北科传热学作业答案

2022-08-22

第一篇:北科传热学作业答案

传热学作业参考答案

第九章

4.一工厂中采用0.1MPa的饱和水蒸气在—金属竖直薄壁上凝结,对置于壁面另一侧的物体进行加热处理。已知竖壁与蒸汽接触的表面的平均壁温为70 ℃,壁高1.2m,宽300 mm。在此条件下,一被加热物体的平均温度可以在半小时内升高30℃,试确定这一物体的平均热容量(不考虑散热损失)。

解:本题应注意热平衡过程,水蒸气的凝结放热量应等于被加热物体的吸热量。

P=0.1Mpa=105Pa,ts=100℃,r=2257.1kJ/kg, tm=

11( ts+ tw)= (100+70) ℃=85℃。 22查教材附录5,水的物性为:ρ=958.4kg/m3;λ=0.683 W/(m2·℃);µ=282.5×10-6N·s/m2 假设流态为层流:

grh1.13l(tstw)22314

331958.49.810.683225710421.13 W/(m·℃) 6282.5101.2(10070)=5677 W/(m2·℃) Rec4hl(tstw)45677301.2=1282<1800 r282.51062257103流态为层流,假设层流正确

Φ=h(tstw)l

=5677×(100−70)×1.2×0.3W=61312W 凝结换热量=物体吸热量

Φ∆τ=mcp∆t mcp6131230603.68106J/℃ t3016.当液体在一定压力下做大容器饱和沸腾时,欲使表面传热系数增加10倍,沸腾温差应增加几倍?如果同一液体在圆管内充分发展段做单相湍流换热,为使表面传热系数增加10倍,流速应增加多少倍?维持流体流动所消耗的功将增加多少倍?设物性为常数。

①由米洛耶夫公式:

{h10.122t12.33p0.5h20.122t2.332p0.5

h2t(2)2.3310 h1t1所以

1t2102.332.69 t

1即当h增大10倍时,沸腾温差是原来的2.69倍。 ②如为单相流体对流换热,由D-B公式可知hum,即

0.80.80.8 h1cum1,h2cum2

1um20.8h2um2()10

100.817.8 h1um1um1即h2为h1的10倍时,um2是um1的17.8倍。 ③pflum

d214由布拉修斯公式,f0.3164Re故 p0.3164()(0.3164(umd)14

7l74)umcum4(c常数) dd27u7p2(m2)4(17.8)4154 p1um1即um2是um1的17.8倍时,压强增大了154倍。耗功量NPAum,故

N215417.82741 N1耗功量增大了2741倍。因此,以增大流速来提高表面传热系数将使耗功率增大了若干倍,从而增大了换热器的运行成本。 第十章

11.—种玻璃对0.3~2.7µm波段电磁波的透射比为0.87,对其余波段电磁波的透射比为零,求该玻璃对5800 K和300 K黑体辐射的总透射比。

解:①温度为5800 K时: 0.3×5800=1740,由教材表(10.1)查得Fb(00.3T)0.0361 2.7×5800=15660,由教材表(10.1)查得Fb(02.7T)0.971 该玻璃对5800K黑体辐射的总投射率为:

0.87Fb(0.3T2.7T)0.87(0.9710.0361)0.813 ②温度为300 K时: 0.3×300=90,由教材表(10.1)查得Fb(00.3T)0 2.7×300=810,由教材表(10.1)查得Fb(02.7T)1.510

该玻璃对300K黑体辐射的总投射率为:0.87Fb(0.3T2.7T)0.871.5101.30510 14.表面的光谱发射率ελ曲线,如教材图10.16所示。求表面温度分别为500℃和1500℃时的总发射率ε。

解:表面温度为500 ℃时的发射率为:

55520Eb,d0Eb,d626

00.3Eb,d0.7Eb,d0.4Eb,d0Eb,d=0.3Fb(02T)0.7(Fb(06T)Fb(02T))0.4(1Fb(06T))

(1) 当2T=2×(500+273)=1546时,由教材表10.1查得Fb(02T)=0.0165 当6T=6×(500+273)=4638时,由教材表10.1查得Fb(06T)=0.585 代入式(1)得ε=0.569 21.一直径为20 mm热流计探头,用以测定一微小表面积A1的辐射热流。该表面的面积为4×10−4m2,温度T1=1200K。探头与A1的相互位置,如图所示。探头测得的热流为2.14×10−3W。设A1是漫射表面,探头表面的吸收率可取为1。试确定A1的发射率(环境对探头的影响可忽略不计)。

解:由能量平衡得;

dIdAcosd

Eb5.6710812004I

(因为A1是漫射表面)

dA4104m2 coscos45

12dcos45dA d242rr1202()cos451000=4 0.452d2.14103W

代入求得ε=0.149 第十一章

5.如图所示表面间的角系数可否表示为:X3,(12)X3,1X3,2,X(12),3X1,3X2,3?如有错误,请予更正。

答:分解性原理的基本形式为: AiXi,(jk)AiXi,jAiXi,k

利用互换性原理可改写为:AiXi,(jk)AjXj,iAkXk,i

对于X3,(12)X3,1X3,2,完整的书写形式为A3X3,(12)A3X3,1A3X3,2,化简后则为X3,(12)X3,1X3,2,故X3,(12)X3,1X3,2正确。

对于X(12),3X1,3X2,3,根据分解性原理,正确的书写形式为:

A(12),3X(12),3A1X1,3A2X2,3,故X(12),3X1,3X2,3不正确。

6.有2块平行放置的平板的表面发射率均为0.8,温度分别为:t1=527℃及t2=27℃,板间距远小于板的宽度和高度。试计算:①板1的本身辐射;②对板l的投射辐射;③板1的反射辐射;④板1的有效辐射;⑤板2的有效辐射;⑥板1,2间的辐射换热量。

解:①板1的本身辐射:

E1Eb10.85.67108(527273)4W/m2=18579W/m2

②对板1的投射辐射,即为板2的有效辐射J2。为此,先求两板 间的辐射换热量:

q1,24(T14T24)Eb1Eb2 11111112125.67108(80043004)

=W/m2

1110.80.8

=15177 W/m2 因q1,2J2Eb2,则: 122 J2G1Eb2(

= 5.671081b21)q1,2

11)15177W/m2 0.823004(W/m3794W/m

= 459

=4253 W/m

③板1的反射辐射:

G1J1E1 22J1Eb1(111)q1,2 8004(11)15177W/m2 0.8 5.67108

=19430W/m

2G119430W/m218579W/m2

W/m

851④板1的有效辐射:J1=19430 W/m ⑤板2的有效辐射:J2=4253W/m

⑥板1,2间的辐射换热量: q1,215177W/m

22228.有一3m ×4m的矩形房间,高2.5m,地表面温度为27℃,顶表面温度为12℃。房间四周的墙壁均是绝热的,所有表面的发射率均为0.8,试用网络法计算地板和顶棚的净辐射换热量和墙表面的温度。P163 解:设地面为表面1,顶面为表面2,四周为表面3,则: 辐射网络图如图所示:

由X4Y31.6,1.2,查教材图11.26得,X1,2X2,10.291 D2.5D2.5

由角系数的完整性

X2,3X1,31X1,210.2910.709 求个辐射热阻

R11110.80.020812

m1A10.834R1,2110.28612

mA1X1,2120.291

R21210.80.020812

m2A10.83

4 R1,3110.11712

mA1X1,3120.709110.11712

mA2X2,3120.709Eb3J30

知 Eb3J3

133A1

R2,3由于3面为绝热面,由 3网络图如下图所示:

进一步合并成如图;

其中R为R1,3与R2,3串联后再与R1,2并联的总热阻。

RR1,2(R1,3R2,3)0.286(0.1170.117)0.12912

mR1,2R1,3R2,30.2860.1170.117

Eb1T145.671083004459.27W/m2

Eb2T245.671082854374.08W/m

2 顶板与地板之间的辐射换热量为

1,2

Eb1Eb2459.27374.08499.3W R1RR20.02080.1290.0208根据网络图及R1R2,R1,3R2,3 有

Eb1J1J2Eb2及J1J3J3J2

两式相加得

Eb3

T341(Eb1Eb2) 214(T1T24) 2

求出T3=292.8K 11.在7.5cm厚的金属板上钻一个直径为2.5cm的通孔,金属板的温度为260℃,孔之内表面加一层发射率为0.07的金属箔衬里。将一个425℃,发射率为0.5的加热表面放在金属板一侧,另一侧的孔仍是敞开的。425℃的表面同金属板无热传导换热。试计算从敞开的孔中辐射出去的能量。

11题图1

11题图2 解:金属块内打一个圆孔,此圆孔两侧表面和圆柱面构成一个三表面组成的封闭空腔,其中,1,2表面为灰表面,3表面视为黑表面。各表面的编号及其热网络图如图示所示。敞开的孔中辐射出去的能量应为3表面的净辐射换热量。开口面的发射率设为1,温度为0。由已知条件及其各表面间的换热关系可得:

10.07 ,20.

5,31.0

T1260C533K, T2425C698K, T30K, d=2.5cm,x=7.5cm, A12.57.5cm258.9cm2

A2A34(2.5)2cm24.91cm2 根据角系数的性质:A1X1,2A2X2,1 则:X1,2A2X2,1 A1又因为:X2,1X2,31,则X2,11X2,3,

X2,3=0.04(由本题图2查出)X2,10.96,故X1,20.08X1,3

网络图中的各热阻分别为:

12112256 , 2037

2A21A1

1112122,50916

A1X1,2A1X1,3A2X2,

3Eb1T144575W/m2

Eb2T2413456W/m2,列节点方程式: 节点J1

Eb30

Eb1J1J2J1Eb3J10 1111A1X1,2A1X1,31A1Eb2J2J1J2Eb3J20 1211A1X1,2A2X2,32A2节点J2

代入数值,得:

4575J1J2J10J10

22562122212213456J2J1J20J20 节点J2

2037212250916节点J1

解此联立方程得:

J1=4484 W/m

J2=8879 W/m 各表面间的对流换热量为:

221,3J1J32.11W 1A1X1,3J2J30.174W 1A2X2,3

2,3故从开口中所辐射出去的能量为:31,22,32.284W

26在晴朗的夜晚,天空的有效辐射温度可取为−70℃。假定无风且空气与聚集在草上的露水间的对流换热表面传热系数为28W/(m2·℃)。试计算为防止产生霜冻,空气所必须具有的最低温度。计算时可略去露水的蒸发作用,且草与地面间无热传导,并取水的发射率为1.0

解:露水与太空间因辐射换热失去热量,与空气间因对流换热获得热量,热平衡时,得热量应等于失热量。为了防止霜冻,露水表面温度必须满足T1>0℃=273K的条件。已知:

℃),X1,21.0,T2=−70℃=203K。 11.0,h=28W/(m2·

rA1(Eb1Eb2) 11A1(12)11X1,22A2

bA1(T14T24)

5.67108A1(273)4(203)4

=218.62A1

空气对露水的加热量为:cvhA1T28A1(TfT1)

28A1(Tf273) 因为:rcv

则:28A1(Tf273)218.64A1

空气必须具有的最低温度为:Tf=280.8K=7.8 ℃

第十二章

10.一根横穿某大车间的水平蒸汽输送管,外径d2=50mm,表面温度tw2=150 ℃。管外包有一层厚75mm的保温材料,其导热系数λ=0.11w/(m·℃),发射率ε=0.6。现已测得保温层外表面温度tw3=40 ℃,车间空气温度tf=22℃,车间壁面温度tw4=20℃。试求:①蒸汽输送管单位管长的热损失q1;②保温层外表面的辐射换热表面传热系数;③保温层外表面与空气间的自然对流表面传热系数。

解:本题属于复合换热问题,保温层外表面以辐射换热和对流换热方式传递热量。

①求ql:

qltw2tw3150140W/m d31502751lnln23.140.1502d2

54.8W/m

②求hr:

rd33(Eb3Eb4)d33Cb(TTw34)(w4)4

100100 3.140.25.67( 47.6W/m

rhrd3(tw3tf) 故hr202734402734)()W/m 100100r47.6W/(m2·℃) d3(tw3tf)3.140.2(4022)

=4.21 W/(m2·℃)

③求hc

qlhd3(tw3tf)(hrhc)(tw3tf)d3 hcql54.8℃) hr4.21 W/(m2·(tw3tf)d3(4022)3.140.2

=0.64 W/(m2·℃) 11.一块边长为0.2m的正方形电热板,表面发射率ε=0.6,该板水平悬吊在室温为20℃的大房间内,通电加热稳态后测得电热板表面温度为60℃,大房间壁温为17℃。试求:①电热板表面的对流换热量;②辐射换热表面传热系数;③电热板消耗的功率。 解:①求c

定性温度tm11(twtf)(6020)C40C。查空气的物性:2216.96106m2/s,2.76102W/(mC),pr0.699。 11K13.195103K1 Tm40273gtl33.1951039.81400.230.699GrPrPr 221216.9610

2.4410

查教材表8.6,上表面加热:c=0.15,n故上表面:

Nu10.15(GrPr)13711;下表面加热:c=0.58, n。 350.1529043.5

Nu143.52.76102W/(m2C)6W/(m2C)

h1l0.2下表面

Nu20.58(GrPr)1317.4

Nu217.42.76102W/(m2C)2.4W/(m2C)

h2l0.2

c(h1h2)(twtf)A(62.4)(6020)0.2W13.44W ②求hr

2TTr2CbA(w1)4(w2)420.65.670.22(3.33)4(2.9)414.22W100100 hrr14.22W/(m2C) 22(twtf)A2(4022)0.22 =4.44W/(mC) ③求电功率P: Prc(14.2213.44)W27.66W

12.某火墙采暖房间平面尺寸为6m×4m,房间高4m,火墙面积为4m ×4m,墙表面为石灰粉刷,发射率ε=0.87,已知表面温度tw=40℃,室温tf=16℃,顶棚、地板及四周壁面的发射率相同,温度亦为16℃。求该火墙总散热量,其中辐射散热所占比例为多少?

解:火墙房间平面示意如图。由于除火墙外的其余5个表面均具有相同的温度和发射率,因此在辐射换热计算时可视为表面2。

A14416m2,A2(64444)m2112m2

①求r

TTA1Cb(w1)4(w2)4Eb1Eb2100100r1084W 11(12)11A21(1)1A1X1,2A12A21A12②求c

属大空间自然对流换热。

定性温度tm11(twtf)(4016)C28C。查空气的物性:2215.8106m2/s,2.654102W/(mC),pr0.7014。

11K13.322103K1 Tm28273gtl33.3221039.81(4016)430.7014GrPrPr

215.82101

2 1.410

查教材表8.6,属湍流: c=0.1,n

Nu0.1(GrPr)13111 3519.25 Nu519.252.654102W/(m2C)3.45W/(m2C)

hcl

4chc(twtf)A13.45(4016)16W132W5 ③求: rc(10841325)W2409W

r0.4545% 13.一所平顶屋,屋面材料厚δ=0.2m,导热系数λ=0.60W/(m·℃),屋面两侧的发射率ε均为0.9。冬初,室内温度维持tf1=18℃,室内四周壁面温度亦为18℃,且它的面积远大于顶棚面积。天空有效辐射温度为−60℃,室内顶棚对流换热表面传热系数h1=0.592W/(m2·℃),屋顶h2=21.1W/(m2·℃)。问当室外气温降到多少度时,屋面即开始结霜(tw2=0℃),此时室内顶棚温度为多少?本题是否可算出复合换热表面传热系数及其传热系数?

解; ①求室内顶棚温度tw1:

稳态时由热平衡,应有如下关系式成立:

室内复合换热量=屋面导热量=室外复合换热量

但h1(tf1tw1)A11A1Cb(TTw04)(w1)4

100100式中:Tw0为四周壁面温度,由题意知Tw0Tf。

(tt)A,由,结霜时tw20,所以: w1w21TTw04)(w1)4(tw10)

100100 h1(tf1tw1)A11Cb( tf1tw1 整理得: 1CbTw0h1Tw14tw14 ()()100100h11CbTw1h1(CT)4(1)tw1tf11b(w0)4 100h1h11000.95.67Tw140.60.95.67182734()(1)tw118()

0.5921000.20.5920.592100T4 8.62(w1)6.07tw1636.13

100 列表计算如下:

解得:tw1=11.6℃。

②求室外气温tf2:

Tsky4Th2(tw2tf2)A12A1Cb(w2)4()

100100由可得:

Tw24Tsky4tw1h2tf22Cb()() 100100tf22CbTw2h2Tsky44()()tw1 100100h20.95.670.6(2.73)4(2.13)4C11.6C

21.10.221.16.8C③求复合换热表面传热系数ht1和ht2:

注意到传热方向即可求得复合换热表面传热系数和传热系数。

Tw04Tw141Cbqr()()hr(tf1tw1) 100100故hr1Cb(TTw04)(w1)4100100

(tf1tw1)0.95.67(2.91)4(2.846)4  W/(m2·℃) (1811.6)

=4.866 w/(m2·℃) hr(0.5924.866)W/(m2C)5.458ht1hcW/(m2C)

同理:

2Cb(

hrTw24Tsky4)()10010026.237 W/(m2·℃) (tw2tf2)hrh2hr(21.126.237)W/(m2C)5.137ht2hcW/(m2C)

④求传热系数:

k111ht1ht21 W/(m2·℃)

10.215.4580.65.137

=3.1 W/(m2·℃) 14.某设备的垂直薄金属壁温度为tw1=350℃,发射率ε1=0.6。它与保温外壳相距δ2=30 mm,构成一空气夹层,夹层高H=1m。保温材料厚δ3=20mm,导热系数λ3=0.65W/(m·℃)。它的外表向温度tw3=50℃,内表面ε2=0.85。夹层内空气物性为常数:λ=0.04536 W/(m·℃)、ν=47.85×10-6m2/s,Pr=07。试求解通过此设备保温外壳的热流通量及金属壁的辐射换热表面传热系数。

解:空气夹层及保温层如图。

热平衡方程为:

通过空气夹层的辐射换热量qr+对流换热量qc=通过保温层的导热量qcd 即

1Eb1Eb2hc(tw1tw2)(tw2tw3) 11312

本题由于tw2未知,需进行假设计算。设tw2=170℃,则:

tm

111(tw1tw2)(350170)C260C,1.876103K1 22Tmg(tw1tw2)231.8761039.81(350170)0.0330.74GrPrP2.73410r247.8521012

查教材表8.7, c=0.197,m11, n,则 49

Nu0.197(GrPr)(41H)190.91712.860.6771.716

2Nu1.7160.04536W/(m2C)2.59W/(m2C)

hel0.03qc0.65(tw2tw3)(17050)W/m23900W/m2 30.025.67(6.23)4(4.43)4qrW/m23450W/m2 1110.60.85 qcqr(3450466)W/m23916W/m2

误差391639004.11030.41%

3916故tw2=170℃,假设正确。本题热平衡方程中仅有tw2未知,也可由热平衡方程通过试算法求出tw2。

qqcqr(3450466)W/m23916W/m2

hrqr34503900W/(m2C)19.17W/(m2C)

tw1tw235017018. 90℃的水进入一个套管式换热器,将一定量的油从25℃加热到47.25℃,热流体离开换热器时的温度为44.5℃。求该换热器的效能和传热单元数。

解:教材图12.7已经给出了套管式换热器的示意图,一种流体在管内流动,另一种流体在两管间的环形空间内流动,其流动只有顺利和逆流方式。

t1)M2cp2(t2t2) M1cp1(t1M1cp1(9044.5)M2cp2(47.2525) 45.5M1cp122.25M2cp2

故M2cp2M1cp12.045,M1cp1(Mcp)min

M1cp1t19044.5t10.7

Cr 0.489t2t19025M2cp2t1,可以肯定其流型为逆流,则: 套管式换热器,由于t21expNTU(1Cr)

1CrexpNTU(1Cr)1

1CrexpNTU(1Cr)ln故

NTU110.7ln1Cr10.70.4891.536 1Cr10.48921. 某套管式换热器,内管内径为100 mm,外径为108mm,其导热系数λ=36W/(m·℃)。热介质在内管内流过,温度从60 ℃降低到39℃,表面传热系数h1=1000 W/(m2·℃);质量流量为0.2kg/s的冷水在套管间(内管外)流过,温度从15℃被加热到40℃,表面传热系数h2=1500 W/(m2·℃)。试求:①该换热器的管长;②换热器最大可能传热量;③该换热器的效能;④传热单元数。

解:①求管长l:

kl( (d1111ln2) h1d12d1h2d2111081ln)1W/(mC)

10003.140.16.283610015003.140.108

182W/(mC)

t2)0.24187(4015)W20935M2cp2(t2W t1,流型必然为逆流 因t2t2(6040)C20C tt1t2(3915)C24C tt1tmtt2420C21.94C t24lnlnt2020935m5.24m kltm18221.94kltml ,故l②求,max:

M2cp2(Mcp)min,故

maxt240155t2 t1t260159209359W3768W3 5③求NTU:

Cr(Mcp)min(Mcp)maxt16039t10.84 t24015t2由1expNTU(1Cr)

1CrexpNTU(1Cr)ln1Cr10.55560.84ln110.55561.142 推得:NTU1Cr10.84

26. 一逆流式套管换热器,其中油从100 ℃冷却到60 ℃,水由20 ℃被加热到50℃,传热量为2.5×104w,传热系数为350 W/(m2·℃),油的比定压热容为2.131KJ/(kg·K)。求换热面积。如使用后产生污垢,垢阻为0.004m·K/W,流体入口温度不变,问此时换热器的传热量和两流体出口温度各为多少?

,出口温度为t1;水的进口温度为t2,出口温度为t2。 解:设油的进口温度为t1①求换热面积A t2(10050)C50C tt1t2(6020)C40C tt1tmtt5040C44.81C t50lnlnt402.5104由ktmA ,故Am21.594m2

ktm35044.81由M1cp1(10060)M2cp2(5020)

解得

M1cp162W5/K,M2cp2833.33W/K,

M2cp2M1cp14 3,油的出口温度t2 ②求换热器的传热量和水的出口温度t1t1)M2cp2(t2t2) M1cp1(t1)M2cp2(t220)

M1cp1(100t1M2cp24100t1

20M1cp13t2由M2cp2M1cp14100t1,M1cp1(Mcp)min

203t2由式Rf11 其中k为有污垢热阻的传热系数,k0为洁净换热器的传热系数 kk01Rf1k010.0041350145.83 W/(m2·℃) 解得

kNTUkA145.831.5940.372

(Mcp)min625Cr(Mcp)min(Mcp)maxt2t2203t2

(1) t1100t14t11expNTU(1Cr)1exp0.372(10.75)0.281

1CrexpNTU(1Cr)10.75exp0.372(10.75)t1100t1t178.93℃ 0.281

解得

t1t1t21002578.93℃代入(1)解得

t235.8℃ 将t1t2(10035.8)C64.2C tt1t2(78.9320)C58.93C tt1tmtt64.258.93C60.64C t64.28lnlnt58.93换热器的传热量ktmA145.8360.641.5941.4104W

第二篇:南昌大学传热学网络教学平台作业汇总

1.传热的基本方式是( A)。

(A)导热、对流和辐射;(B)导热、对流换热和辐射;

(C)导热、对流和辐射换热;(D)导热、对流换热和辐射换热。 2.按照导热机理,水的三种状态下(C )的导热系数最小。 (A)冰;(B)液态水;(C)水蒸汽;(D)不确定。

3.当外径为d2的管道采取保温措施时,应当选用临界热绝缘直径dc(C )的材料。 (A)大于d2;(B)dc没有要求;(C)小于d2;(D)不确定。 4.通过有内热源的大平壁的导热,其内的温度分布为(D ),热流密度( )。 (A)直线,常量;(B)曲线,常量;(C)直线,变量;(D)曲线,变量。 5.热力管道外用导热系数大和小两层保温材料保温, 下列说法正确的是( A)。

(A)将导热系数小的材料放在内测,则保温效果好;(B)将导热系数大的材料放在内测,则保温效果好; (C)无论保温材料怎么放置,保温效果一样;(D)无法确定。

6.凡平均温度不高于350℃,导热系数不大于(B )W/m·℃的材料称为保温材料。 (A)0.2;(B)0.12;(C)0.02;(D)0.18 7.一维常物性稳态导热物体中,温度分布与导热系数无关的条件是(A )。 (A)无内热源;(B)内热源为定值;(C)负内热源;(D)正内热源。

8.物性参数为常数的一圆柱导线,通过的电流均匀发热,导线与空气间的表面传热系数恒定,建立导线的导热微分方程采用( C)。

(A)直角坐标下一维有内热源的稳态导热微分方程; (B)直角坐标下一维有内热源的不稳态导热微分热方程; (C)柱坐标下一维有内热源的稳态导热微分热方程; (D)柱坐标下一维有内热源的不稳态导热微分热方程。

9.冬天时节,被子经过白天晾晒,晚上人盖着感觉暖和,是因为(C )。 (A)被子中蓄存了热量,晚上释放出来了;(B)被子变厚了; (C)被子的导热系数变小了;(D)被子外表面的对流换热减小了。

1.下列那种情况内燃机汽缸温度场不会随时间发生变化? D A.内燃机启动过程 B.内燃机停机 C.内燃机变工况运 D.内燃机定速运行

2.冬天用手分别触摸置于同一环境中的木块和铁块,感到铁块很凉,这是什么原因? D A.因为铁块的温度比木块低 B.因为铁块摸上去比木块硬 C.因为铁块的导热系数比木块大 D.因为铁块的导温系数比木块大 3.忽略物体内部导热热阻的分析方法称为( D )。

A. 正规状况法 B. 数学分析法 C.数值解法 D.集总参数法 4.下列哪个是非稳态导热的表达式? B A. t=f(x,y,z) B. t=f(y,τ) C. t=f(x,y) D. t=f(z,x) 5.下列那个表示非稳态导热过程的无因次时间?B A.Bi B.Fo C.Re D.Pr

1.影响强制对流换热的主要因素有 、 、 、 。

2.温度边界层越 对流换热系数越大,流体刚流入管道作层流换热,其局部对流换热系数沿管长逐渐 。这是由于 。

3.减小管内湍流对流传热热阻的方法有 、 、 、 。 4.反映对流换热强度的准则为 。其数学表达式为 。 二.选择题:

1

1.流体在管内流动进行对流换热,当进入充分发展段时,沿程表面传热系数hx将( )。 A.增大; B.不变; C. 减大; D.不确定。

2.一种流体以相同的速度在相同的温度及边界条件下沿管内作受迫紊流换热,两个管子的直径分别是d1和d2,其中d1

A.Nu=f(Re,Pr); B. Nu=f(Re); C. Nu=f(Gr,Pr); D.Nu=f(Gr) 5.无限空间自然对流,在常壁温或常热流边界条件下,当流态达到旺盛紊流时,沿程对流换热系数hx将( )。

A.增大; B.不变; C.减小; D.不确定

6.什么条件下,热边界层厚度与流动边界层厚度是相等的( )。 A.Pr<1; B.Pr=1; C.Pr>1; D.不确定。

7.无限空间自然对流,在常壁温或常热流边界条件下,当流态达到旺盛紊流时,沿程对流换热系数hx将( )。

(A)增大;(B)不变;(C)减小;(D)不确定。

8.由于蒸汽中存在空气,会使水蒸汽凝结时换热系数( )。 (A)增大;(B)不变;(C)减小;(D)不确定。

9.什么条件下,热边界层厚度与流动边界层厚度是相等的( )。 (A)Pr<1;(B)Pr>1;(C)Pr=1;(D)不确定。

(

一、1 液体有无相变 流体的流动状态 换热表面的几何因素 流体的物理性质 2 薄 减小 边界层厚度沿管长逐渐增厚 3 增加流速 使用短管 改变流体物性 增加换热面积 4努赛尔准则 Nu=hl/λ

二、 1B 2D 3A 4C 5B 6B 7.B 8.C 9.C)

0.

10.

20.21.纯净饱和蒸汽膜状凝结的主要热阻是 。 2.大容器饱和沸腾曲线可分为 、 、 、 四个区域,其中 具有温差小,热流大的传热特点。

3.在蒸汽凝结过程中, 凝结的传热系数大于 凝结。

二、名词解释

1.黑体 2.辐射力 3.灰体 4.有效辐射 5.定向辐射力 6.重辐射面

1.液膜的导热热阻

2.自然对流、核态沸腾、过渡沸腾、膜态沸腾 核态沸腾 3.珠状 膜状

1.黑体:吸收比a=1的物体。

2.辐射力:单位时间内物体的单位辐射面积向外界发射的全部波长的辐射能。 3.灰体:光谱吸收比与波长无关的理想物体。

4.有效辐射:单位时间内从单位面积离开的总辐射能,包括发射辐射和反射辐射。 5.定向辐射力:单位时间内,单位可见辐射面积在某一方向p的单位立体角内所发出的总辐射能。

6.重辐射面:辐射传热系统中表面温度未定而净辐射传热量为0的表面。

一.选择题: 1.面积为A2的空腔2与面积为A1的内包小凸物1之间的角系数X2,1为( )。

2

(A)1;(B)A1/A2;(C)A2/A1;(D)A1×A2。

2.两表面发射率均为ε的无限大平行平板,若在其间加入两个表面发射率也为ε的遮热板,则传热量减少为原来的( )。

(A)1/5;(B)1/4;(C)1/3;(D)1/2。

3.北方深秋季节的清晨,树叶常常结霜。问树叶结霜的表面是( )。 (A)上表面;(B)下表面;(C)上、下表面;(D)不确定。 4.等边三角形无限长柱孔,任意两表面之间的角系数为( )。 (A)1/3;(B)1/4;(C)1/8;(D)1/2。

5.黑体的有效辐射 其本身辐射,而灰体的有效辐射 其本身辐射。( ) A. 等于 等于 B.等于 大于 C.大于 大于 D.大于 等于 6.下列哪种气体可以看作热辐射透明体? ( ) (A)二氧化碳;(B)空气;(C)水蒸气;(D)二氧化硫。 7.黑体的绝对温度之比为2,则其辐射力之比为( ) (A)2;(B)4;(C)8;(D)16。

8.描述黑体表面的辐射能量按空间方向的分布规律为( ) (A)普朗克定律;(B)兰贝特定律;(C)斯蒂芬-玻尔兹曼定律;(D)基尔霍夫定律。 二。问答题:

为什么一般不能将气体当作灰体处理?

B C A D B B D B 因为气体辐射对波长具有选择性,只有辐射与波长无关的物体才可以称为灰体,所以一般不能将气体当成灰体来处理。

单选第一章

1.下列哪几种传热过程不需要有物体的宏观运动? (A)导热 (B)对流 (C)辐射 (D)复合传热

2.热流密度q与热流量的关系为(以下式子A为传热面积,λ为导热系数,h为对流传热系数):

(A)q=φA (B)q=φ/A (C)q=λφ (D)q=hφ

3.如果在水冷壁的管子里结了一层水垢,其他条件不变,管壁温度与无水垢时相比将: (A)不变 (B)提高 (C)降低 (D)随机改变 4.下列哪一种表达式是错误的? ( ) (A)q=λΔt/δ (B)q=hΔt (C)q=kΔt (D)q=rtΔt 5.导热系数的单位是:( ) (A)W/(m2.K) (B)W/m2 (C)W/(m·K) (D)m2.K/W 6.在传热过程中,系统传热量与下列哪一个参数成反比? ( ) (A)传热面积 (B)流体温差 (C)传热系数 (D)传热热阻

7. 在稳态传热过程中,传热温差一定,如果希望系统传热量增大,则不能采用下述哪种手段? ( ) (A)增大系统热阻 (B)增大传热面积 (C)增大传热系数 (D)增大对流传热系数 8. 试判断下述几种传热过程中哪一种的传热系数最小?

3

(A)从气体到气体传热 (B)从气体到水传热 (C)从油到水传热 (D)从凝结水蒸气到水传热

9.若已知对流传热系数为78W/(m2.K),则其单位面积对流传热热阻为多少? (A)78W/(m·K) (B)1/78m·K/W (C)1/78m2·K/W (D)78W/(m2·K) 10.单位时间通过单位面积的热量称为什么?一般用什么符号表示? (A)热流密度,q (B)热流密度,φ (C)热流量,q (D)热流量,φ 11.太阳与地球间的热量传递属于下述哪种传热方式? (A)导热 (B)热对流 (C)热辐射 (D)以上几种都不是 12.热流量与温差成正比,与热阻成反比,此规律称为什么? (A)导热基本定律 (B)热路欧姆定律 (C)牛顿冷却公式 (D)传热方程式

4

第三篇:生活中的传热学 (问答题整理答案)

硕士研究生《高等工程热力学与传热学》作业 查阅相关资料,回答以下问题:

1、一滴水滴到120度和400度的板上,哪个先干?试从传热学的角度分析?

答:在大气压下发生沸腾换热时,上述两滴水的过热度分别是△t=tw–ts=20℃和△t=300℃,由大容器饱和沸腾曲线,前者表面发生的是泡态沸腾,后者发生膜态沸腾。虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。所以水滴滴在120℃的铁板上先被烧干。

2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,为什么? 答:是因为木料是热的不良导体,以便在烹任过程中不烫手。

3、滚烫的砂锅放在湿地上易破裂。为什么?

答:这是因为砂锅是热的不良导体, 如果把烧得滚热的砂锅,突然放到潮湿或冷的地方,砂锅外壁的热就很快地被传掉,而内壁的热又一下子传不出来,外壁冷却很快的收缩,内壁却还很热,没什么收缩,加以陶瓷特别脆,所以往往裂开。

或者:烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而内壁温度降低慢,砂锅内外收缩不均匀,故易破裂。

4、往保温瓶灌开水时,不灌满能更好地保温。为什么?

答:因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失。

5、煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。为什么? 答:因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。

6、用焊锡的铁壶烧水,壶烧不坏,若不装水,把它放在火上一会儿就烧坏了。为什么?

答:这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点,更达不到铁的熔点,故壶烧不坏.若不装水在火上烧,不一会儿壶的温度就会达到锡的熔点,焊锡熔化,壶就烧坏了。

7、冬天水壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧靠壶嘴的地方看不见“白气”。这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。

答:这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。

8、某些表演者赤脚踩过炽热的木炭,从传热学角度解释为何不会烫伤?不会烫伤的基本条件是什么?

答:因为热量的传递和温度的升高需要一个过程,而表演者赤脚接触炽热木炭的时间极短,因此在这个极短的时间内传递的温度有限,不足以达到令人烫伤的温度,所以不会烫伤。

基本条件:表演者接触炽热木炭的时间必须极短,以至于在这段时间内所传递的热量不至于达到灼伤人的温度

9、我们许多人都喜欢在冬天有暖暖阳光时晒被子,我们都会深有体会,冬天经过在白天太阳底下晒过的棉被,晚上盖起来会觉得很暖和,并且经过拍打以后,效果更加明显。为什么?

答:棉被经过晾晒以后,可使棉花的空隙里进入更多的空气。而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。而经过拍打的棉被可以让更多的空气进入,因而效果更明显。

10、冬天,在相同的室外温度条件下,为什么有风比无风时感到更冷些?

答:假定人体表面温度相同时,人体的散热在有风时相当于强制对流换热,而在无风时属自然对流换热(不考虑热辐射或假定辐射换热量相同时)。而空气的强制对流换热强度要比自然对流强烈。因而在有风时从人体带走的热量更多,所以感到更冷一些。

11、在冬季的晴天,白天和晚上空气温度相同,但白天感觉暖和,晚上却感觉冷。为什么?

答:白天和晚上人体向空气传递的热量相同,且均要向温度很低的太空辐射热量。但白天和晚上的差别在于:白天可以吸收来自太阳的辐射能量,而晚上却不能。因而晚上感觉会更冷一些。

12、夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?

答:首先,冬季和夏季的最大区别是室外温度不同。夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。而冬季室外气温比室内气温低,通过墙壁的热量传递方向是由室内传向室

外。因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。尽管冬季室内温度22℃比夏季略高20℃,但人体在冬季通过辐射与墙壁的散热比夏季高很多。根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。

13、我们国家北方深秋季节的清晨,树叶叶面上常常结霜,、为什么霜会结在树叶上表面?

答:这是因为清晨,上表面朝向太空,下表面朝向地面。而太空表面的温度低于摄氏零度,而地球表面温度一般在零度以上。由于相对树叶下表面来说,其上表面需要向太空辐射更多的能量,所以树叶下表面温度较高,而上表面温度较低且可能低于零度,因而容易结霜。

14、窗玻璃对红外线几乎不透明,但是隔着玻璃依然会被太阳晒到的发热?为什么?

答:虽说窗玻璃对红外线不透明,但对可见光却是透明的,因而隔着玻璃晒太阳,太阳光可以穿过玻璃进入室内,而室内物体发出的红外线却被阻隔在窗内,因而房间内温度越来越高,因而感到暖和。

15、在寒冷的北方地区,现在建房越来越多的人开始采用多孔的空心砖。为什么?

答:在其他条件相同时,实心砖材料如红砖的导热系数约为0.5W/(m〃K)(35℃),而多孔空心砖中充满着不动的空气,空气在纯导热(即忽略自然对流)时其导热系数很低,是很好的绝热材料。

16、冬天,在相同的室外温度条件下,为什么骑摩托车比步行感觉更冷?

答:强制对流换热强度与流体壁面之间的相对速度有关,相对速度越大,对流换热越强。 与步行相比,骑摩托车时相对速度较大,对流换热强度大,因此人体会散失较多的热量从而感到更冷些。 皮手套和护膝,由于导热系数小且有一定厚度,增加了一层较大的导热热阻,使总传热热阻增大,从而可降低散热量,从而起到保护作用。

17、绿色住宅的一种节能方式(夏天少用空调冬天多用暖气)就是在其房屋前栽种几棵大型落叶乔木,尝试从传热学角度说明大树的作用。

答:夏天室内热负荷主要来自太阳辐射,如房屋前栽种几棵大树,枝叶繁茂会遮挡阳光,使房屋处于树荫下,可以凉快些,从而减少使用空调。到了冬天,树叶落光,太阳光线可直射到房屋上,因而又可推迟使用暖气时间或少用暖气。这样便可达到节能的目的。

18、滚热的食物盛在砂锅里比在铝锅里不容易冷,为什么? 答:这是由于陶瓷的砂锅比金属的铝锅传热慢,锅壁又比较厚,热不容易传出来。

19、冬天时,用手摸72度的铁和600度的木材感觉一样吗,为什么?请用传热学的知识解释

答:一样,因为人手感觉到的冷暖实质是热量传递的快慢,而铁的导温系数远远大于木头的导温系数。不同的温差和不同的导热系数产生相同的热流密度,故导热效果相同。

20 冬天,经过在白天太阳底下晒过的棉被,晚上盖起来为什么感到很暖和?并且经过拍打以后,为什么效果更加明显?

答:棉被经过晾晒以后,可使棉花的空隙里进入更多的空气。而空气

在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。而经过拍打的棉被可以让更多的空气进入,因而效果更明显。

21 冬天,在相同的室外温度条件下,为什么有风比无风时感到更冷些?

答:假定人体表面温度相同时,人体的散热在有风时相当于强制对流换热,而在无风时属自然对流换热(不考虑热辐射或假定辐射换热量相同时)。而空气的强制对流换热强度要比自然对流强烈。因而在有风时从人体带走的热量更多,所以感到更冷一些。

22 夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?

答:首先,冬季和夏季的最大区别是室外温度不同。夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。而冬季室外气温比室内气温低,通过墙壁的热量传递方向是由室内传向室外。因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。因此,尽管冬季室内温度22℃比夏季略高20℃,但人体在冬季通过辐射与墙壁的散热比夏季高很多。根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。

23 利用同一冰箱储存相同的物质时,试问结霜的冰箱耗电量大还是未结霜的冰箱耗电量大?

答:当其它条件相同时,冰箱的结霜相当于在冰箱蒸发器和冰箱冷冻室(或冷藏室)之间增加了一个附加热阻,因此,要达到相同的制冷室温度,必然要求蒸发器处于更低的温度。所以,结霜的冰箱耗电量更大。

24 有人将一碗热稀饭置于一盆凉水中进行冷却。为使稀饭凉得更快一些,你认为他应该搅拌碗中的稀饭还是盆中的凉水?为什么? 答:从稀饭到凉水是一个传热过程。显然,稀饭和水的换热在不搅动时属自然对流。而稀饭的换热比水要差。因此要强化传热增加散热量,应该用搅拌的方式强化稀饭侧的传热。

25 在寒冷的北方地区,建房用砖采用实心砖还是多孔的空心砖好?为什么?

答:在其他条件相同时,实心砖材料如红砖的导热系数约为0.5W/(m〃K)(35℃),而多孔空心砖中充满着不动的空气,空气在纯导热(即忽略自然对流)时其导热系数很低,是很好的绝热材料。因而用多孔空心砖好。

26 电影《泰坦尼克号》里,男主人公杰克在海水里被冻死而女主人公罗丝却因躺在筏上而幸存下来。试从传热学的观点解释这一现象。 答:杰克在海水里其身体与海水间由于自然对流交换热量,而罗丝在筏上其身体与空气之间产生自然对流。在其他条件相同时,水的自然对流强度要远大于空气,因此杰克身体由于自然对流散失能量的速度比罗丝快得多。因此杰克被冻死而罗丝却幸免于难。 27 人造地球在卫星在返回地球表面时为何容易被烧毁?

答:卫星在太空中正常运行时,其表面的热量传递方式主要依靠与太空及太阳等星体的辐射。而在卫星返回地面的过程中,由于与大气层之间的摩擦,产生大量的热量,无法及时散失,因而易被烧毁。 28 北方深秋季节的清晨,树叶叶面上常常结霜,试问树叶上、下表面的哪一面结霜?为什么?

答:霜会结在树叶上的表面。因为清晨,上表面朝向太空,下表面朝向地面。而太空表面的温度低于摄氏零度,而地球表面温度一般在零度以上。由于相对树叶下表面来说,其上表面需要向太空辐射更多的能量,所以树叶下表面温度较高,而上表面温度较低且可能低于零度,因而容易结霜。

29 窗玻璃对红外线几乎不透明,但为什么隔着玻璃晒太阳却使人感到暖和?

答:窗玻璃对红外线不透明,但对可见光却是透明的,因而隔着玻璃晒太阳,太阳光可以穿过玻璃进入室内,而室内物体发出的红外线却被阻隔在窗内,因而房间内温度越来越高,因而感到暖和。 30 在太阳系中地球和火星距太阳的距离相差不大,但为什么火星表面温度昼夜变化却比地球要大得多?

答:由于火星附近没有大气层,因而在白天,太阳辐射时火星表现温度很高,而在夜间,没有大气层的火星与温度接近于绝对零度的太空进行辐射换热,因而表面温度很低。而地球附近由于大气层(主要成份是CO2和水蒸气)的辐射作用,夜间天空温度比太空高,白天大气层又会吸收一部分来自太阳的辐射能量,因而昼夜温差较小。 31 在冬季的晴天,白天和晚上空气温度相同,但白天感觉暖和,晚上却感觉冷。试解释这种现象。

答:白天和晚上人体向空气传递的热量相同,且均要向温度很低的太空辐射热量。但白天和晚上的差别在于:白天可以吸收来自太阳的辐射能量,而晚上却不能。因而晚上感觉会更冷一些。 32 住新房和旧房的感觉一样吗?

答:不一样,由于水的导热系数远远大于空气,而新房墙壁含水较多,所以住新房感觉冷。

第四篇:传热学总复习试题及答案第五版考研必备..

基本概念 :

薄材 : 在加热或冷却过程中 , 若物体内温度分布均匀 , 在任意时刻都可用一个温度来代表整个物体的温度 , 则该物体称为 ----. •

传热 : 由热力学第二定律 , 凡是有温差的地方 , 就有热量自发地从高温物体向低温物体转移 , 这种由于温差引起的热量转移过程统称为 ------. •

导热 : 是指物体内不同温度的各部分之间或不同温度的物体相接触时 , 发生的热量传输的现象 . •

对流 : 指物体各部分之间发生相对位移而引起的热量传输现象 . •

对流换热 : 指流体流过与其温度不同的物体表面时 , 流体与固体表面之间发生的热量交换过程称为 ------. •

强制对流 : 由于外力作用或其它压差作用而引起的流动 . •

自然对流 : 由于流体各部分温度不同 , 致使各部分密度不同引起的流动 . •

流动边界层 : 当具有粘性的流体流过壁面时 , 由于粘滞力的作用 , 壁面附近形成一流体薄层 , 在这一层中流体的速度迅速下降为零 , 而在这一流层外 , 流体的速度基本达到主流速度 . 这一流体层即为 -----. •

温度边界层 : 当具有粘性的流体流过壁面时 , 会在壁面附近形成一流体薄层 , 在这一层中流体的温度迅速变化 , 而在这一流层外 , 流体的温度基本达到主流温度 . 这一流体层即为 -----. •

热辐射 : 物体由于本身温度而依靠表面发射电磁波而传递热量的过程称为 ------. •

辐射力 : 物体在单位时间内 , 由单位表面积向半球空间发射的全部波长的辐射能的总量 . •

单色辐射力 : 物体在单位时间内 , 由单位表面积向半球空间发射的波长在 λ -- λ +d λ范围内 的辐射能量 . •

立体角 : 是一个空间角度 , 它是以立体角的角端为中心 , 作一半径为 r 的半球 , 将半球表面上被立体角切割的面积与半径平方 r 2 的比值作为 ------ 的大小 . •

定向辐射强度 : 单位时间内 , 在单位可见面积 , 单位立体角内发射的全部波长的辐射能量称为 ----. •

传质 : 在含有两种或两种以上组分的流体内部 , 如果有浓度梯度存在 , 则每一种组分都有向低浓度方向转移 , 以减弱这种浓度不均匀的趋势 . 物质由高浓度向低浓度方转移过程称为 ----. •

分子扩散传质 : 静止的流体中或在垂直于浓度梯度 方向 作层流流动的流体中的 传质 , 有微观分子运动所引起 , 称为 ----. •

对流流动传质 : 在流体中由于对流掺混引起的质量传输 .

有效辐射 : 单位时间内 , 离开所研究物体单位表面积的总辐射能 . •

灰体 : 单色吸收率 , 单色黑度与波长无关的物体 . •

角系数 : 有表面 1 投射到表面 2 的辐射能量 Q 1 → 2 占离开表面 1 的总能量 Q 1 的份数 , 称为表面 1 对表面 2 的角系数 . •

辐射换热 : 物体之间通过相互辐射和吸收辐射能而产生的热量交换过程 .

填空题 :

当辐射投射到固液表面是表面辐射,投射到气体表面是 ---------- 辐射。容积 •

气体常数 R 量纲是 ------------- 。 [ L 2 t -2 T -1 ] •

当辐射物体是 -------------- 时,辐射力是任何方向上定向辐射强度的 -------- 倍。漫辐射表面 , Л

强制对流换热的准数方程形式为 -----------------.Nu=f(Re,Pr) •

描述流体运动方法有 ------------- 和 ------------------ 两种方法 . 拉氏法 , 欧拉法 •

对于一个稳态的流动传热现象而言 , 其准数方程式可表示为 ------------------. Nu=f(Re,Pr,Gr) •

自然对流换热的准数方程式可表示为 ------------------. Nu=f(Pr,Gr) •

热辐射过程中涉及到的三种理想物体有 ---------------. 黑体 , 透明体 , 镜体 •

实际上大部分工程材料在 ---------------- 范围内 , 都表现出灰体性质 . 红外线 •

善于发射的物体同时也善于 -----------. 吸收

角系数是一个与 ---------------------- 有关的纯几何量 . 辐射物体的尺寸 , 空间位置 •

实际物体的辐射力与 ------------ 的比值恒等于 ----------- 的黑体的辐射力 . 辐射来自于黑体的吸收率 , 同温度下

灰体与其他物体辐射换热时 , 首先要克服 ----------- 达到节点 , 而后再克服 ---------- 进行辐射换热 . 表面热阻 , 空间热阻

黑体的有效辐射就是 ---------. 黑体的自身辐射

为增加辐射换热系统的换热量 , 可通过 ------ 辐射换热物体表面的黑度来实现 . 增加 •

对流流动传质的准数方程为 -----------------------.Sh=f(Re,Sc)

判断并改错 :

只有管外径小于临界绝热直径时,铺设绝热层才能使热损失减小。 ( ⅹ ) •

热辐射和流体对流及导热一样,需有温差才能发射辐射能。 ( ⅹ )

通过圆筒壁的一维稳态导热时,单位面积上的热流密度是处处相等的。( ⅹ ) •

导温系数仅出现在非稳态热量传输过程中 , 导温系数越大 , 物体内各处温度越不均匀 ( ⅹ ). •

热量传输一般有导热 , 热对流及热辐射三种基本形式 . ( √ ). •

水平热壁面朝上布置时比朝下时的对流换热量大 ( √ ). •

流体的物性参数μ愈小 , λ愈大 , 流体对流换热能力愈大 ( √ ). •

紊流运动粘度ε m 与流体运动粘度υ都是流体的物性参数 , 与 Re 和紊流程度有关 . ( ⅹ ). • Pr t = ε m / ε h , 紊流的普朗特数不表示流体的物性参数 , 表示紊流时热量和动量传递过程的程度和状态 ( √ ). •

两物体之间的辐射换热必须通过中间介质才能进行 , 且热辐射过程中伴随着能量形式的二次转化 ( ⅹ ). •

金属表面在空气中被氧化后 , 在相同温度下 , 其辐射能力比原来争强了 ( √ ). •

与黑体一样 , 灰体也是一种理想物体 , 只是在数值上与黑体成折扣关系 ( √ ). •

同温度下 , 物体辐射力越大 , 其吸收率越小 ( ⅹ ). •

角系数描述的是物体的空间位置和几何形状对辐射换热的影响 , 并与辐射物体本身的特性和温度有关 ( ⅹ ). •

当系统处于热平衡时 , 灰体的有效辐射等于同温度下的黑体辐射 , 并与灰体的表面黑度有关 ( ⅹ ). •

当一铸件在车间内加热时 , 其辐射换热量的大小与车间大小有关 ( ⅹ ). •

当一铸件在车间内加热时 , 其辐射换热量的大小取决于铸件面积和本身黑度 . ( √ ).

问答题 :

热量传输有哪几种基本方式? •

温度场有哪几种表示方法?

能量微分方程的几种形式均用于哪些条件? •

导温系数表达式及物理意义? •

何谓单值性条件?包括哪些? •

边界条件分为哪几类?各自数学描述?

通过平壁的一维稳态导热数学描述及第一;三边界条件数学描述?温度分布?热流密度?(单;多层 ; λ 为常 ; 变量时)

通过圆筒壁的一维稳态导热数学描述及第一;三边界条件数学描述?温度分布?热流密度?(单;多层)

热阻有何应用?推导临界直径公式并分析影响临界直径的因素 ?

答 : ⒈ 热阻的应用 : ⑴ 利用热阻可将某些热量传输问题转换成相应的模拟电路来分析 .

⑵ 分析热阻组成 , 弄清各个环节的热阻在总热阻中所占的地位 , 能有效地抓住过程的主要矛盾 .

⒉ 公式推导 : 已知一管道的内径为 d 1 外径为 d 2 , 设在管道外面包一层绝缘层 , 其直径为 d x, 圆筒内为热流体其对流换热系数为 α 1 , 穿越筒壁向外冷流体 ( 对流换热系数为 α 2 ) 散热 . 此时单位管长的总热阻 :

r ∑ 仅是 d x 的函数 , 只与划线部分的热阻有关 . 通过分析得知 , r ∑ 与 d x 间存在极值 .

r ∑ 取得极值的条件是 其中 d c 为临界绝热层直径

此时管道向外散热最多 .

∴当 d x =d c 时 ,r ∑ 为极小值 .

分析影响临界直径的因素 : 当 d x ≥ d c 时 , 敷设绝热层会使散热减少 . d c 与 λ x 有关 , 可通过选用不同绝热材料改变 d c 值 .

何谓薄材?厚材?如何判别?

集总系统导热特点?数学描述?温度分布及瞬时热流量? • Bi 及 Fo 定义式及物理意义?

答 :

物理意义 : 物体内部热阻与外部热阻之比 .

求解对流给热系数的方法有哪几种 ? •

影响对流换热系数的因素有哪些?如何作用? •

求解对流换热系数的基本方法是什么? •

边界层微分方程求解 α 思路是什么? 边界层微分方程求解 α 思路 : Ⅰ Ⅱ Ⅲ Ⅳ

由 Ⅰ 式和 Ⅱ 式求解流场的速度分布得 V X ,V Y , 代入 Ⅲ 式得温度场的分布 T, 再求温度梯度代入 Ⅳ 式求得 α 值 . •

类比法求解 α 思路 ? 推导过程 ? •

试比较类比法和边界层微分方程组法 ? 答 : 边界层微分方程组法只能求解绕流平板的边界层内的层流问题 , 计算较烦 . 类比法即适用于边界层内也适用于边界层外 , 还适用于圆管内的流动 , 即适用于层流也 适用于紊流 . 且推导和计算也较方便 .

建立动量边界层和热量边界层厚度受那些因素的影响 ? •

建立动量传递和热量传递的目的是什么 ? 类比解推导过程 ?

答 : ⒈ 建立动量传递和热量传递的目的 :

⑴ 认为动量热量 ; 传递规律是类同的 , 用数学式子把两现象联系起来 .

⑵ 用已由理论分析或实测得到的阻力规律 C F 来求解换热规律α层流中 :

紊流中 : 当 P r =1 时 , C p = 此二式相同 . 即也是雷诺类比解成立的条件 . •

试说明 Nu;Pr 及 Gr 的物理意义及定义式 ? 答 : 努谢尔特准数 Nu 定义式 : 热量传递的比较 . 反映了对流换热的强度 .

物理意义 : 表示实际流体热量传递与导热分子

普朗特准数 Pr 定义式 : 物理意义 : 反映了动量扩散与热量扩散的相对大小 . 格拉晓夫准数 Gr 定义式 :

滞力的乘积得到的 .

物理意义 : 是由浮升力 / 粘滞力和惯性力 / 粘

流动边界层 ; 温度边界层 ; 层流底层 ; 紊流边界层定义及边界层特性 ? •

热辐射定义及其特点是什么 ? 其波长主要集中在哪些波长范围内 ? •

黑体概念及研究黑体的意义是什么 ? 辐射力 ; 单色辐射力 ; 立体角及定向辐射力和辐射强度的概念有何区别 ? •

黑体辐射的基本规律有哪几个 ? 都分别揭示了哪些规律 ? •

什么是物体表面的吸收率 ; 反射率和透过率 ? •

什么是绝对黑体 ; 白体和透明体 ? •

试说明兰贝特定律的几种表达形式及适用条件 ? •

什么是物体表面的黑度 ? 受哪些因素影响 ? •

什么是灰体 ? 有何特性 ? •

实际物体的辐射特性与灰体有何不同 ? •

什么基尔霍夫定律 ? 它的适用条件是什么 ? •

什么是辐射角系数 ? 它有什么性质 ? •

两面 ; 三面封闭系统角系数的基本计算方法及线交叉法计算任意两面间的角系数的方法 ? •

什么是有效辐射和净辐射热流密度 ? •

试汇出由两面或三面灰体组成的封闭系统的辐射网络图 ? •

试列出三面灰体组成的封闭系统各面有效辐射的方程式 ?

什么是重辐射面 ? 它有什么特点 ? •

试汇出具有辐射绝热面的三面辐射系统的网络图 ? •

在两面平行板间的换热系统中间加一块与平板黑度相同的遮热板时 , 两面间辐射换热减少多少 ? 并会出辐射网络图 . •

传质概念及分子扩散传质和对流扩散传质定义 ? •

二种传质方式的传质量基本计算公式 ? •

质量传输平衡法方程式及简化形式和单值性条件 ? •

分之扩散传质中 , 气体通过间壁的扩散通量 ; 金属园管的扩散通量及静止介质中通过半无限大物体的浓度分布和传质通量 ? •

分子扩散传质系数 D 的影响因素有哪些 ? •

对流流动传质模型有哪几种 ? •

层流 ; 紊流流动时各自的浓度分布及平均传质系数准数方程形式 ? •

流体通过单个球体及流过填充床时的传质系数计算公式 ? •

流体在园管内流动时的传质计算 ? •

动量与热量比拟解 ( 雷诺 ; 柯尔朋 )? •

动量与质量比拟解 ( 雷诺 ; 柯尔朋 )? •

类比关系准数有哪些各准数间关系怎样 ? •

动量边界层 ; 热量边界层和质量边界层间类比关系怎样 ? 计算题 :

1 有一直径为 5cm 的钢球,初始温度为 450 ℃,将其突然置于温度为 30 ℃空气中,设钢球表面与周围环境间的总换热系数为 24w/( m 2 . ℃ ) ,试计算钢球冷却到 300 ℃所需的时间。已知钢球的 c =0.48kJ/(kg.. ℃ ) , ρ =7753kg/m 3 , λ =33w/(m.. ℃ ). ( 8 分)

解 : 先验算 Bi 准数 , 钢球的特征尺寸为 :

故可以按薄材加热处理 .

∴τ =57.0s=0.158h

2 具有内热源并均匀分布的平壁,壁厚为2 S ,假定平壁的长宽远大于壁厚,平壁两表面温度恒为 t w ,内热源强度为 q v ,平壁材料的导热系数为常数,试推出稳态导热时,平壁内的温度分布和中心温度。10分

解 : 因平壁的场 , 宽远大于厚度 , 故此平壁的导热可认为是一维稳态导热 .

导热微分方程为 :

边界条件为 : x=s ,t=t w

x=-s , t=t ∞

求解上述微分方程 , 得

由边界条件确定积分常数 :

∴ 平壁内的温度分布 :

当 X=0, 则得平壁中心温度 :

3. 将初始温度为 80 ℃ , 直径为 20mm 的紫铜棒突然横置于气温为 20 ℃ , 流速为 12m/s 的风道之中 , 五分钟后 , 紫铜棒温度降到 34 ℃ . 试计算气体与紫铜棒之间的换热系数α .

已知紫铜棒密度ρ =8954kg/m 3 , 比热 C=383.1J/(kg ·℃ ), 导热系数λ =386W/(m ·℃ )

解 : 先假定可以用集总系统法分析紫铜棒的散热过程

其中 τ =5 × 60=300s

验算 Bi:

4. 一蒸汽管道 , 内 , 外径分别为 150mm 和 159mm. 为了减少热损失 , 在管外包有三层保温材料 : 内层为λ 2 =0.11, 厚δ 2 =5mm 的石棉白云石 ; 中间为λ 3 =0.1, 厚δ 3 =80mm 的石棉白云石互状预制板 ; 外壳为λ 4 =0.14, 厚δ 4 =5mm 的石棉硅藻土灰泥 ; 钢管壁的λ 1 =52, 管内表面和保温层外表面的温度分别为 170 ℃和 30 ℃ . 求该蒸汽管每米管长的散热量 ?

解 : 已知 d 1 =0.15m, d 2 =0.159m, d 3 =0.169m, d 4 =0.339m

各层每米管长热阻分别为 :

⑴ 管壁 :

⑵ 石棉内层 :

石棉预制瓦 :

⑷ 灰泥外壳 :

蒸汽管道每米长散热量为

5. 压力为 1.013bar,20 ℃空气以速度 V=35m/s 掠过平板 , 板长 L=70cm, 壁面温度 t w =60 ℃ , 试求该板的换热系数及换热量 ( 板宽按 1m 计算 )? 已知 :40 ℃空气物性参数为 : λ =0.0271W/m ·℃ υ =16.97 × 10 -6 m 2 /s Pr=0.711

解 : 按壁面与流体温度的算术平均值做为定性温度确定物性 :

查附录 得空气物性为 : λ =0.0271w/m ℃ υ =16.97 × 10 -6 m 2 /s Pr=0.711

对于紊流纵掠平板时 , 局部摩擦系数为 :

∴为紊流

6.20 ℃的空气在常压下以 10m/s 的速度流过平板 , 板面温度 t w =60 ℃ , 求距前缘 200mm 处的速度边界层和温度边界层以及α x, α和单宽换热量 , 再用类比法求局部摩擦系数 C f.

已知 :40 ℃空气物性参数为 : λ =0.0271W/m ·℃ υ =16.97 × 10 -6 m 2 /s Pr=0.711 ρ =1.127kg/m 3 C p =1.009 × 10 3 J/kg ·℃

解 : 边界层内空气的定性温度 :

由题已知 40 ℃空气物性参数为 : λ =0.0271W/m ·℃ υ =16.97 × 10 -6 m 2 /s Pr=0.711

∴为层流边界层 .

局部换热系数 :

单位宽度的换热量 :

40 ℃空气物性参数为 : ρ =1.127kg/m 3 C p =1.009 × 10 3 J/kg ·℃

7. 两平行大平板间的辐射换热 , 平板的黑度各为 0.5 和 0.8, 如果中间加进一块铝箔遮热板 , 其黑度为 0.05, 试计算辐射热减少的百分率 ? 并画出辐射网络图 .

解 : 未加遮热板时 , 两大平板单位面积间的辐射换热量为 :

设置遮热板后 :

加入遮热板后的辐射换热量减少的百分率为 :

8. 有两平行黑体表面 , 相距很近 , 他们的温度分别为 1000 ℃与 500 ℃ , 试计算它们的辐射换热量 , 如果是灰体表面 , 黑度分别为 0.8 和 0.5, 它们间的辐射换热量是多少 ?

解 : 两黑体表面间的辐射换热量是 :

两灰体表面间的辐射换热量是 :

9. 两个互相平行且相距很近的大平面 , 已知 t 1 =527 ℃ , t 2 =27 ℃ , 其黑度ε 1 = ε 2 =0.8, 若两表面间按放一块黑度为ε p =0.05 的铝箔遮热板 , 设铝箔两边温度相同 , 试求辐射换热量为未加隔热板时的多少成 ? 若隔热板的黑度为 0.8, 辐射换热量又为多少 ?

解 : 未加遮热板时 , 两大平板间的辐射换热量为 :

设置遮热板后 :

10. 有两个平行钢板 , 温度各保持 t 1 =527 ℃ , t 2 =27 ℃ , 其黑度ε 1 = ε 2 =0.8, 两钢板间的距离比起钢板的宽和高相对很小 , 试求这两块钢板的自身辐射 , 有效辐射 , 净辐射热流 , 反射辐射 , 投射辐射和吸收辐射热流 ?

解 : 两大平板间的辐射换热量为 :

处于热平衡时 :

自身辐射 :

有效辐射 :

反射辐射 : R 1 G=J 1 -E 1 =19430-18579.4=850.56w/m 2

总投入辐射 :

11 .已知平板稳流边界层内的速度分布为 ,并有

及 n =1/9, , 试推导出边界层厚度的计算式。

解:由湍流圆管内的知识可知

时,光滑管中的湍流流动的近似 1/9

又∵ 以 代替 ,以 代替

( 1-1 )

又∵ ( 1-2 )

将( 1-1 )和( 1-2 )代入边界层动量积分方程:

= ( 1-3 )

又∵

代入( 1-3 )得

分离变量积分得:

12. 已知平板层流边界层内的速度解

式 . 层流边界层动量积分方程

试导出边界层厚度和摩擦阻力系数的公

.

解:由层流的边界层动量积分方程可知:

( 1-1 )式

y=0 ( 1-2 )式

又 ∵ y=0 =

=

带入 1-2 式得:

分离变量积分得:

F Δ = =0 。 738

C f =

=1.46Re l -1/2

第五篇:北科大特色

北京科技大学的前身是1952年根据全国院系调整安排,由以下六所国内著名院校的相应学科组建成立的北京钢铁工业学院:

1、北洋大学冶金系、采矿系金属矿组(现天津大学,1895年成立);

2、唐山铁道学院冶金系(曾名唐山交通大学,现西南交通大学,1896年成立);

3、北京工业学院冶金、采矿和钢铁机械专业(现北京理工大学,1940年成立);

4、西北工学院冶金系(现西北工业大学,1938年成立);

5、山西大学冶金系(1902年成立);

6、清华大学采矿系采金属组(1911年成立)。

由此,诞生了新中国第一所钢铁工业高等学府,根据教育部安排,学校成立之初暂在清华园办学一年。:

1953年9月23日学校迁入现北京市海淀区学院路校址。

1960年,北京钢铁工业学院更名为北京钢铁学院。同年学校被批准为全国重点大学。 1984年,经国务院批准,学校成为国家首批试办研究生院的22所高校之一。

北京科技大学

1988年,北京钢铁学院更名为“北京科技大学”,校名沿用至今。

1997年,学校首批进入国家“211工程”建设高校行列。

2006年,学校成为国家“985工程优势学科创新平台”建设项目首批试点高校。 2010年,学校成为国家首批“卓越工程师教育培养计划”高校

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:办理请假手续通知书下一篇:便利店月度工作总结