电源技术论文范文

2022-05-10

今天小编为大家推荐《电源技术论文范文(精选3篇)》,欢迎阅读,希望大家能够喜欢。摘要:通信系统的发展对通信电源提出了越来越高的技术要求,文章结合通信电源的发展情况详细分析了先进通信电源技术的应用,在分析当前通信电源技术发展应用现状的基础上,论述了先进电源技术在通信系统领域内的应用和发展,并分析了通信电源技术的发展趋势,对于进一步提高通信电源技术的应用与发展具有较好的借鉴指导意义。

第一篇:电源技术论文范文

电源与电源管理技术发展趋势

随着节能、再生能源、“绿色”和电子设备必须遵守强制性能效规范,以及便携装置小型化多功能的发展趋势,要求电源与电源管理必须提高电源效率、降低待机功耗、改善功率因数、高功率密度、高可靠性、高集成度、小尺寸、安全和低成本。

为了向读者介绍最新的电源与电源管理技术,本刊采访了一些著名公司,包括Ns,Maxim,Linear,ON Semiconductor,Microchip,Fairchild,Renesas  Technology,Infineon等,他们就电源与电源管理技术的发展趋势、创新技术、新产品及其应用、典型解决方案等发表了独特见解。下面是访谈录。

电源供应及电源管理技术将朝着以下的几个方向发展:

容易使用:

可靠的防护设计:

较高的功率密度。

容易使用

许多客户都并非电源管理技术的专家,他们只想利用高效率的开关稳压器为他们设计的电路提供稳压供电。自1990年以来,美国国家半导体(NS)便一直为客户提供Simple Switcher开关稳压器。目前推出的 Simple Switcher开关稳压器及SimpleSwitcher控制器属于第5代的产品,其特点是适用于宽输入电压范围。而且体积极小,但可以输出极高的电流,只需极少外置元件。美国国家半导体的WEBENCH设计工具一直大受客户欢迎。现在这套工具的功能又有进一步的提升,以便客户设计新产品时可以获得更可靠的技术支持。WEBENCH设计网页是个一站式的设计平台。客户可以通过这个平台挑选电源管理芯片,就电路设计进行模拟测试,以便微调及优化系统设计,而且整个设计过程只需几分钟便可完成。

可靠的防护设计

若要确保产品高度稳定可靠,客户必须采用加设了可靠防护装置的电源管理产品。许多新推出的电源管理产品都有基本的周期限流功能,以免系统出现过载及短路情况。此外,许多新产品还另外提供多一重的防护。例如打嗝或电压/频率折回(foldback)功能。美国国家半导体降压稳压器的限流保护点非常准确。以LMZ0000系列降压稳压器为例,在指定温度范围内的温度操作,这系列产品的限流值都极为准确,偏差不会超过±10%。相较之下,市场上同类产品的偏差率高达±20%至30%。

较高的功率密度

由于供电系统占用越来越少印制电路板的板面空间,因此电源管理解决方案的功率密度必须不断提高。目前有多个办法可以解决这个问题,例如采用更高的开关频率、更先进的封装技术以及更精密的生产工艺。作为电源管理芯片生产工艺的领导者,NS拥有先进的技术及丰富的设计经验,因此可以解决客户的供电系统设计问题。

NS响应电源管理技术的发展趋势推出多款新产品,其中包括以下几种。

LM2267x及LM22680芯片(属于第5代Simple Switcher的产品)适用于宽输入电压范围(4.5V至42V),而且可以输出高达5A的电流。客户可以利用WEBENCH设计工具挑选合适的Simple Switcher开关稳压器,然后按照自己的要求设计电源供应系统,整个设计过程只需几分钟便能完成。

LM20000系列降压稳压器是设计高能源效率、高度可靠电源供应系统的理想解决方案。LM20000系列芯片与Simple Switcher开关稳压器大致相同,共有14个不同的型号,各有不同的电压及电流额定值。这系列芯片的限流值保护点非常准确,偏差不超过±10%,而且一旦过载情况持续,会利用电压/频率折回功能解决问题。

LM34917A是另一款高功率密度的稳压器芯片。这款开关稳压器适用于高输入电压,而且方案体积小巧,最适用于汽车摄影机等必须采用高输入电压的系统。1.25A的LM34917A开关稳压器可以承受高达33V的输入电压,而且采用只有1.97×2.30mm2的μSMD封装。

电源与电源管理的发展趋势是:

安全、可靠的电池充电器设计仍然是便携式消费类产品关注的问题。Maxim利用专有的半导体工艺,将高压充电FET集成在PMIC内部,无需外部过压保护电路即可保证充电的安全性。MAX8677A允许Ac适配器输入和USB输入,内部功率开关和控制电路实现充电/系统供电电源的智能选择。系统供电管理电路可以在没有电池连接或电池已经深度放电、或者是给设备充电时,继续为负载供电。

功能越来越丰富、尺寸越来越小。例如:在手机,特别是智能手机中集成wiFi、GPS、8M像素照相机、QWERTY键盘等功能:Maxim创新的模块化设计可大大降低系统成本和元件数量,较高的开关频率允许使用微小的外部元件。从而为便携产品设计提供强大支持。不同的手机制造商会采用不同的基带和应用处理器,Maxim PMIC:的模块化设计能够针对用户的特殊需求,提供定制设计。

MAX8660/MAX8661 PMIC专为基于第三代MarvelI Xscale技术的Monahans应用处理器而设计,可以支持Xscale处理器工作于智能手机、PDA、便携媒体播放器,GPS导航器以及其它需要大量计算和多媒体能力的低功耗设备中。MAX8660在5mm×5mm×0.8mm、40引脚TQFN封装内集成有8路高性能、低工作电流的电源,I2C接口,以及监控功能。器件完全兼容于Monahans电源的I2C寄存器设置,满足所有Monahans处理器的电压门限、电源排序以及上电斜率要求。该器件的高度兼容性可使软件开发和上市时间最小化。

3G是2009年到2010年的目标市场,高效的PA电源管理方案有助于延长电池的使用寿命,Maxim针对高端智能手机推出了可动态调节PA集电极电压的电源管理IC MAX8805。器件采用2ram×2mm晶圆级封装(WLP),用于支持WCDMA/NCDMA功率放大器(PA)供电。内部集成了高效降压转换器,适用于中等功率和小功率无线传输应用,同时还具有60mQ的旁路FET,可提供1.5A的峰值电流。

通过分析若干即将在LED驱动器IC需求量增长过程当中发挥作用的“催化剂”,我们不难发现LED将迅速成为一种主流照明光源。其中的4个主要的推动力是汽车照明、LED光输出、LED成本因素及其有望取代白炽灯泡的潜在用途。

许多中高档多媒体移动电话、PMP播放器和DSC基本上都采用具1Ah至1.2Ah容量的电池,而迷你型亚笔记本电脑/平板个人电脑则采用1.5Ah-2Ah容量电池。因此,凌力尔特(Linear)采用专利热调整电路的线

性电池充电器产品线成功地解决了由高电流线性稳压器所引起的潜在热问题(当充电器IC位于器件内部时)。由于电池容量的增加以及人们对快速充电时间需求的继续存在,因此对于保持合理的PCB温度而言,线性热调整将变得日益重要起来。此外,如果需要大于IA的电池充电电流,凌力尔特则为客户提供了效率接近95%的单片式同步开关电池充电器,从而能够最大限度地减少热设计的约束。

凌力尔特的LTC3562是一款四通道、高效率、2.25MHz、同步降压型稳压器,能够从一个3mm×3mmQFN封装桌提供双通道600mA和双通道400mA连续输出。每个通道都能够通过板载I2C接口(两个通道通过I2C,两个通道通过RUN引脚)进行独立控制(包括输出电压),从而使其适合于诸如微处理器等要求动态调整输出电压的应用。

凌力尔特拥有众多旨在满足LED驱动设计要求的产品。LT3595、LT3518和LT3755便是部分产品实例。

LT3595降压模式LED驱动器具有16个单独的通道,备通道能够从高达45V的输入来驱动一个由多达lO个50mA LBD所组成的LED串。每个LT3595将能够驱动多达Z60+SOmA白光LED。一台46英寸LCD TV将需要为每部HDTV配用约10个LT3595。它的16个通道均可以独立控制,并具有一个能够提供高达5000:1 PwM调光比的单独PWM输入。

凌力尔特最新推出一款LT3513。该转换器具有5个独立受控的稳压器,用于提供一个TFT-LCD屏内部所有必要的电源轨。

LT3755/-1是一款60V、高压侧电流检测DC/DC控制器,专为从一个4.5至40V的输入电压范围来驱动高电流LED而设计。LT3756/-1采用了相同的设计,但可以从6V至IOOV的输入来提供至100V的输出。这两款器件都非常适合于众多的应用,包括汽车、工业和建筑照明。对于那些需要高于40V输入电压(比如:48V电源轨)的应用,LT3756/-1将是优选的解决方案。

电源和电源管理技术发展的焦点仍将是利用恰当的技术以用更少的电能来实现与日增多的应用功能,从而提升电源能效,这涉及提高电源工作效率、降低待机能耗及改善功率因数(PFC)等。

我们看到人们越来越需求极高能效的终端产品,而世界各国的能效规范标准也在不断演进。所以电子制造商将需要在不同输入电压和负载条件下,推出能在真实世界环境下具高能效的电源产品。

如在计算机市场,安森美半导体除了具备vcore的专长,还开发多种系统电源产品,如控制器、驱动器、音频放大器、MOSFET和EEPROM,用于增强我们在笔记本、台式电脑和服务器领域的价值主张。以笔记本应用为例,最新的7位可编程多相同步降压开关稳压控制器ADP3212,可编程进行1相、2相或3相操作,完全符合IMVP 6.5版规范,用于英特尔下一代处理器的笔记本电源。这器件的一项重要优势是能够动态地追踪变化的电压识别(VID)代码,使移动处理器的Vcc。电压能够无须重设控制器或CPU而进行改变,使CPU在工作中能够动态地降低内核电压,降低电池电能消耗、延长使用时间。

在汽车市场,我们与领先的汽车OEM协作,发挥我们的设计、销售和供应链资源优势、配以丰富的产品系列。包括AsIC、cAN和LIN收发器、马达控制、驱动器、MOSFET和分立器件等。以NCV7708A为例,这是一款完全保护的双6路半桥驱动器,特别适合汽车中的运动控制应用。6个低端控制器和6个高端驱动器能够自由配置,并能单独控制,支持高端、低端和H桥控制。这器件在休眠模式下的静态电流极低。

在电源市场,我们新推出的GreenPoint 255 w ATX公开参考设计在所有负载点都提供88%高的电源能效,且在真实世界(而非实验室)条件下提供极高能效,远高于市场标准,而且其配置可立即投产。高效电子(Hipro Electronics)台式电脑电源应用。

在便携消费市场,我们提供用于显示和背光、音/视频、互连和电源管理等四个主要关键子系统的解决方案。如我们的照明管理集成电路NCPS890在极小封装中集成了LCD背光、装饰光控制和环境乐感测功能,能够根据环境光的亮度来调节背光电流,从而延长电池使用时间。

而在不断兴起的LED应用领域,安森美半导体提供一系列的LED驱动电源解决方案,包括可集成最高700V高压FET的离线型AC-DC开关电源解决方案、宽输入范围的中等电压LED应用DC-DC电源解决方案和LED便携背光应用电源解决方案等。

能源成本的骤增(也可以说是不可预期)促进了对节能技术的需求。无论是电子消费品还是商业应用,电机和照明在总能耗中都占相当大的比重。嵌入式单片机(MCU)及相关模拟外设具有高效的电源转换功能,还提供可降低能耗的智能工作模式。

利用8位、16位和32位MCU可以实现廉价的电机控制方案。PIC16HV616等MCU包含PWM模块及其他模拟外设,能对步进电机以及有刷和无刷电机进行控制。

Microchip Technology(美国微芯科技公司)的dsPIC33珂12MC201 DSC提供了高度优化、兼具成本效益的解决方案,能实现三相电机的高级控制。这款20引脚的DSC(数字信号控制器)器件包含一个快速模数转换器(ADC)和一个电机控制PWM模块,前者能够同时采集多通道的信号,后者则具备管理三相电机功率控制级所需的功能。

许多国家如今已经贯彻了将逐步淘汰低能效白炽灯的规划。目前,荧光灯是使用最广泛的替代品。但是,LED在普通照明应用中的使用也与日俱增。LED的工作寿命非常长,最终能够提供比荧光技术更高的效率。

道康宁推XIAMETER品牌建最大有机硅交易平台

日前,道康宁公司宣布,正式升级在线交易平台,强化XIAMETER品牌来建立世界最大的网上有机硅产品市场。

据XIAMETER业务部全球执行总监雪莉女士介绍,2002年推出的XIAMETER商业模式并不适用于所有用户,随着客户需求的不断变化,此次全面对XIAMETER商业模式进行升级,使其可以为更多数的客户服务。

据了解,新的XIAMETER商业模式所提供的产品数量增加了一倍以上,在全球各地由道康宁生产的标准有机硅产品现在都可以在XIAMETER品牌下购买到。产品家族系列从二甲基硅油和乳液至DIY及专业建筑工程所需的密封

胶,还有橡胶基胶、混合物和有机硅烷等。这些原料是个人护理、建筑、汽车、纺织、造纸业、能源和其他等工业提升效能的必需品。

雪莉表示,如果需要,客户可以继续大量地以油罐车或货柜车为单位来购买。不过,很多客户需要以更小量订购。虽然该公司仍有最低起订量的要求,但客户现在可以以托盘数量或以更符合自己需要的小批量来购买产品。史无前例地,客户可从当地经销商处购买到XIAMETER品牌下的产品。这样可以配合一些喜欢享受当地采购的便利或采购数量低于最低购货量的客户。

雪莉说:“我们的经销商是我们成功的重要因素,并将继续与道康宁和XIAMETER品牌共存。”

LED需要高效的恒流驱动器。该驱动器结合智能控制技术,使LED很可能会成为一种非常独特的光源。

可采用不同的策略将智能控制与LED驱动器相结合。首先,可将小型MCU与提供功率调节功能的外部模拟Ic相连。PICIOF200(单片机)可向功率Ic提供控制信号以调节LED的亮度或颜色。诸如MCP1631等器件可从MCU接收开关时钟和参考信号以提供功率调节功能。同一个McuN连接多个MCP1631器件,以对多个功率通道进行控制。

实现智能LED驱动器的另一个方法是将模拟外设与MCU功能相结合。PICl6HV785是一款8位的MCU,它集成有高速比较器、运放和一个参考电压模块。可使用模拟外设来构建所需的任何开关式或线性功率调节电路。

采用全数字方式也能实现智能LED驱动器功能。不采用模拟元件,而是使用AIDc来测量LED电流并使用软件算法对其进行调节也能实现功率调节。dsPIC30F1010 DSc具有特殊的PWM外设、高速ADc和其他旨在支持各种开关电源应用的模拟外设。

发热是LED的一个不利因素,也可能是照明装置设计人员所要解决的最关键的问题之一。必须限制LED的工作温度以保证较长的使用寿命。电子温度检测是工作在恶劣环境(比如汽车或户外)下的LED驱动器应用的理想之选。MCP9509是一款逻辑输出温度传感器,可安装在照明装置中LED附近,以检测其工作温度。MCP9509的温度跳变点可由一个电阻设定,其漏极开路输出可直接输入给模拟基准电路,以便根据比较结果切断LED电流或将电流降至安全的工作水平。如果需要比例温度控制,则可使用MCF·9700温度传感器,该传感器提供的线性电压输出信号可连接到MCU的ADc,或直接用来控制模拟基准信号。

所有类型的光源均能从通信网络获益以达到节能目的。诸如IEEE802,1S.4等网络协议为传感器、控制电路和光源间可靠的无线通信提供了一种经济有效的途径。Microchip的MRF24J40M无线收发器模块向设计人员提供了将低功耗2.4GHz无线控制技术集成到任何应用的简便方法。该模块提供经过认证的解决方案,使最终用户无需进行RF设计。

电子应用中电能的高效使用预期将成为未来数年的主要推动力量,能够提高效率水平、减少电力需求或延长电池寿命的解决方案将在未来占据重要的地位。我们认为从高能效中获益最多的领域为:电机、照明和电源。在所有这些应用中,电子含量正在增加,这为半导体供应商带来了机会,提供在这些应用中实现更高能效的电源解决方案。

FAN9612是飞兆半导体提供的临界导通模式(BCM)交错式功率因数校正(PFC)控制器,用于数字电视、台式电脑和入门级服务器、前端电信系统,以及额定功率范围从100W至1000W的业电源系统之电源。由于FAN9612采用交错方式,并在所有运作条件下都保持两个功率级精确的180度相差,因此能够降低导通损耗。这些节能优势是帮助用户满足最新的“能源之星”和“电脑节能拯救气候行动”要求所不可或缺的。通过电源轨的交错排列,FAN9612还可以减小输入滤波器尺寸,较其它解决方案能减少线路板空间多达10%。这种更小系统尺寸的优点在于降低了解决方案的总体成本。

FANS355是用于动态电压调节(DVS)应用的同级最佳3MHz解决方案,能够提供高达1A的电流。这一产品在手机和上网本中的典型应用包括:用于处理器的动态功率调整和用于DDg2g~LFDDR2内存的供电。FANS361是世界上最小的600mA解决方案。其尺寸之所以能够减小是由于采用了6MHz的开关频率,允许使用微小的低成本片式电感器和电容器。FANS361具有6MHz下最高效率。

FAN2108是完全集成的8A同步降压转换器,可在宽泛的输入电压范围(3v至24V)提供高效率输出,适用于机顶盒、图形卡、负载点和工业电源网络设备等应用。同类的解决方案如要达到高效率,需要使用附加的分立组件或大量电路板空间一因而延长了设计时间和加大了终端应用的尺寸。TinyBuck器件在纤细的5ram×6ramMLP封装中集成了控制器、MOSFET和启动二极管,构成业界最小的8A解决方案。

飞兆半导体的EZSWITCH初级端调节控制器FSEZ1216和FANl02集成了初级端调节PWM控制器,其中PsEZl216更集成了一个功率MOSFET,都无需复杂的次级端反馈电路就能够轻松获得出色的恒压和恒流性能。相比振铃扼流圈转换器(RCC)分立式方案,这些PsR控制器可以简化设计;省去额外的组件;并降低总体系统成本。FSEZ1216和FANl02能够满足能源之星EPS 2.0标准所规定的更高效率要求,这一规范的强制效率要求较EPS1.1高出6%。

面向PC和服务器应用的功率MOSFET

随着需要处理的数据量的增加以及计算机服务器、膝上型电脑和通信器件等应用的存储容量的增大,CPU、GPU和存储器的技术指标也得到了提高,具体表现在低电压、大电流处理和高速率上。因此,除了快速响应和高精度以外,用于驱动CPU等器件的电源还必须具有出色的低电压和大电流处理特性。此外,出于环境保护的考虑,对高能效的需求也在不断增加,而且它使得功率MOSFET必须具有高性能、高效率、小尺寸和低损耗。为了满足这种需求,瑞萨科技公司开发了第10代功率MOSFET系列产品,其采用超细工艺节点以及优化的结构设计和封装技术来降低损耗和提高效率,并且目前正在扩展其产品系列。

稳压器(vR)电源通常用于服务器和膝上型电脑中,能够从12~20V的输入电压上为CPU和其它内部器件生成1~1.8V的输出电压。它是利用功率MOSFET通过高速开关(f=300kHz~1MHz)实现这种电压转换的。这就意味着,功率MOSFET必须是低损耗元件,并且能够在从小电流

区(轻负载)到大电流区(重负载)的宽范围内进行脉冲宽度为几十毫微秒的方波的高速、高精度转换。

第10代功率MOSFET系列(漏,源电压容差30V)降低了3种主要的、会影响功率MOSFET VR电源操作的损耗:传导损耗、开关损耗和驱动损耗。跟第9代产品相比,其导通电阻(RDson)约低30%,与RDson具有互反关系的漏,栅负载(Qgd)约低30%,栅电荷(Qg)约低27%(后两者均与具有同等导通电阻的早期器件相比)。第10代功率MOSFET系列产品整合了高速开关和低驱动损耗,从而实现了小型电源、降低了损耗、提高了效率。

采用的封装形式包括LFPAK(无损耗封装,瑞萨科技公司封装编号)小型封装,具有出色的散热性能和低感抗特性,这在高效电源领域是为大家所公认的;WPAK(瑞萨科技公司封装编号)超薄封装,其中用铝带代替了传统的金丝,可以将封装电阻降低一半:SOP-8。用户可以选择最符合其应用要求的封装。

该系列中即将推出的产品包括:

面向服务器和膝上型电脑电源的低导通电阻系列产品(如RJK0 346DPA(WPAK),Rns(on)=1.5mΩ(典型值)。)

作为一种小型解决方案,WPAKDual型产品在单个封装内整合了优化的高端和低端元件(这2种元件采用了SBD,并且能够在高频和更低的EMI水平下提供更高的效率。)

归入第10代功率MO SFET的WPAK Dual(RJK0383DPA)将输出电流从先前的5A左右提高到了10-15A。各种版本的产品均提供针对通信基站或计算机服务器分布式电源系统用砖式电源内的一级切换和二级同步整流进行了优化的特性。漏,源电压容差为40~200V的产品也将纳入该产品系列的行列。

MOSFET满足新能效目标

电脑产业拯救气候行动计划(Climate Savers)发起的80PLUS Gold金牌认证规定的新能效目标(图1),要求在美国能源之星计划当前的要求基础上,再使计算机的能效提高约10%。英飞凌(Infineon)为此大力改进其MOSFET。6月中旬,在深圳举行的第十五届中国国际电源展览会暨第十三属中国变频器及电子变压器展览会上,英飞凌推出了多款MOSFET,包括全球首发高端功率晶体管CoolMOS c6,还有中低端的OptiMOS 3家族的75V产品。

CooIMOS C6凌空出世

高性能MOSFET 600V CoolMOS c6系列可使诸如PFC(功率因数校正)级或PWM(脉宽调制)级等能源转换产品的能源效率大幅提升。c6融合了现代超结结构及包括超低单位面积导通电阻(例如采用TO-220封装,电阻仅为99mΩ)在内的补偿器件的优势,同时具有更低的电容开关损耗、更简单的开关控制特性和更结实耐用的增强型体二极管。

C6系列是英飞凌推出的第五代CoolMOS。英飞凌在CoolMOS c3f第三代)和CoolMOS CP(第四代)的基础上,进一步提高了开关速度并降低了导通电阻。C3目前是该公司应用广泛的产品系列,但是c3价格进一步下降的空间有限,c6以更高的性价比可替代c3,英飞凌同时也认为C6更适合对价格比较敏感的中国市场,因此把C6的首发地选在中国。不过,CP系列由于开关损耗更低,仍将在市场上长期存在。

继承了前代产品的易用性和高能效特性,加上更高的轻载效率,将使CoolMOS c6系列成为硬开关应用的基准。另一方面,存储在输出电容中的极低电能和出类拔萃的硬换流耐受性,使该器件成为谐振开关产品的较好选择。

c6器件可降低设计难度,非常适合于各种高能效应用,例如面向PC、笔记本电脑、上网本或手机、照明(高压气体放电灯)产品以及电视机和游戏机等消费电子产品的电源或适配器。

CoolMOS诞生于上世纪90年代,是业界高性能MOSFET的先驱,以大批量生产和高可靠性引领潮流。

75V丰富OptiMOS 3产品线

OptiMOS 3 75V功率MOSFET系列具备领先的导通电阻(Rpson)和品质因素(FOM,Qg’RDson)特性,可在任何负载条件下,降低开关电源、电机控制和快速开关D类功放等电源产品的功率损耗并改善其整体能效。

OptiMOS 3 75V功率MOSFET系列是交/直流开关模式电源(例如台式机和服务器装备的电源)的同步整流选择。英飞凌此次新推出的OptiMOS375V功率MOsFET可以帮助满足80PLUS Gold金牌认证规范。它采用节省空间的SuperS08封装,相对于同类器件而言,导通电阻和品质因素分别降低40%和34%,结果可使SMPS的同步整流级的功耗降低高达10%。

OptiMOS 3 75V系列进一步壮大了英飞凌功率MOSFET产品的阵营。目前,采用英飞凌N沟道OptiMOs 3工艺制造的器件型号已接近100个,每款都具备业界很低的导通电阻和栅极电荷,可降低产品的导通损耗和整体功耗。

第二篇:先进通信电源技术的应用研究

摘要:通信系统的发展对通信电源提出了越来越高的技术要求,文章结合通信电源的发展情况详细分析了先进通信电源技术的应用,在分析当前通信电源技术发展应用现状的基础上,论述了先进电源技术在通信系统领域内的应用和发展,并分析了通信电源技术的发展趋势,对于进一步提高通信电源技术的应用与发展具有较好的借鉴指导意义。

关键词:通信工程;通信电源;电源技术发展;高频开关电源技术

一、概述

随着我国通信产业的飞速发展,通信产业的竞争也日益激烈。在激烈的竞争下,通信行业技术标准也不断提高,其中通信电源号称是通信系统的“心脏”,对通信系统的稳定可靠工作起决定性作用。通信系统的电源技术也经历了较快的发展,从过去的相控整流器发展到高频开关整流器,从小功率密度供电方式发展到大密度功率供电方式,从机房有人值守发展到无人值守,这些通信电源技术的发展都代表了当今通信电源技术向着更加先进的技术方向发展。

本论文主要结合先进通信电源技术的发展现状,对先进通信电源技术的应用做深入的分析探讨,以期从中能够找到合理有效的先进通信电源技术的应用模式和方式,并以此和广大同行分享。

二、通信电源技术的发展应用概况

随着通信技术的发展和对通信电源要求的不断提高,通信电源技术也得到了不断的发展及应用。一方面,通信电源功率容量不断扩大,从最初的单机容量12.5A、20A扩大到200A、400A;另一方面,过去传统的通信电源所需的直流电压,大多是经过直流-直流(DC/DC)变换器转化过来的直流电压,DC/DC变换器模块一般都直接安装在电源控制主板上,因此对于电源的控制十分方便,而且也能够满足通信电源对于高功率密度的需求。但是随着通信技术,尤其是分布式通信网络格局的发展应用,通信设备逐渐呈现出分布式应用,这对于通信电源也就提出了分布式供电的要求,因此过去传统的直接采用DC/DC变换器模块得到的直流电压不再适用于现如今的通信电源,必须采取分布式供电。由于采取了分布式供电之后,通信电源所需要的电源功率密度相对较小,这样就很方便的能够实现单模块电源的高频化。直流电源频率的提高不仅有利于满足通信设备对电源功率密度的需求,而且还能够满足小模块电源的体积便携性要求。

目前通信电源技术发展的另一个主要方面就是通信电源模块呈现出了一定的通用性和智能性,这主要表现在以下两个方面:

(一) 通信电源的通用性

由于通信电源设备的种类越来越多,通信电源的生产厂家也很多,不同的厂家可能使用不同的协议和接口,这就导致了不同厂家的电源设备相互之间无法兼容,一旦通信设备电源发生故障,只能依赖原厂家的技术支持,这大大增加了通信电源设备的后期维护成本。因此,随着通信电源技术的发展,目前很多通信电源都出现了一系列的标准接口,这些接口大大提高了不同电源厂家之间的协议的兼容性,以及不同通信电源设备之间的兼容性,使得通信电源不再只是专用性,而是具有了一定的通用性。另一方面,通信电源上的较多接口,不仅仅实现了不同厂家的电源设备之间的兼容,更重要的是,对于不同的通信设备而言,能够灵活的借助于通用性接口实现应用不同的电源设备,从而大大提高了通信电源设备的灵活性。

(二)通信电源的智能性

通信电源的发展与应用,不仅仅体现在依赖于一系列接口提高了通信电源设备的兼容性和通用性,更重要的是,随着智能化技术的发展和应用,通信电源设备也出现了一定程度的智能化,比如,电源设备对通信设备的自动适配;电源设备故障的智能诊断;通信电源能够智能的监控自身工作状态,等等,这一系列智能化功能的实现,通过对自身工作电压、工作电流的实时监测,能够实时掌握通信电源设备的工作状态,使得通信电源的工作稳定性、可靠性大大提高,即使电源设备出现故障,也能够依靠自身具备的故障诊断系统给出相应的故障码,从而提高了电源后期维修维护的效率,实现了对通信电源的智能化管理应用。

通信电源技术的广泛应用,一方面有效的提高了通信系统工作的稳定性及可靠性,同时由于通信系统规模的不断扩大,也反过来进一步促进了通信电源技术的飞速发展与应用。

三、先进通信电源技术的发展应用探讨

(一)先进通信电源技术的应用

随着我国电力电子技术的进步发展和应用,我国通信电源技术也得到了长足的发展,一些先进电源技术的普及应用,在很大程度上对于促进我国通信设备及通信事业的发展起到了积极作用。目前得到主要研究与发展应用的先进通信电源技术主要集中在以下几个方面:

1.高频开关电源技术。通信设备需要直流电源,过去传统的方法是利用变压器和整流器实现对通信设备的直流供电,这种供电方式电压不稳,而且电压中夹杂较多的噪声干扰,对于通信设备的长期稳定可靠工作是不利的,因此交流-直流变换、直流-直流变换逐渐得到了广泛研究与应用。近几年,随着开关电源的技术成熟应用,为通信电源实现开关直流电源供电提供了新的模式,而开关电源的开关频率对于通信电源而言是非常重要的一项指标参数,其直接影响着通信电源的功率密度和容量,因此想方设法提高开关电源的频率成为了通信电源研究的主要技术难题。高频开关电源借助于高频、甚至是超高频的开关频率实现对直流电源的“交流”式供电,开关频率越高,电源的功率密度越大,在同等载荷条件下可带负载等级就越高,而且开关频率越高,对于减小通信电源的体积越有利,因此,目前高频开关电源技术在通信电源领域中得到了广泛的研究与应用。

2.无人值守智能技术。无人值守技术是针对通信电源的管理需求,近几年才发展起来的一种先进电源管理技术。要实现无人值守,就必须从两个方面入手研究和应用,下面分别分析:

(1)不间断供电技术。不间断供电就是指能够连续供电,即使在电力系统发生故障的情况下依然能够实现供电,这就需要后备电池组的支持,以及目前广泛应用的UPS电源技术的支持。UPS电源相当于一个可移动的电源箱,能够在通信设备电力系统发生故障的时候自动切换到UPS电源供电,从而保证了通信电源系统的正常工作。

(2)智能监测技术。要实现无人值守,还必须能够实现对通信电源工作状态的实时监测,将电源工作中的相关性能参数,技术指标都监测并实时显示,出现异常情况能够自动报警及进行简单的处理,从而实现通信电源机房的无人值守,大大提高了通信电源管理的效率和智能化。

(二)通信电源技术的发展趋势

随着电力电子技术的发展,以及单片机技术的应用,电源技术得到了更加广泛的应用;由于通信系统、通信设备的不断发展与需求的不断提高,通信电源技术的发展也必将逐渐呈现出高技术要求的发展态势,纵观全球,通信电源技术发展呈现以下几大趋势:

1.高效率,高功率密度,宽的使用环境温度。随着通信机房设备的升级,功率越来越大,机房温度越来越高,因此必然要求通信电源能够在比较高的温度下正常工作,这就要求通信电源具备宽泛的工作温度范围;同时通信设备的功率越来越大,这也要求在保证一定体积的前提下,通信电源的功率、效率应该得到保证,应该具有较高的效率和较高的功率密度,才能够满足通信设备的需求。

2.网络化智能化的监控管理。随着通信电源的要求越来越高,需要对通信电源实时状态监测与管理,依赖于其自身的监测已无法满足对通信电源的管理需求,通信电源的发展呈现出众多的智能化接口管理模式,依赖智能化接口实现对通信电源的网络化智能化的实时监控。通过对电源的监控管理,也就实现了对通信设备的智能化监控管理。

3.全数字化控制。通信电源的发展已经逐渐摆脱了模拟化控制的发展模式,逐渐呈现出数字化、甚至是全数字化的控制模式,依赖数字化的控制模式,能够有效的降低电源的设计制造成本,提高电源工作的稳定性和可靠性,以及便于实现对通信电源的智能化数字化的管理。

4.安全与环保。通信电源发展的永恒指标之一就是安全,不够安全的电源,即使技术再先进也难以得到广泛应用;另一方面,随着电源对环境污染的加剧,近年来逐渐出现了绿色环保电源,主旨是降低电源对环境污染的危害,因此通信电源的发展趋势之一也必然是实现绿色环保式的通信电源。

四、结语

通信电源在整个通信行业中所占比例虽然不大,但它是整个通信网络的关键基础设施,是通信网络上一个完整而又不可替代的独立专业。随着电信技术的飞速发展,电信网络结构日益复杂,信息技术的发展又对电源技术提出了更高的要求,例如:节能、节电、节材、缩体、减重、环保、可靠、安全等,这就迫使电源工作者应朝着高效率节能、网络化管理、全数字化控制、低电流谐波处理技术(绿色电源)的方向研发拓展和不断探索,并利用各种相关技术制造出合格电源产品,以满足现代通信网的技术需求。

参考文献

[1] 秦棣样.通信电源中几个问题的探讨[J].通信电源技术,2001,(2).

[2] 黄济青.通信电源的技术动态[J].电信快报,2001,(8).

[3] 王鸿麟,景占荣.通信基础电源[M].陕西:西安电子科技大学出版社,2001.

作者简介:刘玉芳(1972 -)女,内蒙古鄂尔多斯人,工程师,研究方向:电力通讯检修。

(责任编辑:王书柏)

作者:刘玉芳

第三篇:现代电力电子及电源技术的发展

摘要: 电力电子的发展实现从传统电力电子学到现代电力电子学的过渡。电源技术是电力电子技术内容的具体延伸,在电源中起到关键作用,为电源的质量、效率和可靠性提供良好的保障。现代电力电子技术经过不断的发展以后,已经实现多种功能,如节能、自动化和智能化、机电一体化等,电力电子正在朝更高端的技术、绿色化的性能方向发展。

关键词: 电力电子;电源技术;发展

现代电力电子技术经过不断的发展以后,已经实现了多种功能,如节能、自动化和智能化、机电一体化等,电力电子正在朝更高端的技术、绿色化的性能方向发展。电源技术则是充分利用用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。电源技术是电力电子技术内容的具体延伸,在电源中起到了关键作用,为电源的质量、效率和可靠性提供了良好的保障。

1 电力电子技术的发展

电力电子技术起始于上个世纪50年代末,80年代末则逐步向现代电力电子技术发展。电力电子的发展是从低频技术处理到高频技术处理问题的逐步转变,实现了从传统电力电子学到现代电力电子学的过渡。无论是最初的硅整流器件,还是如今的大功率半导体复合器件,都充分表明了现代电力电子技术正在以蓬勃向上的姿态发展。

1.1 整流器时代

20世纪60年代至70年代,电解、牵引、直流传动是整流器时代衍生的领域。大功率硅整流器把工频电流转为直流电,这三大领域就是通过直流电进行消费的。大功率硅整流管和晶闸管在当时非常流行,备受重视,电力电子技术已经开始受到人们的关注。

1.2 逆变器时代

由于能源危机,整流器时代逐渐不再适合20世纪70年代的发展现状,此时变频调速技术开始进入人们的视线,人们利用此技术来进一步缓解当年的能源危机。80年代以后,变频调速装置开始普及,各种电力电子器件成为当时非常普遍的器件,如大功率逆变用的晶闸管、巨型功率晶体管等。此时的电力电子技术还并没有达到先进的状态,可以实现整流和逆变。

1.3 变频器时代

80年代以后,大规模和超大规模集成电路技术闪亮登场,这些技术与高压大电流技术经过有效的融合后,就诞生了各种全控型功率器件,从功率M0SFET到绝缘门极双极晶体管的相继问世,颠覆了传统电力电子技术的领域,为现代电力电子技术的发展奠定了良好的基础,实现并推动了高频化的发展。

2 现代电力电子的应用领域

2.1 计算机高效率绿色电源

计算机技术的发展促进了电源技术的发展,也促使这个时代转变为信息化时代。计算机完成电源换代以后,对于开关电源又有了新的要求。绿色电脑和绿色开关是针对保护环境而提出的,绿色电源与绿色电脑搭配,成为一种高效节能、对环境无污染的绿色产品。绿色电源可以有效减少电能损耗,提高工作效率。

2.2 通信用高频开关电源

目前,高频小型化的开关电源技术正在不断的发展,高频开关电源广泛地应用在通讯领域中,其代替了相控式稳压电源,通过开关的控制和高频化工作,体现了高频小型化开关电源的优势。由于通讯设备的电源电压不同,通常采取高频高密度的隔离电源模块经母线电压转化成直流电压,这种方式操作方便、灵活,还可以减少能源的损耗。

2.3 直流-直流(DC/DC)变换器

直流-直流(DC/DC)变换器主要应用于无轨电车、地铁列车、电动车的无级变速和控制,其工作原理就是将直流电压从固定变为可以变换的电压,起到节省电能的作用。直流斩波器具备调压和抑制噪声的作用,而且同样能起到节省电能的效果。

2.4 不间断电源(UPS)

不间断电源(UPS)是计算机和通信系统中的一种重要的电源,这种可靠性极强、性能极高的电源普遍采用了脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,大大减少了电源的噪声,并提高了其可靠性和安全性。不间断电源的容量最大可以达到600kVA,并通过微处理器软硬件技术的管理,实现UPS智能化管理和维护。UPS也正在朝小型和超小型发展,功能更加强大。

2.5 变频器电源

这种电源主要应用于交流电机的变频调速,并具备超强的节能效果。变频器电源已经受到国际的关注,如日本将变频调速技术应用到空调中,这种空调不仅舒适,而且还充分节能。

2.6 高频逆变式整流焊机电源

这种电源有着非常广阔的应用前景,焊机电源通常处于极其恶劣的环境中开展工作,因此对于高频逆变式整流焊机电源的工作是否能够可靠也是人们最为关心的问题。利用微处理器来处理信息,这样就可以提前知晓系统工作状态,根据状态及时调整,提高了高频逆变式整流焊机电源的可靠性和安全性。

除此之外,还有大功率开关型高压直流电源、电力有源滤波器、分布式开关电源供电系统等相关电源,这些电源不断推动着现代电力电子技术的发展,在不同的领域中具备广泛的应用前景。

3 高频开关电源的发展趋势

高频开关电源与传统电源相比,更加精致,还可以提高电源的利用率。

3.1 高频化

高频可以用于减少电气设备的体积和重量,调快频率进行工作对于用电设备而言均可以利用这一原理进行自身的改造,从而达到节省材料和节省电能的目的。对电镀、电解、电加工等各种直流电源也可以改造成类似这样的电源,会受到良好的效果。

3.2 模块化

模块化分为功率器件和电源单元的模块化。一些智能化的功率模块应运而生,节省了许多制作材料。模块化可以进一步提高系统的可靠性,利用多个模块并联工作,可以有效分担电流,提高器件容量。这样即使模块发生故障,也不会影响整个系统的正常运行,保持了系统的可靠性。

3.3 数字化

随着现代电力电子技术的不断发展,数字化成为这个时代的标志之一。在计算机的处理过程中,数字信号处理技术主要可以增强抗干扰性、避免信号失真等功效。

3.4 绿色化

绿色化主要体现在节电和节能上。环境污染日益严重,尤其是各大发电站对环境的影响危害极大,绿色化电源系统可以减少发电对环境造成的影响。而一些节电设备却很容易污染电网,使电网不能正常运行。

4 结束语

综上所述,现代电力电子技术是开关电源技术发展的基础,而现代电源技术更需要与时俱进,按照技术的发展和社会的需要不断更新换代,并应用到更多的领域当中。

随着开关电源技术的不断更新,这一技术已经充分体现了高效率和高性能,其高频化、模块化、数字化、绿色化等特征,是对现代电力电子技术最好的证明。在国内通信行业中,开关电源技术吸引了大批人士的目光,并对其进行深入开发和研究,开关电源技术存在着巨大的市场潜力和需求,因此只有不断的发展和研究,才能摸索出更多、更先进的技术。

参考文献:

[1]张新文、张杰飞,论现代电子技术在汽车智能管理系统中的应用研究[J].才智,2010年,03期.

[2]柳超、白志中、李广志,军用车载通信电源关键技术及发展趋势[J].四川兵工学报,2010年,02期.

[3]吴洁雯,现代电子技术在汽车智能管理系统中的应用研究[J].硅谷,2008年,05期.

[4]梁斌,关于现代电力电子技术应用的探讨[J].科技风,2011年,12期.

作者:覃丽柏

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:机电安装论文范文下一篇:技能教程论文范文