高电压合格率,而且可以降低网损,微供电企业创一流创造条件。

4.4备用电源自投控制

备用电源自投装置是因为店里系统故障或其他原因使工作电源被断开后,能迅速将备用电源或备用设备或其他正常工作的电源自动投入工作,使原来工作电源被断开的用户能迅速恢复供电的一种自动控制装置。

5如何结合组态软件对变电站监控系统进行开发

在深入分析变电站自动化系统的基础上,根据变电站对监控软件的性能要求和功能要求,提出一种工业变电站监控软件功能模块设计方案,并基于VC++6.0设计实现了通信管理模块、实时数据库模块、图形界面组态模块三个主要的功能模块。 6进度安排

2011年1月5日前按任务书的要求查找、学习相关资料完成文献综

2010年1月15日前了解35KV变电所设计的现状以及变电站综合自动化的开发,理清设计思路,完成开题报告

2011年5月14日前完成毕业设计论文成果说明书的电子版 2011年5月21日上交毕业论文

2011年5月29日---2010年5月30日参加毕业答辩 7参考文献

[1] 马国华.《监控组态软件及其应用》[M]. 清华大学出版社 2004 [2]宋继成.《220~500kV变电所电气接线设计》[M]. 中国电力出版社 2004 [3]崔坚主.《西门子工业网络通信指南》[M].机械工业出版社 2004

[4]王显平 .《发电厂、变电站二次系统及继电保护测试技术》[M]. 中国电力出版社 2006

[5]闫宏印..《VB程序设计》[M]. 电子工业出版社 2001

[6]孙淑信.《变电站微机检测与控制》[M]. 水利电力出版社 1995

[7] 王显平. 《发电厂、变电站二次系统及继电保护测试技术》[J]. 中国电力出版社 2006

[8]. 许志军.《工业控制组态软件及应用》[M] . 机械工业出版社 2005 [9] 丁书文. 《变电站综合自动化原理及应用》[M].中国电力出版社

2003 [10] 马国华.《监控组态软件及其应用》[J]. 清华大学出版社

2004 [11] 河南省电力工业局编.《变电所电气设备及运行》[J]. 中国电力出版社

1995 [12]严盈富.《监控组态软件与PLC入门》[M]. 人民邮件出版社

2006 [13]孟祥萍.《电力系统分析》[M].高等教育出版社 [14]文锋.《电气一次接线识图》[M].中国电力出版社

第五篇:35kV变电站直流..

直流系统技术说明

1.运行条件

海拔不超过3000m 设备运行期间周围空气温度不高于55℃,不低于-25℃

日平均相对湿度不大于95%,月平均相对湿度不大于90% 安装使用地点无强烈振动和冲击,无强电磁干扰,外磁场感应强度均不得超过0.5mT 安装垂直倾斜度不超过5% 使用地点不得有爆炸危险介质,周围介质不含有腐蚀金属和破坏绝缘的 有害气体及导电介质,不允许有霉菌存在

抗震能力:地面水平加速度:0.3g 地面垂直加速度:0.15g 2. 输入特性

交流三相四线,电压380V±15%

输入电网频率:50Hz±5% 效率: 90

功率因数: 0.94 交流双路切换装置:交流双路切换装置具有电气及机械双重互锁。两路交流电由交流进线自动控制电路来控制任一路电源投入运行;在特殊情况下,可用手动转换开关选择任一路电源投入使用 3.输出特性

直流额定输出电压:220V 直流电压调节范围:198V~286V 稳压精度: 0.35

稳流精度: 0.4

纹波系数: 0.35%

均流不平衡度: ±2.5

噪声: 50dB 4.机械特性

机柜尺寸(高×宽×深):2260×800×600mm 颜色:淡灰,北京红狮502 防尘:封闭式风道设计,散热面与元器件完全隔离 5. 电源模块

220V/10A整流模块DF0231-220/10主要性能特点:

可带电插拔、在线维护,方便快捷

完善的保护、告警措施,具有遥控、遥测、遥信、遥调功能

采用平均电流型无主从自动均流方式,均流精度高

三防和独立风道设计允许整流模块工作在恶劣的场合 6.DF0241变电站电源监控系统

DF0241变电站电源监控系统基于数字化变电站的核心思想,将变电站用交流电源、直流电源、电力用交流不间断电源、电力用逆变电源、通信电源及DC/DC电源统一设计、监控、生产、调试、服务;作为数字化变电站的一个间隔层,通过标准的网络接口及IEC61850规约,连接到数字化变电站的站控层,实现整个电源系统的远程监控。

系统主要有以下特点:

基于DL/T860标准,可以方便接入变电站站控系统,具有四遥功能

统一的信息管理平台可解决不同供应商提供的各独立电源通信规约兼容等问题,实现网络智能化管理,提高电源系统的综合自动化应用水平

系统具有较强的容错性及自诊断功能,对设备、网络和软件运行进行在线诊断,发现故障及时告警,不会导致系统出错和崩溃

装置具有一个RS232/485串行接口和三个RS485串行接口,可联网组成主从式分布监测系统,满足大型发电厂、变电站的需要

人机界面友好,实现全汉化显示、常规电源系统信息测量、运行状态实时显示、提供各种菜单、信息提示、屏幕触摸操作

各监控单元采用模块化设计,分层分布式结构,分散测量控制、集中管理模式;实现交流电源、充馈电装置、电池组、UPS、INV、接地等全方位的监测和控制 通过显示屏及声光报警等方式,提供电源系统各种工作状态、故障类型、故障部位指示等

可实现多组电池的自动管理,确保系统安全运行

根据用户设定的充电参数(如电压保护值,充电限流值、均充间隔时间等)及环境温度,自动调整电源系统的工作方式,完成电池的优化管理及保养维护

7.直流绝缘监测模块

SD-JD01A微机直流系统接地监测仪适用于变电站、发电厂以及通讯、煤矿、冶金等大型厂矿企业的直流电源系统的绝缘监测和接地检测;此装置采用平衡桥和不平衡桥结合的原理完成直流母线的监测,不对母线产生任何交流或直流干扰信号,不会造成人为绝缘电阻下降 8.蓄电池监测模块

DF0251A蓄电池监测模块作为基本的蓄电池组信息采集设备,可实现对蓄电池组单体电压和环境温度的实时监测。

设备功能特点:

在线实时监测蓄电池各单体电压和温度等

采用模块化设计,安装、使用和维护方便

可实现2V~12V几种规格电池的全范围监测

设有保护电路,可防止电源接反或测量电压过高造成的损坏

具有RS2

32、RS485通信接口方式,实现电池组的远程监测功能

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:残奥会奖牌榜下一篇:2008残奥会开幕式