牵引供电远动系统

2022-07-27

第一篇:牵引供电远动系统

牵引供电调度指挥组织和远动监控系统

(一)牵引供电调度

供电调度是铁路运输的重要组成部分,是供电设备运行、事故抢修的指挥中心,是电气化铁路供电的信息中心。京沪、沪杭和浙赣线铁路电气化工程在上海铁路局设电力调度所,所内设置牵引供电调度台,用于指挥牵引供电系统运行、事故处理和设备维修。供电调度员的主要任务是:正确组织牵引供电系统的运行。与行车各有关工种调度密切配合、控制安全动态、应急处理突发事件,最大限度地缩小故障范围,减少事故损失,迅速恢复供电和行车。

(二)远动监控系统

上海铁路局设置了电力调度监控系统和安全视频监控系统各一套,对其在京沪线、沪杭线和浙赣线电气化所管辖的牵引变电所、分区所、开闭所以及枢纽接触网开关等牵引供电设施进行实时数据采集和集中监控管理,对各被控站设备运行状态和运行环境进行实时监视。

电力调度监控系统和安全视频监控系统由设在电力调度所内的控制站设备、数据、视频传输通道及设在沿线各牵引变电所、分区所、开闭所的被控制站综合自动化设备、安全视频传输设备组成。京沪、沪杭和浙赣线的供电调度设在上海,分7个调度台,分别在供电维修管理中心设供电调度系统复示设备,在蚌埠、南京、上海、杭州供电维修基地和上海路局机务处各设一套复视终端。复视终端接受控制站数据转发,控制站提供的实时转发遥信、遥测数据,使得相关维修管理人员能够对所管辖范围内牵引供电系统设备的运行状况进行实时监视,以便在事故或突发事件状态下统一指挥抢修。

枢纽的接触网开关采用集中控制,对蚌埠、南京、上海和杭州枢纽的接触网开关设无线集中监控系统,通过综合自动化现场总线网及设在枢纽内各被控站有线/无线转发单元转成无线信号,发给设在接触网开关架上的无线受控单元,实时对其所管辖的枢纽接触网开关进行实时集中监控管理。

第二篇:TBT2831-1997电气化铁道牵引供电远动系统技术条件

电气化铁道牵引供电远动系统技术条件(TB/T 2831-1997)

1 主题内容与适用范围

本标准规定了电气化铁道牵引供电远动系统的技术要求、试验、检验及标志、 包装、运输、贮存等。

本标准适用于电气化铁道牵引供电远动系统。 2 引用标准

GB/T 13729 远动终端通用技术条件

GB/T 13730 地区电网数据采集与监控系统通用技术条件

GB 2887 计算站场地技术要求

GB 191 包装、贮运、指示、标志 3技术要求

3.1 正常工作条件 3.1.

1环境温度

控制站:15~30℃;

被控站:-10~45℃。 3.1.2 相对湿度

控制站:10%~75%;

被控站:不大于95%。 3.1.

3大气压力66~108kPa;86~108kPa。 3.1.4 周围环境要求

3.1.4.1

大气中不含有导致金属或绝缘损坏的腐蚀性气体。 3.1.4.

2周围介质不允许有严重霉菌。

3.1.4.3 设备安装场所采取防尘措施,控制站还应采取防静电措施。 3.1.4.4 设备的接地要求参照GB 2887的有关规定。

3.1.4.5 被控站装置安装于单相交流25kV电气化铁道附近。装置应采取有效的抗震动及防电磁干扰措施。 3.2

电源条件 3.2.1 控制站

3.2.1.1 交流电源频率50Hz±2.5Hz。

3.2.1.2

交流电源波形为正弦波,畸变系数不大于5%。

3.2.1.3

交流电源电压波动范围为额定电压的+15%~-10%;+10%~-15%。 3.2.2 被控站

3.2.2.1 交流电源频率为50Hz±2.5Hz。

3.2.2.2 交流电源波形为正弦波,畸变系数不大于5%。

3.2.2.3

交流电源电压波动范围为额定电压的+15%~-25%。 3.2.2.4 直流电源电压波动范围为额定电压的±20%。 3.2.2.

5直流电源电压波纹系数不大于5%。

3.2.3

远动系统应配置不停电电源装置(UPS)。交流失电后应维持供电时间为:

控制站:不少于30min;

被控站:不少于2h。 3.3

系统结构、机型和主要设计要求

3.3.1 系统结构采用1:N(M:N)的集中监控方式。 系统的通信规约采用问答式(Polling),其规约标准可参照电力部门的相应标准。 3.3.

2机型一般采用计算机型。

3.3.3 系统的硬件、软件设计除要满足功能要求外,还应考虑系统的可靠性、可维护性和可扩性,各单元的逻辑设计应采用校验技术,留有适当的逻辑余量。控制站的主机及外设配置应有适当的备用。 电气化铁道牵引供电远动系统技术条件(TB/T 2831—1997) 3.3.

4人机接口设备宜具有汉化的友好的对话界面;操作方式要求灵活简便。

3.3.5 软件的配置要考虑通用性,除系统软件、应用软件外, 还应配置在线故障诊断和在线修改的功能。软件设计应遵循模块化和向上兼容的原则。软件的技术规范、汉字编码、点阵、字型等都应符合有关的国家标准。 3.4 系统功能 3.4.

1遥控

3.4.1.1

遥控内容分单个对象的控制(简称单控)和多个多象的程序控制(简称程控),前者为本系统的基本遥控功能,它包括断路器、负荷开关、隔离开关的控制、遥控试验及某些必要的复归操作等,后者包括站内及站间的操作卡片的程序控制。 3.4.1.2

遥控操作应分选择、执行两步操作(复归操作除外)操作方式应安全可靠。 3.4.

2 遥信

3.4.2.

1 位置信号

正常运行时,牵引供系统中各变电所、开闭所、分区所和接触网的有关开关设备之运行状态应能在控制站显示。 3.4.2.2 故障信号

当变电所(开闭所、分区所)发生事故跳闸或设备异常状态时,应将其故障信息内容及发生故障的时间送往控制站进行显示和音响报警,音响报警分事故音响和予告音响两种。

3.4.2.3 遥信显示设备可以是模拟屏、控制台、CRT屏幕、大屏幕投影仪等各种型式, 也可其中两者兼而有之。 3.4.3 遥测

3.4.3.1 遥测方式一般包括随机召唤遥测、定时自动遥测等方式。 3.4.3.2 对于馈电线故障点参数的遥测,一般都要求进行加工处理,除直接显示遥测值外,还要显示故障点位置。 3.4.4 制表打印

3.4.4.

1对于操作事件和故障事件要进行两者有所区别的打印记录,记录内容一般包括事件发生地点、时间及其内容。 3.4.4.2 打印记录的文字采用汉字。

3.4.4.3 系统应具备一定的数据处理能力, 可以按用户事先规定的格式进行制表打印,如日报、月报等。 3.4.5 部分接口要求

3.4.5.1 当系统配置模拟盘时,应能与模拟盘驱动器可靠接口,并完成不下位的各种操作,不再另设模拟盘的微机系统。

3.4.5.2 控制站系统宜具有与其它系统的接口能力。

3.4.5.

3装置除能与常规遥测量(电流、电压、功率、电度)接口外,还能与各种不同的馈电线故测仪(输出量为数字量或模拟量)接口,并能根据需要取值进行计算。 3.4.5.4 装置的遥控输出与遥信输入应按与配电盘直接接口方式设计,不宜另设过渡转接装置,遥控输出接点容量应满足用户要求。

3.4.5.5 远动终端可选配与配电盘的串行接口装置。

3.4.5.6 远动终端与传输通道的接口应设有过电压保护装置。 3.4.6 自检

3.4.6.

1系统应具有在线自检程序和一定的容错能力。

3.4.6.

2系统应具有“超时监视”、“计次重执”、“程序自恢复”等功能。 3.4.6.3 系统应对输出继电器的接点粘住采取检查措施。

2 电气化铁道牵引供电远动系统技术条件(TB/T 2831—1997) 3.4.6.4 系统应能实现对通道的监视和低电平告警。

当使用通道发生故障后应能立即自动切换至备用通道。 3.

5远动通道条件和要求

3.5.1 远动通道宜采用铁路通信线路中的专用音频线对或载波话路。 3.5.2 远动通道的配置应设置备用通道。

3.5.3 通道工作方式有:单工、半双工/双工,宜采用四线制。

3.5.4 通道结构应根据数据传输质量的要求,可设置交流中继器和再生中继器。 3.5.5 当利用载波话路作为远动通道时,其音频四线点接口电平应为-13dBm0。 3.5.6 通道接口可选配基带数据传输口。 3.6 基本技术指标

3.6.1 遥控正确率:

不小于99.9%。 3.6.

2遥信正确率:

不小于99%。

3.6.3 遥测综合误差:

不大于1.5%(包括变送器)。 3.6.4 遥控响应时间:

不大于3s。 3.6.5 遥信响应时间:

不大于3s。 3.6.6

遥信分辨率(站内):

不大于10ms。 3.6.7 控制站在线机与离线机切换时间:不大于30s 。 3.6.8

画面调用响应时间:

不大于3s。 3.6.9 传输速率:

不小于600bit/s。

3.6.10

装置外线输出的发送电平:

不大于0dBm、可调。 3.6.11 正常接收电平:

不小于-40dBm。 3.6.12 告警低电平:

-43dBm。

3.6.13 调制解调器误码率:在信噪比为16dB的情况下,不大于10-5。 3.6.14 可用率和平均无故障工作时间(MTBF)。 3.6.14.

1控制站系统可用率不小于99.8%。 3.6.14.

2被控站的MTBF不少于10000h。 3.7

绝缘电阻和耐压

绝缘电阻和耐压应符合GB/T 13729中的有关规定。 3.8 抗高频干扰适应能力

抗高频干扰适应能力应符合GB/T 13729 中的有关规定。 3.9 主要外设的技术特性 3.9.1

CRT显示装置

分辨率:不小于640×480;

屏幕规格: 不小于19英寸;

颜色种类: 不小于16种;

汉字容量:支持国家2级汉字库。 3.9.2

打印装置

打印速度:

不小于180字符/秒;

打印宽度:

不小于80列/行。 4 试验

4.1 试验环境条件

在本标准中,除气候环境试验和可靠性试验、耐压强度试验以外,其他试验均在下述大气条件下进行:

环境温度:20℃±2℃;

相对湿度:45%~85%;

大气压力:86~108kPa。 4.

2功能试验

按本标准3.4 条中规定的各项功能要求逐项(指其中可测试项目)进行测试检 查,测试结果应符合本标准的要求。测试方法可参照GB/T 13730和GB/T 13729中的

3 电气化铁道牵引供电远动系统技术条件(TB/T 2831—1997) 有关规定。

4.3 连续运行试验

系统所有设备同时投入运行,连续运行72h,并每隔2h测试一遍系统各项功能,是否符合3.4~3.7条中(指其中可测试的项目)的有关标准。 4.4 温度和湿度试验

温度和湿度试验的内容及方法参照GB/T 13729中的有关规定。 4.

5抗高频干扰试验

抗高频干扰试验的内容与方法参照GB/T 13729中的有关规定。 5 检验

5.

1外观和结构检查

用目测法检验,设备的外观和结构应符合下列要求:

表面不应有明显凹痕、划伤、裂缝和变形;

表面涂镀层不应起泡、龟裂和脱落;

金属零件不应有锈蚀和其他机械损伤;

开关按键操作应灵活可靠,零部件应坚固、无松动;

机架、面板插件及其内、外连接部件都应符合有关规定和设计要求。 5.2 出厂检验

由制造厂的技术检验部门进行,按本标准第4条的内容和规定进行检验。被检验的系统至少包括两个以上的被控站,并接入开关量、模拟量的接口模拟器,直至符合本标准的规定。 5.3 现场检验

按本标准的3.4~3.8条中规定的技术要求(其中可测试的项目)进行检验,直至符合本标准的规定。

6 标志、包装、运输、贮存 6.1 标志

产品标志应标明下列内容:

a)厂名;b)产品名称;c)产品型号或标记;d)制造日期(或编号)或生产批号。 6.2 包装

6.2.1 产品应有内包装和外包装,插件、插箱应锁紧、塞好、扎牢。包装箱应有防磁、防潮、防尘、防振动、防辐射等措施。

6.2.

2包装箱内应附有产品合格证、产品说明书、调试记录、 安装图等技术资料及装箱清单、随机备品备件清单等。

6.2.

3包装箱上应标注产品名称、型号,同时还应有清楚的“小心轻放”、“防湿”“向上”等标志,标志应符合GB 191的规定。 6.3 运输

包装好的产品,均适用于公路、铁路等运输,运输时应指明防护要求。 6.

4贮存

包装好的产品应贮存在环境温度-25~55℃,湿度不大于75%的库房内,室内无酸、碱、盐及腐蚀性、爆炸性气体,不受灰尘、雨雪的侵蚀。

附加说明:

本标准由铁道部电气化工程局提出并归口。

本标准由电气化工程局电气化勘测设计院负责起草。

本标准主要起草人

张健芳

李清超

第三篇:牵引供电系统

说起电气化铁路,大家可能首先想到的就是线路两旁一根根的线杆和列车头顶密如蛛网的电线吧。没错电气化铁路与普通铁路最明显的不同在于,它除了地上一条线(轨道)、还有天上一张网(接触网),是一种立体化的线路。

电力机车所需的电能来自发电厂由输电线路、变电装置、牵引用电网络、回流电路等组成的供用电系统供应。世界各国采用的供电制式各不相同,我国的电气化铁路选择了25千伏单相工频(50赫兹)交流供电制式。这种供电制式与工业生产所使用电流频率简称工频相同能使牵引动力获得最佳效果。从天上到下,一套复杂完整的大系统为电气化列车的运行提供了保证。

1电气化铁路的心脏——牵引变电所

牵引变电所是牵引供电系统的心脏,它的主要任务是将国家电力系统送来的三相高压电变换成适合电力机车使用的单相交流电。牵引变电所从国家电网引入220千伏或110千伏三相交流电将三相电转换为适合电气列车使用的单相交流27.5千伏电源并送上接触网。除此而外,它还起着供电保护、测量、控制电气设备提高供电质量,降低电力牵引负荷对公共电网影响的作用。为确保牵引供电万无一失,牵引供电系统都采用“双备份”模式,两套设备通过切换装置可以互为备用并随时处于“战备”状态,以备不时之需。

通常将变电所设备分为一次设备和二次设备,一次设备是指接触高电压的电气设备,如牵引变压器、高压断路器、高压隔离开关、高压(电压和电流)互感器、输电线路、母线、避雷器等,它们主要完成电能变换、输送、分配等功能。二次设备则主要是控制、监视、保护设备。随着科技的发展,二次设备更加的集成化和智能化,形成了牵引变电所自动化系统为牵引变电所的远动控制提供了可能。

2电气化铁路的动脉——接触网

当我们乘坐在电气化铁路的旅客列车上出行时,会看到路基两旁有一根根电杆竖立着顶端安装有单臂结构装置伸向线路侧上方且悬挂有电线,并将其固定在距轨道面一定高度的地方,在股道多的车站或编组站,悬挂结构及各种线网多如蛛网。这就是电气化铁路牵引供电系统的主要供电设备——接触网。

接触网是在露天设置,不但受到各种气象条件的影响,而且还受到电力机车行走时带来的动作用力,加上接触网又无法设置备用的条件,所以接触网的工作环境条件非常恶劣。为了保证电气化铁路可靠安全运营,接触网的结构必须经久

耐用,这就决定了对接触网要有特殊的结构。

接触网的功能,不但要把电能输送给边行走边受流的电力机车使用,还要保证电力机车在走行时其受电弓与接触线在滑动摩擦接触过程中有良好的受流条件,特别是在环境条件变化的时候,线路基础引起的震动,轨道的不平顺,车体上下弹性跳动,受电弓弓臂和接触滑板在受压状态下机车快速运行时产生的垂直加速度,以及接触网导线不平整等因素的存在,都不应出现受电弓与接触线分离现象(通常称离线),否则将会导致受流恶化,严重时会产生电弧烧伤接触线和受电弓的滑板,后果不堪设想。安全可靠的供电对接触网的结构提出了特殊的要求。通过不断优化,现在的接触网主要有以下几个部分构成:

(1)接触悬挂部分。包括承力索、接触线、吊弦、中心锚结、锚段关节、补偿装置等。其中接触线是与电力机车受电弓直接接触处于滑动摩擦受流的导线。

(2)支持装置。用以悬吊和支撑接触悬挂并将其各种受力载荷传递给支柱或桥隧等大型建筑物,还应通过定位构件将承力索和接触线固定在一定范围内,使受电弓在滑行时与接触线有良好的接触。根据接触网所在位置及工作环境的不同,支持装置的结构又可分为腕臂支持装置、软横跨、硬横跨、桥梁支持装置及隧道支持装置等。

(3)支柱与基础。用以安装支持装置、悬吊接触悬挂并承受其载荷。另有因供电系统需要的供电线、加强线,以及因供电方式不同而设置的回流线、正馈线、保护线等附加导线均安装在支柱的不同高度位置上,以及为了供电安全与维护检修作业的需要而设置的保护设备、电气设备等也安装在支柱上。

随着电气化铁路特别是高速电气化铁路的发展,对接触网结构和供电质虽提出了更加严格的要求。接触网的悬挂方式也衍生出简单接触悬挂、简单链形悬挂弹性链形悬挂、复链形悬挂等多种方式。由于篇幅限制,我们在此就不一一详细介绍了。

3电气化铁路供电方式的变迁

电气化铁路中单相文流电的电流回路主要是由钢轨担任的。但钢轨与大地之间不可能做到理想的绝缘,不仅可能带来危险,还会严重影响沿途通信。为防止电气化铁路的电磁干扰以及减轻回流的泄漏给地下金属管道带来的高电位差,人们采取了各种办法,供电方式的结构形式也在逐渐演变。

(1)直接供电方式供电方式。(TR供电方式)

所谓直接供电,就是牵引网不采取任何措施,回流电通过钢轨返回牵引变电所。由于钢轨和大地之间没有良好的绝缘牵引回流从钢轨泄漏到地中的回流分量

较大,对铁路沿线平行接近的架空通信线和广播线路产生较大的电磁干扰。但这种方式结构最简单,投资最省。我国早期修建的电气化铁路大都是采用这种供电方式。

(2)带回流线的直接供电方式 (TN-RF供电方式)

为了改善钢轨中的回路电流流入大地所造成的危险影响和干扰影响,于是在接触网的支柱上再架设一条与钢轨并联的回流线,利用回流线与钢轨间的并联连接线使钢轨中的回路电流尽可能地由回流线流回到牵引变电所中,从而减少大地回流,减小对沿线通信的干扰。这种改进型的直接供电方式的供电性能和供电质量得到了改善,在我国电气化铁路上得到了广泛的采用。

(3)吸流变压器供电方式(BT供电方式)

BT是英文的Booster Transformer的缩写,即“吸流变压器”。吸流变压器并非名符其实的变压器,它既不升压也不降压,仅是一个原边和次边线圈匝数相等的电磁耦合器。它的作用就是通过电磁耦合使牵引电流从钢轨吸引到回流线。由于接触网与回流线中流过的电流

大致相等、方向相反,因此对邻近的架空通信线路和广播线路的电磁感应绝大部分被抵消。吸流变压器使牵引网阻抗约增大50%,能耗增加,应用就受到限制。

(4)自耦变压器供电方式(AT供电方式)

AT是Auto Transformer(自耦变压器)的英文缩写。它是将单相自耦变压器的原理移植到电气化铁路供电系统的供电方式,从自辐变压器绕组的中点抽出一个端子直接接到钢轨,就能把单相变压器的输出端分成两个电压相等的电源。电力机车受电的工作电压是自耦变压器输入端电压的一半,这时牵引变电所牵引变压器的供电电压可达到50千伏,大大提高了供电能力。电力机车从接触网受电后,牵引电流一般由钢轨流回,但由于自耦变压器的作用经钢轨流回的电流经自耦变压器的另一段绕组和正馈线流回牵引变电所。当电力机车取用电流时,由于自祸变压器的作用,流经接触网和正馈线的电流仅为机车负荷电流的一半。另外,这种供电方式可在不提高牵引网绝缘水平的条件下将馈电电压提高一倍,可成倍提高牵引网的供电能力,加上牵引网的阻抗小,电压损失小,电能损耗低,供电距离长,牵引供电的各项技术指标十分优越,在高速、重载等负荷大的电气化铁路,是一种首选的供电方式,目前已得到广泛应用。

现在,我国铁路根据实际情况,对沿线通信无特殊要求的一般区段,基本上都还采用带回流线的直接供电方式(TR-NF),在重载、高速、大密度的繁忙干线

和电源设施薄弱的地区,则采用AT供电方式。

4电力牵引的特点及优越性

电气化铁路的供电系统是由发电厂集中提供电能,经变电站,通过高压输电线(110kV)传输给牵引变电所,转变成电压27.5kV或55kV送到接触网上,供给沿线运行的电力机车。而牵引供电是指电力系统从铁路牵引变电所开始,向牵引接触网的供电。电力牵引是一种新型有轨运输牵引动力形式。在干线铁路、城市轨道交通运输和工矿运输中有着广泛的作用。电力牵引是利用电能作为牵引动力,将电能转换为机械能,驱动铁路列车、电动车组和城市轨道交通车辆等有轨运输工具运行的一种运输形式。

电力牵引按其牵引网供电电流制式不同,分为工频单相交流制、低频单相交流制和直流制。我国电气化铁路采用工频单相交流制电力牵引,直流制电力牵引仅用于城市轨道交通运输系统和工矿运输系统。我国电力牵引供电系统的主要特点有以下几方面:

(1)电力机车是单相移动性随机负荷,是一种负序源。

(2)非线性整流器机车,成为一种谐波源,并从电力系统和牵引供电系统获取无功。

(3)供电方式及设备种类多样化,有直接供电方式、带回流线的直接供电方式、串联吸流变压器、BT供电方式、自耦变压器AT供电方式,这些供电方式的技术和经济特性有较大的差异。对牵引变压器,有单相、YN,d11接线、斯科特接线、伍德桥接线、阻抗匹配平衡型、三相不等容量型等形式,它们具有不同的结构和性能特点。由于供电方式不同,接触网结构类型也较多。

(4)牵引供电系统和电力机车在电气上是—个连续的整体,易于实现自动化和信息化管理。

电力牵引的优越性主要有以下几点:

(1)电力牵引的动力大,生产效率高

电力牵引的能量取于强大的电力系统,牵引动力大,能最大限度适应铁路运输多拉快跑的需要。据有关资料统计,电力牵引的生产效率比内燃机车的生产效率高50%以上,对于客货运输繁忙的铁路干线,电力牵引的这种优越性尤为显著。

(2)电力牵引节省能源,经济效益好

一方面电力机车本身的电能转换效率高;另一方面,电力的生产能够高效率地综合利用各种廉价的自然能源,这对于节约国家有限的煤炭、石油资源,提高铁路运输的经济效益十分有利。

(3)有利于优化生态环境,改善劳动条件

电力机车运行时不会产生有害气体,对铁路沿线的居民和列车乘客不会造成危害,特别是在多隧道的山区线路,这种无有害气体产生的优点更为可贵。电力机车的司乘人员工作条件好,维护检修工作量小,大大降低了工人的劳动强度。5电气化铁路供电系统设计中存在的问题

(1)牵引变压器的选型问题

铁路部门从经济性考虑,在牵引变压器选型方面大多会采用V/V(V/X) 接线变压器,会产生较严重的三相功率不平衡问题。而可大大减少对电力系统负序影响的阻抗平衡牵引变压器或Scott牵引变压器,由于造价相对较高,往往不被选用。特别是220kV 三相平衡牵引变压器,铁路部门认为目前尚无可靠制造和应用经验,广泛推广面临困难。

(2)系统短路容量问题

从保证高速铁路牵引供电系统的电压水平、确保动车组稳定正常运行的角度出发,要求在牵引变电站进线处外部配套电源的系统短路容量一般不小于特定数值。目前给牵引变电站供电的110kV电源,铁路方面提出的系统短路容量大都低于1000MVA,相当多的牵引变电站短路容量在500 MVA 以下,有的甚至只有200、300 MVA,按此标准建设电气化铁路供电工程,将导致系统压降很大。从供电安全可靠性考虑,要达到这个要求供电部门有一定困难。因此为保障电气化铁路的安全供电,要加强对电气化铁路短路容量问题的合理性研究。

(3)负序谐波治理问题

近年来电气化铁路大量投运,现有电气化铁路仍有部分线路存在着负序、谐波超标等问题。随着电气化铁路运力的不断提高,三相不平衡、谐波以及短路电流过大等问题会更加突出。由于铁路部门在设备选取时注重经济性因素,电气化铁路对电网电能质量的影响愈加突出。以大秦铁路湖东牵引站为例,需要采用SVC实现谐波、负序治理,但铁路部门反映设备占地面积大、不实用,新型、有利于治理负序和谐波的技术难以推广。

第四篇:电力牵引系统供电方式对电能质量影响的

分析研究

江海傑

摘 要电气化铁路牵引供电系统是一种复杂的单相网络系统,随着社会及经济的发展,追求高速、高密度、重载运输的目标对电气化铁路建设提出了更高的要求,也给我们提出了在高速电气化铁路中如何选择供电方式及如何减少单相非线性的电牵负荷影响等课题。

关键词 电力牵引供电方式

1.引言我国电气化铁路起步于20世纪50年代末,经过40多年的发展,电气化铁路在数量和技术装备上都有了巨大的变化,电力牵引供电系统结构也从单一的供电方式发展成了多种供电方式。随着社会及经济的发展,追求高速、高密度、重载运输的目标也对电气化铁路建设提出了更高的要求,同时也提出如何选择高速电气化铁路的供电方式及如何减少单相非线性的电牵负荷对电能质量影响等问题,鉴于此,本文对电力牵引供电系统供电方式及电力牵引负荷对电能质量的影响进行了分析和讨论

2.电力牵引供电系统供电方式选择分析

我国最初修建的几条电气化铁路采用的是直接供电方式。后来随着铁路电气化逐渐向繁忙干线发展,为了减少同学显露的迁改工程量和降低铁路电气化的工程造价,于20世纪70年代中期开始采用吸流变压器一回流线供电方式。1982年,根据京秦线运量大、牵引定数高的特点,首次采用了自偶变压器AT供电方式,后来大秦线和郑武线都采用了这种供电方式。根据我国的铁路实际情况,依照经济技术合理的原则,目前,在对沿线通信无特殊防护要求的一般区段,基本上采用带回流线的直接供电DN方式,如现正在开工建设的泸杭电化等既有铁路的电化改造工程,而在重载、告诉、大密度的繁忙干线及一次电源设施薄弱的地区采用自耦变压器供电AT方式。

2.1自耦变压器供电方式(AT供电方式)

AT供电方式是20世纪70年代才发展起来的一种供电方式。它既能有效地减轻牵引网对通信线的干扰,又能适应高速、大功率电力机车试行,故近年来,在我国得到了迅速发展。这种供电方式是每隔10km左右在接触网与正馈线之间并联接入一台自耦变压器,绕组的中点与钢轨相接。电力机车由接触网(T)受电后,牵引电流一般由钢轨(R)流回,由于自耦变压器的作用,钢轨流回的电流经自耦变压器绕组和正馈线(F)流回变电所。当自耦变压器的一个绕组流过牵引电流时,其另一个绕组感应出电流供给电力机车,因此实际上当机车负荷电流为I时,由于自耦变压器的作用,流经接触网(T)和正馈线(F)的电流的二分之一。

自耦变压器供电方式牵引网阻很小,约为直接供电方式的四分之一,因此电压损失小,电能损耗低,供电能力大,供电距离长,可达40~50km。由于牵引变电所间的距离加大,减少了牵引变电所数量,也减少了电力系统对电气化铁路供电的工程和投资。但由于牵引变电所和牵引网比较复杂,加大了电气化铁路自身的投资。这种供电方式一般在重载铁路、高速铁路等负荷大的电气化铁路上采用。由于牵引负荷电流在接触网(T)和正馈线(F)中方向相反,因而对邻近的通信线路干扰很小,其防干扰效果与BT供电方式相当。

AT供电方式的特点:(1)AT供电方式中自耦变压器是并联连接在接触网和正馈线之间的,提高了供电可靠性。采用BT供电回路时,吸流变压器的一次绕组串接在接触导线上,所以在每一个吸流变压器处接触网都必须电分段。这样就增加了接触网的维修工作量和事故率,降低了供电可靠性。AT供电方式是并联供电,根本不存在上述问题,所以就特别有利于高速和大功率电力机车运行。(2)减少了对通信线路的干扰。AT供电方式引入了自耦变压器,在它的作用下,牵引负载电流经接触网和正馈线供给,且由于接触网和正馈线的电压为机车电压的2倍,在功率相同的情况下,经接触网和正馈线的电流只是机车负载电流的一半,且接触网和正馈线是同杆架,两个方向相反的电流对外界的

电磁干扰已基本抵消,所以对通信线路的干扰大大降低了。(3)AT供电方式的馈电电压高,所以供电能力大,电压下降率小。当自耦变压器绕组接至接触导线与钢轨间的匝数和接至正馈线与钢轨间的匝数相等时,AT供电方式的馈电压为BT方式的两倍。同时对相同的列车牵引负荷而言,AT回路的电压下降率(电压降与馈电电压之比值)仅为BT回路的四分之一。从而牵引变电所的间距可增大4倍。不过实际上由于供电区段的加长,区段上同时运行的列车增多,负荷将增大,因此AT供电回路的牵引变电所的间距只能比BT供电方式间距增大2~3倍,牵引变电所的数目可减少,从而节省投资。

2.2 带回流线的直接供电DN方式

DN供电方式的构成是由接触网、钢轨、沿全线架设与轨道并联的负馈线NF维护方便的优点,通过优化其结构和参数能保证较好的屏蔽效果,相对DN供电方式,AT供电方式的缺点主要是结构比较复杂,如变配电装置除了结构比较复杂的牵引变电所外,还有开闭所、分区所和自耦变压器所等,牵引网中除了接触悬挂和正馈线外,还有保护线PW、横向联接线、辅助联接线CPW、横向联接CB、放电器SD等,特别在多隧道区段应用更为困难。但AT供电方式也有比较大的优点,特别在告诉电气化铁路的应用上,它无需提高牵引网的绝缘水平即可将供电电压提高一倍。在相同的牵引负荷条件下,接触悬挂和正馈线中的电流大致可减少一半。AT供电方式牵引网单位阻抗约为DN供电方式牵引网单位阻抗的三分之一左右。从而提高了牵引网的供电能力,大大减少了牵引网的电压损失和电能损失。其牵引变电所的间距比DN供电方式增加近一倍,不但牵引变电所数量可以减少,而且相应的外部高压输电线数量也可以减少,如果采用中性点抽出的单相变压器则无需在牵引变电所出口处设置电分段,大大减少了电分相的数目,有利于列车的安全和高速运行。在干扰方面,AT供电方式对邻近通信线路的综合防护效果要优于DN供电方式,减少了防护工程投资。

2.3 直接供电方式

直接供电方式是在牵引网中不增加特殊防护措施的一种供电方式,是结构最简单的一种。电气化铁路最早大都采用这种供电方式,它的一根馈线接在接触网(T)上,另一根馈线接在钢轨(R)上,这种供电方式结构简单,投资最省,牵引网阻损较小,能耗也较低。供电距离单线一般为30Km左右,复线一般为25km左右。电气化铁路是单相负荷,机车由接触网取得的电流经钢轨流回牵引变电所。由于钢轨与大地是不绝缘的,一部分回流电流由钢轨流入大地,因此对通信线路产生较大电磁干扰。这是直接供电方式的缺点。它一般采用在铁路沿线通信线路已改用地下屏蔽电缆的区段。

2.4吸流变压器供电方式(BT供电方式)

BT供电方式是在牵引网中架设有吸流变压器一回流线装置的一种供电方式。与直接供电方式相比,是在系统中增加了吸流变压器设备。此种方式目前在我国电气化铁路上采用较广。吸流变压器是变化为1:1的变压器,它的一次绕组串接在接触网(T)上,二次绕组串接在专为牵引电流流回牵引变电所而特设的回流线(NF)上,所以也称吸流变压器—回流线供电方式。吸流变压器供电方式的工作原理是,由于吸流变压器的变比为1:1,当吸流变压器的一次绕组流过牵引电流时,在其二次绕组中强制回流通过吸上线流入回流线。由于接触网与回流线中流过的电流大致相等,方向相反,因此对邻近的通信线路的电磁感应绝大部分被抵消,从而降低了对通信线路的干扰。这种供电方式由于在牵引网中串联了吸流变压器,牵引网的阻抗比直接供电方式约大50%,能耗也较大,供电距离也较短,单线一般为25km左右,复线一般为20km左右,投资也比直接供电方式大。

2.5 同轴电力电缆供电方式(CC供电方式)

CC供电方式是一种新型的供电方式。同轴电力电缆沿铁路线路敷设,其内部芯线作为馈电线与接触网连接,外部导体作为回流线与钢轨相接。每隔5~10km作一个分段,由于馈电线与回流线在同一电缆中,间隔很小,而且同轴布置,使互感系数增大,所以同轴电力电缆的阻抗比接触网和钢轨的阻抗小得多,牵引电流和回流几乎全部经由同轴电力电缆中流过。因此电缆芯线与外部导体电流相等,方向相反,二者形成的磁场相互抵消,对邻近的通信线路几乎无干扰。由于阻抗小,因而供电距离长。但由于同轴电力电缆造价高,投资大,现仅在一些特别困难的区段采用。

3 电力牵引负荷对电能质量影响分析

3.1负序影响

相对三相系统而言,牵引负荷具有随机性,单相独立的牵引负荷也独立地在电力系统中产生负序,负序在电力系统中会造成额外占有系统及其设备容量,造成附加网损,引起系统电压不对称、降低发电机、电动机出力等不良影响。为使电力系统经济运行和提高电能质量,尽可能地降低负序是十分必要的。

不同结线型式的牵引变会使单相工频交流牵引负荷对电力系统的负序影响不一样。假设牵引变一次侧三相电压对称,二次侧两供电臂功率因数相等。当采用单相接线牵引变压器时,其牵引负荷在220kV电网中引起的负序电流与正序电流相等。

当电力机车采用交直交机车时,谐波含量会大大降低,对电力系统影响较小。我国对交直交机车基本上采用的是电压型变流器供电系统,该系统由网侧四象限脉冲整流器、中间直流环节、PWM电压源逆变器和异步电动机组成,其中电压型PWM技术转换器中每相变换桥臂由高压大功率GTO器件串联而成,多电平是由中间直流环节的电容器串联对直流电压进行分压,再由二极管按一定规则钳位连接。在多电平的各个GTO的开关状态基础上进行脉宽调剂PWM,这不仅使线电压输出波形进一步接近正弦基波,更重要的是使输出的电流波形为正弦基波,减少高次谐波,输出电流波形非常接近于光滑的正弦波形。同时中间直流环节储能电容器的滤波作用,也能减少电网的高次谐波作用。

3.2 谐波影响

电气化铁路的电力牵引单相整流机车使牵引变压器27.5kV侧电流以及电压发生畸变,所产生的大量高次谐波分量通过牵引变压器的高压侧注入电力系统,并与系统“背景负荷“产生的负序源两者叠加,使系统内部电网的3次、5次谐波在谐振时严重放大

电力机车是一个很大的谐波源,机车类型不同,波形畸变不同,谐波含有率也不同,根据资料统计,交直电力机车韶山4型主要含有

3、5次谐波。谐波电流大小与基波电流有关,基波电流决定于牵引负荷,其经牵引变引入的相序有关。为了减少对电力系统的不对称影响,除合理安排列车方式,使单相负荷均衡分配在电铁沿线外,采用相序轮换接入是一种有效的措施,两个三相YNd11接线或单相VV接线的牵引变电所间,两供电臂一般考虑为同相,以便实现并联供电,并减少接触网的分相电分段数量,相邻供电臂若不同相,则其间电压应避免出现根号三倍的牵引网电压值,有利于高速行车。

在谐波治理方面,目前采用的方法是分别在电力机车变压器一次的调压绕组间,加装并联补偿滤波装置,部分地滤去

3、

5、7次牵引谐波电流,实践证明这是一个有效的方法。为提高牵引网的功率因数而在牵引变电所牵引侧装设的并联电容补偿装置,其可利用自身产生的反向负序功率与牵引负荷产生的负序功率相平衡,来实现单相牵引负荷反映在电力系统三相中的对称性,同时当并联电容器组串入电抗器后,通过正确选择电容器和电抗参数,还兼有很好的三次谐波滤波效果

4结束语

AT供电方式供电电压高,因此供电能力强,牵引变电所的间距大,可减少接触网电分相和电力系统投资。在电磁兼容方面,由于AT供电方式是平衡回路,因此对通信线的危险影响和杂音影响具有较好的屏蔽作用。直接供电方式牵引网系统简单,能适应目前一般既有电气化铁路牵引供电的需要,在电磁兼容方面防干扰效果不如AT方式。此外,电气化铁路对电力系统的影响不但与系统结构、容量大小关系较大外,而且还与铁路运量的增长运行、方式及牵引变压器的接线方式有一定的关系。

参考文献

1 谭秀炳,交流电气化铁道供电系统成都:西南交大出版社

2 贺威俊电力牵引供电系统技术及装备成都:西南交大出版社

3 陈海军电力牵引供变电技术北京:中国铁道出版社

4 马军电气化铁路对电力系统的影响西安:西安理工大学学报

第五篇:牵引供电的供电方式

接触网的供电方式

我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能(从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用)。复线区段可通过分区亭将上下行接触网联接,实现“并联供电”,可适当提高末端网压。当牵引变电所发生故障时,相邻变电所通过分区亭实现“越区供电”,此时供电范围扩大,网压降低,通常应减少列车对数或牵引定数,以维持运行。

1、直接供电方式

如前所述,电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。目前有所谓的BT、AT和DN供电方式。从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。电力牵引时,附加导线中通过的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。但实际上是做不到的,所以不同的供电方式有不同的防护效果。

2、吸流变压器(BT)供电方式

这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。

由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。

3、自耦变压器(AT)供电方式

采用AT供电方式时,牵引变电所主变输出电压为55kV,经AT(自耦变压器,变比2:1)向接触网供电,一端接接触网,另一端接正馈线(简称AF线,亦架在田野侧,与接触悬挂等高),其中点抽头则与钢轨相连。AF线的作用同BT供电方式中的NF线一样,起到防干扰功能,但效果较前者为好。此外,在AF线下方还架有一条保护(PW)线,当接触网绝缘破坏时起到保护跳闸作用,同时亦兼有防干扰及防雷效果。

显然,AT供电方式接触网结构也比较复杂,田野侧挂有两组附加导线,AF线电压与接触网电压相等,PW线也有一定电位(约几百伏),增加故障几率。当接触网发生故障,尤其是断杆事故时,更是麻烦,抢修恢复困难,对运输干扰极大。但由于牵引变电所馈出电压高,所间距可增加一倍,并可适当提高末端网压,在电力系统网络比较薄弱的地区有其优越性。

4、直供+回流(DN)供电方式

这种供电方式实际上就是带回流线的直接供电方式,NF线每隔一定距离与钢轨相连,既起到防干扰作用,又兼有PW线特性。由于没有吸流变压器,改善了网压,接触网结构简单可靠。近年来得到广泛应用。

综上所述,早期电气化铁路均采用直接供电方式,为避免和减少对外部环境的电磁干扰,研发了BT、AT和DN供电方式,就防护效果来看,AT方式优于BT和DN方式,就接触网的结构性能来讲,DN方式最为简单可靠。随着通信技术的快速发展,光缆的普遍应用,

通信设施及无线电装置自身的防干扰性能大为增强,考虑到接触网的运行可靠性对电气化铁路的安全运行至关重要,所以通常认为,一般情况下DN供电方式为首选,在电力系统比较薄弱的地区,经过经济技术比较,可采用AT供电方式,BT供电方式则尽量少采用或不采用。本人认为,这是近三十年来我国电气化铁路供电方式发展和应用的实践过程中总结出来的普遍看法,同样也要接受今后的实践检验,不断总结提高。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:区域旅游调研提纲下一篇:庆元旦手抄报资料