风力发电技术总结

2022-07-10

总结是一种事后记录方式,针对于工作结束情况、项目完成情况等,将整个过程中的经验、问题进行记录,并在切实与认真分析后,整理成一份详细的报告。如何采用正确的总结格式,写出客观的总结呢?以下是小编整理的关于《风力发电技术总结》,欢迎大家借鉴与参考,希望对大家有所帮助!

第一篇:风力发电技术总结

风力发电技术

风力发电技术和风能利用方式

1973年发生石油危机以后,西方发达国家为寻求替代石化燃料的能源,在风力发电技术的研究与应用上投入了相当大的人力和资金,充分综合利用空气动力学、新材料、新型电机、电力电子技术、计算机、自动控制及通信技术等方面的最新成果,开创了风能利用的新时期。

德国、美国、丹麦等国开发建立了评估风力资源的测量及计算机模拟系统,发展了变桨距控制及失速控制的风力机设计理论,采用了新型风力机叶片材料及叶片翼型,研制出了变极、变滑差、变速恒频及低速永磁等新型发电机,开发了由微机控制的单台和多台风力发电机组成的机群的自动控制技术,从而大大提高了风力发电的效率和可靠性。

风电场是大规模利用风能的有效方式,20世纪80年代初在美国加利福尼亚州兴起。而海岸线附近的海域风能资源丰富,风力强,风速均匀,可大面积采获能量,适合大规模开发风电。然而在海上建造难度也大:巨大的基座必须固定入海底30m深度,才能使装置经受得住狂风恶浪的冲击;水下的驱动装置和电子部件必须得能防止高盐度海水的腐蚀;与陆地连接还得需要几公里长的海底电缆。

2.2风电装机容量

德国的风力发电装机容量已达610.7万kW,占德国发电装机容量的33%,居世界第1位。西班牙风电装机容量283.6万kW,居世界第2位。美国风力发电装机容量已达261万kW,居世界第3位。丹麦风电技术也很先进,装机容量234.1万kW。印度风电增长很快,到2000年累积装机容量已达到122万kW。日本的风电装机容量46万kW,运行较稳定的是海岸线或岛上的风力发电站,已达576台风电设备。

2.3各国的风力发电政策

目前风电机组成本仍比较高,但随着生产批量的增大和技术的进一步改进,成本将会继续下降 (见表1) 。许多国家建立了众多的中型和大型风力发电场,并形成了一整套有关风力发电场的规划方法、运行管理和维护方式、投融资方式、国家扶持的优惠政策及规范、法规等。

表1世界风电装机容量(万kW)和发电成本(美分/kW·h)

年份19831985198719891991199319951997199819992000

容量149414417121629847876410151393184

5成本15.310.97.26.66.15.65.35.15.04.94.8

数据来源:丹麦BTM咨询公司

欧洲发展风电的动力主要来自于改善环境的压力,将风电的发展作为减少二氧化碳等气体排放的措施。德国、丹麦、西班牙等国都制定了比较高的风电收购电价,保持了稳定高速的增长,1996年以后年增长率超过30%,使风电成为发展最快的清洁电能。丹麦风电技术的发展策略是政府不直接支持制造厂商,而是对购买风电机组的用户提供补贴。英国的《可再生能源责任法规》要求到2010年,每个电力供应商必须使可再生能源的电力供应量达到总电量的10%。

美国政府为鼓励开发可再生能源,在20世纪80年代初出台了一系列优惠政策。联邦政府和加利福尼亚州政府对可再生能源的投资者分别减免了25%的税赋,规定有效期到198

5年底,另外立法还规定电力公司必须得收购风电,并且价格应是长期稳定的。这些政策吸引了大量的资金采购风电机组,使刚刚建立起来的丹麦风电机组制造业获得了大批量生产和改进质量的机会。到1986年这3个风电场的总装机容量达到160万kW。2002年美国德州的风电容量为118万kW。德州政府规定,到2009年可再生能源的发电容量至少应达到200万kW,并拟订了110.4万kW的风电建设计划。

印度是一个缺电的发展中国家,政府制定了许多鼓励风电的政策,如投资风电的企业,可将风电的电量储蓄,在电网拉闸限电时,使有储蓄的企业能够得到优先供电。

澳大利亚的发电能源主要依靠煤炭。政府为改善电能结构,制定了一项强制性的可再生能源发电计划,太阳能——风力电站将成为可再生能源利用的重要组成部分。

3我国风力发电的开发现况

我国拥有丰富的风能资源,若采用10m高度的风速测算,陆地风能资源理论储量为32.26亿kW,可开发的风能资源储量为2.53亿kW。我国近海风能资源约为陆地的3倍,由此可算出我国可开发的风能资源约为10亿kW。

风能资源富集区主要在西北、华北北部、东北及东南沿海地区。20世纪70年代末80年代初, 我国通过自主开发研制,额定容量低于10kW小型风力发电机实现了批量生产, 在解决居住分散的农牧民和岛屿居民的用电方面有着重要意义。在国家有关部委的支持下,额定功率为200、250、300、600 kW的风力发电机组已研制出来,并在全国11个省区建立了27个风电场,浙江、福建、广东沿海及新疆、内蒙古自治区都有较大功率的风力发电场。东部沿海有丰富的风能资源,距离电力负荷中心又近,海上风电场将成为新兴的能源基地。国家计委在20世纪90年代中期制定了“光明工程”和“乘风计划”, 1997年当年装机超过10万kW,到2001年底总装机容量约40万kW。

我国风电技术还处于发展初期,较欧美落后,关键原材料或零部件主要依靠进口。风电机组是风电场的核心设备,主要依靠进口机组,在风电场的建设投资中是主要部分,占总投资的60%~80%。为鼓励风电的开发,我国对300kW以上机组免征进口税。风电随着技术的发展和批量生产,成本会继续下降。

第二篇: 风力发电技术与电价分析

本文主要介绍风电电价的构成,发展风力发电的必要性和现阶段我国发展风电面临的论难和机遇。通过对国内外的电力来源,能源结构,风能储量及分布,风电的社会价值等方面的评价入手阐述我国发展风电的必要性和紧迫性。

通过对风电场建设规模,风力发电成本要素,风电电价构成,减低成本途径,政府现行对风电的税收鼓励政策,现行风电产业特点和风电设备制造技术以及风电的社会效益等方面的分析,为政府,风电产业,融资领域和社会关注层面为解决风电产业中得各种矛盾以及为促进和发展风电产业建设提供理论依据和解决方案。

阐明我国积极发展风力发电事业,风电技术国产化和提高风电市场竞争力在我国具备着巨大的潜力。积极利用和发展风电这一再生能源,推动我国走可持续发展的能源之路,在我国已是势在必行。

关键词:风力发电,能源结构,政府鼓励,风电电价

1. 绪论

1.1 引言

能源,是人类生存的基本要素,也是国民经济发展的主要物质基础。随着国际工业化的进程,全球未来能源消耗预计仍将以3的速度增长,常规能源资源面临日益枯竭的窘境。进入20世纪, 由于对能源的渴求, 人们无节制地开采石油 ,煤炭, 天然气等这些埋在地层深处的维系人类生存的“能源食粮”,不仅严重地污染了我们的生存空间,恶化了自然环境,而且带来了更可怕的恶果 — 能源枯竭。进入70年代,世界能源发生危机,石油价格剧烈上涨,极大的刺激了那些能源消耗大国,使他们把研究开发其他能源放到了重要位置,要生存就必须寻求开发新能源。为此,各国政府纷纷制定自己的能源政策,给新能源开发以特殊优惠政策和政府税收补贴,从而使风能,原子能,太阳能,潮汐能,地热能等的开发利用得以迅速发展。进入21世纪,可再生能源的发展与研究将在全球的资源利用中得到越来越多的重要,可再生能源在资源消耗中也将占据越来越高的比例。

世界能源危机为风电发展提供了机遇,但由于起步较晚,存在很多不确定因素阻碍风电行业的发展。我国风电行业发展比较迅速,但与国际风电行业的发展水平还有很大差距,国内的风电发动设备主要依靠进口,对外依赖性强,虽然风电成本已下降很多,但相比火电成本的优势在短期内并不会明显突出,风电行业的发展还有很多的阻碍因素。正是风电行业投资的高风险,必然为风电行业发展带来高收益,不论是风电产业的经济效益、对社会的效益,还是我国目前奉行的可持续发展和节约战略,这些都为发电行业提供了很大的发展空间。

《中国风电产业市场发展研究及投资分析报告》根据国家统计局、国家发改委、国研网、欧洲风能协会和其他的一些权威渠道,内容丰富、翔实。在撰写过程中,运用了大量的图、表等分析工具,结合相关的经济学理论,综合运用定量和定性的分析方法,对风电行业的运行及发展趋势做了比较详细的分析,对影响行业发展的基本因素进行了审慎的剖析,报告还对国外风电行业发展迅速的国家相关政策进行了介绍和分析判断,为我国风电行业的发展提供依据和选择,是能源企业以及相关企事业单位、计划投资于风电行业的企业和风电设备业行业准确了解目前我国风电市场动态,把握风电行业发展趋势,制定企业战略的重要参考依据 1.2 风力发电的历史和现状

风能是人类最早利用的能源之一。 早在公元前 2000 年,埃及, 波斯等国就己出现帆船和风磨, 中世纪荷兰与美国已有用于排灌的水平轴风车。 中国是世界上最早利用风能的国家之一, 早在 1800 年前 ,中国就有风车提水的纪录。 下面简单介绍一下国内外现代风力机研制的历史和现状。

1.2.1中国风电的历史和现状

中国对现代风力机的研制可以追溯到二十世纪 50 年代,但有系统地研究还是从二十世纪 70 年代开始的 。中国为了解决西部草原牧区 ,东部海岛及边远山区的用电问题,国家鼓励开发离网型风力机, 国内各风电科研机构主要从事离网型的研制 ,并形成了一定的规模。 根据中国的具体情况, 重点推广了户用微型发电机, 功率一般为 1001000W ,目前已形成了一个生产, 销售 ,维修服务较完善的体系 ,部分产品出口。 这为电网不能通达 3的地区约 60 万居民解决了基本用电问题。 电灯, 电视进入千家万户, 提高了人民群众的生活质量 。据世界能源组织统计, 世界上十个最大的小型风力发电机生产企业中 ,中国占七个 。截至 2000 年底, 全国累计生产了离网型风力发电机组近二十万台。

1.3 中国风电电价定价机制的演变过程

中国的并网风电从 20 世纪 80 年代开始发展,尤其是“十一五”期间,风电发展非常迅速,总装机容量从1989 年底的4200kW增长到2008年的 1,200 万 kW ,跃居世界第四位,标志着中国风电进入了大规模开发阶段。总体看来,中国并网风电场的发展经历了三个阶段,即初期示范阶段、产业化建立阶段、规模化及国产化阶段。各阶段的电价特点及定价机制概括如下:

1.3.1 初期示范阶段(1986-1993 年)

中国并网型风电发展起步于 1986 年。1986 年 5 月,第一个风电场在山东荣成马兰湾建成,其安装的Vestas V15-55/11风电机组,是由山东省政府和航空工业部共同拨付外汇引进的。此后,各地又陆续使用政府拨款或国外赠款、优惠贷款等引进了一些风电机组,建设并网型风电场。由于这些风电场主要用于科研或作为示范项目,未进入商业化运行,因此,上网电价参照当地燃煤电价,由风力发电厂与电网公司签订购电协议后,报国家物价部门核准,电价水平在 0.28 元/kWh 左右,例如 20世纪90 年代初期建成的达坂城风电场,上网电价不足0.3元/kWh总体来说,此阶段风电装机累积容量为4200kW,风电发展的特点是利用国外赠款及贷款,建设小型示范电场。政府的扶持主要是在资金方面,如投资风电场项目及风力发电机组的研制。风电电价水平基本与燃煤电厂持平。

1.3.2产业化建立阶段(1994-2003 年)

1994年起,中国开始探索设备国产化推动风电发展的道路,推出了“乘风计划”,实施了“双加工程”,制定了支持设备国产化的专项政策,风电场建设逐渐进入商业期。这些政策的实施,对培育刚刚起步的中国风电产业起到了一定作用,但由于技术和政策上的重重障碍,中国风电发展依然步履维艰。每年新增装机不超过十万千瓦。到2003年底,全国风电装机容量仅56.84 万千瓦。

这一阶段,风电电价经历了还本付息电价和经营期平均电价两个阶段。1994 年,国家主管部门规定,电网管理部门应允许风电场就近上网,并收购全部上网电量,上网电价按发电成本加还本付息、加合理利润的原则确定,高出电网平均电价部分的差价由电网公司负担,发电量由电网公司统一收购。随着中国电力体制改革的深化,电价根据“厂网分开,竞价上网”的目标逐步开始改革。

总体来说,这一时期的电价政策呈现出如下特点:上网电价由风力发电厂与电网公司签订购电协议,各地价格主管部门批准后,报国家物价部门备案,因此,风电价格各不相同。最低的仍然是采用竞争电价,与燃煤电厂的上网电价相当,例如,中国节能投资公司建设的张北风电场上网电价为 0.38 元/千瓦时;而最高上网电价每千瓦时超过 1 元,例如浙江的括苍山风电场上网电价高达每千瓦时1.2元。

由此可见,从初期示范阶段到产业化建立阶段,电价呈现上升趋势。

1.3.3规模化及国产化阶段(2003 后)

为了促进风电大规模发展,2003年,国家发展改革委组织了第一期全国风电特许权项目招标,将竞争机制引入风电场开发,以市场化方式确定风电上网电价。截至2007年,共组织了五期特许权招标,总装机容量达到880万千瓦。

为了推广特许权招标经验,2006年国家发展改革委颁布《可再生能源发电价格和费用分摊管理试行办法》 (发改价格[2006]7号)文件,提出了“风力发电项目的上网电价实行政府指导价,电价标准由国务院价格主管部门按照招标形成的价格确定” 。根据该文件,部分省(区、市) ,如内蒙古、吉林、甘肃、福建等,组织了若干省级风电特许权项目. 1.3.4目前中国风电电价政策

随着风电的快速发展, “招标加核准”的模式已无法满足风电市场发展和政府宏观引导的现实需要。因此,在当前各地风电进入大规模建设阶段,从招标定价加政府核准并行制度过渡到标杆电价机制,是行业发展的必然,也将引导风电产业的长期健康发展。

2009年 7月底,国家发展改革委发布了《关于完善风力发电上网电价政策的通知》(发改价格[2009]1906号),对风力发电上网电价政策进行了完善。文件规定,全国按风能资源状况和工程建设条件分为四类风能资源区,相应设定风电标杆上网电价。

1.4中国政府对风电的补贴政策

中国政府一直大力支持风电的发展,从2002 年开始,要求电网公司在售电价格上涨的部分中拿出一定份额,补贴可再生能源发电(即高出煤电电价的部分) 。 , 电网和中国政府对风电的政策性补贴力度逐年加大,

由 2002 年的 1.38 亿元上升到 2008 年的 23.77 亿元1(见图 4) 。由此可见,中国政府的政策是鼓励可再生能源发展的,因此,中国风电迅速发展,三年间装机容量翻番。尽管如此,由于风电运行的不确定性,技术操作能力和管理水平的限制,中国风电企业的盈利仍然是微薄的。 结论

从以上分析我们可以看出,中国的风电电价变化和风电行业的发展特点密不可分。风电行业发展经历了初期示范、产业化建立、规模化及国产化、目前逐渐完善等四个阶段。与此相对应,四个阶段的风电电价基本情况为:初期示范阶段:与燃煤电价持平(不足0.3元/kWh) ;产业化建立阶段:由风力发电厂和电网公司签订购电协议确定,电价各不相同(0.38元/kWh~1.2元/kWh) ;规模化及国产化阶段:招标电价与核准电价共存,国家招标电价保持上升;目前完善阶段:四类标杆电价(0.51元/kWh,0.54元/kWh,0.58元/kWh,0.61元/kWh) 。在这期间,中国政府一直努力探索合理的风电电价市场形成机制。不同阶段的机制不同,风电电价亦有所波动,国家的指导电价逐年上升,核准电价则略微下降,这都符合中国风电产业和世界风电产业的发展规律,使中国的风电电价更趋理性。同时,可以看到,中国政府在探索风电价格机制和规范风电电价的过程中,一直给予风电行业巨大的支持, 2002年至2008年,国家对风电的补贴额从1.38亿元上升为23.77亿元, 每年都在大幅度增长,这极大地提高了投资者的积极性,促使中国的风电装机容量成倍增加,中国一跃成为风电大国。

因此,我们认为,中国政府是依据风电本身发展的客观规律、电网的承受能力来确定风电电价,在确定电价时从未考虑 CDM 因素,定价过程完全与CDM无关。但是,也应该看到,在中国风力发展的过程中,CDM对风力发电企业克服资金和技术障碍确实发挥了积极作用,如果没有CDM,中国风电发展速度不会如此迅速,更不会为减缓全球温室气体排放做出如此巨大的贡献。因此,我们希望EB在审核中国风电项目时能充分考虑和理解中国特殊的定价机制,推动全球范围内更多高质量 CDM 项目的成功注册,为减缓全球气候变化作出更多贡献。

参考文献:

1. 王双(作者) 《风力发电发展与风电电价分析研究》(文章) 2.中国风力发电网(作者) 《中国风电及电价发展研究报告》 3.作者不详 《 中国风电产业市场发展研究及投资分析报告》

第三篇:风力发电的调节控制技术发展

在起动阶段,通过调节变桨距系统控制发电机转速,将发电机转速保持在同步转速附近,寻找最佳并网时机然后平稳并网;在额定风速以下时,主要调节发电机反力转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上时,采用变速与桨叶节距双重调节,通过变桨距系统调节限制风力机获取能量,保证发电机功率输出的稳定性,获取良好的动态特性;而变速调节主要用来响应快速变化的风速,减轻桨距调节的频繁动作,提高传动系统的柔性。变速恒频这种调节方式是目前公认的最优化调节方式,也是未来风电技术发展的主要方向。

随着计算机技术与先进的控制技术应用到风电领域,并网运行的风力发电控制技术得到了较快发展,控制方式从基本单一的定桨距失速控制向变桨距和变速恒频控制方向发展,甚至向智能型控制发展。作为风力资源较为丰富的国家之一,我国加快了风电技术领域的自主开发与研究,“十五”期间,600kw风力发电机组开始产业化实施,兆瓦级失速型。兆瓦级变速恒频的风力发电机组国产化已列入国家“863”科技攻关顶目。本文针对当前并网型风力发电机组的几种功率凋节控制技术进行了介绍,并指出其各自的优缺点。

1定桨距失速调节型风力发电机组 定奖距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。在低风速段运行的,采用小电机使桨叶县有较高的气动效率,提高发电机的运行效率。 失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。其缺点是叶片重晏大(与变桨距风机叶片比较),桨叶、轮载、塔架等部件受力较大,机组的整体效率较低。

2 变桨距调节型风力发电机组 变奖距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。 随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。 变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。

3 主动失速调节型风力发电机组 将定桨距失速调节型与变桨距调节型两种风力发电机组相结合,充分吸取了被动失速和桨距调节的优点,桨叶采用失速特性,调节系统采用变桨距调节。在低风速肘,将桨叶节距调节到可获取最大功率位置,桨距角调整优化机组功率的输出;当风力机发出的功率超过额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出,随着风速的不断变化,桨叶仅需要微调维持失速状态。制动刹车时,调节桨叶相当于气动刹车,很大程度上减少了机械刹车对传动系统的冲击。 主动失速调节型的优点是其言了定奖距失速型的特点,并在此基础上进行变桨距调节,提高了机同频率后并入电网。机组在叶片设计上采用了变桨距结构。

其调节方法是:在起动阶段,通过调节变桨距系统控制发电机转速,将发电机转速保持在同步转速附近,寻找最佳并网时机然后平稳并网;在额定风速以下时,主要调节发电机反力转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上时,采用变速与桨叶节距双重调节,通过变桨距系统调节限制风力机获取能量,保证发电机功率输出的稳定性,获取良好的动态特性;

而变速调节主要用来响应快速变化的风速,减轻桨距调节的频繁动作,提高传动系统的柔性。变速恒频这种调节方式是目前公认的最优化调节方式,也是未来风电技术发展的主要方向。 变速恒频的优点是大范围内调节运行转速,来适应因风速变化而引起的风力机功率的变化,可以最大限度的吸收风能,因而效率较高;控制系统采取的控制手段可以较好的调节系统的有功功率、无功功率,但控制系统较为复杂。

第四篇:我国风力发电现状及其技术发展02

2.3风力发电机组控制策略的发展

风能是一种能量密度低、稳定性较差的能源,由于风速、风向的随机性变化,导致风力机叶片攻角不断变化,使叶尖速比偏离最佳值,风力机的空气动力效率及输入到传动链的功率发生变化,影响了风电系统的发电效率并引起转矩传动链的振荡,会对电能质量及接入的电网产生影响,对于小电网甚至会影响其稳定性。风力发电机组通常采用柔性部件,这有助于减小内部的机械应力,但同时也会使风电系统的动态特性复杂化,且转矩传动模块会有很大振荡。目前,对风力发电机的控制策略研究根据控制器类型可分为两大类:基于数学模型的传统控制方法和现代控制方法。传统控制采用线性控制方法,通过调节发电机电磁转矩或桨叶节距角,使叶尖速比保持最优值,从而实现风能的最大捕获。对于快速变化的风速,其调节相对滞后。同时基于某工作点的线性化模型的方法,对于工作范围较宽、随机扰动大、不确定因素多、非线性严重的风电系统并不适用。

现代控制方法主要包括变结构控制、鲁棒控制、自适应控制、智能控制等[7,8]。变结构控制因具有快速响应、对系统参数变化不敏感、设计简单和易于实现等优点而在风电系统中得到广泛应用。鲁棒控制具有处理多变量问题的能力,对于具有建模误差、参数不准确和干扰位置系统的控制问题,在强稳定性的鲁棒控制中可得到直接解决。模糊控制是一种典型的智能控制方法,其最大的特点是将专家的知识和经验表示为语言规则用于控制,不依赖于被控制对象的精确的数学模型,能够克服非线性因素的影响,对被调节对象有较强的鲁棒性。由于风力发电机的精确数学模型难以建立,模糊控制非常适合于风力发电机组的控制,越来越受到风电研究人员的重视。人工神经网络是以工程技术手段来模拟人脑神经元网络的结构与特征的系统。利用神经元可以构成各种不同的拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。利用神经网络的学习特性,可用于风力机的低风速的节距控制。

3存在的问题及展望

尽管近年来我国风电产业得到了迅猛的发展,但同时也暴露出众多的问题。首先,我国尚未完全掌握风电机组的核心设计及制造技术。在设计技术方面,我国不仅每年需支付大量的专利、生产许可及技术咨询费用,在一些具有自主研发能力的风电企业中,其设计所需的应用软件、数据库和源代码都需要从国外购买。在风机制造方面,风机控制系统、逆变系统需要大量进口,同时,一些核心零部件如轴承、叶片和齿轮箱等与国外同类产品相比其质量、寿命及可靠性尚有很大差距。其次,我国风电发展规划与电网规划不相协调,上网容量远小于装机容量。风电发展侧重于资源规划,风电场的建设往往没有考虑当地电网的消纳能力,从而造成装机容量大,并网发电少的现状。2009年新增装机容量中1/3未能上网,送电难已经成为制约风电发展的瓶颈。最后,我国风电的技术标准和规范不健全,包括风机制造、检测、调试、关键零部件生产及电场入网等相关标准亟需建立和完善。因此,展望我国未来的风电产业发展,必须加强自主创新掌握核心技术;必须加大电网建设力度,合理规范风电开发;必须加大政策扶持力度,建立健全完善统一的风电标准规范体系。

参考文献:

[1] 陈永祥,方征.中国风电发展现状、趋势及建议[J].科技综述,2010(4):14-19.

[2] 张明锋, 邓凯,陈波等.中国风电产业现状与发展[J].机电工程,2010,1

(27):1-3.

[3] 党福玲,朝克,贾永.我国风电产业发展现状浅析[J].经济论坛,2010(12):58-60.

[4] 韩永奇,韩晨曦.中国风电产业的发展与前景[J].新材料产业,2010(12):8-10.

[5] 王超,张怀宇,王辛慧等.风力发电技术及其发展方向[J].电站系统工程,2006,22(2):11-13.

[6] 许洪华,郭金东.世界风电技术发展趋势和我国未来风电发展探讨[J].电力设备,2005,6(10):106-108.

[7] 张新房,徐大平,柳亦兵等.风力发电技术的发展及相关控制问题综述[J].华北电力技术,2005(5):42-45.

[8] 马昕霞, 宋明中,马强等.风力发电系统控制技术的研究.上海电力学院学报[J].2005(3):205-209.[

第五篇:风力发电机组的运行维护技术

广州绿欣风力发电机提供更多绿色环保服务请登录查询

风力发电机组的运行维护技术

摘要:风力发电机是集电气、机械、空气动力学等各学科于一体的综合产品,各部分紧密联系,息息相关。风力机维护的好坏直接影响到发电量的多少和经济效益的 高低;风力机本身性能的好坏,也要通过维护检修来保持,维护工作及时有效可以发现故障隐患,减少故障的发生,提高风机效率。

随着科技的进步,风电事业的不断发展。风能公司下属的达坂城风力发电场的规模也日益扩大,单机容量从30kW逐渐升至600kW,风机也由原来的引进 进口设备,发展到了如今自己生产、设计的国产化风机。伴随着风机种类和数量的增加,新机组的不断投运,旧机组的不断老化,风机的日常运行维护也是越来越重 要。现在就风机的运行维护作一下探讨。

一.运行

风力发电机组的控制系统是采用工业微处理器进行控制,一般都由多个CPU并列运行,其自身的抗干扰能力强,并且通过通信线路与计算机相连,可进行远程控制,这大大降低了运行的工作量。所以风机的运行工作就是进行远程故障排除和运行数据统计分析及故障原因分析。

1.远程故障排除

风机的大部分故障都可以进行远程复位控制和自动复位控制。风机的运行和电网质量好坏是息息相关的,为了进行双向保护,风机设置了多重保护故障,如电网 电压高、低,电网频率高、低等,这些故障是可自动复位的。由于风能的不可控制性,所以过风速的极限值也可自动复位。还有温度的限定值也可自动复位,如发电 机温度高,齿轮箱温度高、低,环境温度低等。风机的过负荷故障也是可自动复位的。

除了自动复位的故障以外,其它可远程复位控制故障引起的原因有以下几种:

(1)风机控制器误报故障;

(2)各检测传感器误动作;

(3)控制器认为风机运行不可靠。

2.运行数据统计分析

对风电场设备在运行中发生的情况进行详细的统计分析是风电场管理的一项重要内容。通过运行数据的统计分析,可对运行维护工作进行考核量化,也可对风电场的设计,风资源的评估,设备选型提供有效的理论依据。

每个月的发电量统计报表,是运行工作的重要内容之一,其真实可靠性直接和经济效益挂钩。其主要内容有:风机的月发电量,场用电量,风机的设备正常工作时间,故障时间,标准利用小时,电网停电,故障时间等。

广州绿欣风力发电机提供更多绿色环保服务请登录查询

风机的功率曲线数据统计与分析,可对风机在提高出力和提高风能利用率上提供实践依据。例如,在对国产化风机的功率曲线分析后,我们对后三台风机的安装 角进行了调节,降低了高风速区的出力,提高了低风速区的利用率,减少了过发故障和发电机温度过高故障,提高了设备的可利用率。通过对风况数据的统计和分 析,我们掌握了各型风机随季节变化的出力规律,并以此可制定合理的定期维护工作时间表,以减少风资源的浪费。

3.故障原因分析

我们通过对风机各种故障深入的分析,可以减少排除故障的时间或防止多发性故障的发生次数,减少停机时间,提高设备完好率和可利用率。如对150kW风 机偏航电机过负荷这一故障的分析,我们得知有以下多种原因导致该故障的发生,首先机械上有电机输出轴及键块磨损导致过负荷,偏航滑靴间隙的变化引起过负 荷,偏航大齿盘断齿发生偏航电机过负荷,在电气上引起过负荷的原因有软偏模块损坏,软偏触发板损坏,偏航接触器损坏,偏航电磁刹车工作不正常等。又如,在 对Jacobs系列风机控制电压消失故障分析中,我们采用排除实验法,将安全链当中有可能引起该故障的测量信号元件用信号继电器和短接线进行电路改造,最 终将故障原因定位在过速压力开关的整定上,将该故障的发生次数减少,提高了设备使用率,减少了闸垫的更换次数,降低了运行成本。

二.维护

风力发电机是集电气、机械、空气动力学等各学科于一体的综合产品,各部分紧密联系,息息相关。风力机维护的好坏直接影响到发电量的多少和经济效益的高 低;风力机本身性能的好坏,也要通过维护检修来保持,维护工作及时有效可以发现故障隐患,减少故障的发生,提高风机效率。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:辅警优秀事迹材料下一篇:非煤矿山安全生产