半导体物理教学论文

2022-05-07

今天小编给大家找来了《半导体物理教学论文(精选3篇)》的文章,希望能够很好的帮助到大家,谢谢大家对小编的支持和鼓励。(桂林理工大学,广西桂林541004)摘要:半导体物理课程是应用物理专业非常重要的专业必修课,这门课程比较抽象,理论性、逻辑性较强,对半导体物理教学内容和方式的整合和讲授有一定难度。本论文依据西部地区理工科院校的培养方案和国内外先进的教育理念,培养学生创新意识和探索精神,提高教学质量以及学生综合利用知识的能力。

半导体物理教学论文 篇1:

“学案导学”教学模式在半导体物理课程教学中的实践

摘 要:该文简述了“学案导学”教学模式在乐山师范学院材料科学工程专业(光伏方向)的核心专业基础课程“半导体物理学”中的实践情况,具体包括教学模式的总体目标确定、教学内容的重新构建、导学案的编写、课堂教学过程的实施、教学效果的评价等五个方面。

关键词:材料科学 半导体物理 教学模式 学案导学

半导体物理学是以半导体中原子状态和电子状态以及各种半导体器件内部电子运动过程为研究对象的学科,是固体物理的一个重要组成部分,凝聚态物理的一个活跃分支[1]。半导体物理学是一门公认的难教、难学的课程,为了提高半导体物理学的教学质量,相关院校的教师们提出了许多有益的建议和有效的方法,如类比学习法[2]、多媒体教学法、市场导向法[3]等。基于提高课堂效率、改善半导体物理学课程的教学效果的目标,作者在乐山师范学院材料科学工程专业(光伏方向)的半导体物理学的教学中,对传统的课堂教学模式进行改革,在半导体物理学的课堂教学中采用“学案导学”教学模式,该文就“学案导学”教学模式在乐山师范学院材料科学工程专业(光伏方向)的半导体物理学课程教学实践作一简述,供同行参考。

1 半导体物理学课程教学模式改革的必要性和迫切性

传统半导体物理学的主要内容包含半导体的晶格结构、半导体中的电子状态、杂质和缺陷能级、载流子的统计分布、非平衡载流子及载流子的运动规律、p—n结、异质结、金属半导体接触、表面及MIS结构等半导体表面和界面问题以及半导体的光、热、磁、压阻等物理现象[4]。但是近年来半导体物理发展迅猛,新现象、新理论、新的研究领域不断涌现。上世纪50~60年代,属于以固体能带理论、晶格动力学理论、金属—半导体接触理论、p-n结理论和隧道效应理论为主的晶态半导体物理时代;70~80年代则形成半导体超晶格物理、半导体表面物理和非晶态半导体物理三足鼎立的格局;90 年代以后,随着多孔硅、C60以及碳纳米管、纳米团簇、量子线与量子点微结构的兴起,纳米半导体物理的研究开始出现并深化;现在,以GaN为主的第三代半导体、有机聚合物半导体、光子带隙晶体以及自旋电子学的研究,使半导体物理研究进入一个新的里程[5]。

半导体物理学是材料科学工程专业(光伏方向)的核心专业课程,是太阳能电池原理等后续专业课程的基础。它是一门理论性较强同时又和实践密切结合的课程。要透彻学习半导体物理学,既要求有较强的数学功底,熟悉微积分和数理方程;又要求有深厚的物理理论基础,需要原子物理、统计物理、量子力学、固体物理等前置课程作为理论基础。由于材料科学工程(光伏方向)培养目标侧重于培养光伏工程专业技术人才,而不是学术型的研究人才,在课程设置方面有自己的独特要求,学生在学习半导体物理之前,没有系统学习过数学物理方程、量子力学、固体物体、统计物理等专业课程,所以理论基础极其薄弱,这给该门课程的教学带来极大的困难和挑战。而且半导体物理的理论深奥,概念多,公式多,涉及知识范围广,理论推导复杂,沿用“教师讲学生听”的传统课堂教学模式,学生学习兴趣不高,直接的结果就是课程教学质量较低,教学效果不好,学生学习普遍被动。面对发展迅猛的半导体物理和目前教学现状,如果不对“教师讲、学生听”的半导体物理学的课堂教学模式进行改革,难以跟上形势的发展。为此教师要在半导体物理学教学中采用了“学案导学”教学模式。

2 “学案导学”导学教学模式在半导体物理课程教学中的实施过程

“学案导学”教学模式由“学、教、练、评”四个模块构成。“学”,就是学生根据教师出示的教学目标、教学重点、教学难点,通过自学掌握所学内容。“教”,就是教师讲重点、难点、讲思路等。“练”,就是通过课堂训练和课后练习相结合,检验学习效果。“评”,就是通过教师点评方式矫正错误,总结方法,揭示规律。“学案导学”教学模式相对于传统教学模式的改革绝不是一蹴而就的课堂教学形式的简单改变,而是一项复杂的系统工程,包括教学模式的总体目标确定、教学内容的重新构建、导学案的编写、课堂教学过程的实施。

2.1 半导体物理学“学案导学”教学模式总体目标的确定

半导体物理学课堂教学模式创新的总体目标是:以材料科学工程专业(光伏方向)人才培养方案和半导体物理学课程教学大纲依据,以学生为主体,以训练为主线,以培养学生的思维方式、创新精神和实践能力为根本宗旨,倡导自主、合作、探究的新型学习方式,构建自主高效的课堂教学模式;注重学生的主体参与,体现课堂的师生互动和生生互动,关注学生的兴趣、动机、情感和态度,突出学生的思维开发和能力培养;针对学生的不同需求,实行差异化教学,面向全体,分层实施。

2.2 根据人才培养方案构建合理有效的教学内容

半导体物理学的教材种类较多,经典教材包括:黄昆、谢希德主编的《半导体物理》(科学出版社出版);叶修良主编《半导体物理学》(高等教育出版社出版);刘恩科、朱秉生主编《半导体物理学》(电子工业出版社出版)。该校教研组经过认真分析,选择刘恩科主编的《半导体物理学》第7版作为教材,该书内容极其丰富,全书共分13章,前五章主要讲解晶体半导体的结构、电子的能带、载流子的统计分布、半导体的导电性、非平衡载流子理论等基础知识,第6章讲PN结理论,第7章讲金属和半导体的接触性能、第8章讲半导体的表面理论、第9章讲半导体的异质结构,第10、11、12章讲解半导体的光学性质、热电性质、磁和压电效应,第13章讲解非晶态半导体的结构和性质;该教材理论性很强,有很多繁杂的数学推导,要真正掌握教材所讲内容,需要深厚的数学功底和物理理论功底。该校材料科学工程专业(光伏方向)立足于培养光伏工程的应用型人才,学生理论功底较为薄弱,故我们对理论推导不做过高的要求,但对推导的结果要形成定性的理解。具体要求学生掌握半导体物理学的基本理论、晶体半导体材料的基本结构、半导体材料基本参数的测定方法。根据人才培养方案的要求,我们确定的主要理论教学内容有:(1)半导体中的电子状态;(2)半导体中的杂质和缺陷能级;(3)半导体中载流子的统计分布;(4)半导体的导电性;(5)非平衡载流子理论;(6)PN节;(7)金属和半导体接触;(8)半导体表面理论。对半导体的光学性质、热电性质、磁和压电效应以及非晶态半导体不做要求。在课程实践方面我们开设四个实验:(1)半导体载流子浓度的测定;(2)少数载流子寿命的测量;(3)多晶硅和单晶硅电阻率的测量;(4)PN节正向特性的研究和应用。

2.3 立足学生实际精心编写导学案

“导学案”是我们指导学生自主学习的纲领性文件,对每个教学内容都精心编写了“导学案”。“导学案”主要包括每章节的主要内容、课程重点、课程难点、基本概念、基本要求、思考题等六个方面的内容。以“半导体中的电子状态”为例,我们编写的导学案如下:

2.3.1 本节主要内容

原子中的电子状态:

(1)玻耳的氢原子理论;(2)玻耳氢原子理论的意义;(3)氢原子能级公式及玻耳氢原子轨道半径;(4)索末菲对玻耳理论的发展;(5)量子力学对半经典理论的修正;(6)原子能级的简并度。

晶体中的电子状态:

(1)电子共有化运动;(2)电子共有化运动使能级分裂为能带。

半导体硅、锗晶体的能带:

(1)硅、锗原子的电子结构;(2)硅、锗晶体能带的形成;(3)半导体(硅、锗)的能带特点

2.3.2 课程重点

(1)氢原子能级公式,氢原子第一玻耳轨道半径,这两个公式还可用于类氢原子。(今后用到)

(2)量子力学认为微观粒子(如电子)的运动须用波函数来描述,经典意义上的轨道实质上是电子出现几率最大的地方。电子的状态可用四个量子数表示。

(3)晶体形成能带的原因是由于电子共有化运动。

(4)半导体(硅、锗)能带的特点:

①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带。

②低温下,价带填满电子,导带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

③导带与价带间的能隙(Energy gap)称为禁带(forbidden band),禁带宽度取决于晶体种类、晶体结构及温度。

④当原子数很大时,导带、价带内能级密度很大,可以认为能级准连续。

课程难点:原子能级的简并度为(2l+1),若记入自旋,简并度为2(2l+1);注意一点,原子是不能简并的。

基本概念:电子共有化运动是指原子组成晶体后,由于原子壳层的交叠,电子不再局限在某一个原子上,可以由一个原子转移到另一个原子上去。因而,电子将可以在整个晶体中运动,这种运动称为电子的共有化运动。但须注意,因为各原子中相似壳层上的电子才有相同的能量,电子只能在相似壳层中转移。

基本要求:掌握氢原子能级公式和氢原子轨道半径公式;掌握能带形成的原因及电子共有化运动的特点;掌握硅、锗能带的特点。

思考题:(1)原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同,原子中内层电子和外层电子参与共有化运动有何不同。(2)晶体体积的大小对能级和能带有什么影响。

2.4 以学生为主体组织课堂教学

在每次上课的前一周,我们将下周要学习的内容的导学案印发给学生,人手一份,让学生按照导学案的要求先在课余时间提前预习,对一些基本概念要有初步的理解,对该课内容要形成基本的认识。比如,我们在学习“半导体中的电子状态”这一内容时,要求学生通过预习要清楚:孤立原子中的电子所处的状态是怎样的;晶体中的原子状态又是怎样的;半导体硅、锗的能带有何特点。在课堂教学中我们的教学组织程序是一问、二讨论、三讲解、四总结。一问,是指通过提问,抽取个别同学回答问题,了解学生的自主学习情况。二讨论是指让同学们就教师提出的问题开展自主深入的讨论。例如就晶体中电子的状态这一问题,让学生讨论什么是共有化运动;电子的共有化远动是如何产生的;电子的共有化运动有何特征;电子的共有化运动如何使能级分裂为能带。让学生畅所欲言,充分发表自己的意见,教师认真聆听,发现学生的错误认识,为下一步的讲解做好准备。三讲解是指就三个方面的知识进行讲解,其一是就学生讨论过程中的错误认识和错误观点及时的纠正;其二是对学生不具备的理论知识进行补充讲解,例如学生不具备量子力学基础,就要给学生补充讲解量子力学认为微观粒子(如电子)的运动须用波函数来描述,经典意义上的轨道实质上是电子出现几率最大的地方,电子的状态可用四个量子数表示;其三是就难点进行讲解,比如原子能级的简并度,学生理解起来较为困难,就需要教师深入细致地讲解;四总结就是归纳本堂课要掌握的重点知识,那些基本概念必须掌握,那些基本公式必须会应用。

3 “学案导学”教学模式在半导体物理课程教学中有效性的评价

在乐山师范学院材料科学工程专业(光伏方向)的2011级、2012级三个班半导体物理学的教学中,采用“学案导学”教学模式,取得了良好的教学效果。这体现在以下三个方面:一,学生养成了在课前自主学习的良好习惯,在课堂上积极参与讨论,活跃了思维,激发了学生的学习热情;二,学生带着问题上课,澄清了很多模糊的认识,极大地提高了学习效率;三,从考试成绩看,优秀率和合格率大幅度提高,表明学生对半导体物理学的基本理论、对半导体材料的基本特性、对半导体材料参数的测试方法均有较好的掌握。这说明学案导学教学模式在半导体物理学的教学中是成功的。

参考文献

[1] 马铁英,孙一翎,沈为民.“半导体物理”重点课程建设与教学探讨[J].科技信息,2009(5).

[2] 江锡顺.提高应用型本科院校半导体物理教学质量的方法研究[J].滁州学院学,2011,13(5).

[3] 汤乃云.微电子专业“半导体物理”教学改革的探索[J].课程教材改革,2012,13(31).

[4] 刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2008.

[5] 彭英才,X.W.Zhao,傅广生.半导体物理研究的回顾与展望[J].自然杂志, 2004(6).

作者:许德富

半导体物理教学论文 篇2:

浅谈西部理工院校半导体物理教学

(桂林理工大学,广西 桂林 541004)

摘要:半导体物理课程是应用物理专业非常重要的专业必修课,这门课程比较抽象,理论性、逻辑性较强,对半导体物理教学内容和方式的整合和讲授有一定难度。本论文依据西部地区理工科院校的培养方案和国内外先进的教育理念,培养学生创新意识和探索精神,提高教学质量以及学生综合利用知识的能力。

关键词:半导体物理;教学效果;教学方法

半導体物理是固体物理学的一个重要分支,主要阐述半导体的基本物理理论和基本物理性质以及当前各种半导体器件内部电子输运过程的学科,是应用物理学的新器件和新材料技术方面的基础学科,现已成为现代新器件、新材料的基本物理理论基础,为后人研制半导体新器件和新材料实现特殊性能提供解释物理机理和指导方法,将物理的基本理论和实际应用之间建立桥梁。半导体物理课程的开设为以后学生从事电子行业提供了基本理论知识。相对于西部落后地区一般本科院校的学生来说,他们的专业基础相对薄弱。但是,学习这门课程需要较强的基础功底,《量子力学》、《固体物理》这些比较难学的课程必须学好,因此出现学生课堂不愿上课,这极大地影响到教师的积极性,增加了教学的难度。为了更好地讲授半导体物理课程,让学生对这门课程知识的理解和掌握达到教学目的的要求,笔者结合西部落后地区一般本科院校学生的实际情况,并针对在应用物理专业的半导体物理课程教学实践中发现的问题浅谈自己的看法。

一、构建合理的教学内容,提高课程教学的有效性研究

1.修订教学大纲。根据光电子、微电子两个专业方向后续课程的需要及参加研究生入学资格考试应掌握的基本知识,两个专业方向的教学内容及学时分配有所不同,选择适合学生特点的教材以及教学大纲。在半导体物理学的教学内容包括半导体的晶体结构、载流子和非平衡载流子、半导体PN结器件等相关重点、难点、概念,以及一些参考资料、作业题和思考题,需要合理安排教学计划及对应学时的分配。针对半导体的教学内容,需要开展该课程教学研讨活动,着重强调半导体物理理论用在实践中。授课教师应根据该学科发展的方向、教学改革和实践的变化等情况,不定期修订教学大纲。针对半导体物理学课程的教学上,由于该课程的理论分析(包括能带理论、半导体的电子传输理论等)非常深奥,公式的推导比较多,对于基础相对较差的学生来说,学习起来非常吃力,而且枯燥乏味。我们经过比较分析现有众多半导体物理教材后,采用高等学校工科电子类(电子信息类)规划教材《半导体物理学》,由西安交通大学刘恩科等编写。该教材半导体物理的基础知识比较全面体现突出物理概念,强调基本分析方法,没有很多烦琐的公式推导,可读性强,便于自学。目前很多高校都在使用该教材[1]。

2.激发学生的科研兴趣,培养学生的科研素质。采用研究型课堂教学为学生提供了发现问题、研究和解决问题的基本程序,并提供了实践机会,丰富了学生的实践经验,为学生在今后工作中开拓创新奠定了坚实的基础,因为学生将来希望从事IT行业,比如太阳能电池、超大规模集成电路、LED显示等,因此,在课程起始阶段,教师介绍半导体的学科发展,结合半导体在太阳能电池、超大规模集成电路、LED显示等方面的应用,给学生提供学习思路框架,用简单的逻辑关系指明各个学习点和概念的相互关系,使学生知识的来龙去脉有整体的把握,使他们了解课程的重要性以及提高对这门课程的兴趣。做到较快地掌握教材中给出的很多结论,达到良好的学习的效果[2]。

3.合理使用现代化教学手段。在教育现代化、信息化的今天,以多媒体与计算机网络技术为核心的信息技术是当代教育改革的制高点,多媒体技术以图文并茂、声像俱佳、动静皆宜的表现形式走进课堂,所以运用多媒体技术教学可以很好地对解决常规课堂教学中难以解决的难点[3]。但在半导体物理教学中,如果一味地使用多媒体课件,尽管很多图片都非常的逼真、形象,让学生能够更好地理解。如第一章中学习有关载流子浓度的计算,对掌握晶体的能带结构,熟悉硅、锗、砷化镓等传统半导体的能带结构特征,包括禁带、导带、价带等基本概念的理解来说都非常形象,利用多媒体动画,就可以清楚地展示出原子排列结构如何从一个原子到多个原子的公有化运动形成能带,但是多媒体教学忽略了学生的感受和接受能力,违背了教学规律。针对这些问题,在课堂教学中必须先启发学生的对半导体物理思维,在学生建立对半导体的求知欲之后,适当运用多媒体技术图文并茂、声像俱佳、动静皆宜的优势,将教学过程中的难点和重点概念传授给学生。如在讲解半导体能带结构时,通过多媒体课件展示并结合板书,这样学生更容易接受相关理论的精髓。只有将教师在课堂中的板书与多媒体技术结合起来,才能获得非常好的教学效果。

二、紧跟学科前沿,结合科研实际适当把前沿知识引入课堂

在半导体物理教学组织管理方面,采用传统的理论讲述、练习习题课、实验实践相结合的形式,理论讲授课由主讲教师讲授半导体物理的基本概念和基本分析方法。专门开设习题课,负责复习和巩固理论课讲授的内容,并通过综合练习提高学生的分析问题的能力。但是不能单纯讲解理论知识,而是要结合教师和学生的科研实践对理论知识进行深入的解析,这样有助于培养学生的科研思维。将教学与科研相结合,让学生了解半导体物理学科的研究前沿。比如在讲解能带论与半导体相关器件时,可以引入现代科技进展,结合自己主持的半导体器件相关科研项目,如电阻式随机存储器(RRAM)作为一种新型的非易失性存储器,其原理是过渡金属氧化物在不同极性的外电压脉冲作用下诱导出不同电阻态的效应。由于电阻式随机存储器拥有高速、高密度、低功耗、制备简单、半导体工艺兼容性好等优秀的性能,引起人们广泛的关注,有望替代目前市面上的磁存贮器,成为下一代的通用存储器,其热点集中在性能及机理的研究上。另外一些研究通过设计成pn结器件,制备成十字交叉结构忆阻器件,以实现高的器件密度以及解决读写误读的想象。从众多的有关半导体中基本的晶体结构知识、能带理论和半导体的电子输运性质,提出了不同的模型来解释这一电阻开关现象,相应的机理包含传导灯丝导通模型,空间电荷束缚模型,电致氧空位迁移机制,肖特基势垒模型等,而电极效应是指电极与薄膜材料的界面处由表面态导致的电阻转变的机理。另外在讲解半导体发光,以及光电效应时,可以引入到目前太阳能发光,LED发光等应用非常广的领域,从而激发学生的科研能力,促进学生素质的全面提高,为学生以后从事科研或者相关工作打下一定的基础。

三、加强实验教学

实验实践教学是应用性人才培养的重要保证,针对半导体物理实践课来说,其实是半导体课程的最重要部分,通过实践实验教学,使学生掌握和体会半导体物理理论对现代半导体产业和半导体知识的理解,让学生树立理论联系实际的学风和工作作风,提高学生综合分析解决问题的能力。在传统实验课中,因内容过分偏重于基础训练,所以在方法和手段上很单调,主要以模仿为主,缺少设计性、创新性。在教学内容上,适当增加了综合性、设计性和创新性实验,如果恰当地使用直观、形象物理图像,使学生获得感性认识,缩小理论与实际的差距,缩短学生的认识过程,会提高课堂教学质量。这样也可以调动学生的学习积极性,推进学生的自主实验和合作实验。自主设计实验,测量半导体体电阻率、MOS结构C-V测量、为霍尔效应及半导体相关参数测量,通过这些实验,使学生掌握几种基本量测量方法以及数据处理的方法;熟悉基本的分析问题和解决问题方法及常用仪器的使用;在实验中综合运用所学的半导体物理学基本知识以及其他相关知识,提高学生的实际操作以及综合实验的能力,使科学研究的方法和探索解决问题的能力得到更好的培养,进而达到良好的实验教学效果。

四、结束语

半导体物理作为应用物理、光电子和微电子专业重要的专业基础课,半导体物理教学改革是一个庞大而又复杂的系统工程,我们通过对半导体物理教学模式、内容、方法和手段的改革进行了一些有意义的整合与改进,同时不断提高自身的能力,可以逐渐形成适应应用型本科院校办学定位的新的教学模式。

参考文献:

[1]耿莉,徐友龙,张瑞智,创新型人才培养模式下的半导体物理教学研究[J].电气电子教学学报,2009,(31):85-89.

[2]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2008:156-168.

[3]江锡顺.提高应用型本科院校半导体物理教学质量的方法研究[J].滁州学院学报,2011,(13):35-36.

作者简介:李新宇(1981-),汉族,湖南人,博士研究生,副教授,研究方向:半导体薄膜与器件。

作者:李新宇

半导体物理教学论文 篇3:

工程教育认证模式下半导体物理教学探讨

摘 要 半导体物理是大多数工科专业的重点基础课程,该课程的教学效果直接关系到相应专业工程教育认证结果。其所涉及先修课程多、理论性和系统性强、老师难教,学生难学,不易掌握,学科领域发展迅速等问题,针对上述问题,结合学校相关专业建设需要,优化教学内容,丰富教学手段和考核方法,促使学生能更深刻的理解半导体物理,培养学生更好的理论联系实际的能力,能更有效地培养半导体人才。

关键词 工程教育认证 半导体物理 教学改革 教学质量

工程教育是我国高等教育的重要组成部分,工程教育专业认证是国际通行的工程教育质量保障制度,也是实现工程教育国际互认和工程师资格国际互认的重要基础。工程教育专业认证的核心是工科专业毕业生达到行业认可的既定质量标准要求,是一种以培养目标和毕业出口要求为导向的合格性评价。工程教育专业认证要求专业课程体系设置、师资队伍配备、办学条件配置等都围绕学生毕业能力达成这一核心任务展开,并强调建立专业持续改进机制和文化以保证专业教育质量和专业教育活力,旨在为相关工程技术人才进入工业界从业提供预备教育质量保证。同时,半导体产业由于关系到国民经济整体效益和国家安全,关系国家前途的重要战略产业,早已经成为了国民经济重要的组成部分,世界各国均竞相大力发展本国的半导体产业,以期在国际舞台的较量中争得主动权和话语权。现代半导体科学的迅猛发展、知识的不断翻新、竞争不断深入、对人才素质要求不断提高都给我国半导体产业的发展提出了严峻挑战,也给半导体物理基础教育提出了新的、更高的要求。

半导体物理是面向大多数工科专业开设的一门专业基础必修课程,使学生熟悉、了解、掌握半导体材料的光、电、磁、热物理效应等基础理论和知识,掌握半导体器件的结构、工作原理、测试等实验技能及初步工艺制造方法,是专业课程与基础课程之间承上启下的纽带,也是许多其他后续专业课程的基础,其教学效果直接影响了后续专业理论及实践的教学。通过对半导体物理课程的学习,让学生系统掌握并深刻理解半导体物理涉及的概念、理论和方法,注重培养学生应用半导体物理理论来分析和研究半导体材料、微电子器件和集成电路设计的一般规律,以获得解决实际工程问题的能力,为后续专业课程的学习奠定基础,为将来开展科学研究和产品研制打下必要的理论基础。但是,由于半导体物理的理论性和系统性很强,理论极为深奥,涉及知识点多,理论推导繁琐,对于学生的数学物理的基础要求较高,学生在学习的过程中存在一定的难度。因此,对授课教师提出了更高的要求,不仅要对半导体物理有充分的理解,还要熟悉半导体工艺和半导体集成电路设计。因此,结合学校相关专业建设需要,优化和整合教学内容,丰富教学手段,结合科技发展热点问题,探索教学改革措施,激发学生的学习兴趣,提高半导体物理课程的教学质量。

一、优化整合教学内容

重庆邮电大学作为一所电子类的工科大学,为了专业毕业生达到行业认可的既定质量标准要求,工程教育专业认证是我校教育目标之一,旨在为相关工程技术人才进入工业界从业提供预备教育质量保证。要实现这一目标,其中教材的选择是最为重要的环节之一。本课程一直采用刘恩科主编的《半导体物理学》(电子工业出版社)作为教材,并实时采用最新版,该教材是电子科学与技术类专业精品教材。

工程教育注重学生的自主学习过程,给予学生更多的自主学习时间,因此在课堂学时缩减的情况,教学过程中除了保持课程知识结构与整体系统性,还应对教学内容进行合理取舍,压缩与其他课程重叠的内容,删除教材中相对陈旧的、不再适用的知识和观点显得尤为重要。半导体物理行业和学科领域发展极为迅速,新的理论、技术、成果和研究前沿不断涌现,相关研究领域不断向其他学科扩展,学科之间的交叉渗透性越来越深入,知识翻新也很快。半导体物理课程与半导体器件的关系非常密切,前者为后者提供理论基础,后者为前者提供技术条件,这种辩证统一的关系推动着半导体科技不断向前,在半导体物理课程的内容安排上也要注意将所学内容与迅猛发展的现代科技联系起来。因此,密切跟踪科技前沿与研究热点,加入最近发展成熟的新理论、新知识,突出研究热点问题,力求做到基础性和前瞻性的紧密结合,使学生在掌握基础知识的同时能对半导体的发展历程和发展趋势有一个清晰的认识,能够理论联系实际,从中掌握事物的本质,促进思维的发展,形成技能。

二、丰富教学手段,强调基本概念与物理模型,提高教学质量

半导体物理的特点是概念多、理论多、物理模型抽象,不易理解,仅凭教材中的定义理解这些概念和模型,学生很难完全掌握。为了让学生能较好地掌握相关知识 , 需要教师智慧地利用多种教学手段和方法,授课时应重在与应用相结合,以必需、够用为度,结合实用性和先进性,力求内容精简、重点突出、概念明确、说理清晰。例如,在正式开始《半导体物理学》相关内容课程教学前,应将前置课程中重要的基本知识贯穿于教学过程中,以免造成学生认识上的巨大跳跃感;在讲解半导体能带结构前,增加适量学时讲授近代理论物理知识,使学生了解原子中电子能级和电子壳层分布,掌握泡利不相容原理、玻耳兹曼分布律和玻尔频率条件等微观粒子运动的基本规律。这些都是学习《半导体物理学》必备的知识,只有在透彻理解这些基本概念的前提下,才能对现有课程知识有更深入的了解和掌握。否则将造成学生理解上的障碍,最终导致学生失去继续学习的兴趣。因此在授课内容的选择、排列上要遵循循序渐进的原则。

在教学过程中应将书本上的理论推导和结论与相关实驗相结合,使学生对抽象的课堂相关知识能顺利地转化为直观认识,增强教学效果。实践是检验真理的标准,理论联系实际才是最好的教学方法,在理论教学的同时,适当安排学生进行相关实验操作,观察实验现象,既加深了对理论的认识,锻炼了动手能力,又能通过做实验使学生切身体会到一个物理结论是怎样体现了理论和实践的完美统一,从中领悟出科学研究的普遍方法和过程。

教学方法的好坏决定教学的成败,教学手段丰富与否是衡量教学水平的关键。处于“互联网+”时代下,幕课、微课等网络资源十分丰富和发达,教师应充分利用多媒体、幻灯片、教学模型、录像、 黑板板书等多种现代化的教学手段和网络资源相结合,将微观过程模拟出来,以多媒体录像及图片的形式展示给学生,使教学信息变抽象为具体、化枯燥为生动,将学生的抽象逻辑思维建立在形象思维上,增强教学的直观性、主动性,增加课堂教学的信息量,帮助学生深刻领会物理概念和规律,提高分析问题和解决问题的能力。

课前预习和课后练习也是提高课堂教学的两个重要的环节。应适当给学生布置相关的课后作业,引导学生进行独立思考,独立完成相关的课后作业。在下一堂课开始安排一定的时间进行个别回答或集体讨论,及时解决学生的疑惑,从而形成可持续发展的模式。

三、考核方式的改革

课程考核工作是教学过程的一个重要环节, 是检验教学效果和保证教学质量的重要手段,是教学质量管理与评价的重要内容,应坚持公平、公正、求是、严谨的原则。工程教育认证要求课程考核更加全面,并且更加注重阶段考核和考核方法的多样性。为了课程考核工作进一步科学化和规范化,客观科学地评价教学效果,促进教学质量不断提高,符合工程教育认证考核要求,针对半导体物理课程特点,对考核方式进行相应的改革,课程考核由过程考核和期末考核两部分组成。

1.过程考核包括出勤、课堂表现、课内测试、研究性学习报告、实验报告、课程论文、课外作业以及期中考试等,考核测评次数与课时数正相关,过程考核成绩包含平时成绩和阶段成绩,占据总成绩的60%,更加注重本门课程的学习过程,能实时考核和反映学生学习状态和对知识点的掌握情况。

2. 期末考核主要以闭卷考试方式进行,期末成绩所占比例大约为40%。命题应以教学大纲和考试大纲为依据,重点考查学生对该课程的基础知识、基本理论和基本技能的掌握,考查学生综合分析、综合理解和解決问题的能力,注重考题对启发学生创新思维和培养学生创新能力的引导。同时,命题要注意试题的可靠性,要具备一定难度和区分度,在保证客观性、代表性的基础上要具备一定程度的灵活性。

四、结束语

总之,半导体物理是大多工科专业的专业基础课程,在教学过程中采用现代化教学手段和科学的考核手段,合理安排教学内容,不断进行教学改革,提高半导体物理课程的课堂教学效果,为学生后续专业课程的学习奠定了扎实的基础,为相关专业毕业人才进入工业界从业提供预备教育质量保证。

参考文献:

[1]王振,王培,王巍.微电子类相关专业半导体物理教学探讨[J].素质教育论坛,2015,(19):7-8.

[2]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社,2011.

[3]刘德伟,李涛.半导体物理课程教学改革探讨[J].中国电力教育,2013,(34):85-86.

基金项目:(1)重庆邮电大学校级教学改革项目(适应行业和区域发展的集成电路工程大类专业创新人才培养模式研究,编号:XJG1505);(2)重庆邮电大学宜伦学院2015级微电子科学与工程专业实验班(2015YL-04);(3)重庆邮电大学宜伦学院2016级微电子科学与工程专业实验班(2016YL-03);(4)重庆市本科高校“三特行动计划”特色专业—微电子科学与工程。

作者:王振 冯世娟

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:高校物理化学论文下一篇:区域服务业发展论文