高等数学感悟范文

2022-05-30

第一篇:高等数学感悟范文

高等代数与高等数学的区别

高等代数、数学分析是数学专业中更细的数学研究的分类。高等代数是代数方向的究,而数学分析使用极限方法研究函数特性的数学。而高等数学是对非数学专业的人学习的区别于初等数学的数学,应当包括高等代数和数学分析部分。

高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步、多项式代数。 高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,例如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。

集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有很大的不同了。

其研究对象不仅是数,也可能是矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。比较重要的代数系统有群论、环论、域论。群论是研究数学和物理现象的对称性规律的有力工具。现在群的概念已成为现代数学中最重要的,具有概括性的一个数学的概念,广泛应用于其他部门。 高等数学比初等数学“高等”的数学。广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论逻辑称为中等数学,作为小学初中的初等数学与本科阶段的高等数学的过渡。通常认为,高等数学是将简单的微积分学,概率论与数理统计,以及深入的代数学,几何学,以及他们之间交叉所形成的一门基础学科,主要包括微积分学,其他方面各类课本略有差异。

第二篇:高等数学上册

《高等数学》上册

一、函数与极限

1.函数基本概念—了解

1. 集合及集合的运算

2. 数轴、无穷大和无穷小的几何表示、区间 3. 常量和变量

4. 函数的定义和函数的表达方式 5. 函数的定义域和函数的计算 6. 基本初等函数

7. 复合函数和初等函数 8. 分段函数

2.函数的极限及运算法则—理解极限的含义,会计算求极限的题目;涉及范围较广,高等数学上册下册均有求极限的题目,极限的方法是研究函数的工具。(不会涉及证明用极限定义证明极限的题目)

1. 数列及数列极限 2. 函数的极限

3. 无穷大和无穷小的极限表示

4. 无穷大和无穷小的关系及无穷小的性质(运算注意前提条件有限个和无限个的区别) 5. 极限的有界性定理及应用

6. 复合函数求极限(变量代换的方法)

3.两个重要极限(两个极限的运算法则的条件、推广和应用)

1. 第一个重要极限

2. 第一个重要极限的应用 3. 第二个重要极限

4. 第二个重要极限的应用(注意:单调 且有界是证明题的关键部分) 4.无穷小的比较

等价无穷小及其应用

重要部分!! 5.函数的连续性和间断点

1. 增量

2. 函数连续的两个定义 3. 左连续和右连续

4. 函数的间断点分类(重要,出小题)

5. 连续函数四则运算的连续性(运算法则的条件、推广和应用) 6. 反函数和复合函数的连续性

7. 连续函数的性质(注意:闭区间上连续函数的性质,重要,但一般不单独出题) 一致连续性不用看 练习题一

2.导数与微分(重要,小题必考章节!) 1.导数的定义和导数四则运算法则

1. 导数的定义(重要),

2. 导数的几何意义(理解;其中数一数二导数的物理意义;数三,经济意义、边际函数、弹性函数)

3. 函数可导性与连续性的关系(必需的!) 4. 求导公式表(必需的,熟悉到1+1=2!)

5. 函数导数的四则运算(必需的,熟悉到1+1=2!) 2.不同类型函数的求导法则及高阶导数

1. 复合函数的求导法则(必需的,熟悉到1+1=2!) 2. 隐函数的求导法则(必需的,熟悉到1+1=2!)

3. 参数方程所确定的函数的求导法则(小题,理解!多元隐函数的求导) 4. 高阶导数(重要)

3.函数的微分及应用(理解,重要同导数必考,小题)

1. 微分的定义

2. 微分的几何意义

3. 微分的基本公式和运算法则 4. 复合函数的微分公式

5. 利用微分进行近似计算(除去不用看) 练习题二

3.导数的应用(考大题 难题,重要章节!)

1.中值定理和洛必达法则(中值定理包括费马定理的应用及相关的证明题,必须会做证明题!)

1. 罗尔定理及几何意义

2. 拉格郎日中值定理及几何意义

3. 利用拉格郎日中值定理证明不等式

4. 洛必达法则(必考;泰勒公式及其应用,参照张宇的老师的导学或视频) 2.函数的极值和最值(考小题,单调性及极值点、最大值最小值)

1. 函数的单调性及判断 2. 函数的极值 3. 函数的最值

3.曲线的凸凹性,拐点及函数作图(考小题,单调性及极值点、凹凸性及拐点、渐近线的定义理解)

1. 曲线的凸凹性及判断 2. 曲线的拐点 3. 曲线的渐近线

4. 函数作图(会大致描绘图形帮助做题) 5.曲率

(了解即可) 练习题三

4.不定积分(重要!运算的基础知识。与数

一、数三相比,数二有可能大题。)

1.不定积分的概念和基本公式

1. 原函数与不定积分(理解原函数)

2. 不定积分的定义(必需的,熟悉到1+1=2!) 3. 不定积分的性质(必需的,熟悉到1+1=2!) 4. 基本积分表(必需的,熟悉到1+1=2!) 5. 直接积分法(必需的,熟悉到1+1=2!) 2.换元积分法

1. 换元积分法的引入

2. 第一类换元法(必需的,熟悉到1+1=2!)

3. 第一类换元法的应用(必需的,熟悉到1+1=2!) 4. 第二类换元法(必需的,熟悉到1+1=2!)

5. 第二类换元法的应用(必需的,熟悉到1+1=2!) 3.分部积分法和不定积分技巧的综合应用

1. 分部积分法(必需的,熟悉到1+1=2!)

2. 被积函数和积分变量的选取(必需的,熟悉到1+1=2!)

3.有理函数的积分(重要,常见的一些题型,基本的运算方法的综合利用) 4.综合题举例(积分表不必看)

5.定积分(重要!非常重要,是多元函数的二重积分,三重积分,线面积分的基础) 1.定积分的定义和基本运算

1. 定积分的定义(理解!)

2. 定积分的性质

3. 变上限的积分函数(理解!)

4. 牛顿—莱布尼兹公式 各种题型的必需的,熟悉到1+1=2!

2.定积分的换元法和分部积分法

若不定积分学好,这一部分涉及的计算应该1. 定积分的换元法 很简单! 2. 定积分的分部积分法

3. 利用方程和数列求定积分

常见的各种类型的题目一定要熟悉,再熟悉,3.广义积分(理解!考小题) 再再熟悉,怎么熟悉都不为过!

1. 积分区间为无穷区间的广义积分 一元函数的极限,导数,微分,不定积分,定2. 被积函数有无穷间断点的广义积分(Г积分这是高等数学的基础,根本所在;然后多函数不用看) 元函数(二元函数)的类似运算,只要把定义4.定积分的运用(会应用) 相关推理过程理解了,则 自然会有 水到渠成1. 定积分的元素法 效果,难点不再难点! 2. 利用定积分求平面图形面积

3. 利用定积分求体积(数三只看旋转体 体积)

4.曲线的弧长(数

一、数二公式记住,数 三不考)

第三篇:高等数学总结

FROM BODY TO SOUL

高等数学

第一讲 函数、极限和连续

一、 函数 1. 函数的概念

几种常见函数 绝对值函数: 符号函数: 取整函数: 分段函数:

最大值最小值函数:

2. 函数的特性

有界性: 单调性: 奇偶性: 周期性:

3. 反函数与复合函数

反函数:

复合函数:

第四篇:高等数学

考研数学:在基础上提高。

注重基础,是成功的必要条件。注重基础的考察是国家大型数学考试的特点,因此,在前期复习中,基础就成了第一要务。在这个复习基础的这个阶段中,考生可以对照教材把知识点系统梳理,逐字逐句、逐章逐节对概念、原理、方法全面深入复习,同时,还应注意基础概念的背景和各个知识点的相互关系,一定要先把所有的公式,定理,定义记牢,然后再做一些基础题进行巩固。

无论是高数、线代还是概率,都要在此阶段进行全面整理基本概念、定理、公式,初步总结复习重点,把握命题基本题型,为强化阶段的复习打下坚实基础结合常规教材和前几年的大纲,深刻理解吃透基本概念、基本方法和基本定理。考研数学是一门逻辑性极强的演绎科学,在对基本概念深入理解,对基本定理和公式牢牢记住后,才能找到解题的突破口和切入点。对近几年数学的分析表明,考生失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好。所以说,我们切不可在基础上掉以轻心。

在掌握了相关概念和理论之后,首先应该自己试着去解题,即使做不出来,对基本概念和理论的理解也会深入一步。因为数学毕竟是个理解加运用的科目,不练习就永远无法熟练掌握。解不出来,再看书上的解题思路和指导,再思考,如果还是想不出来,最后再看书上的详细解答。看一道题怎么做出来不是最重要的东西,重要的是通过自己的理解,能够在做题的过程中用到它。因此,在看完这本书上的那些精彩的例题之后,关键要注意在随后的习题中选典型的来继续巩固。不过,要注意的是,基础对第一轮复习的考生显然是基础要求。不要因急于做难题不会而贬低自己的自信心,坚信等若干月复习之后回头看这些题就是小菜一碟。

数学成绩是长期积累的结果,准备时间一定要充分。要对各个知识点做深入细致的分析,注意抓考点和重点题型,在一些大的得分点上可以适当地采取题海战术。数学考试会出现一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度也要大一些。在数学首轮复习期间,可以不将它们作为强化重点,但也应逐步进行一些训练,积累解题思路,同时这也有利于对所学知识的消化吸收,彻底弄清楚有关知识的纵向与横向联系,转化为自己真正掌握的东西。

数学基础复习就要关注:教材、做题、独立思考。这些都是缺一不可的。教材是获得基本知识的必要前提,是基础,懂了教材才有可能做对题目。做题是关键,是目的。只有会做题,做对题目,快速做题才能应付考试,达到目的。思考是为了更有效的理解教材和做对题目。所以我们要向提高自己的做题能力,就千万不能在基础阶段大意而导致之后进去的路上失去先机,这样就会在后期多走弯路,切记! 考研数学:进入备考状态,培养综合能力

要进行全面完整的复习,大多数考生现在已经开始了考研的相关准备并进入了考研状态。现在可以看做是考研的第一个阶段:基础阶段。在这个阶段,我们必须明确自己的目标,并对自己的实力有个初步的判断。在此基础上,开展我们的初步复习。因为对自己的了解,才能作为我们复习时的参考,让我们知道从哪些方面开始,哪些知识点要多下些功夫,而有些自己掌握较好的部分则可以少用点时间,从而对时间进行最有效率的分配,获得最佳效果。现在的阶段是奠定良好基础的关键部分。在这个阶段,主要是让自己慢慢融入考研这个大事中,培养自己的考研心态和状态。

考生都很关心具体该如何开始复习,进行初级基础阶段的复习。对考研最终的胜利至关重要。特别是公共课数学,相信考生也已经意识到了这门学科的重要性和复习的难度。下面,跨考教育数学教研室牛秀艳老师就此为考生做一些复习指导建议。

首先,合理安排时间。基础阶段的复习,因为要进行整体全面的学习,所有时间是较长的,考生要有一个详细的安排和计划。考生应尽量保证在暑假前完成这一阶段的复习。基础阶段的复习主要依据考试大纲(现阶段年新大纲发布前可先依据上一年考研数学大纲),清楚哪些是重要的考点,哪些是不考的内容,熟练掌握基本概念、定理、公式及常用结论等内容,为后期的学习(强化和冲刺阶段)打下牢固的基础。

对于教材,也要给予足够的重视。教材的作用,考生一定不能忽视。很多定理公理,都可以在书中多次翻看,达到真正理解的程度。一般来说,推荐同济五版的高数、清华二版的线代、浙大三版的概率。这些都是非常好的“陪读”教材,在考研复习中不可或缺。那么在理解了基础理论的时候,我们做题就会更加得心应手。这个阶段,虽然做题不是重点,但要以做适当数量的题目来辅助我们理解那些基础知识点。“万丈高楼平地起”,没有好的地基就盖不出高大壮观的建筑。我们考研就是建设的过程,所以要从底层做起。不能忽视底层的建构,而且基础建设耗费时间虽长,但更能说明这个阶段的重要性。有个这个阶段良好的基础,在一层一层盖楼的过程中,才能真正感受到“磨刀不误砍柴工”的作用。在后续各个阶段的复习中,将会获得更充足的动力。

做题时,如果遇到有些对概念、定理模糊不确定的时候,可以去看教材,用教材题目相结合的方法。光看教材也许容易看了后边的忘了前边所学的内容,所以在做题中、在复习的时候要不断的巩固,加强对基础知识点的理解。要做自己所选教材后边的一些配套的基础性的练习题,勤动手,同时对于一些自己不会做得题目,多思考,多问自己几个为什么。有些具有一定难度的题目,可能需要参考标准答案,此时一定要认真把思路做个复习概括。多总结,总结是任何时候都不过时的。多想想以后遇到类似的题目,自己应该从哪些方面去思考,这样慢慢积累,就会成为自己的知识,被自己所用。

对于知识点的复习,考生可以有重点的复习。为了更能把时间用在刀刃上,建议考生结合前几年的大纲,找准考点。从历年的考研试卷分析,凡是大纲中提及的内容,都是可能的考点,甚至自己认为是一些不太重要的内容,也完全有可能在考研试题中出现。所以,对于大纲中提到的考点,要做到重点、全面、有针对性的复习。不仅要在主要的内容和方法上下功夫,更要注重寻找各个知识点之间的联系。近年来,考研数学越来越注重综合能力的考查,这也是以后命题的一个趋势。而综合能力的培养以及提高,源于自己平时的积累与练习。

考研高数:极限中的“极限”(一)

相信大家已经把高数的复习已经结束,开启概率和线代的复习,不知道对自己高数的复习是否满意,是否达到了我们的“三基本”呢?接下来,跨考教育数学教研室佟庆英就和大家梳理一下我们做过的极限。

说到极限应该是我们三大计算中的第一大计算,每年考研真题必出,无论是数一数二数三还是经济类数学,可以出选择题也可以出填空题,更可以出解答题,题目类型不同,分值也不同,4分或者10分,极限的思想也就更是重要之重了,原因就是后来所有的概念都是以极限的形式给出的。下面,我们就看看极限在基础阶段到底应该掌握到什么程度。

第一,极限的定义。理解数列极限和函数极限的定义,最好记住其定义。

第二,极限的性质。唯一性,有界性,保号性和保不等式性要理解,重点理解保号性和保不等式性,在考研真题里面经常考查,而性质的本身并不难理解,关键是在做题目的时候怎么能想到,所以同学们在做题目的时候可以看看什么情况下利用了极限的保号性,例如:题目中有一点的导数大于零或者小于零,或者给定义数值,可以根据这个数值大于零或小于零,像这样的情况,就可以写出这一点的导数定义,利用极限的保号性,得出相应的结论,切记要根据题目要求来判断是否需要,但首先要有这样的思路,希望同学们在做题时多去总结。

第三,极限的计算。这一部分是重中之重,这也是三大计算中的第一大计算,每年必考的题目,所以需要同学们能够熟练地掌握并会计算不同类型的极限计算。首先要知道基本的极限的计算方法,比如:四则运算、等价无穷小替换、洛必达法则、重要极限、单侧极限、夹逼定理、单调有界收敛定理,除此之外还要泰勒展开,利用定积分定义求极限。其次还要掌握每一种极限计算的注意事项及拓展,比如:四则运算中掌握“抓大头”思想(两个多项式商的极限,是无穷比无穷形式的,分别抓分子和分母的最高次计算结果即可),等价无穷小替换中要掌握等价无穷小替换只能在乘除法中直接应用,加减法中不能直接应用,如需应用必须加附加条件,计算中要掌握基本的等价无穷小替换公式和其推广及凑形式,进一步说就是第一要熟练掌握基本公式,第二要知道怎么推广,也就是将等价无穷小替换公式中的x用f(x)来替换,并且要验证在x趋于某一变化过程中f(x)会否趋近于零,满足则可以利用推广后的等价无穷替换公式,否则不能。

下面给出推广后公式:f(x)→0,f(x)~sinf(x)~arcsinf(x)~tanf(x)~arctanf(x)~expf(x)-1~ln(f(x)+1),1-cosf(x)~0.5(f(x))2,(1+f(x))a~af(x)。

第三要能将变形的无穷小替换公式转化为标准形式,比如:公式中固定出现的“1”和f(x)为无穷小量。希望同学们在做题目的时候多加注意,熟能生巧。

考研高数:极限中的“极限”(二)

前面我们已经介绍了等价无穷小替换公式的应用及注意事项,接下来,跨考教育数学教研室佟老师为大家继续说说极限的计算方法。

极限的第三种方法就是洛必达法则。首先,要想在极限中使用洛必达法则就必须要满足洛必达法则,说到这里有很多同学会打个问号,什么法则,不就是上下同时求导?其实不尽然。

洛必达有两种,无穷比无穷,零比零,分趋近一点和趋近于无穷两种情况,以趋近于一点来说明法则条件,

条件一:零比零或者无穷比无穷(0/0,∞/∞);条件二:趋近于这一点的去心领域内可导,且分母导数不为零;条件三:分子导数比分母导数的极限存在或者为无穷,则原极限等于导数比的极限。

在这里要注意极限计算中使用洛必达法则必须同时满足这三个条件,缺一不可,特别要注意条件三,导数比的极限一定是存在或者为无穷,不能把无穷认为是极限不存在,因为极限不存在还包括极限不存在也不为无穷这种情况,比如:x趋近于零,sin(1/x)的极限不存在也不为无穷。每次使用都必须验证三条件是否同时满足。

再来看看重要极限,重要极限有两个,一个是x趋近于零时,sinx/x趋近于零,另一个是x趋近于零时,(1+x)1/x趋近于e,或者写成x趋近于无穷,(1+1/x)x趋近于e(1∞形式),总结起来就是(1+无穷小量)无穷小量的倒数,所以要记住重要极限的特点,并可以将其推广,即把x换成f(x),在f(x)趋近零,sinf(x)/f(x)趋近于零,(1+f(x))1/f(x)趋近于e,或f(x)趋近无穷,(1+1/f(x))f(x)趋近于e,还要注意当给你幂指函数的极限计算,先要判断他是不是1∞形式,如果是,就可以考虑利用重要极限解决,凑出相应的形式就可以得出结论。

这里还要特别的提一下几个未定式(∞-∞,0·∞,1∞,00,∞∞),这五个未定式需要转化为0/0或∞/∞,其中∞-∞可以通过通分、提取或者代换将其转化,0·∞可以将0或者∞放在分母上,以实现转化,1∞,00,∞∞利用对数恒等变化来实现转化,其中1∞还可以利用重要极限计算。

综上所述,等价无穷小替换和重要极限要掌握基本公式和推广,可以将任意变形公式转化为标准形式,并且给定一个极限首要任务就是利用等价无穷替换公式化简。洛必达法则处理七种未定式,灵活地将不同形式的极限转化为0/0或∞/∞,计算时注意满足洛必达法则的三个条件,希望同学们可以掌握基础,灵活地解决不同类型的极限。

第五篇:高等数学

第 1 页 共 5 页

§13.2 多元函数的极限和连续

一 多元函数的概念

不论在数学的理论问题中还是在实际问题中,许多量的变化,不只由一个因素决定,而是由多个因素决定。例如平行四边行的面积A由它的相邻两边的长x和宽y以及夹角所确定,即Axysin;圆柱体体积V由底半径r和高h所决定,即Vr2h。这些都是多元函数的例子。

一般地,有下面定义:

定义1: 设E是R2的一个子集,R是实数集,f是一个规律,如果对E中的每一点(x,y),通过规律f,在R中有唯一的一个u与此对应,则称f是定义在E上的一个二元函数,它在点(x,y)的函数值是u,并记此值为f(x,y),即uf(x,y)。

有时,二元函数可以用空间的一块曲面表示出来,这为研究问题提供了直观想象。例如,二元函数xRxy222就是一个上半球面,球心在原点,半径为R,此函数定义域为满足关系式x2y2R2的x,y全体,即D{(x,y)|x2y2R2}。又如,Zxy是马鞍面。

二 多元函数的极限

定义2

设E是R2的一个开集,A是一个常数,二元函数fMf(x,y)在点M0x0,y0E附近有定义.如果0,0,当0rM,M0时,有f(M)A,就称A是二元函数在M0点的极限。记为limfMMM0A或fMAMM0。

定义的等价叙述1 :设E是R2的一个开集,A是一个常数,二元函数fM在点0f(x,y)M02x,0y02E近有定义.如果0附,0,当xx0yy0时,有f(x,y)A,就称A是二元函数在M0点的极

龙岩学院数计院

第 2 页 共 5 页

限。记为limfMMM0A或fMAMM0。

定义的等价叙述2: 设E是R2的一个开集,A是一个常数,二元函数fM在点M0x,0y0f(x,y)附E近有定义.如果0,0,当0xx0,0yy0且x,yx0,y0时,有f(x,y)A,就称A是二元函数在M0点的极限。记为limfMMM0A或fMAMM0。

注:(1)和一元函数的情形一样,如果limf(M)A,则当M以任何点列及任何方式趋

MM0于M0时,f(M)的极限是A;反之,M以任何方式及任何点列趋于M0时,f(M)的极限是A。但若M在某一点列或沿某一曲线M0时,f(M)的极限为A,还不能肯定f(M)在M0的极限是A。所以说,这里的“”或“”要比一元函数的情形复杂得多,下面举例说明。

例1:设二元函数f(x,y)xyxyxyxy22222,讨论在点(0,0)的的二重极限。

例2:设二元函数f(x,y)2,讨论在点(0,0)的二重极限是否存在。

0,例3:f(x,y)1,xy其它或y0,讨论该函数的二重极限是否存在。

二元函数的极限较之一元函数的极限而言,要复杂得多,特别是自变量的变化趋势,较之一元函数要复杂。

例4:limxyxxyysinxyx22。

xy例5:① limx0y0

② lim(xy)ln(xy) ③ lim(xy)ex0y0xy2222222(xy)

例6:求f(x,y)xy3223xy在(0,0)点的极限,若用极坐标替换则为limrr0cossincossin33220?

龙岩学院数计院

第 3 页 共 5 页

(注意:cos3sin3在74时为0,此时无界)。

xyxy222例7:(极坐标法再举例):设二元函数f(x,y)证明二元极限不存在的方法.

,讨论在点(0,0)的二重极限.

基本思想:根据重极限定义,若重极限存在,则它沿任何路径的极限都应存在且相等,故若1)某个特殊路径的极限不存在;或2)某两个特殊路径的极限不等;3)或用极坐标法,说明极限与辐角有关.

例8:f(x,y)xyxy22在(0,0)的二重极限不存在.

二元函数的连续性

定义3

设fM在M0点有定义,如果limf(M)f(M0),则称fMMM0在M0点连续.

0,0,当0

如果f在开集E内每一点连续,则称f在E内连续,或称f是E内的连续函数。

例9:求函数utanx2y2的不连续点。

四 有界闭区域上连续函数的性质

有界性定理:

若fx,y再有界闭区域D上连续,则它在D上有界。 一致连续性定理: 若fx,y再有界闭区域D上连续,则它在D上一致连续。 最大值最小值定理: 若fx,y再有界闭区域D上连续,则它在D上必有最大值和最小值。

零点存在定理:

设D是Rn中的一个区域,P0和P1是D内任意两点,f是D内的连续函数,如果f(P0)0,f(P1)0,则在D内任何一条连结P0,P1的折线上,至少存在一点Ps,使f(Ps)0。

龙岩学院数计院

第 4 页 共 5 页

二重极限和二次极限

在极限limf(x,y)中,两个自变量同时以任何方式趋于x0,y0,这种极限也叫做重xx0yy0极限(二重极限).此外,我们还要讨论当x,y先后相继地趋于x0与y0时f(x,y)的极限.这种极限称为累次极限(二次极限),其定义如下:

若对任一固定的y,当xx0时,f(x,y)的极限存在:limf(x,y)(y),而(y)xx0在yy0时的极限也存在并等于A,亦即lim(y)A,那么称A为f(x,y)先对x,再

yy0对y的二次极限,记为limlimf(x,y)A.

yy0xx0同样可定义先y后x的二次极限:limlimf(x,y).

xx0yy0上述两类极限统称为累次极限。

注:二次极限(累次极限)与二重极限(重极限)没有什么必然的联系。 例10:(二重极限存在,但两个二次极限不存在).设

11xsinysinyxf(x,y)

0x0,y0x0ory0

由f(x,y)xy 得limf(x,y)0(两边夹);由limsinx0y01y不存在知f(x,y)的累次

y0极限不存在。

例11:(两个二次极限存在且相等,但二重极限不存在)。设

f(x,y)xyxy22, (x,y)(0,0)

由limlimf(x,y)limlimf(x,y)0知两个二次极限存在且相等。但由前面知x0y0y0x0limf(x,y)不存在。

x0y0例12:(两个二次极限存在,但不相等)。设

f(x,y)xyxy2222,

(x,y)(0,0)

龙岩学院数计院

第 5 页 共 5 页

则 limlimf(x,y)1, limlimf(x,y)1; limlimf(x,y)limlimf(x,y) (不x0y0y0x0x0y0y0x0可交换)

上面诸例说明:二次极限存在与否和二重极限存在与否,二者之间没有一定的关系。但在某些条件下,它们之间会有一些联系。

定理1:设(1)二重极限limf(x,y)A;(2)y,yy0,limf(x,y)(y).则

xx0yy0xx0yy0lim(y)limlimf(x,y)A。

yy0xx0(定理1说明:在重极限与一个累次极限都存在时,它们必相等。但并不意味着另一累次极限存在)。

推论1:

设(1) limf(x,y)A;(2)(3)y,yy0,limf(x,y)存在;x,xx0,xx0yy0xx0yy0limf(x,y)存在;则limlimf(x,y),limlimf(x,y)都存在,并且等于二重极限yy0xx0xx0yy0xx0yy0limf(x,y)。

推论2: 若累次极限limlimf(x,y)与limlimf(x,y)存在但不相等,则重极限

xx0yy0yy0xx0xx0yy0limf(x,y)必不存在(可用于否定重极限的存在性)。

222例13:求函数fx,yxy22xyxy在0,0的二次极限和二重极限。

龙岩学院数计院

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:工程先进事迹范文下一篇:孤独者的悲歌范文