高分子材料成型工艺学

2023-01-23

第一篇:高分子材料成型工艺学

高分子材料成型加工

第一章

1. 高分子材料的定义

以高分子材料为主要组分的材料

2. 高分子材料成型加工的定义

高分子材料是通过成型加工工艺得到具有实用性的材料或制品过程的工程技术

3. 高分子材料工程特征的含义

高分子材料制品的性能既与材料本身的性质有关,有很大程度上受成型加工过程所产生的附加性质的影响

第三章

2. 热稳定剂是一类能够防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂

分类: 铅盐类稳定剂,有机锡类稳定剂,有机锑类稳定剂,有机辅助稳定剂,复合稳定剂,稀土类稳定剂

用于食品: 有机锡类稳定剂,复合稳定剂,稀土类稳定剂

3. Pvc塑料

因为PVC是一种极现在高温下的加工成型。

??/、?性高分子,分子间的作用力很强,导致加工温度超过其分解温度,只有加入热稳定剂才能实

4. 抗氧剂是指可抑制或延缓高分子材料自动氧化速度,延长其使用寿命的物质。

抗臭氧剂是指可以阻止或延缓高分子材料发生臭氧破坏的化学物质。

不同:抗氧剂是抑制扩散到制品内部的氧,而抗臭氧只是在制品表面上发挥作用。

5. 光稳定剂是可有效地抑制光致降解物理和化学过程的一类添加剂。

?/、?/ 8. 润滑剂是降低熔体与加工机械或成型模具之间以及熔体内部相互直接按的摩擦和黏附,改善加工流动性,提高生产能力和制品外观质量的一类添加剂。

因为其可以调节PVC树脂熔化速率和降低熔体黏度 9. ???

10. 硫化促进剂:提高硫化速度,缩短硫化时间,降低硫化温度,减少了硫化剂用量,提高或改善硫化胶物理机械性能

硫化活性剂:提高胶料中硫化促进剂的活性,减少硫化促进剂的用量,缩短硫化时间 防焦剂:少量加入即可防止或延迟胶料在加工和贮存时产生焦烧 12. 着色剂,发泡剂,阻燃剂,抗静电剂,偶联剂,防霉剂

第四章

1. 高分子材料制品设计中,成型加工方法选择的依据是什么?

制品形状,产品尺寸,材料特征,公差精度,加工成本

2. ?? 3. ?? 4. 高分子材料进行配方设计的一般原则和依据各是什么?

制品的性能要求:抓住主要矛盾,用其所长,避其所短,必要时可共混或复合改性

成型加工性能的要求:各种成型加工方法的工艺和设备各有其特点,对材料的要求也不同,故需充分考虑。

原材料的要求:材料的主体成分-高分子化合物决定了材料的基本性能,添加剂对材料及其制品的性能有很大的影响

产品的经济成本要求:在满足使用性能的前提下,选用质量稳定可靠,价格低的原材料,调节配方,尽可能的减少成本

5. 配方有哪几种表示方法?各有何作用?相互关系是什么?

以质量份数表示的配方:以高分子化合物为100份,计量容易,应用广泛,适于工业生产

以质量百分数表示的配方:以混合料为100份,计算原材料消耗,定额指标等方便,便于财务的成本核算及定价

以体积百分数表示的配方:以混合体积为100份,便于计算体积成本及原材料仓储体积

生产配方:生产中实际使用的配方表示形式,便于直接计算,符合生产实际

相互关系:?/?、???

第六章

1.物料的混合有哪三种基本运动形式?聚合物成型时熔融物料的混合以哪一种运动形式为主?为什么?

答:混合涉及到三种扩散的基本运动形式,即分子扩散、涡流扩散和体积扩散。

体积扩散,即对流混合。是指流体质点、液滴或固体粒子由系统的一个空间位臵向另一空间位臵的运动,两种或多种组分在相互占有的空间内发生运动,以期达到各组分的均匀分布。在聚合物加工中,这种混合占支配地位。

2.什么是“非分散混合”,什么是“分散混合”, 两者各主要通过何种物料运动和混合操作来实现? 答:非分散混合。在混合中仅增加粒子在混合物中分布均匀性而不减小粒子初始尺寸的过程称为非分散混合或简单混合。

这种混合的运动基本形式是通过对流来实现的,可通过包括塞形流动和不需要物料连续变形的简单体积排列和臵换来达到。

分散混合。是指在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。分散混合的目的是把少数组分的固体颗粒和液满分散开来,成为最终粒子或允许的更小颗粒或液滴,并均匀地分布到多组分中,这就涉及少组分在变形粘性流体中的破裂问题,这是靠强迫混合物通过窄间隙而形成的高剪切区来完成的。

3. 为什么在评定固体物料的混合状态时不仅要比较取样中各组分的比率与总体比率的差异大小,而且还要考察混合料的分散程度? 答:衡量混合效果需从物料的均匀程度和组分的分散程度两方面来考虑。均匀程度指混入物所占物料的比率与理论或总体比率的差异。但就是相同比率的混合情况也是十分复杂的。在取样分析组成时,若一次抽取的试样的量足够多,或者,一次取样量虽不多,但取样的次数足够多,虽然每次抽取的试样分析结果有所出入,但(取多个试样分析结果的平均值时,) 仍可得出混合情况相同的结论。然而从混合料中各组分的分散程度来看,则可能相差甚远。因此,在判定物料的混合状态时,还必须考虑各组分的分散程度。

4. 温度对生胶塑炼有何影响?为什么天然橡胶在110℃时塑炼效果最差? 答:低温下,氧和橡胶大分子的直接引发氧化作用很小,但是低温橡胶的粘度很高,机械剪切作用力大大提高,橡胶大分子链在机械力作用下的断裂破坏是主要的,其断裂生成的大分子游离基立即与周围的空气中的氧相结合,生成分子量较小的稳定大分子,自由基活性得到终止。高温时,氧和橡胶大分子的化学活泼性大大提高,氧可以直接引发大分子发生氧化裂解反应,随着温度的升高反应速度急剧加大,所以机械塑炼效果也随之加大。当天然橡胶在110摄氏度的时候,它的机械力作用是最小的时候,氧化裂解的作用也是最小的时候。 5.天然橡胶的低温机械塑炼的目的及其原理与聚氯乙烯塑料中添加邻苯二甲酸二丁酯的目的及其原理有何异同?

答:天然橡胶的低温机械塑炼的目的是提高天然橡胶的可塑性,便于配合剂在基体中的均匀分布,也有利于后续的成型加工;原理是在主要在机械力的作用下,使大分子链发生断链。

聚氯乙烯塑料中添加邻苯二甲酸二丁酯的目的是为了降低大分子链之间的作用下,提高链段的运动能力,使得玻璃化温度降低,最终制品的韧性增强,柔性增大。

6.何谓橡胶的混炼?用开炼机混炼时三阶段及配合剂的加入次序? 答:混炼就是将各种配合剂与可塑度合乎要求的生胶或塑炼胶在机械作用下混合均匀,制成混炼胶的过程。 开炼机混炼经历包辊、吃粉、翻捣三个阶段。

配合剂加入顺序是混炼主要的工艺条件,为了能在较短的混炼时间里得到质量良好的混炼胶,应根据配合剂的作用、用量及其混炼特性来合理安排加入顺序。一般原则是;难分散的、量少的先加;易分散的、量多的后加;硫化剂和促进剂分开加,以免混在一起加入时因局部温度过高而使胶料焦烧;硫黄最后加。所以通常配合剂加入顺序为: 生胶一固体软化剂—促进剂、活性剂、防老剂一补强剂、填充剂一液体软化剂—硫黄及超促进剂。

7.何谓胶料混炼过程中产生的结合橡胶?

答:生胶在塑炼时橡胶大分子断链生成自由基,这种情况在混炼时同样会发生。在混炼过程中,橡胶分子断链生成大分子自由基可以与炭黑粒子表面的活性部位结合,也可以与发黑聚集体在混炼时被搓开所产生的具有较高活性的新生面结合,或者已与炭黑结合的橡胶又通过缠结或交联结合更多的橡胶,形成一种不溶于橡胶溶剂的产物--结合橡胶。

8. 区分“简单组分高分子材料”和“复杂组分高分子材料”,并请各举2-3例

答:简单组分高分子材料:主要由高聚物组成(含量很高,可达95%以上),加入少量(或不加入)抗氧剂、润滑剂、着色剂等添加剂。如: PE、PP、PTFE。

复杂组分高分子材料:复杂组分塑料则是由合成树脂与多种起不同作用的配合剂组成,如填充剂、增塑剂、稳定剂等组成。如:PF、SPVC 9.成型用的塑料形态有哪几种?各种形态的塑料有什么不同的特点?它们的应用情况如何?

答:热塑性塑料:热塑性塑料分子结构都是线型结构,在受热时发生软化或熔化,可塑制成一定的形状,冷却后又变硬。在受热到一定程度又重新软化,冷却后又变硬,这种过程能够反复进行多次。如聚氯乙烯、聚乙烯、聚苯乙烯等。塑性塑料成型过程简单,能够连续化生产,并且具有相当高的机械强度,因此发展很快。

热固性塑料:热固性塑料的分子结构是体型结构,在受热时也发生软化,可以塑制成一定的形态,但是受热到一定程度或加入少量固化剂后,就硬化定型,再加热也不会变软和改变形态了。热固性塑料加工成型后,受热不再软化,因此不能回收再用,如酚醛塑料、氨基塑料、环氧树脂等都是属于此类塑料。热固性塑料成型工艺过程比较复杂,所以连续生产有一定的困难,但其耐热性好、不容易变形,而且价格比较低廉。

工程塑料:工程塑料是可作为工程结构材料和代替金属制造机器零部件等的塑料。例如聚酰胺、聚碳酸酯、聚甲醛、ABS树脂、聚四氟乙烯、聚酯、聚砜聚酰亚胺等。工程塑料具有密度小、化学稳定性高、机械性能良好、电绝缘性优越、加工成型容易等特点,广泛应用于汽车、电器、化工、机械、仪器、仪表等工业,也应用于宇宙航行、火箭、导弹等方面。

通用塑料:是指产量大、价格低、应用范围广的塑料,主要包括聚烯烃、聚氯乙烯、聚苯乙烯、酚醛塑料和氨基塑料五大品种。人们日常生活中使用的许多制品都是由这些通用塑料制成。 10.什么叫塑料的混合和塑化,其主要区别在哪里?

答:这是物料的初混合,是一种简单混合,是在树脂的流动温度以下和较低剪切作用下进行的,在这一混合过程中,只是增加各组分微粒空间的无规则排列程度,而不减小粒子的尺寸。一般是一个间歇操作过程。

塑化物料在初混合基础上的再混合过程,是在高于树脂流动温度和较强剪切作用下进行的。塑化的目的是使物料在温度和剪切力的作用下熔融,获得剪切混合的作用,驱出其中的水分和挥发物,使各组分的分散更趋均匀,得到具有一定可塑性的均匀物料。 11.哪些机械通常用于塑料的初混合?哪些机械用于塑炼? 答:初混合:在大批量生产时,较多使用高速混合机,其适用于固态混合和固液混合。S型和Z型捏合机主要适用于固态和液态混合,对物料有较强的撕捏作用,另外还有转鼓式混合机和螺带式混合机。 塑化常用的设备主要是开放式塑炼机、密炼机和挤出机。 12. 塑料的塑化与橡胶的塑炼二者的目的和原理有何异同?

答::塑化:再混合,是高一级的混合。在高于流动温度(Tf或Tm)和较强烈的剪切速率下进行。混合后,塑料各组份的物理和化学性质有所变化。其目的是使物料在一定温度和剪切力下熔融,驱出其中的水份和挥发物。使各组份的分散更趋均匀,得到具有一定可塑性的均匀物料。

塑炼:使生胶由强韧的弹性转变为柔软的便于加工的塑性状态的过程。目的是使生胶获得一定的可塑性,使之适合于混炼、压延、压出、 成型等工艺操作;使生胶的可塑性均匀化,以便得到质量均匀的胶料。(目的是降低弹性,增加可塑性,获得流动性;混炼时配合剂易于分散均匀,便于操作;使生胶分子量分布变窄,胶料质量均匀一致。)

13. 什么是“生胶的塑炼”,什么是“塑料的塑炼”,为什么要分别对生胶和塑料进行塑炼?两者分别可采取哪些措施,提高塑炼效果? 答:生胶的塑炼:使生胶由强韧的弹性转变为柔软的便于加工的塑性状态的过程。目的是使生胶获得一定的可塑性,使之适合于混炼、压延、压出、成型等工艺操作;使生胶的可塑性均匀化,以便得到质量均匀的胶料。(目的是降低弹性,增加可塑性,获得流动性;混炼时配合剂易于分散均匀,便于操作;使生胶分子量分布变窄,胶料质量均匀一致。)

塑料的塑炼:再混合,是高一级的混合。在高于流动温度(Tf或Tm)和较强烈的剪切速率下进行。混合后塑料各组份的物理和化学性质有所变化。其目的是使物料在一定温度和剪切力下熔融,驱出其中的水份和挥发物。使各组份的分散更趋均匀,得到具有一定可塑性的均匀物料。

14. 聚氯乙烯粒状塑料与酚醛压塑粉在配臵过程中的塑化工序、目的、作用原理有何不同?

答:聚氯乙烯粒状塑料:通过双键聚合而成,经过筛选、配料、混合、塑化成粒状。

酚醛压塑粉:过滤、配料、混合、塑化的粉状塑料。 目的:都是为了得到制品成型前的物料。

原理:使用的机械不同,他们的自身的物理化学性质不同,致使他们得到的物料不同。

15、何谓塑料溶液和溶胶塑料?

答:塑料溶液的主要组成是作为溶质的合成树脂及各种配合剂和作为溶剂的有机溶剂。溶剂的作用是为了分散溶解树脂,使得到的塑料溶液获得流动性。溶剂对制品是没有作用的,只是为了加工而加入的一种助剂,在成型过程中必须予以排出。

溶胶塑料又称糊塑料,是固体树脂稳定地悬浮在非水液体介质中形成的分散体(悬浮体)。在溶胶塑料中氯乙烯聚合物或共聚物应用最广,通常称聚氯乙烯糊。

溶胶塑料中的非水液体主要是在室温下对树脂溶剂化作用很小而在高温下又很易增塑树脂的增塑剂或溶剂,是分散剂。有时还可加入非溶剂性的稀释剂,甚至有些加入热因性树脂或其单体。除此之外,溶胶塑料还因不同的要求加入胶凝剂、填充剂、表面活性剂、稳定剂、着色剂等各种配合剂,因此,溶液塑料的组成是比较复杂的,其在室温下是非牛顿液体,具有一定流动性。 16.简述聚合物共混的目的及原则

答:1.利用各聚合物组分的性能,取长补短,消除各单一聚合物组分性能的缺点,保持各自的优点,得到综合性能优异的聚合物材料。 2. 少量的某一聚合物作为另一个聚合物的改性剂,获得显著的改性效果。

3. 通过共混改善聚合物的加工性能。

第七章

1.何谓热固性塑料的固化速度?固化速率太慢或太快对制品有何影响?

答:这是热固性塑料成型时特有的也是最重要的工艺性能,它是衡量热固性塑料成型时化学反应的速度。它是以热固性塑料在一定的温度和压力下,压制标难试样时,使制品的物理机械性能达到最佳值所需的时间与试件的厚度的比值(s/mm厚度)来表示,此值愈小,固化速率愈大。

固化速率应当适中,过小则生产周期长,生产效率低,但过大则流动性下降,会发止塑料尚未充满模具型腔就已固化的现象,就不能适于成型薄壁和形状复杂的制品。

2.简述热固性塑料模压成型的工艺步骤。

答:热固性塑料模压成型工艺过程通常由成型物料的准备、成型和制品后处理三个阶段组成。

1、计量;

2、预压;

3、预热;

4、嵌件安放;

5、加料;

6、闭模;

7、排气;8.保压固化;

9、脱模冷却;

10、制品后处理;

3.试分析模压温度的高低对模压成型工艺的影响。

答:模压温度是指成型时所规定的模具温度,对塑料的熔触、流动和树脂的交联反应速度有决定性的影响。

在一定的温度范围内,模温升高、物料流动性提高,充模顺利,交联固化速度增加,模压周期缩短,生产效率高。但过高的模压温度会使塑料的交联反应过早开始和固化速度太快而使塑料的熔融粘度增加,流动性下降,造成充模不全。另外一方面,由于塑料是热的不良导体,模温高,固化速度快,会造成模腔内物料内外层固化不一,表层先行硬化,内层固化时交联反应产生的低分子物难以向外挥发,会使制品发生肿胀、开裂和翘曲变形,而且内层固化完成时,制品表面可能已过热,引起树脂和有机填料等分解,会降低制品的机械性能。因此模压形状复杂、壁薄、深度大的制品,不宜选用高模温,但经过预热的塑料进行模压时,由于内外层温度较均匀,流动性好,可选用较高模温。

模压温度过低时,不仅物料流动性差,而且固化速度慢,交联反应难以充分进行,会造成制品强度低,无光泽,甚至制品表面出现肿胀,这是由于低温下固化不完全的表层承受不住内部低分子物挥发而产生的压力的缘故。

4. 在热固性塑料模压成型中,提高模温应相应地降低还是升高模压压力才对模压成型工艺有利?为什么?

答:在热固性塑料模压成型中,提高模温一般应相应地升高模压压力才对模压成型工艺有利。在一定范围内模温提高能增加塑料的流动性,模压压力可降低;但模温提高也会使塑料的交联反应速度加速, 从而导致熔融物料的粘度迅速增高,因而需更高的模压压力。综合以 上因素,提高模温一般应相应地提高模压压力。

5. 热固性塑料模压成型中物料的预热温度对模压压力有何影响?为什么?

答:进行预热可以使物料熔化速度加快,黏度下降,流动性提高,模压压力降低;但如果预热温度过高会使塑料在预热过程中有部分固化,会抵消预热增大流动性效果,模压时需更高的压力来保证物料充满型腔。在预热时软化倾向>交联倾向,一般经过预热的物料可使用较低的模压压力。

6.在高分子材料成型加工中,哪些地方要求交联?交联能赋予高聚物制品哪些性能?

答:未硫化的橡胶Tg 在室温以下,常温下发黏,强度很低,基本无使用价值。通过硫化(交联),才能使用。酚醛树脂、氨基树脂、环氧树脂、不饱和聚酯等是具有活性官能团的低分子量的齐聚物,也只有通过交联,才能充分发挥它们的特性。在聚乙烯、

聚氯乙烯、聚氨酯等泡沫塑料生产中,交联也是极为重要的工艺技术, 交联有助于提高泡孔壁的强度。交联后的性能取决于交联密度。交联密度高,相邻交联点之间相对分子质量小,链段活动性受到限制, Tg 随之增高。交联改善了高分子材料的力学性能、耐热性能、化学稳定性能和使用性能。

7.试述天然橡胶以硫磺硫化后的制品大分子结构特征。

答:硫化后,橡胶大分子结构中各部位已程度不同地形成了网状结构,大分子链之间有主价键力的作用,使大分子链的相对运动受到一定的限制,在外力作用下,不易发生较大的位移,变形减小,强度增大,失去可溶性,只能有限溶胀。

8.试述橡胶硫化后的物理性能的变化,并解释之。

答:天然橡胶在硫化过程中,随着线型大分子逐渐变为网状结构,可塑性减小,拉伸强度、定伸强度、硬度、弹性增加,而伸长率、永久变形、疲劳生热等相应减小,但若继续硫化,则出现拉伸强度、弹性逐渐下降,伸长率、永久变形反而会上升的现象。这些现象都是线形大分子转变为网状结构的特征。

9.生胶和硫化胶在分子结构及性能上有何不同?

答:硫化前:结构:线性大分子,分子与分子之间无价键力;

性能:可塑性大,伸长率高,具可溶性。

硫化后:结构:1)化学键;2)交联键的位臵;3)交联程度;

4)交联

性能:1)力学性能(定伸强度、硬度、拉伸强度、伸

长率、弹性);2)物理性能;3)化学稳定性 10. 橡胶的硫化历程分为几个阶段?各阶段的实质和意义是什么? 答:橡胶在硫化过程中,其各种性能随硫化时间增加而变化。将与橡胶交联程度成正比的某一些性能(如定伸强度)的变化与对应的硫化时间作曲线图,可得到硫化历程图。橡胶的硫化历程可分为四个阶段:焦烧阶段、预硫阶段、正硫化阶段和过硫阶段。

焦烧阶段。又称硫化诱导期,是指橡胶在硫化开始前的延迟作用时间,在此阶段胶料尚未开始交联,胶料在模型内有良好的流动性。对于模型硫化制品,胶料的流动、充模必须在此阶段完成,否则就发生焦烧,出现制品花纹不清,缺胶等缺陷。

预硫阶段。焦烧期以后橡胶开始交联的阶段。在此阶段,随着交联反应的进行,橡胶的交联程度逐渐增加,并形成网状结构,橡胶的物理机械性能逐渐上升,但尚未达到预期的水平,但有些性能如抗撕裂性、耐磨性等却优于正硫化阶段时的胶料。预硫阶段的长短反映了橡胶硫化反应速度的快慢,主要取决于胶料的配方。

正硫化阶段。橡胶的交联反应达到一定的程度,此时的各项物理机械性能均达到或接近最佳值,其综合性能最佳。此时交联键发生重排、裂解等反应,胶料的物理机械性能在这个阶段基本上保持恒定或变化很少.所以该阶段也称为平坦硫化阶段。

过硫阶段。正硫化以后继续硫化便进入过硫阶段。交联反应和氧化及热断链反应贯穿于橡胶硫化过程的始终,只是在不同的阶段,这两种反应所占的地位不同,在过硫阶段中往往氧化及热断链反应占主导地位,因此胶料出现物理机械性能下降的现象。

11.橡胶制品生产过程中,剩余焦烧时间的长短与橡胶制品的类型有什么关系?

答:不同的硫化方法和制品,对焦烧时间的长短亦有不同要求。在硫化模压制品时,总是希望有较长的焦烧期,使胶料有充分时间在模型内进行流动,而不致使制品出现花纹不清晰或缺胶等缺陷。在非模型硫化中,则应要求硫化起步应尽可能早一些,因为胶料起步快而迅速变硬,有利于防止制品因受热变软而发生变形。不过在大多数情况下,仍希望有较长的焦烧时间以保证操作的安全性。 12. 何谓返原性胶料和非返原性胶料?

答:在过硫阶段中不同的橡胶出现的情况是不同的。天然橡胶、丁苯橡胶等主链为线型大分子结构,在过硫阶段断链多于交联而出现硫化返原现象;而对于大部分合成橡胶,如丁苯、丁腈橡胶,在过硫阶段中易产生氧化支化反应和环化结构,胶料的物理机械性能变化很小,甚至保持恒定,这种胶料称硫化非返原性胶料。

13. 何谓硫化三要素?对硫化三要素控制不当会造成什么后果? 答:硫化温度、硫化压力和硫化时间。

硫化温度是促进硫化反应的主要因素,提高硫化温度可以加快硫化速度,缩短硫化时间,提高生产效率。

硫化压力的选取主要根据胶料的性质、产品结构和其他工艺条件等决定的。对流动性较差的,产品形状结构复杂的,或者产品较厚、层数多的宜选用较大的硫化压力。硫化温度提高,硫化压力也应高一些。但过高压力对橡胶的性能也不利,高压会对橡胶分子链的热降解有加速作用;对于含纤维织物的胶料,高压会使织物材料的结构被破坏,导致耐屈挠性能下降。

橡胶在硫化过程中,性能在不断变化,所以选取恰当的硫化时间对保证制品质量十分重要。在一定的硫化温度和压力下,橡胶有一最宜的硫化时间,时间太长则过硫,时间太短则欠硫,对产品性能都不利。 14. 何谓正硫化和正硫化时间?正硫化时间的测定方法有哪几种?各有何特点?

答:正硫化是一个阶段,在正硫化阶段中,胶料的各项物理机械性能保持最高值,但橡胶的各项性能指标往往不会在同一时间达到最佳值。

橡胶处在正硫化时,其物理机械性能或综合性能达到最佳值,预硫或过硫阶段胶料性能均不好。达到正硫化所需的时间为正硫化时间。 测定正硫化点的方法很多,主要有物理机械性能法、化学法和专用仪器法。

(1)物理机械性能法。此法的缺点是麻烦,不经济。

(2)化学法。测定橡胶在硫化过程中游离硫的含量,以及用溶胀法测定硫化胶的网状结构的变化来确定正硫化点。此法误差较大,适应性不广,有一定限制。

(3)专用仪器法。这是用专门的测试仪器来测定橡胶硫化特性并确定正硫化点的方法。目前主要有门尼粘度计和各类硫化仪,其中转子旋转振荡式硫化仪用得最为广泛。

15.某一胶料的硫化温度系数为2,当硫化温度为137℃时,测出其硫化时间为80min,若将硫化温度提高到143℃,求该胶料达正硫化所需要的时间?上述胶料的硫化温度时间缩短到60min时,求所选取的硫化温度是多少?

t答:1Kt2802t214313710T2T110

t2=52min 80260T213710

1.249=0.3010(T2-137)

T2=141.2℃

16. 某胶料的硫化温度系数为2,在实验室中用试片测定,当硫化温度为143℃时,硫化平坦时间为20---80min,该胶料在140℃下于模型中硫化了70min,问是否达到正硫化?

解:由范特霍夫方程得 t1/t2=KT2-T1/10 得

t1/70=2140-143/10 解得 t1=56.9min ∵t1=56.9min在硫化平坦时间20---80min范围内

∴该胶料已达到正硫化

17.绘出增强热固性塑料层压板成型时热压过程五个时期的温度和压力与时间的关系曲线,并说明各时期的温度和压力在成型中的作用。 答:压制的温度控制一般分为五个阶段

预热阶段:板坯的温度由室温升至树脂开始交联反应的温度,使树脂开始熔化,并进一步渗入增强材料中,同时排出部分挥发物。此时的压力=最高压力的1/3~1/2。

中间保温阶段:树脂在较低的反应速度下进行交联固化反应,直至溢料不能拉成丝,然后开始升温升压。

升温阶段:将温度和压力升至最高,加快交联反应。(此时树脂的流动性已下降,高温高压不会造成胶料流失)

热压保温阶段:在规定的温度和压力下,保持一定时间,使树脂充分交联固化。

冷却阶段:树脂在充分交联后,使温度逐渐降低,进行降温冷却。

第八章

1.挤出机螺杆在结构上为何分段?分段的根据是什么?

答:根据物料在螺杆中的温度、压力、黏度等的变化特征,可将螺杆分为加料段、压缩段、均化段三段。

2.挤出螺杆一般分为哪几段?每段各有什么作用?对于晶态塑料的挤出成型,应选择何种螺杆?其L2 的长度有何特征,为什么? 答:根据物料在螺杆中的温度、压力、粘度等的变化特征,可将螺杆分为加料段、压缩段和均化段三段。

加料段:加料段的作用是对料斗送来的塑料进行加热,同时输送到压缩段。塑料在该段螺槽始终保持固体状态。 压缩段:又叫相迁移段,其作用是对加料段送来的料起挤压和剪切作用,同时使物料继续受热,由固体逐渐转变为熔融体,赶走塑料中的空气及其他挥发成分,增大塑料的密度,塑料通过压缩段后,应该成为完全塑化的粘流状态。

均化段:又叫计量段,其作用是将塑化均匀的物料在均化段螺槽和机头回压作用下进一步搅拌塑化均匀,并定量定压地通过机头口模挤出成型。

对于晶态塑料的挤出成型:挤出结晶型热塑性塑料的加料段要求较长,使塑料有足够的停留时间,慢慢软化,该段约占螺杆全长的60% 65%;结晶型塑料,熔融温度范围较窄,压缩段较短,为3 5Ds;为了稳定料流,均化段应有足够的长度,通常是螺杆全长的20% 25%。

其L2 的长度较短,因为其熔融温度范围较窄。

3.什么叫压缩比?挤出机螺杆设计中的压缩比根据什么来确定? 答:螺杆的压缩比A:指螺杆加料段第一个螺槽的容积与均化段最后一个螺槽的容积之它表示塑料通过螺杆的全过程被压缩的程度。 A愈大,塑料受到挤压的作用也就愈大,排除物料中所含空气的能力就大。但A太大,螺杆本身的机械强度下降。压缩比一般在2 5之间。

压缩比的大小取决于挤出塑料的种类和形态,粉状塑料的相对密度小,夹带空气多,其压缩比应大于粒状塑料。另外挤出薄壁状制品时,压缩比应比挤出厚壁制品大。 压缩比的获得主要采用等距变深螺槽、等深度变距螺槽和变深变距螺槽等方法,其中等距变深螺槽是最常用的方法。

4.什么是挤出机螺杆的长径比?长径比的大小对塑料挤出成型有什么影响?长径比太大又会造成什么后果?

答:螺杆的长径比L/Ds:指螺杆工作部分的有效长度L与直径Ds之比,此值通常为15 25,但近年来发展的挤出机有达40的,甚至更大。

L/Ds大,能改善塑料的温度分布,混合更均匀,并可减少挤出时的逆流和漏流,提高挤出机的生产能力。L/Ds过小,对塑料的混合和塑化都不利。因此,对于硬塑料、粉状塑料或结晶型塑料要求塑化时间长,应选较大的L/Ds。L/Ds大的螺杆适应性强,可用于多种塑料的挤出。

但L/Ds大大,对热敏性塑料会因受热时间大长而易分解,同时螺杆的自重增加,制造和安装都困难,也增大了挤出机的功率消耗。目前,L/Ds以25居多。

5.渐变型和突变型螺杆有何区别?它们各适合哪类塑料的挤出?为什么?

答:等距变深螺杆按其螺槽深度变化的快慢(即压缩段的长短)又可分为等距渐变形螺杆和等距突变形螺杆。非晶型塑料宜选用渐变形螺杆,结晶型塑料宜选用突变形螺杆。

6.如欲提高挤出机加料段固体输送能力,应对设备采取什么措施?指出其理论依据。 答:固体塞的移动情况是旋转运动还是轴向运动占优势,主要决定于螺杆表面和料筒表面与物料之间的摩擦力的大小。只有物料与螺杆之间的摩擦力小于物料与料筒之间的摩擦力时,物料才沿轴向前进;否则物料将与螺杆一起转动,因此只要能正确控制物料与螺杆及物料与料筒之间的静摩擦因数,即可提高固体输送能力。

为了提高固体输送速率,应降低物料与螺杆的静摩擦因数,提高物料与料筒的径向静摩擦因数。要求螺杆表面有很高的光洁度,在螺杆中心通入冷却水,适当降低螺杆的表面温度,因为固体物料对金属的静摩擦因数是随温度的降低而减小的。

7.塑料在挤出机中的熔化长度的意义是什么?

答:挤出过程中,在加料段内是充满未熔融的固体粒子,在均化段内则充满着已熔化的物料,而在螺杆中间的压缩段内固体粒子与熔融物共存,物料的熔化过程就是在此区段内进行的,故压缩段又称为熔化区。在熔化区,物料的熔融过程是逐渐进行的,自熔化区始点A开始,固体床的宽度将逐渐减小,熔池的宽度逐渐增加,直到熔化区终点B,固体床的宽度下降到零,进入均化段,固体床消失,螺槽全部充满熔体。从熔化开始到固体床的宽度降到零为止的总长度,称为熔化长度。

8.塑料熔体在挤出机螺槽内有几种流动形式?造成这几种流动的主要原因是什么?

答:从压缩段送入均化段的物料是具有恒定密度的粘流态物料,在该段物料的流动已成为粘性流体的流动,物料不仅受到旋转螺杆的挤压作用,同时受到由于机头口模的阻力所造成的反压作用,物料的流动情况很复杂。

通常把物料在螺槽中的流动看成由下面四种类型的流动所组成: (1)正流:是物料沿螺槽方向向机头的流动,这是均化段熔体的主流,是由于螺杆旋转时螺棱的推挤作用所引起的,从理论分析上来说,这种流动是由物料在深槽中受机筒摩擦拖曳作用而产生的,故也称为拖曳流动,它起挤出物料的作用。

(2)逆流:沿螺槽与正流方向相反的流动,它是由机头口模、过滤网等对料流的阻碍所引起的反压流动,故又称压力流动,它将引起挤出生产能力的损失。

(3)横流:物料沿x轴和y轴两方向在螺槽内往复流动,也是螺杆旋转时螺棱的推挤作用和阻挡作用所造成的,仅限于在每个螺槽内的环流,对总的挤出生产率影响不大,但对于物料的热交换、混合和进一步的均匀塑化影响很大。

(4)漏流:物料在螺杆和料筒的间隙沿着螺杆的轴向往料斗方向的流动,它也是由于机头和口模等对物料的阻力所产生的反压流功。 9. 分析挤出成型时,螺杆均化段末端黏流态物料的压力与哪些因素有关?

10.各种挤出成型制品的生产线由各自的主、辅机组成,请归纳它们的工艺过程,用框图表示

11.塑料薄膜挤出生产工艺方法有哪几种?简要分析各种方法的工艺特点。不同成型方法所得的塑料薄膜性能有何不同的特点及应用情况如何?

12.管材挤出的工艺过程是什么?挤出管材如何定径?

答:管材挤出的基本工艺是:由挤出机均化段出来的塑化均匀的塑料,经过过滤网、粗滤器而达分流器,并为分流器文架分为若干支流,离开分流器文架后再重新汇合起来,进入管芯口模间的环形通道,最后通过口模到挤出机外而成管子,接着经过定径套定径和初步冷却,再进入冷却水槽或具有喷淋装臵的冷却水箱,进一步冷却成为具有一定口径的管材,最后经由牵引装臵引出并根据规定的长度要求而切割得到所需的制品。

管材挤出装臵由挤出机、机头口模、定型装臵、冷却水槽、牵引及切割装臵等组成,其中挤出机的机头口模和定型装臵是管材挤出的关键部件。

管材挤出后,温度仍然很高,为了得到准确的尺寸和几何形状以及表面光洁的管子,应立即进行定径和冷却,以使其定型。

外径定型是使挤出的管子的外壁与定径套的内壁相接触而起定型作用的,为此,可用向管内通入压缩空气的内压法或在管子外壁抽真空法来实现外径定型。

内压法进行外径定型的定径套如图所示。定型时,可通过分料筋的孔道通入一定压力的压缩空气(一般为0.05--0.3MPa表压)。并在挤出的管端或管内封塞。定径套的外壁为夹套,内通冷却水以冷却管子,经定径后的管子离开定径套时不再变形。

第九章

1. 何谓注射成型,它有何特点?请用框图表示一个完整的注射成型工艺过程。

答:塑料的注射成型又称注射模塑,或简称注塑,是塑料制品成型的重要方法。目前注射制品约占塑料制品总量的30%。在工程塑料中有80%是采用注射成型。

注射成型是间歇生产过程,除了很大的管、棒、板等型材不能用此法生产外,其他各种形状、尺寸的塑料制品都可以用这种方法生产。它不但常用于树脂的直接注射,也可用于复合材料、增强塑料及泡沫塑料的成型,也可同其他工艺结合起来,如与吹胀相互配合而组成注射—吹塑成型。

塑料的注射成型是将粒状成粉状塑料加入到注射机的料筒,经加热熔化呈流动状态,然后在注射机的柱塞或移动螺杆快速而又连续的压力下,从料简前端的喷嘴中以很高的压力和很快的速度注入到闭合的模具内。充满模腔的熔体在受压的情况下,经冷却(热塑性塑料)或加热(热固性塑料)固化后,开模得到与摸具型腔相应的制品。

2. 塑料挤出机的螺杆与移动螺杆式注射机的螺杆在结构特点和各自的成型作用上有何异同?

答:注射螺杆与挤出螺杆在结构上有如下区别: 1)注射螺杆的长径比较小,在10 15之间。 2)注射螺杆压缩比较小,在2 2.5之间。

3)注射螺杆均化段长度较短,但螺槽深度较深,以提高生产率。为了提高塑化量,加料段较长,约为螺杆长度的一半。 4)注射螺杆的头部呈尖头型,与喷嘴能很好的吻合。

注射螺杆起预塑化和注射作用,是间歇操作过程,它对物料的塑化能力、稳定以及操作连续性等要求没有挤出螺杆那么严格。

注射机的螺杆功能为加料、输送、塑化和注射;而挤出机的螺杆功能则是加料、输送、塑化和挤出。

注射机螺杆的运动方式为:旋转、轴向运动;而挤出机的螺杆运动方式为旋转。

注射机的螺杆头部为尖头;而挤出机的螺杆头部为圆头、平头。 3. 请从加热效率出发,分析柱塞式注射机上必须使用分流梭的原因 。

答:分流梭装在料筒前的中心部分,是两端锥形的金属圆锥体,形如鱼雷,因此也叫鱼雷头。 分流梭的作用是将料筒内流经该处的料成为薄层,使塑料流体产生分流和收敛流动,以缩短传热导程。既加快了热传导,也有利于减少或避免塑料过热而引起的热分解现象。同时,塑料熔体分流后,在分流梭与料简间隙中流速增加,剪切速度增大,从而产生较大的摩擦热,料温升高,粘度下降,使塑料得到进一步的混合塑化,有效提高柱塞式注射机的生产率及制品质量。

柱塞式注射机必须采用分流梭,移动螺杆式注射机的塑化效果好,不采用分流梭。

4. 注射机的喷嘴有哪几种类型?各适合何种聚合物材料的注射成型?

答:在料筒的前部,是连接料筒和塑模的通道,其作用是引导塑化料从料筒进入棋具,并使有一定的射程。喷嘴的内径一般都是自进口逐渐向出口收敛,以便与模具紧密接触,由于喷嘴的内径不大,当塑料通过时,流速增大,剪切速度增加,能使塑料进一步塑化。 热塑性塑料的注射喷嘴类型很多,结构各异,使用最普遍的有如下三种形式:

1)通用式喷嘴:是最普遍的形式,制造方便,无加热装臵,注射压力损失小,常用于聚乙烯、聚苯乙烯、聚氯乙烯及纤维素等的注射成型。 2)延伸式喷嘴:是通用式喷嘴的改进型,制造方便,有加热装臵,注射压力降较小,适用于有机玻璃、聚甲醛、聚砜、聚碳酸酯等高粘度树脂。

3)弹簧针阀式喷嘴:是一种自锁式喷嘴,结构较复杂,制造困难,流程较短,注射压力降较大,较适用于尼龙、涤纶等熔体粘度较低的塑料注射。

5. 以柱塞式注射机成型聚丙烯制品时,注射机料筒的加热效率为0.8,如果聚丙烯预热温度50℃,注射料温230℃,注射机的料筒最高温度应控制几度? 答:

TTOE,TO50℃,T230,E0.8,代入得TW275℃TwTO

6. 试分析注射成型中物料温度和注射压力之间的关系,并绘制成型区域示意图。

答:在同一塑料的摩擦因数和熔融黏度是随料筒温度和模具温度而变动的,故注射压力与料温是相互制约的,料温高时,注射压力减小;反之,所需注射压力加大。

7. 保压在热塑性塑料注射成型过程中的作用是什么?保压应有多少时间?何谓凝封?

答:保压阶段。是熔体充满模腔时起至柱塞或螺杆撤回时为止的一段时间。在这段时间内,塑料熔体会因受到冷却而发生收缩,柱塞或螺杆需保持对塑料的压力,使模腔中的塑料进一步得到压实,同时料筒内的熔体会向模腔中继续流入以补足因塑料冷却收缩而留出的空隙。随模腔内料温下降,模内压力也因塑料冷却收缩而开始下降。 保压时间一般约20-100s,大型和厚制品可达2-5min。塑料注射充模保压时,浇注系统的熔体先行冷却硬化的现象叫“凝封”,凝封可防止模腔内尚未冷却的熔体向喷嘴方向倒流。 8. 试述晶态聚合物注射成型时温度(包括料温和模温)对其结晶性能和力学性能的影响。

答:料筒的温度的高低主要决定与塑料的性质,必须把塑料加热到黏流温度(Tf)或熔点以上,但必须低于其分解温度。?????不会 模具温度不但影响塑料充模时的流动行为,而且影响制品的物理机械性能和表观质量。实际上冷却速度的大小取决于塑料熔体温度(Tm)与冷却介质温度(Tc)的温差;当TcTg为缓冷。结晶型塑料注射入模具后,将发生相转变,冷却速率将影响塑料的结晶速率。缓冷,即模温高,结晶速率大,有利结晶,能提高制品的密度和结品度,制品成型收缩性较大,刚度大,大多数力学性能较高,但伸长率和冲击强度下降;反过来,骤冷所得制品的结晶度下降,韧性较好。但骤冷不利于大分子的松弛过程,分子取向作用和内应力较大。中速冷塑料的结晶和取向较适中,是用得最多的条件。实际生产中用何种冷却速度,还应按具体的塑料性质利制品的使用性能要求来决定。、

9.聚丙烯和聚苯乙烯注射成型时,考虑到产品的性能和生产效率,它们的模具温度应分别控制在哪个温度范围最适宜?为什么?(PP:Tg=-10℃左右,PS:Tg=80℃左右)

答:聚丙烯的结晶能力较强,提高模具温度有助于改善熔体在模内的流动性,减小内应力和分子的定向作用,增强制件的密度和结晶度甚至能够提前脱模;但制件的冷却时间、收缩率和脱模后的翘曲变形将增大。制品结晶度的增加,制件的表面粗糙度值也会随之减小。综合考虑PP 模具温度Tc>Tg,生产上常用温度为40-90℃

无定形塑料注射充模后无相转变,故模温高低主要影响充模时间长短,较低的模温,冷却快,生产效率提高。PS 熔融黏度较低,采用偏低的模温Tc

11.试分析注射成型过程中快速充模和慢速充模各有什么利弊。

答:充模速度↑,物料受剪切↑,生热↑,T ↑,黏度下降,充模压力↑,充模顺利,能提高制品的熔接缝强度,生产周期缩短;但速度↑↑,料流为湍流,严重时引起喷射用,卷入空气,可引起塑料局部烧伤及分解,使制品不均匀,内应力较大表面常有裂纹。慢速充模时, 熔体以层流状态流动,顺利将模腔内的空气排出,制品质量较均匀;但充模过慢,会使熔体在流道中冷却降温,引起黏度提高,流动性下降,引起充模不全,并出现分层和结合不好的熔接痕,影响制品强度和表面质量。

12. 简述热固性塑料和橡胶的注射成型原理。 答:热固性塑料注射成型原理:其主要组分是线型或带有支链的低分子量聚合物,而且聚合物分子链上存在可反应的活性基团,因此,热固性塑料受热成型过程中不仅发生物理状态的变化,而且还发生不可逆的化学变化。加进料筒内的热固性塑料受热转变为黏流态,而成为具有一定流动性的熔体,但有可能因发生化学反应而使黏度升高,甚至交联硬化为固体。所以为了便于注射成型能顺利进行,要求成型物料首先在温度相对较低的料筒内预塑化到半熔融状态,注入高温模腔后继续加热,物料就通过自身反应基团或反应活性点与加入的固化剂作用,经一定时间的交联固化反应,使线性树脂逐渐变成体型结构。

橡胶的注射成型原理:橡胶注射成型是将胶料通过注射机进行加热,然后在压力作用下从机筒注入密闭的模型中,经热压硫化而成为制品的生产方法,其注射模具是直接装在注射机上,生产时将带状胶料喂入加料口,经预热、塑化后由注射机的螺杆或柱塞直接注入模型就地硫化。

第二篇:高分子材料加工成型原理题库

填空:

1. 聚合物具有一些特有的加工性质,如有良好的__可模塑性__,__可挤压性__,__可纺性__和__可延性__。正是这些加工性质为聚合物材料提供了适于多种多样加工技术的可能性。

2. __熔融指数__是评价聚合物材料的__可挤压性__这一加工性质的一种简单而又实用的方法,而__螺旋流动试验__是评价聚合物材料的__可模塑性__这一加工性质的一种简单而又实用的方法。 3. 在通常的加工条件下,聚合物形变主要由__高弹形变__和__粘性形变__所组成。从形变性质来看包括__可逆形变__和__不可逆形变__两种成分,只是由于加工条件不同而存在着两种成分的相对差异。

4. 聚合物的粘弹性行为与加工温度T有密切关系,当T>Tf时,主要发生__粘性形变__,也有弹性效应,当Tg

6. 假塑性流体在较宽的剪切速率范围内的流动曲线,按照变化特征可以分为三个区域,分别是:__第一牛顿区__、__非牛顿区__和__第二牛顿区__。

7. 聚合物液体在管和槽中的流动时,按照受力方式划分可以分为__压力流动__、__收敛流动__和__拖拽流动__;

按流动方向分布划分:__一维流动__、__二维流动__和__三维流动__。

8. 影响聚合物流变形为的的主要因素有:_温度_、_压力_、_应变速率_和_聚合物结构因素_以及_组成_等。

9. 聚合物流动行为最常见的弹性行为是_端末效应_和_不稳定流动,它们具体包括:_入口效应_、出口膨胀效应、__鲨鱼皮现象__和__熔体破裂__。

10.聚合物加工过程中的主要的物理变化有:结晶_和_取向;主要化学变化有:降解_和_交联。

11.加工成型过程中影响结晶的主要因素有:_冷却速率_、_熔融温度_、_熔融时间_、_应力作用__以及__低分物和链结构的影响__。

12.加工成型过程中取向按照流动成因可分为:拉伸取向_和_流动取向;按照取向方式可分为:单轴取向_和__双轴取向__。

13.聚合物在成型加工过程或长期使用容易发生老化现象,有效方法之一是添加__防老剂__,按照功用的不同可将防老剂具体分为:__稳定剂__、__光稳定剂__、__抗氧剂__和__驱避剂__等。

14.聚合物在成型加工过程中物料的混合过程一般是靠__扩散__、__对流__和__剪切__三种作用实现的。

15.单螺杆挤出机的基本结构主要包括五个部分,它们分别是:传动装置_、加料装置_、料筒_、螺杆、机头口模。 16.根据物料在螺杆中的变化特征将螺杆分为三个部分:__加料段__、__压缩段__、__均化段__。

17.挤出机的机头与口模的组成部件包括:__过滤网_、多孔板_、_分流器__、__模芯__、__口模_和__机颈__等。 18.注射机按照结构特征划分可以分为__柱塞式__和__螺杆式__。它们都主要由三个主要系统构成,具体包括:__注射系统__、__锁模系统__和__模具系统__。

19.注射机的螺杆的主要作用是:__送料__、__压实__、__塑化__、__传压__。

20.塑料一次成型工艺有多种,其中用于最广泛的四种分别有:挤出成型、注塑成型、模压成型_和__压延成型__。 21.注射模具的结构可以千变万化,而且基本结构都是一致的,主要由:浇注系统、成型零件__和__结构零件__三大部分组成。

名词解释:

一次成型:—次成型是通过加热使塑料处于粘流态的条件下,经过流动、成型和冷却硬化(或交联固化),而将塑料制成各种形状的产品的方法

二次成型:在一定条件下将一次成型得到的片、板、棒等塑料成品,加热使其处于类橡胶状态,通过外力作用使其形变而成型为各种较简单形状,再经冷却定型而得新产品。

挤出成型:借助螺杆或柱塞的挤压作用,使受热融化的塑料在压力推动下,强行通过口模而成为具有恒定截面的连续型材的一种成型方法。

压制成型:将粉状或糊团等形状的热固性树脂加入加热的模具型腔内,然后闭合模具加压加热,使树脂达到流动状态,并充满模具型腔的各个角落,同时,通过交联反应固化定型,经适当的固化时间后,打开模具取出制品。

压延成型:先用各种塑炼设备将成型物料熔融塑化,然后使已塑化的熔体通过一系列相向旋转的滚筒间隙,使之经受挤压与延展作用成为平面状的连续塑性体,再经过冷却定型和适当的后处理即得到膜、片类塑料制品。

注射周期:注射周期或称总周期,指完成一次注射成型所需的时间。

压延效应:在压延过程中,热塑性塑料由于受到很大的剪切应力作用,因此大分子会顺着薄膜前进方向发生定向作用,使生成的薄膜在物理机械性能上出现各向异性,这种现象称为压延效应。

中空吹塑成型:将挤出或注射成型的塑料管坯(型坯)在高弹态时置于各种形状的模具中,并即时在管坯中通入压缩空气将其吹胀,使其紧贴于模腔壁上成型,经冷却脱模后即得中空制品。

热成型:利用热塑性塑料的片材作为原料,夹在模具的框架上,让其在Tg至Tf间的适宜温度加热软化,施加压力,使其紧贴模具的型面,取得与型面相仿的形状尺寸,经冷却定型和修整后即得制品。

牛顿流体:在一维剪切流动情况下,当有剪切应力于定温下施加到两个相距dr的流体平行层面并以相对速度dv运动,剪切应力与剪切速率成线性关系的流体称为牛顿流体.

非牛顿流体:不遵从牛顿流动定律的流体统称为非牛顿流体。

粘度:又叫切变粘度系数,简称粘度产生单位剪切速率(速度梯度)所必须的剪切应力值

宾汉液体:与牛顿流体相同, 剪切速率~ 剪切应力的关系也是一条直线,不同处:它的流动只有当  高到一定程度后才开始,需要使液体产生流动的最小应力y称为屈服应力。当  y时,完全不流动 。

假塑性液体:流体的表观粘度随剪切应力的增加而降低。也即切力变稀现象。

膨胀性液体:流体的表观粘度随剪切应力的增加而增加,也即切力增稠现象。

剪切速率:单位时间内流体所产生的剪切应变

端末效应:管子进口端与出口端与聚合物液体弹性行为有关的现象称为端末效应。

鲨鱼皮症:一般指“鲨鱼皮症”,是发生在挤出物熔体流柱表面上的一种缺陷现象,其特点是在挤出物表面形成很多细微的皱纹,类似于鲨鱼皮。

熔体破碎:也是一种不稳定流动现象,具体是挤出物表面出现凹凸不平,外形畸变支离断裂,内部和外部都产生破坏的现象。

结晶:是指晶体形成的具体过程。

取向:聚合物结构单元或纤维状填料在某种程度上顺着流动的方向作平行排列,这种排列常成为取向

降解:降解:聚合物分子量降低的作用。

交联:聚合物的加工过程,形成三向网状结构的反应称为交联

熔融指数:是指在一定载荷下定温下10分钟内聚合物从出料口挤出的重量,单位是克。

温度敏感指标:给定剪切速率下相差40℃的两个温度T1和T2的粘度比。

2、分别阐述聚合物在高弹态和粘流态时的粘弹性形变特点。

即使在较小的外力作用下,也能迅速产生很大的形变,并且当外力除去后,形变又可逐渐恢复。这种受力能产生很大的形变,除去外力后能恢复原状的性能称高弹性,相应的力学状态称高弹态。

当温度升到足够高时,在外力作用下,由于链段运动剧烈,导致整个分子链质量中心发生相对位移,聚合物完全变为粘性流体,其形变不可逆,这种力学状称为粘流态。

3、什么是聚合物的力学三态,各自的特点是什么?各适用于什么加工方法?

玻璃态、高弹态和粘流态称为聚合物的力学三态。

聚合物在外力作用下的形变小,具有虎克弹性行为:形变在瞬间完成,当外力除去后,形变又立即恢复,表现为质硬而脆,这种力学状态与无机玻璃相似,称为玻璃态。 车、铣、刨、削等机械加工

这种受力能产生很大的形变,除去外力后能恢复原状的性能称高弹性,相应的力学状态称高弹态。 真空成型、压力成型、压延、弯曲成型等加工

聚合物完全变为粘性流体,其形变不可逆,这种力学状称为粘流态。 熔融纺丝、注射、挤出、吹塑、贴合等加工

4、画出几种典型流体的剪切力-剪切速率流动曲线,并简单说明各自的流变行为特征。

宾汉流体:

与牛顿流体相同, 剪切速率~ 剪切应力的关系也是一条直线,不同处:它的流动只有当  高到一定程度后才开

始,需要使液体产生流动的最小应力y称为屈服应力。当  y时,完全不流动 。 假塑性流体:

流体的表观粘度随剪切应力的增加而降低。也即切力变稀现象。 膨胀性流体:

流体的表观粘度随剪切应力的增加而增加,也即切力增稠现象。 牛顿流体:

在一维剪切流动情况下,当有剪切应力于定温下施加到两个相距dr的流体平行层面并以相对速度dv运动,剪切应力与剪切速率成线性关系的流体称为牛顿流体.

6、影响聚合物粘度的因素分别有哪些?

对于高聚物熔体来说,影响粘度的因素有许多,应力、应变速率、温度、压力、分子参数和结构、相对分子质量分布、支化和添加剂等。但归结起来有两个方面:

 (1)熔体内的自由体积因素,自由体积 粘度 

 (2)大分子长链间的缠结,凡能减少缠结作用因素,都能加速分子运动,粘度

7、压力流动、收敛流动、拖拽流动的定义及各自常见发生场合。

 压力流动:在简单的形状管道中因受压力作用而产生的流动。<受力:压力、剪切力>;聚合物成型时在管内的流动多属于压力梯度引起的剪切流动。如注射时流道内熔体的流动。

 收敛流动:在截面积逐渐减小的流道中的流动。<受力:压力、剪切力、拉伸力>;多发生在在锥形管或其他截面积逐渐变小的管道中。

 拖拽流动:在具有部分动件的流道中的流动。<受力:拉伸力、剪切力>,如在挤出机螺槽中的聚合物流动以及线缆包覆物生产口模中。

8、牛顿流体及非牛顿流体在圆管中的流动特征各是什么?

牛顿流体在圆管中的流动特征:  剪切应力:管壁处剪切应力最大,中心处为零;剪切应力在液体中的分布与半径成正比,并呈直线关系。  流体速度:液体在圆形管道中的流动时具有抛物线型的速率分布;管中心处的速率最大,管壁处为零,圆管中的等速线为一些同心圆。 非牛顿流体流动的特征:

 剪切应力:管壁处剪切应力最大,中心处为零;剪切应力在液体中的分布与半径成正比,并呈直线关系。(与牛顿流体相同)

 流体速度:对于膨胀性非牛顿液体(n>1),速度分布曲线变得较为陡峭,n值愈大,愈接近于锥形;对假塑性非牛顿液体(n<1),分布曲线则较抛物线平坦;n愈小,管中心部分的速度分布愈平坦,曲线形状类似于柱塞。管中心处的速率最大,管壁处为零,圆管中的等速线为一些同心圆。

9、聚合物加工中,对于尺寸变化的管道中通常采用一段有收敛作用的管道来连接,是何原因?

答:避免任何死角的存在,减少聚合物因过久停留而引起的分解,同时有利于降低流动过程因强烈扰动带来的总压力降,减少能耗,减少流动缺陷,提高产品质量和设备生产能力。

10、入口效应和出口效应对聚合物加工有何不利?一般怎样去降低?

1入口效应和离膜膨胀效应通常对聚合物加工来说都是不利的,特别是在注射、挤出和纤维纺丝过程中,可能导○制产品变形和扭曲,降低制品尺寸稳定做并可能在制品内引入内应力,降低产品机械性能。

2增加管子长度、增加管径、L/D增加,减小入口端的收敛角,适当降低加工应力、增加加工温度、给以牵伸力,○

减小弹性变形的不利因素。

11、什么是鲨鱼皮症?试总结产生的原因。

一般指“鲨鱼皮症”,是发生在挤出物熔体流柱表面上的一种缺陷现象,其特点是在挤出物表面形成很多细微的皱纹,类似于鲨鱼皮。

原因:

 一方面主要是熔体在管壁上的滑移,熔体在管道中流动时,管壁附近速度梯度最大,其大分子伸展变形程度比中心大,在流动过程中因大分子伸展产生的弹性变形发生松弛,就会引起熔体流在管壁上出现周期性滑移。  另一方面,流道出口对熔体的拉伸作用也是时大时小,随着这种张力的周期性变化,熔体流柱表层的移动速度也时快时慢,流柱表面上就会出现不同形状的皱纹。

12、总结并简单分析加工成型过程中影响结晶的因素。

1、冷却速度的影响

2、熔融温度和熔融时间的影响

3、应力作用的影响:

压力影响球晶的大小:压力低能生成大而完整的晶体;高压下形成小而形状不规则的球晶。压应力会使聚合物的结晶温度提高。

4、低分子物和固体杂质的影响

14、聚合物成型加工过程中在管道或模具中取向结构分布规律?

分子取向从浇口处起顺着料流方向逐渐增加,达到最大点后逐渐减小,中心区和表面层取向程度不高,中心区四周取向程度高。

15、聚合物取向对制件性能的影响有哪些?(详细在课本P82)

① 单轴取向:取向方向上制品的拉伸屈服强度↑,模量↑,压缩屈服强度↓,非晶聚合物断裂伸长率↑,结晶聚合物断裂伸长率↓;非取向方向上性能变化和上述相反。

② 双轴取向:两个取向方向上制品的模量、抗拉强度和断裂伸长率↑,但取向度小的取向方向上的性能变化程度低于另一个方向上的。

16、成型加工过程中如何避免聚合物的降解? (1)严格控制原材料技术指标,使用合格原材料; (2)使用前对聚合物进行严格干燥;

(3)确定合理的加工工艺和加工条件,使聚合物能在不易产生降解的条件下加工成型; (4)加工设备和模具应有良好的结构;

(5)在配方中考虑使用抗氧剂、稳定剂等以加强聚合物对降解的抵抗能力。

17、塑料制品中有哪些原材料和添加剂?其各自的作用? 聚合物是塑料的主要成分 主要添加剂有:

增塑剂

作用:降低塑料的软化温度范围、提高其加工性、柔韧性或延展性

防老剂

防老剂的作用:

(1)抑制聚合物的降解作用:稳定剂——去除聚合物中原有的和新形成的活性中心,以抑制聚合物继续降

解。

(2)抑制聚合物的氧化作用:抗氧剂——能代替易受氧化分解的聚合物与氧反应,防止或推迟氧对聚合物

的影响,抑制聚合物的氧化。

填料

作用:

① 降低成本,减少聚合物消耗; ② 提高制品性能。

润滑剂

作用:是减少分子之间、聚合物粒子之间、树脂和填料之间的摩擦,以及熔体和设备、制品和模具之间的摩擦,以改善加工流动和脱模性。

着色剂作用:使制品获得鲜艳的色彩,增进美观。

固化剂

使树脂完成或加快交联反应的物质。

18、常见的混合设备有哪些?并说明每种设备主要采用什么作用实现混合的?(课本P112)

 初混合:捏合机、高速混合机、管道式捏合机等;  混合塑炼:双辊塑炼机、密炼机、挤出机等。 作用:。。。。。。。。

19、简述单螺杆挤出机的基本结构,螺杆的基本参数,机头和口模的组成部件。

基本结构主要包括:传动装置、加料装置、料筒、螺杆、机头与口模。

螺杆的主要参数:直径、长径比、压缩比、螺距螺槽深度、螺旋角、杆筒间隙 机头与口模: 主要组成:滤网、多孔板、分流器、模芯、口模和机颈等。

20、分析主要螺杆参数对加工过程的影响。

直径:D↑,加工能力↑。挤出机生产率∝D2,D通常为45~150mm; 长径比:L/D↑,改善物料温度分布,有利于混合及塑化,生产能力↑;

但L/D过大,物料可能发生热降解,螺杆也可能因自重而弯曲,功耗增大;L过小则塑化不良。L/D通常为18~25;

螺槽深度: 螺槽深度↓,剪切速率↑,传热效率↑,混合及塑化效率↑,生产率↓。故热敏性塑料宜用深螺槽,而熔体粘度低且热稳定性好的塑料宜用浅螺槽。

螺旋角: 螺旋角↑,生产能力↑,对塑料的剪切作用和挤压力↓。

21、根据物料的变化特征可将螺杆分为几个阶段,它们各自的作用是什么?

加料段(Ⅰ)、压缩段(Ⅱ)、均化段(Ⅲ)

加料段(Ⅰ)作用:将料斗供给的料送往压缩段,塑料在移动过程中一般保持固体状态由于受热而部分熔化。 压缩段(Ⅱ)作用:压实物料,使物料由固体转化为熔体,并排除物料中的空气。

均化段(计量段)的作用:是将熔融物料,定容(定量)定压地送入机头使其在口模中成型。均化段的螺槽容积与加料一样恒定不变。

22、简单叙述挤出成型、注射成型、压制成型、压延成型各自的工艺过程。

1、挤出成型工艺主要程序:物料的干燥,成型,定型与冷却,制品的牵引与卷取,制品的后处理。

2、注射过程:塑化→充模→保压→冷却→脱模

3、压制成型过程主要包括:加料、闭模、排气、固化、脱模与清理模具。

4、压延工艺过程:

1供料阶段:捏合 → 塑化 → 供料 ○2压延阶段:压延 → 牵引 → 刻花 → 冷却定型 → 输送 → 切割、卷取 ○

23、比较注塑螺杆和挤出螺杆在结构上的主要差别。 注塑螺杆和挤出螺杆在结构上的主要差别:

 注塑螺杆长径比比挤出螺杆小;

 注塑螺杆均化段螺槽深度比挤出螺杆深;  注塑螺杆压缩比比挤出螺杆小;

 注塑螺杆加料段长度比挤出螺杆长,而均化段长度比挤出螺杆短;  挤出螺杆多为圆头或锥头,而注塑螺杆多为尖头并带有特殊结构。

 注塑螺杆只起预塑化和注射作用,对塑化能力、压力稳定性以及操作连续性和稳定性没有挤出螺杆要求高。

24、阐述注射机的基本结构。

注射系统——包括:加料装置、料筒、螺杆(分流梭和柱塞)、喷嘴; 锁模系统——是实现闭合模具、开启模具和顶出制品的机构。

模具——包括:主流道、分流道、浇口、型腔、排气孔、导向零件、脱模装置、抽芯机构、加热或冷却系统

25、分析在注射成型中确定料筒温度的依据

 料筒末端温度要高于Tf或Tm,但不能超过分解温度Td  一般地,螺杆式注射机的料筒温度要比柱塞式的低10~20℃

 薄制品采用较高料筒温度,厚制品需要较低的料筒温度,形状复杂或有嵌件的制品采用较高温度。

26、如何确定注射成型中的喷嘴温度?

 喷嘴温度一般要稍低于料筒的最高温度

27、注射制品产生内应力的主要原因有哪些?

当注射制件脱模时,大分子的形变并非已经停止,在贮存和使用过程中,制件中大分子的进一步形变能使制件变形。制品收缩的主要原因是熔体成型时骤冷使大分子堆积得较松散(即存在“自由体积”)之故。在贮存和使用过程中,大分子的重排运动的发展,使堆积逐渐紧密,以致密度增加体积收缩。能结晶的聚合物则因逐渐形成结晶结构而使成型的制品体积收缩。

28、有哪些成型方法属于一次成型?

1、挤出成型

2、注射成型

3、模压成型

4、压延成型

5、铸塑成型

6、传递模塑成型

7、模压烧结成型和泡沫塑料和成型

29、中空吹塑成型和热成型各自主要的工艺方法有哪些?

1、中空吹塑的主要的工艺方法:挤出吹塑成型、注射吹塑成型、注射拉伸吹塑成型。

2、热成型的主要的工艺方法:真空成型、压力成型、覆盖成型、柱塞辅助成型、推气成型、对模成型。

30、对于一次成型和二次成型中常见的成型方法各有哪些?每种方法各举出至少一例对应的制

1、一次成型:

1挤出成型:管材、板材、薄膜、线缆包覆物 ○2注射成型: ○3模压成型:块状模塑复合料BMC和片状模塑复合料SMC。 ○4压延成型品:管材、板材 ○

2、二次成型:

1中空吹塑成型:瓶、容器、儿童玩具、家电零部件办公用品,还可以用于汽车保险杠,燃油箱等汽车工业零部件,○叫做“工程吹塑”。

2热成型:热成型适应性很广,如一粒小药片的包装、一次性使用的饮料杯、各种商品的仿型包装、冰箱内胆、汽车○和游艇的外壳部件、化工容器直到一个室内游泳池的成型,都可用热成型方法制造。

○3拉幅薄膜的成型:薄膜

四、分析与论述

1.图为注射过程过程柱塞、喷嘴和模具内压力的关系,请结合图说明注射过程可分为哪些阶段?(课本P146) 答:按时间次序,注射过程可分为以下几个阶段:

空载期(a)——充模期(b)——保压期(c)——反料期(d)——凝封期(e)——继冷期(f)

2.图为典型的模具结构图,请指出图中的数字标示各指的是什么零件?

3.图为圆管挤出机头结构示意图,请指出图中的数字标示各指的是什么部件。

4.图为螺杆结构的结构示意图,图中的字母标示了螺杆的主要参数,请分别指出它们是什么?这些参数是怎样影响加工性能的?(课本P119)

螺杆的主要参数对加工的影响:

直径:D↑,加工能力↑。挤出机生产率∝D2,D通常为45~150mm;

长径比:L/D↑,改善物料温度分布,有利于混合及塑化,生产能力↑; 但L/D过大,物料可能发生热降解,螺杆也可能因自重而弯曲,功耗增大;L过小则塑化不良。L/D通常为18~25;

螺槽深度: 螺槽深度↓,剪切速率↑,传热效率↑,混合及塑化效率↑,生产率↓。故热敏性塑料宜用深螺槽,而熔体粘度低且热稳定性好的塑料宜用浅螺槽。

螺旋角: 螺旋角↑,生产能力↑,对塑料的剪切作用和挤压力↓。

5.图为典型的模塑面积图,请结合该图说明注射产品质量和温度、注射压力的关系。(课本P152)

第三篇:材料成型工艺综合复习题

问答题

1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么?

2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么?

3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力?

5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围. 6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些?

8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性?

9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止?

11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合?

12. 手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17. 何谓铸造?它有何特点?

18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何?

21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23. 纤维组织是怎样形成的?它的存在有何利弊?

24.许多重要的工件为什么要在锻造过程中安排有镦粗工序? 25. 模锻时,如何合理确定分模面的位置? 26. 模锻与自由锻有何区别? 27.板料冲压有哪些特点?主要的冲压工序有哪些?

28. 间隙对冲裁件断面质量有何影响?间隙过小会对冲裁产生什么影响? 29. 分析冲裁模与拉深模、弯曲模的凸、凹模有何区别? 30. 何谓超塑性?超塑性成形有何特点?

31、落料与冲孔的主要区别是什么?体现在模具上的区别是什么?

32、比较落料或冲孔与拉深过程凹、凸模结构及间隙Z有何不同?为什么?

33、手工电弧焊与点焊在焊接原理与方法上有何不同? 34.手工电弧焊原理及特点是什么?

35、产生焊接应力和变形的主要原因是什么,怎样防止或减少应力和变形?

36. 试说明焊条牌号J422和J507中字母和数字的含义及其对应的国标型号,并比较它们的应用特点。 37. 什么是焊接热影响区?低碳钢焊接热影响区内各主要区域的组织和性能如何?从焊接方法和工艺上,

能否减小或消灭热影响区?

38. 为什么存在焊接残余应力的工件在经过切削加工后往往会产生变形?如何避免? 39. 铸铁焊接性差主要表现在哪些方面?试比较热焊、冷焊法的特点及应用。 40. 低合金高强度结构钢焊接时,应采取哪些措施防止冷裂纹的产生? 41. 试比较钎焊和胶接的异同点。

42.何谓金属材料的焊接性,其所用的评价方法各有何优缺点? 43.塑料成形主要采用哪种方法?简述其工艺过程。 44. 塑料的结晶性与金属有何不同?为什么?

45. 塑料注射模具一般由几部分组成?浇注系统的作用是什么? 46. 分析注射成形、压塑成形、传递成形的主要异同点。 47.热塑性塑料注射模的基本组成有那些? 48. 橡胶的注射成形与压制成形各有何特点? 49.什么叫模具,其主要组成有那几部分?

50.粉末冶金成形技术包括哪些内容?它主要适用于哪种情况?

51.粉末压制品为什么在压制后,一定要经过烧结才能达到要求的强度和密度? 52.粉末冶金工艺生产制品时通常包括哪些工序?

53.为什么金属粉末的流动特性是重要的?

54.为什么粉末冶金零件一般比较小?

55.粉末冶金零件的长宽比是否需要控制?为什么? 56.为什么粉末冶金零件需要有均匀一致的横截面?

57.怎样用粉末冶金工艺来制造孔隙细小的过滤器?

58.试比较制造粉末冶金零件时使用的烧结温度与各有关材料的熔点?

59.烧结过程中会出现什么现象?

60.怎样用粉末冶金来制造含油轴承?

61.什么是浸渗处理?为什么要使用浸渗处理?

62.采用压制方法生产的粉末冶金制品,有哪些结构工艺性要求?

63.用粉末冶金生产合金零件的成形方法有哪些?

64.试列举粉末冶金工艺的优点。

65.粉末冶金工艺的主要缺点是什么?

66.列举常用的热固性塑料与热塑性塑料,说明两者的主要区别是什么?

67.塑料在粘流态的粘度有何特点?

68.塑料的结晶性与金属有何不同?为什么?

69.热塑性塑料成形工艺性能有哪些?如何控制这些工艺参数?

70.塑料注射模具一般由几部分组成?浇注系统的作用是什么?

71.分析注射成形、压塑成形、传递成形的主要异同点。

72.橡胶材料的主要特点是什么?常用的橡胶种类有哪些?

73.为什么橡胶先要塑炼?成形时硫化的目的是什么?

74.简述橡胶压制成形过程。控制硫化过程的主要条件有哪些?

75.橡胶的注射成形与压制成形各有何特点?

76.陶瓷制品的生产过程是怎样的?

77.陶瓷注浆成形对浆料有何要求?其坯体是如何形成的?该法适于制作何类制品?

78.陶瓷压制成形用坯料为何要采用造粒粉料?压制成形主要有哪几种方法?各有何特点?

79.陶瓷热压注成形采用什么坯料?如何调制?该法在应用上有何特点?

80.复合材料成形工艺有什么特点?

81.复合材料的原材料、成形工艺和制品性能之间存在什么关系?

82.在复合材料成形时,手糊成形为什么被广泛采用?它适合于哪些制品的成形?

83.模压成形工艺按成形方法可分为哪几种?各有何特点?

84.纤维缠绕工艺的特点是什么?适于何类制品的成形?

85.颗粒增强金属基复合材料的成形方法主要有哪些? 86. 选择材料成形方法的原则与依据是什么?请结合实例分析。 87. 材料选择与成形方法选择之间有何关系?请举例说明。

88. 零件所要求的材料使用性能是否是决定其成形方法的唯一因素?简述其理由。

89. 轴杆类、盘套类、箱体底座类零件中,分别举出1~2个零件,试分析如何选择毛坯成形方法。 90. 为什么轴杆类零件一般采用锻造成形,而机架类零件多采用铸造成形? 91. 为什么齿轮多用锻件,而带轮、飞轮多用铸件? 92. 在什么情况下采用焊接方法制造零件毛坯? 93. 举例说明生产批量对毛坯成形方法选择的影响。

94.对于中小批量生产的制品是否适宜用粉末压制法制造?为什么? 95.还原粉末和雾化粉末的特点是什么?

96.粉末压制制品为什么在压制后,一定要经过烧结才能达到所要求的强度和密度?

97.粉末压制机械零件、硬质合金、陶瓷都是用粉末经压制烧结而成。它们之间有何区别?各适用于哪些制品?

98.硬质合金中的碳化钨和钴各起什么作用?能否用镍、铁代替钴?为什么? 99.粉末压制件设计的基本原则是什么?为什么要这样规定?

10. 试述注射成形、挤出成形、模压成形原理及主要技术参数的正确选用。 101. 塑料成形特性的内容及应用有哪些? 102. 热塑性塑料注射模的基本组成有哪些?

103. 何谓分型面?正确选择分型面对制品品质有哪些影响?

104. 热塑性注射模普通浇注系统由哪些部分组成?各个组成部分的作用和设计原则是什么? 105. 注射模成形零件设计包含哪些基本内容?

106. 压塑模按凸凹模结构特征分类可分几类?它们各有什么特征? 107. 压塑模的半闭合式凸凹模结构组成、储料槽、排气槽的结构有哪些? 108. 挤出机头的分类及特点有哪些?机头设计的主要内容是什么?

109. 塑料制品的结构技术特征包括哪些内容?针对具体的塑料制品,如何分析其技术特征 110. 简述影响橡胶注射成形的主要技术因素及注射成形的应用特征。

111. 压延成形技术能够生产哪些橡胶制品?其生产过程与塑料压延有何异同? 112. 挤出成形在橡胶加工中有何作用?影响挤出成形的主要因素是什么? 113. 橡胶制品的成形特性包括哪些内容?

114.模具的结构一般由哪几部分组成?何谓模具的封闭高度?有何作用? 115.对模具材料有哪些性能要求?选择模具材料的原则和需要考虑的因素有哪些? 116.什么是模具寿命?有哪些因素会影响模具寿命? 117.模具的主要失效形式有哪些?它们的失效机理是什么? 118.模具制造的特点有哪些?模具的制造一般分为几个阶段?

119.模具电火花加工的基本原理是什么?它必须满足哪几个基本条件? 120.如何拟定材料成形方案?

121.材料成形过程与材料的选择有什么关系? 122.如何考虑材料成形过程的经济性与现实可能性? 123.如何控制成形件的品质?

124.什么叫做再制造技术?再制造技术的发展趋势如何? 125.制造技术的主要研究内容是什么?

名词解释

1. 液态金属的充型能力

2. 铸件的收缩

3. 铸件的缩孔和缩松

4. 铸件的化学偏析

5. 铸造应力

6. 低压铸造

7. 金属的可锻性

8. 体积不变定理

9. 最小阻力定律

10. 加工硬化

11. 落料和冲孔

12. 焊接热影响区

13. 金属材料的焊接性

14. 碳当量ωCE

15. 熔化焊接

16. 压力焊

17. 粉末压制塑料注射成形

18. 塑料的流动性

19. 注射过程

20. 模具基本组成

选择题

1 、为了防止和减小铸件产生内应力,措施之一是配砂时要求型砂有足够的( )。 A.塑性 B.退让性 C.透气性 D.耐火性

2 、铸件的重要加工面应尽量放在铸型的( )。 A.上面 B.下面 C.侧面 D. B和C 3 、铸件壁越厚,其强度越低,这主要是因为( )。

A.气孔越大 B.冷隔越严重 C.浇不足越严重 D.晶粒越粗大和缩孔 4 、冒口的一个重要作用是( )。

A.补缩和排气 B.作为浇注金属液的通道 C.使液态金属迅速注满型腔 D.A和C 5 、灰铸铁适合于制造床身、机架、底座等结构,除了其铸造、切削加工性优良外,还因为其( )。

A. 耐压消震B. 焊接性能良好C. 可锻性好D. 冲击韧性好 6 、普通车床床身浇注时,导轨面应该( )。 A. 朝下 B. 朝上 C. 朝左侧D. 朝右侧

7 、HT200,KTH300-06,QT400-18的机械性能各不相同,主要原因是它们的( )不同。 A. 基体组织 B. 碳的存在形式 C. 铸造性能D. 石墨形态

8 、灰铸铁的牌号越大,其( )。

A. 含碳量越高B. 含锰量越高C. 含硫量越高D. 石墨片越细

9 、铸件模样的尺寸应比零件图至少增加( )。 A. 拔模斜度B. 型芯头C. 收缩率D. 铸造圆角

10 、在砂型铸造和特种铸造中,生产率最高的生产方法是( ) A. 砂型铸造 B. 熔模铸造C. 金属型铸造D. 压力铸造

11.消除工件加工硬化现象应选用的热处理方法为 ( )

A.完全退火; B.球化退火; C.去应力退火; D.再结晶退火。 12.如下铸造方法中充型能力最差的为 ( ):

A.压力铸造; B.低压铸造; C.离心铸造;D.砂型铸造。 13.造成铸件外廓尺寸减小的原因是:( )

A.液态收缩;B.凝固收缩; C.糊状收缩;D.固态收缩。

14.对用于静载荷下要求高强度、高耐磨性或高气密性铸件,特别是厚大件应选用:( ) A.ZG200-400; B.QT700-2; C.HT300; D.KTH370-15. 15.大型柴油机缸盖、钢锭模、金属型应选用( )制造。 A.ZG270-500; B.RuT-400 ; C.QT400-18; D.HT350. 16.对零件图上不要求加工的孔、槽,可铸出尺寸为( ): A.30~50; B.15~20; C.12~15; D.无论大小。 17.机器造型工艺特点为( ):

A.环芯两箱造型;B.模板两箱造型;C.无芯三箱造型; D.无箱造型。 18.大口径的煤气管道多用球墨铸铁,使用( )法。

A.重力连续铸造; B.低压铸造; C.离心铸造; D.金属型铸造。 19.常用铸造方法中生产率最高的为:( )

A.砂型铸造; B.熔模铸造; C.压力铸造;D.离心铸造。 20.适宜各种金属的铸造方法为()

A.砂型铸造; B.压力铸造;C.金属型铸造; D.低压铸造。

21.绘制铸造工艺图在铸造工艺方案初步确定之后,还必须选定铸件的( )。 A.分型面和浇注位置; B. 收缩率及型芯头尺寸; C.加工余量; D.起模斜度 22. 造型材料的性能会直接影响铸件的质量,易出现气孔与( )有关。 A.退让性; B.透气性; C.强度; D.耐火性。

23. 造型材料的性能会直接影响铸件的质量,易出现内应力与( )有关。 A.退让性; B.透气性; C.强度; D.耐火性。

24. 造型材料的性能会直接影响铸件的质量,易出现粘砂与( )有关。 A.退让性; B.透气性; C.强度; D.耐火性。

25、不能用压力加工方法成形的金属有 ( )。 A. 低碳钢B. 灰铸铁C. 铝合金D. 铜合金

26、在拉拔钢丝过程中,插有中间退火工序,这是为了消除 ( )。 A. 回弹现象B. 加工硬化C. 偏析现象D. 再结晶现象

27、提高金属变形时的温度,是改善金属可锻性的有效措施,但温度过高时会产生过热、过烧等缺陷,都使材料变脆,但 ( )。

A. 过热不可挽救 B. 过烧使材料报废C. 可经热处理消除D. 可再结晶消除

28、45钢加热锻造时呈块状碎裂,完全丧失了可锻性。这是由 ( )。 A. 过热 B. 过烧 C. 热应力 D. 氧化和脱碳

29、用直径6.5mm的Q235线材制成直径2mm的钢丝,需要多次冷拔,为使冷拔能顺利进行,通常应( )。

A. 增加润滑B. 进行工序间再结晶退火C. 使用有利于变形的模具D. 降低变形速度

30、有一大批锻件,因晶粒粗大,不符合质量要求。其原因是 ( )。 A. 始锻温度过高 B. 终锻温度过高 C. 始锻温度过低 D. 终锻温度过低

31、45钢的锻造温度范围是 ( )。

A. 800~1200℃ B. 700~900℃C. 900~1500℃D. 700~1100℃

32、某厂一台空气压缩机中重6kg的曲轴断裂了,因买不到配件,自行制造。锻造车间制坯选用的设备应该是 ( )。

A. 空气锤B. 摩擦压力机C. 平锻机D. 蒸气—空气锤锻模

33、镦粗、拔长冲孔工序都属于 ( )。

A. 精整工序B. 辅助工序C. 基本工序D. A和B

34、胎膜锻的生产率和锻件精度(D),故仅适用于小型锻件的中、小批生产。

A. 比自由锻和模锻高 B. 比自由锻和模锻低 C. 比自由锻低,比模锻高 D. 比自由锻高,比模锻低

35、金属板料弯折时由于材料外侧受拉伸可能造成拉裂,故应尽可能使弯折线与板料的纤维方向( )。

A. 平行B. 垂直 C. 同向

36、某种合金的塑性较低,但又要用压力加工方法成形。此时选用( )效果最好。

A. 轧制B. 拉拔C. 挤压D. 自由

37、锤上模锻时,锻件最终成形是在( )中完成。经切边后,锻件形状才符合图纸要求。 A. 终锻模膛;B. 滚压模膛;C. 弯曲模膛;D. 预锻模膛 38.以下不属胎模的是:( )

A.扣模; B.筒模; C.切边模; D.合模。

39.就锻件精度和表面质量而言,最理想的锻造方法为( ) A.自由锻; B.锤上模锻; C.曲柄压力机上模锻; D.胎模锻。 40.一般情况下,拉深系数m为( )

A.>1; B.>0.5~0.8; C.<0.5~0.8; D.<0.2~0.5。 41.金属材料产生加工硬化现象,使其( )下降。 A.塑性、脆性; B.塑性、弹性; C.塑性、韧性; D.韧性、弹性。 42.当三个方向上的压应力数目增加时,使得锻造变形抗力( ) A.不变; B.降低; C.提高; D.无影响。

43.加大变形程度可使锻造流纹增加,并且用热处理方法( )。 A.可以细化; B.不能细化; C.能够消除; D.不能消除。

44.锻造流线的产生使得材料的力学性能呈现方向性,沿着流线方向的( )。 A.抗拉强度最高; B.屈服强度最高; C.疲劳强度最高; D.抗剪强度最高。 45.终锻模镗,形状与锻件相适应,但尺寸比锻件大了一个( )。 A.冷却收缩量; B.加工余量; C.氧化皮量; D.飞边量。 46.对于板料弯曲件,若弯曲半径过小时,会产生( ) A.飞边; B.回弹; C.褶皱 ; D.裂纹。

47.冲下部分是为成品,而周边部分是废料的冲裁称为( )。 A.剪切; B.冲孔; C.落料; D.修整。 48.冲孔时,凸模刃口尺寸应( )

A.等于落料尺寸; B.等于孔的尺寸 ; C.大于孔的尺寸;D.小于孔的尺寸。 49.大批量一般的垫圈生产时,应选用( )。

A.简单冲模; B.复合冲模; C.拉深冲模; D.连续冲模。 50.象(铅皮)牙膏管的零件,制造方法应选( )。 A.液压涨形; B.冲压; C.挤压; D.精锻。 51.拉深系数增大,意味着变形程度( )。 A.大了; B.小了; C.近似零; D.无变化。 52.设计落料模具时,首先应确定( )。

A.凸模刃口尺寸; B.凹模刃口尺寸; C.零件公称尺寸;D.变形系数。 53.铝饭盒是用( )方法制成。

A.挤压; B.拉深; C.旋压; D.轧制。 54.铁路钢轨是用( )方法制成。

A.挤压; B.拉深; C.自由锻; D.轧制。

55.大批量生产20CrMnTi齿轮轴,合适的毛坯制造方法为( ) A.铸造; B.模锻; C.冲压; D.自由锻。

56、组成焊接电弧的三个区中,产生热量由多到少的顺序是( )。

A. 阴极区弧柱区阳极区 B. 阳极区阴极区弧柱区 C. 阳极区弧柱区阴极区 D. 弧柱区阳极区阴极区

57、焊条牌号J422中的前两位数字表示焊缝金属的( )。 A. σb≤420MPa B. σs≤420MPa C. σb≥420MPa D. σs≥420MPa

58、下列几种牌号的焊条中,( )属于碱性焊条。 A. J506 B. J422 C.423 D. A和C

59、焊接时一般要对被焊区进行保护,以防止空气的有害影响。如焊接低碳钢时,手弧焊 ( )。

A. 采用气体保护 B. 采用渣保护 C. 采用气渣联合保护 D. 采用溶剂保护 60、气体保护焊的焊缝热影响区和焊接变形均比手弧焊的小,原因是 ( )。

A. 保护气体保护严密 B. 保护气体对电弧有压缩作用 C. 焊接电流小 D. 焊接电流热量少 6

1、焊接时在被焊工件的结合处产生的( ),使两分离的工件连为一体。 A. 机械力B. 原子间结合力C. 粘结力D. 表面张力 6

2、焊接性较好的钢材是 ( )。

A. 碳含量高,合金元素含量低 B. 碳含量中,合金元素含量中 C. 碳含量低,合金元素含量高 D. 碳含量低,合金元素含量低 6

3、下列焊接方法中,以( )的热影响区为最大。

A. 气焊B.埋弧焊C. 手弧焊D. 氩弧焊

64.在各类焊接方法中相对热影响区较小的焊接方法是( ) A.焊条电弧焊; B.埋弧自动焊; C.气焊; D.电子束焊。 65.对热敏感的精细工件应选用( )方法焊接。 A.电渣焊; B.摩擦焊; C.激光焊; D.电子束焊。 66.对钼箔蜂窝结构类稀有金属复杂件应选用( ) A.对焊; B.焊条电弧焊; C.氩弧焊; D.电子束焊。

67.对于一般结构钢焊接结构,焊接接头的破坏常出现在( )。 A.焊缝区;B.熔合或过热区;C.正火区;D.部分相变区。 68.使得焊接热影响区变大,变形也大的焊接方法是( ) A.焊条电弧焊; B.气焊; C.电子束焊; D.对焊。 69.与氩弧焊相比,CO2气体保护焊突出优点是( )。

A.适用各种金属焊接;B.质量更好;C.成本低;D.焊缝美观。 70.使用碱性焊条焊接,比酸性焊条突出的优点( )。

A.对设备要求不严; B.不要求焊前清理; C.焊缝抗裂性能好; D.焊接效率高,成本低。 71.铝合金、铜合金焊接的共同特点是( )。

A.熔点低,线涨系数小; B.焊接变形小; C.不受焊接方法的限制; D.易氧化 72.酸性焊条被广泛应用的原因有( )

A.焊缝含氢量少; B.焊前无须预热; C.焊缝抗裂性好; D.价格便宜。

填空题

1.影响金属充型能力的因素有:( ) 、( ) 和 ( ) 。

2.浇注系统一般是由(

),(

),(

),和(

)组成的。 3.壁厚不均匀的铸件,薄壁处易呈现( )应力,厚壁处呈现( )应力。

4.粗大厚实的铸件冷却到室温时,铸件的表层呈(

)应力,心部呈(

)应力。 5.铸造应力有( )、( )、( )三种。

6.纯金属或共晶成分的铸造合金在凝固后易产生( );结晶温度范围较宽的铸造合金凝固后易产生( )。 7.铸铁合金从液态到常温经历( )收缩、( )收缩和( )收缩三个阶段;其中( )收缩影响缩孔的形成,( )收缩影响内应力的形成。

8.为防止产生缩孔,通常应该设置(

),使铸件实现(

)凝固。最后凝固的是(

)。 9.合金的流动性大小常用( )来衡量,流动性不好时铸件可能产生( )和缺陷。 10.浇注位置的选择原则是;( ) ;分型面的选择原则为: ( )。

11.铸件上质量要求较高的面,在浇注时应该尽可能使其处于铸型的(

)。 12.低压铸造的工作原理与压铸的不同在于( )。 13.金属型铸造采用金属材料制作铸型,为保证铸件质量需要在工艺上常采取的措施包括:( )、( )、( )、( ) 。

14. 影响铸铁石墨化的主要因素有( )。

15. 球墨铸铁的强度和塑性比灰铸铁(),铸造性能比灰铸铁()。 16. 铸件的凝固方式有( )。

17. 铸造应力的种类有( ),( )和( )。 18. 浇注系统的作用是( )。

19.常用的铸造合金有( ),( )和( )三大类,其中 ( )应用最广泛。

20.应用最广泛而又最基本的铸造方法是( )铸造,此外还有( )铸造,其中主要包括( ),( ),( )和( )等。

21.锻造时,对金属进行加热的目的是使金属的(

)升高,(

)降低,从而有利于锻造。 22. 最小阻力定律是( )。

23可锻性用金属( )和( )来综合衡量。 24. 锻件图与零件图比较不同在于( )。

25.锤上模锻的锻模模膛根据其功用不同,可分为( )模膛 、( )模膛 两大类。 26.预锻模膛与终锻模膛不同在于( )。 27.金属塑性变形的基本规律有( )和( )。 28.对金属塑性变形影响最明显的是( ) 。

29. 金属的可锻性主要取决于( )和( )两个方面。

30.金属经塑性变形后,其机械性能的变化是( ),( )升高,( ),( )下降,这种现象称为( )现象。

29.碳钢中含碳量愈多,钢的可锻性愈( );这是因钢中含碳愈多,钢的( )增高,( )变差造成的。 30. 绘制自由锻件图应考虑的因素有:( )、( )、 ( )。

31.根据所用设备不同,模锻分为(

)模锻,(

)模锻,(

)模锻和(

)模锻。 32.由于模锻无法锻出通孔,锻件应留有( ) 。

33.绘制模锻件图应考虑的因素有:( )、( )、 ( )、( )。 34.锻件坯料质量计算式:( )。

35.板料拉深是使板料变成( )的工序,板料拉深时常见的缺陷是( )和( )。 36. 表示拉深变形程度大小的物理量是( )。

37.板料冲压的变形工序有( )、( )、( )和( )等。 38.板料冲压的基本工序分为(

)和(

)两大类。 39板料冲孔时凸模的尺寸为(

),凹模的尺寸为(

)。

40板料拉深时,为了避免拉裂,通常在多次拉深工序之间安排( )热处理。

41.钢的焊性主要取决于钢的( ),其中以( )元素影响最大,通常用( )来判断钢的可焊性好坏。 42.焊接过程中,对焊件进行局部、不均匀加热,是造成焊接( )和( )的根本原因。 43.按组织变化特性,焊接热影响区可分为( )、( )、( )。

44.按照焊接过程的特点焊接方法可分为三大类( )、( )和( );手弧焊属于( ),电弧焊属于( )。 45埋弧自动焊的焊接材料是(

)和(

),它适宜焊接(

)位置,(

)焊缝和(

)焊缝。

46.埋弧焊可用的焊接电流比手弧焊大得多,所以埋弧焊效率比手弧焊的( )。

47焊接应力产生的原因是( ),减小与消除焊接应力的措施有( ),( ),( )和( )。 48.焊接变形的基本形式有(

),(

),(

),(

)和(

)。 49.焊接性包括两方面: ( )、( ) 。

50.中、高碳钢的焊接一般采取的技术措施:( )、( )、( ) 。 51.使用直流电源实施焊条电弧焊时有 ( )、( )两种接线方法。

52.铁碳合金中的含碳量愈高,其焊接性能愈( ),为改善某些材料的可焊性,避免焊接开裂,常采用的工艺是焊前( ),焊后( )。

53.二氧化碳气体保护焊,由于二氧化碳是氧化性气体,会引起焊缝金属中合金元素的( ),因此需要使用( )的焊丝。

54.粉末压制生产技术流程是( )、( )、( )。

第四篇:浅谈对高分子材料成型加工的认识

一、高分子简单介绍

高分子定义:由千百个原子彼此以共价键结合形成相对分子质量特别大、具有重复结构单元的化合物。

高分子材料定义:以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。

高分子材料成型加工定义:是将高分子材料转变为所需形状和性质的实用材料或制品的工程技术,是获取高分子材料制品、体现材料特性和开发新材料的重要手段。 四川大学高分子学科:四川大学高分子学科是在1953年6月建立的我国高校中最早的高分子化合物专业(1954年更名为塑料工学专业)的基础上发展起来的,中科院院士徐僖教授是该学科的创始人。半个多世纪以来,我校高分子学科蓬勃发展。20世纪50年代,先后创建了皮革毛皮及鞣皮剂工学、塑料工学、化学纤维、合成橡胶四个本科专业,并于1957年开始在国内率先招收研究生。1964年成立了国内第一个高分子研究所(1984年经国家教育部审定)。1961年组建了国内第一个高分子化工系(1979年更名为高分子材料系)。1981年在全国首批获得高分子材料学科硕、博士学位授予权。

随着我校高分子学科的不断发展,1986年原高分子材料系分解重组并构成了四系一所(高分子材料系、塑料工程系、化学纤维系、皮革工程系、高分子研究所)的宏大学科体系。1991年建立高分子材料工程国家重点实验室。1998年,塑料工程系和高分子材料系合并成高分子材料科学与工程系。2001年7月学校决定以高分子材料科学与工程系、高分子研究所和高分子材料工程国家重点实验室为主体,归并原纺织工程学院的化学纤维专业方向和原化学工程学院的高分子化学与物理学教研室,组建成高分子科学与工程学院。

学院现有高分子材料工程国家重点实验室、高分子研究所、高分子科学系、高分子材料系、高分子材料加工工程系(塑料工程及机械研究所)、医用高分子材料及人工器官工程系、化学纤维研究所和高分子材料与工程专业实验室等教学科研机构。

学院以高分子材料和高分子材料加工工程学科为主体的学科群,研究领域覆盖了聚合物结构与性能、合成与改性、制备与成型(工艺、设备、新技术)、以及新材料的开发与应用。研究的材料种类包括:通用塑料、工程塑料、特种工程塑料、复合材料、化学纤维、精细高分子、功能高分子、天然高分子、医用高分子材料、组织工程材料及人工器官。研究成果在 第 1 页 共 1 页

农业、建筑、航空、航天、汽车、微电子、交通运输、轻工、纺织、医疗、环保、军工等领域得到了广泛的应用,为国民经济建设和国防事业的发展做出了积极的贡献。 学院科学研究成绩斐然,2001-2005年,承担国家项目(包括国家自然科学基金重大、重点和面上项目、"863"项目、"973"项目)和省部级项目87项,国际合作项目12项 ,军工和企业委托协作项目208项,进校科研经费达6278.5万元,获国家和省部级奖励11项,发表学术论文1000多篇(其中SCI收录280篇、EI收录221篇),获准授权发明专利97项、实用新型专利5项。学院十分重视学术交流与合作,同国内外许多著名企业、高校和科研机构建立了密切联系,在高分子材料科学与工程的前沿领域进行合作研究和人才培养。

进入新世纪,学院将抓住我国实施"科教兴国"和"西部大开发"战略的契机,为建设成为国内一流、国际知名的高水平研究型高分子科学与工程学院而努力奋斗。

二、高分子材料成型加工

高分子材料成型加工是将高分子材料转变为所需形状和性质的实用材料或制品的工程技术,是获取高分子材料制品、体现材料特性和开发新材料的重要手段。

以最低的成本、最省的能量消耗、最少产生废料和环境污染,实现最高的劳动生产率,获得最优质量的高分子材料制品,是人们孜孜以求的目标。然而,高分子材料制品的性能受到多方面因素制约。近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。

(一)、高分子材料成型加工技术发展概况

近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料

(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。

(二)、高分子材料成型加工的特性

高分子材料具有许多优良性能,如质轻、电气绝缘性良好等,然而,在这许多优良性能中,一个突出优点就有可能使这些高分子材料的发展前景十分乐观。这个突出的有点就其奇异的加工性能,即能便易而且廉价的加工,采用简单操作就能生产出几何形状相当复杂的制品,加工成品很少超过材料的成本。

1.可挤压性:聚合物通过挤压作用形变时获得形状和保持形状的能力。材料处于黏流态才可挤压变形, 挤压性质与聚合物的流变性、流动速率密切有关。如果挤压过程材料的黏度很低,虽有良好的流动性,但保持形状的能力较差、熔体的剪切黏度很高时则会造成流动和成型的困难。材料的挤压性质还与加工设备的结构有关

2.可模塑性:材料在温度和压力作用下形变和在模具中模塑成型的能力。具有可模塑性的材料可通过注射、模压和挤出等成型方法制成各种形状的模塑制品。可模塑性主要取决于材料的流变性、热性质和其它物理力学性质;对热固性聚合物还与聚合物的化学反应性能有关。模塑条件影响聚合物的可模塑性,且对制品的性能有影响。聚合物的热性能、模具的结构尺寸影响聚合物的模塑性。

3.可延性:表示无定形或半结晶固体聚合物在一个方向或二个方向上受到压延或拉伸时变形的能力。可延性为生产长径比(有时是长度对厚度)很大的产品提供了可能。利用聚合物的可延性,可通过压延或拉伸工艺生产薄膜、片材和纤维可延性取决于材料产生塑性形变的能力和应变硬化作用。

(三)现今高分子材料成型加工技术的创新研究

1、聚合物动态反应加工技术及设备

聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连

续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。

目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反

应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。

2、以动态反应加工设备为基础的新材料制备新技术

(1)、信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。

(2)、聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。

(3)、热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。

(四)、高分子材料成型加工技术的发展趋势

近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料

机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过1.5亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。 综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。 毋庸置疑,高分子给人类的生活带来了很大的利处,使我们的生活更加方便、灿烂了,高分子和我们之间密不可分,我们身上穿的衣服、手机上的材料、吃的饭、吃饭用的餐具、汽车的轮胎甚至我们本身等等,都是高分子。 高分子材料已经真正渗入到我们的生活中了,然而,只有材料,不通过加工,材料始终不能成为成品,不能受益于人们的生活。因此,高分子材料成型加工技术必不可少,在未来三年半的学习中,我将会认真踏实地学习高分子的相关知识,力争做一个优秀的高材人,相信,我们未来的生活会因为高分子的发展而更加丰富多彩。

学生:蔡鹏

班级:2013级5班

日期:2014.01.08

第五篇:酚醛树脂及复合材料成型工艺的研究进展

酚醛树脂是最早工业化的合成树脂,已经有100年的历史。由于它原料易得,合成方便以及树脂固化后性能能满足很多使用要求,因此在模塑料、绝缘材料、涂料、木材粘接等方面得到广泛应用。近年来,随着人们对安全等要求的提高,具有阻燃、低烟、低毒等特性的酚醛树脂重新引起人们重视,尤其在飞机场、火车站、学校、医院等公共建筑设施及飞机的内部装饰材料等方面的应用越来越多[1]。

与不饱和聚酯树脂相比,酚醛树脂的反应活性低,固化反应放出缩合水,使得固化必须在高温高压条件下进行,长期以来一般只能先浸渍增强材料制作预浸料(布),然后用于模压工艺或缠绕工艺,严重限制了其在复合材料领域的应用。为了克服酚醛树脂固有的缺陷,进一步提高酚醛树脂的性能,满足高新技术发展的需要,人们对酚醛树脂进行了大量的研究,改进酚醛树腊的韧性、提高力学性能和耐热性能、改善工艺性能成为研究的重点。近年来国内相继开发出一系列新型酚醛树脂,如硼改性酚醛树脂、烯炔基改性酚醛树脂、氰酸酯化酚醛树脂和开环聚合型酚醛树脂等。可以用于smc/bmc、rtm、拉挤、喷射、手糊等复合材料成型工艺。本文结合作者的研究工作,介绍了酚醛树脂的改性研究进展及rtm、拉挤等酚醛复合材料成型工艺的研究应用情况。

1酚醛树脂的改性研究

1.1聚乙烯醇缩醛改性酚醛树脂

工业上应用得最多的是用聚乙烯醇缩醛改性酚醛树脂,它可提高树脂对玻璃纤维的粘结力,改善酚醛树脂的脆性,增加复合材料的力学强度,降低固化速率从而有利于降低成型压力。用作改性的酚醛树脂通常是用氨水或氧化镁作催化剂合成的苯酚甲醛树脂。用作改性的聚乙烯醇缩醛一般为缩丁醛和缩甲乙醛。使用时一般将其溶于酒精,作为树脂的溶剂。利用缩醛和酚醛羟甲基反应合成的树脂是1种优良的特种油墨载体树脂。

1.2聚酰胺改性酚醛树脂

经聚酰胺改性的酚醛树脂提高了酚醛树脂的冲击韧性和粘结性。用作改性的聚酰胺是一类羟甲基化聚酰胺,利用羟甲基或活泼氢在合成树脂过程中或在树脂固化过程中发生反应形成化学键而达到改性的目的。用该树脂制成的渔竿等薄壁管具有优良的力学性能。

1.3环氧改性酚醛树脂

用热固性酚醛树脂和双酚a型环氧树脂混合物制成的复合材料可以兼具2种树脂的优点,改善它们各自的缺点,从而达到改性的目的。这种混合物具有环氧树脂优良的粘结性,改进了酚醛树脂的脆性,同时具有酚醛树脂优良的耐热性,改进了环氧树脂耐热性较差的缺点。这种改性是通过酚醛树脂中的羟甲基与环氧树脂中的羟基及环氧基进行化学反应,以及酚醛树脂中的酚羟基与环氧树脂中的环氧基进行化学反应,最后交联成复杂的体型结构来达到目的,是1种应用最广的酚醛增韧方法。

1.4有机硅改性酚醛树脂

有机硅树脂具有优良的耐热性和耐潮性。可以通过使用有机硅单体与线性酚醛树脂中的酚羟基或羟甲基发生反应来改进酚醛树脂的耐热性和耐水性。

采用不同的有机硅单体或其混合单体与酚醛树脂改性,可得不同性能的改性酚醛树脂,具有广泛的选择性。

用有机硅改性酚醛树脂制备的复合材料可在200-260℃下工作应用相当长时间,并可作为瞬时耐高温材料,用作火箭、导弹等烧蚀材料。

1.5硼改性酚醛树脂

由于在酚醛树脂的分子结构中引入了无机的硼元素,使得硼改性酚醛树脂的耐热性、瞬时耐高温性、耐烧蚀性和力学性能比普通酚醛树脂好得多。它们多用于火箭、导弹和空间飞行器等空间技术领域作为优良的耐烧蚀材料。

最常见的是利用硼酸与苯酚反应,生成硼酸苯酯,再与多聚甲醛或甲醛水溶液反应,生成1个含硼的酚醛树脂。硼酚醛树脂固化物在900℃的残碳率达到70%,分解峰温度高达625℃。此外,硼酚醛分子结构中引进了柔性较大的-b-o-键,韧性和力学性能有所提高;固化产物中含硼的三向交联结构,使其耐烧蚀性能和耐中子辐射性能优于一般酚醛树脂。制得的碳布硼酚醛层压板的弯曲强度达到420

mpa,剪切强度高达39.7mpa;氧—乙炔质量烧蚀率仅0.0364

g/s,比碳/钡酚醛材料低20%[2]。利用甲醛水溶液法合成的双酚a型硼

酚醛树脂的耐水性有了进一步提高。上世纪70年代,北京玻钢院复合材料有限公司(北京251厂)同河北大学一道成功开发了硼酚醛树脂,但近几年才真正批量化生产,目前每年产量大约20t。

1.6橡胶改性酚醛树脂

采用共混方式将丁腈橡胶加到酚醛树脂中,是有效的增韧方法。橡胶加入量通常为树脂质量的2%~10%,冲击韧性可以提高100%以上。由于二者相溶性差,所以可以利用端羧基或端胺基丁腈橡胶与酚醛羟甲基反应,合成反应型橡胶改性酚醛树脂。该树脂可广泛用于航空航天等领域。

1.7炔基或烯丙基改性酚醛树脂

一般以线型酚醛为母体,在酚氧位或苯环上引入苯乙炔基、乙炔基、炔丙基等。其固化主要是通过不同官能团的聚合来实现,改变了传统酚醛缩合固化方式。乙炔基和炔丙基的聚合相对较容易,而苯乙炔基需要较高的固化温度。除了炔丙基酚醛树脂部分的扩链而有较高的分子质量外,这些聚合物的分子质量都较低。这些通过加成聚合固化的酚醛树脂与传统的热固性树脂相比有更好的热稳定性和更高的残碳率[3]。

中国科学院化学所进行了炔丙基化酚醛树脂的合成研究,所制备的该类树脂具有良好的工艺性,100℃的黏度不超过400

mpa?s;树脂可以在200-250℃进行热固化;热固化物耐热性比传统酚醛树脂有明显改进,dma表明树脂固化物具有高达370℃的玻璃化温度,tga则表明其初始热分解温度在400℃以上[4,5]。

利用双马来酰亚胺与烯丙基化线型酚醛树脂(bman)共聚可制备用于rtm成型的耐高温树脂。该树脂在100℃/8

h内的黏度400℃。

石英纤维/bman树脂复合材料也拥有较好的耐高温性能,可以在350℃下使用[6]。

1.8酚醛氰酸酯树脂

酚醛氰酸酯一般是指以线型酚醛树脂为骨架,酚羟基被氰酸酯官能团所替代而形成的酚醛树脂衍生物,在热和催化剂作用下发生三环化反应,生成含有三嗪环的高交联密度网络结构大分子。其固化反应为自固化体系,固化时无挥发性小分子产生、收缩率低。该种树脂兼备丁环氧树脂的加工工艺性能、双马来酰亚胺的高温性能和酚醛树脂的阻燃特性。同时该树脂还具有优良的介电性能,是制备高速数字及高频用印刷电路板及大功率电机绝缘配件的极佳材料,同时也是制造商高性能透波结构材料和航空航天用高性能结构复合材料最理想的基体材料[7]。

北京玻璃钢研究设计院联合西北工业大学等单位[8,9],采用改进的酚—溴化氰法合成了酚醛型氰酸酯单体树脂,并用红外、凝胶实验及热失重分析(tga)对其进行了结构和性能的表征。与传统的酚-溴化氰法相比,改进的酚-溴化氰法得到了性能稳定的合成产物,该产物在200℃时的凝胶时间为6.5min,在凝胶时无冒烟、发黑现象,固化树脂在800℃时氮气氛下的残碳率为63.6%。

637所、华东理工大学等单位也进行了该类型树脂的研究工作。

1.9苯恶嗪树脂

以酚类化合物、胺类化合物和甲醛为原料合成一类含杂环结构的中间体苯并恶嗪。在加热和/或催化剂的作用下,苯并恶嗪中间体可发生开环聚合,生成含氮且类似酚醛树脂的网状结构。通常我们将这种新型树脂称为开环聚合酚醛树脂。这种苯并恶嗪树脂在成型固化过程中没有小分子释放。开环聚合过程中无低分子物释放,改善了酚醛树脂的成型加工性,制品孔隙率低、性能大大提高。

1990年以来,四川大学[10,11]先后对苯并恶嗪的合成、性能、开环反应机理、反应动力学、固化过程中的体积变化、计算机分子模拟、复合材料制备、性能研究和应用等多方面进行了系统及广泛的研究。

1.10二甲苯改性酚醛树脂

二甲苯改性酚醛树脂是在酚醛树脂的分子结构中引入疏水性结构的二甲苯环,由此改性后的酚醛树脂的耐水性、耐碱性、耐热性及电绝缘性能得到改善。

1.11二苯醚甲醛树脂

二苯醚甲醛树脂是用二苯醚代替苯酚和甲醛缩聚而成的,二苯醚甲醛树脂的玻璃纤维增强复合材料具有优良的耐热性能,可用作h级绝缘材料,它还具有良好的耐辐射性能,吸湿性也很低。

1.12双马来酰亚胺改性酚醛树脂

在酚醛树脂中引入耐热性优良的双马来酰亚胺,因两者之间发生氢离子移位加成反应,所以对部分酚羟基具有隔离或封锁作用,使改性树脂的热分解温度显著提高,对于改善摩阻材料的耐高温性能有很大作用。

双马来酰亚胺改性酚醛树脂有突出的耐热性,热变形温度(hdt)为273℃,玻璃化温度(tg)为产量及使用量增长非常迅速。

国外之所以能够广泛采用酚醛玻璃钢的主要原因,一是该类产品在性能方面有其独特的优点;二是酚醛玻璃钢的制作及研究开发工作比较成熟,几乎涉及各种工艺方法。与之相比,我国在酚醛玻璃钢的制作及其应用方面,与国外存在着很大的差距,制作成型方法不多,仅限于模压、布带缠绕,及近期开发的手糊工艺等。rtm、拉挤等酚醛玻璃钢成型工艺方法,才刚刚起步,但表现出很强的发展势头。

2.1rtm成型工艺(resintransfermolding)

rtm成型工艺[12]基本原理是将玻璃纤维或其他增强材料铺放到闭模的模腔内,用压力(或真空辅助)将树脂胶液注入模腔,浸透增强材料,然后固化,脱模成型制品。rtm成型工艺是从湿法铺层和注塑工艺演变而来的1种新的复合材料成型工艺。rtm工艺通常使用增强材料形式有短切纤维毡、连续纤维毡、三维织物或特制的复合毡等,增强材料的种类有玻璃纤维、芳纶纤维、碳纤维等。采用不饱和聚酯树脂为基体的rtm成型工艺已经得到广泛应用,对树脂体系、增强材料铺覆、流变特性、模具设计制造、制品结构设计、专用设备等

方面都有系统深入研究。

而酚醛树脂用于rtm工艺在国内近几年才出现[13]。rtm生产工艺通常要求树脂注射温度下的黏度约为250-500

mpa?s,以使纤维能很快地浸透,并避免铺层或织物结构被破坏。树脂固化过程应没有或尽量减少小分子产生,以减少制品缺陷,提高各种性能。传统的酚醛树脂由于通过缩合固化,固化过程中有小分子放出,容易造成制品缺陷,所以不太适合rtm工艺成型。

目前国内对酚醛和其他高性能树脂rtm成型工艺的需求主要来自军用产品。但由于缺少专用的rtm酚醛树脂,只能利用传统的酚醛树脂进行注射,固化时仍采用加压方式,目前已经开发出许多制品,取得了较好的效果。rtm已经成为航空航天先进复合材料重要的成型工艺之一。三江集团的佘平江[14]等人,利用rtm成型工艺方法,使用氨酚醛树脂复合了高强玻璃纤维三维编织体,分别制作了拉伸强度试片、弯曲强度试片、氧乙炔烧蚀试片,试片的纤维体积含量为55%。性能测试结果为:拉伸强度为744mpa,拉伸模量为40.6gpa,断裂应变2.07%,弯曲强度为456.4mpa,弯曲模量31.8gpa,其力学性能接近于钢,烧蚀

性能大大好于模压和缠绕复合材料。冯志海[15]等人在这方面也作了深入研究,并应用于产品生产中。除传统的氨酚醛外,华东理工大学开发的高碳酚醛树脂[16]也是针对rtm工艺开发的改性氨酚醛树脂,其具有较高的碳含量,较宽的工艺操作平台。但仍采用传统的缩合固化方式,有小分子释放,需采用加压成型。

为适应特种用途的需求,开发rtm专用改性酚醛树脂成为研究热点。中科院化学所研究的烯丙基改性酚醛和双马共聚树脂、北京玻钢院开发的氰酸酯改性酚醛(酚三嗪)、四川大学研究的开环酚醛(苯并恶嗪)均为其代表。国内其他单位在上述品种的开发上也做了许多工作,取得了很好效果。但针对酚醛树脂体系的注射工艺、流变特性等方面的研究,还没有深入进行。

我院开发的氰酸酯改性酚醛[9]熔体黏度在100℃/2h内无变化,固含量>98%,固化温度220℃,室温储存期6个月,tg在350-400℃之间,冲击强度比普通酚醛提高了约1.5~3倍,非常适于rtm成型工艺。

2)酸催化酚醛拉挤模具的耐腐蚀问题

在酚醛拉挤成型工艺的工业化生产中,首先遇到的1个问题,是模具的耐酸腐蚀问题。在生产实践中,往往只需几个小时,镀铬表面层就会遭到酸性腐蚀,从工具钢的表面剥落下来。有人企图通过在酚醛树脂内加入合适的内脱模剂,以解决模具的耐腐蚀问题。但试验结果发现,使用内脱模剂后,铬层与工具钢模具仍然会剥离下来,仅仅是剥离的时间延长一些而已。丹麦的纤维管道a/s公司的专利技术,可在不损坏模具的情况下,生产出高质量的拉挤成型件。意大利tof玻璃公司和法国permali公司,也均采用这项专利生产酸催化酚醛玻璃钢拉挤件的制品。在欧洲,大多采用酸催化酚醛拉挤工艺,也有一些采用高温固化的酚醛拉挤工艺。

3)高温固化酚醛树脂的固化及高黏度问题

为避免酸催化酚醛树脂对模具的腐蚀问题,有人曾对高温固化酚醛树脂用于拉挤工艺做过试验。些酚醛树脂,在130-150℃温度下就能很快地固化。例如砂纸用的树脂层,在130℃温度下经过5~6min即可固化。因而拉挤成型工艺采用高温固化的酚醛树脂完全是有可能的。通常,高温固化酚醛树脂的黏度较高,约为4~6pa?s。若为改善制品表面质量,需加入填料,黏度还会增大,这将会对拉挤工艺带来不利的影响。这种情况,是拉挤成型工艺所不希望的。为此,有人企图寻找各种不同的单体,以改变酚醛的化学组分结构。其中较为成功的1个例子,就是使用间苯二酚,既加快了固化速度,又不至于增加酚醛树脂的黏度和脱水量。

bp化学公司和plenco公司采用间苯二酚催化技术,这种方法已被美国的一些公司所采用,例如creative拉挤公司[18]。酚醛树脂拉挤成型时,必须有足够长的模具,较高的成型温度,并且最好直接往模具内注入树脂,而不是往胶液槽体内注入树脂。美国indspec公司开发的拉挤用酚醛树脂2074a/2026b[l9,20],已经申请了专利,用其制作的玻璃钢产品,j.v.gauchfl等人研究了酚醛拉挤工艺参数对拉挤制品质量的影响。

把经过配制混合的树脂,在成型模的前端位置上,在压力的作用下注射入模。这是1种新的拉挤工艺形式,不但省去了树脂浸胶槽,而且增强材料入模前保持为干燥状态。这种工艺方法也称为“注射拉挤工艺”(ip)。这种注射拉挤工艺方法有以下2个优点:一是树脂组分配料较为准确,可利用计量泵连续计量,以避免手工混合带来的误差;二是树脂浸渍槽由开放形式变成了全封闭形式,大大降低了树脂溅散的可能性,从而改善了拉挤工艺的工作环境。

如上所述,酚醛拉挤工艺还存在着不少的技术问题,另外,酚醛拉挤制品还不十分完美。目前还在寻找1种可在模腔内加速固化过程,但对模具钢材不会产生腐蚀作用的催化剂。最理想的是在室温下活性很低(甚至无活性)的催化剂,这样就可以延长酚醛树脂在胶槽中的贮存时间。实际使用时,先把催化剂加入到胶槽内,而后在拉挤模的高温条件下经过水解或其他反应分解,产生出反应所需的自由酸。除此以外,经过试验,一些室温下不溶的,或者难溶的,但在拉挤模腔高温条件下,溶解度和活性都变得很强的弱碱,是非常适合用作为酚醛拉挤工艺的催化剂。

另外,有些生产厂商还经常对不锈钢模具的内表面,进行必要的硬度处理,以达到具有高光洁表面和耐磨损性的要求。

使用拉挤脱模剂,也可有效地减少酸性对拉挤模具的侵蚀作用。

我公司开发的采用间苯二酚的非酸固化拉挤专用酚醛体系已经通过了工艺试验。关于界面性能、固化制度、模具设计等方面的研究还在进行中。

2.3smc/bmc模压成型工艺

smc/bmc模压工艺是将一定量的smc/bmc模压料放人金属对模中,在一定温度和压力下成型制品的1种方法。最早开发的smc产品是up-smc(即不饱和聚酯片状模塑料),现在pf-smc(即酚醛片状模塑料)作为1种玻璃纤维增强材料已经被国外广泛应用于宇航、建筑和运输等领域。pf-smc的制备方法是将酚醛树脂糊在浸渍机上浸渍无序短切玻璃纤维(一般玻璃纤维长度为1.5~50mm,用量为酚醛树脂糊质量的20%~50%),用易剥离的聚乙烯薄膜为隔膜进行连续生产,其生产工艺与up-smc相同,生产出的pf-smc需要在30~70℃的恒温内经过24~100h的熟化处理。pf-smc固化物的力学性能与up-smc的相比,室温下大体相同,但是高温下,pf-smc固化物具有更优异的力学性能,它在150℃下热老化100h,其拉伸强度和弯曲强度不发生任何变化,在200℃时,弯曲强度的保持率为73%,弯曲模量的保持率为77%,而up-smc固化物的弯曲强度和弯曲模量的保持率却只有29%和43%[21,22]北京玻钢院复合材料有限公司[22]八五期间就成功开发了酚醛树脂smc整套工艺技术和制品,包括专用树脂、增稠体系、片材组分、模压工艺等。

2.4其他成型工艺

酚醛复合材料还有连续层压成型工艺、纤维缠绕成型工艺、预浸渍模压工艺、低压模压成型工艺、手糊成型工艺、喷涂成型工艺等成型方法。手糊工艺是国外最常用的酚醛玻璃钢生产工艺之一。通常采用酸固化型酚醛树脂,其催化剂用量约为5%~8%,黏度约为600-700mpa?s。加入催化剂,通常能降低树脂的黏度,固化时间约为10~30min,比聚酯树脂的还要短一些。实践证明,只要经过认真涂敷,可以制得尺寸比较大的酚醛玻璃钢制品。涂敷好的制品件,应在适当的温度下进行固化。由于短切原丝毡的某些偶联剂,不能溶于酚醛树脂,因此并不是所有适用于聚酯树脂的玻璃纤维,都能适用于酚醛树脂。手糊成型法生产的酚醛玻璃钢制件,尺寸可以很大,例如英吉利海峡隧道列车的司机室,每个达240kg。常熟在这方面的开发应用处于国内领先地位。

另外,国外喷涂酚醛树脂在汽车防热板方面的应用量也很大。许多生产厂商经常采用与手糊工艺相近的中等黏度酚醛树脂,但混合有较强的催化剂,以加快其成型速度,减少成型时间。在喷涂酚醛树脂时,必须对喷涂聚酯的机器稍加改进,且不能使用外部混合喷枪,并要求催化剂泵输送的催化剂体积,达到树脂体积的10%左右,其喷涂部件必须能够耐化学品的腐蚀。当前,jaguar公司所用的防热板,都是由scandura

sealtex公司,采用这种喷涂沉积工艺方法所制成。

3结语

近年来,随着对酚醛树脂需求的不断增加,在研发上的投入不断增大,新的树脂品种、新的成型工艺、新的合成技术不断出现,对于酚醛发泡、酚醛蜂窝、酚醛复合材料回收等的研究都取得了很大进展。我们有理由相信,酚醛树脂及其复合材料将在许多领域发挥其更大的作用,酚醛树脂这一古老的产品必将重新焕发青春。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:国防教育军训感想总结下一篇:骨干教师教研活动记录