军用机场沥青混凝土道面结构设计指标确定

2024-07-16

军用机场沥青混凝土道面结构设计指标确定(精选3篇)

军用机场沥青混凝土道面结构设计指标确定 第1篇

军用机场沥青混凝土道面结构设计指标确定

根据机场荷载和交通量特点,基于对沥青道面损坏形式和原因的`分析,提出进行设计控制的指标;针对军用机场沥青道面的典型荷载和典型结构对指标进行大量计算分析,指出对沥青道面的性能要求主要是强度而不是变形,结构设计以半刚性基层、底基层的拉应力为主要设计指标,面层拉应力和剪应力作为一定条件下的验算指标.

作 者:孙建斌 翁兴中 SUN Jian-bin WENG Xing-zhong 作者单位:孙建斌,SUN Jian-bin(空军工程大学,工程学院,陕西,西安,710038;南空后勤部机场营房处,江苏,南京,210018)

翁兴中,WENG Xing-zhong(空军工程大学,工程学院,陕西,西安,710038)

刊 名:空军工程大学学报(自然科学版) ISTIC PKU英文刊名:JOURNAL OF AIR FORCE ENGINEERING UNIVERSITY (NATURAL SCIENCE EDITION)年,卷(期):6(1)分类号:V35关键词:道面 沥青混凝土 指标

军用机场沥青混凝土道面结构设计指标确定 第2篇

2.0.1 土基Unsurfaced subgrade 道面或道肩的基础下面按照技术要求碾压密实、均匀、稳定或者经过特殊处理达到设计要求的土质基础。

2.0.2 基础Base course 设在道面或道肩面层下的结构层。主要承受由面层传递下来的飞机荷载,并将其分布到土基上。基础为多层时,其最下一层称底基层。2.0.3 稳定土基础Stabilized soil base course 用石灰、水泥、粉煤灰等结合料与土、砂砾或其他集料,经拌和、摊铺、压实而成的基础。

2.0.4 级配基础Graded aggregate base 以按密级配原理选配的碎石或砾石为骨料和适量细粒土,经拌和、摊铺、压实而成的基础。

2.0.5 垫层Bed coursee 设在基础下的结构层。其主要作用是隔水、排水、防冻等,以改善基础和土基的工作条件。

2.0.6 细粒土Fine grained soil 颗粒的最大粒径小于9.5mm,且其中小于2.36mm的颗粒含量不少于90%。2.0.7 中粒土Midum grained soil 颗粒的最大粒径小于26.5mm,且其中小于19mm的颗粒含量不少于90%。2.0.8 粗粒土Coarse grained soil 颗粒的最大粒径小于37.5mm,且其中小于31.5mm的颗粒含量不少于90%。2.0.9 土的均匀系数Coefficient of uniformity of soil 筛分土的颗粒组成时,通过量为60%的筛孔尺寸与通过量为10%的筛孔尺寸之比值。面区Soil surfaced area 飞行区内位于土基以外要求进行平整、碾压的土面,包括跑道端安全区、升降带平整区及其他有平整和碾压要求的土面。

施 工 准 备 3.1 一般规定

3.1.1 施工单位应全面熟悉施工图纸、技术要求、施工规范等有关资料和文件,深入了解施工现场及其周围的地形、地质、水文、气象、水源、电源、交通运输、通信联络以及农田水利设施和环境保护等情况。

3.1.2 机场改(扩)建工程开工前,建设单位应向施工单位提交施工现场的各种地下电缆、管网以及有关设施的位置、走向、埋设深度和结构情况等资料。对于拟定保留的原有地上、地下的建、构筑物和各种管网,如通信、供电、供水、供暖、供气、供油、燃气、各种排水管沟等设施,应有显著标志,在施工过程中应有专人保护。对要求拆除或改造的通信、电力设施及其他建、构筑物应在开工前完成。

施工中如发现建设单位所提供的资料与实际不符或出现意外情况,施工单位与监理工程师应及时通知建设单位,共同研究,采取措施。

3.1.3 建设单位应组织设计、监理、施工等单位进行设计技术交底。

3.1.4 施工单位应认真做好施工组织设计,报监理工程师或建设单位批准,并提出开工报告。重要项目,应编制施工网络计划。施工总平面布置图是施工组织设计中重要的组成部分,应符合下列要求:

综合考虑现场的地形、地物,做到布局合理,便于施工。各项临时工程的设施应尽可能与永久工程相结合。临时排水、防洪设施应在讯期前完成。

3.1.5 施工单位应将施工图纸、施工组织设计、工程施工特点、质量标准和工期要求等,逐级向施工有关人员做好施工技术交底工作。3.1.6 对技术要求高、地形、地质较复杂的地区以及采用新技术、新工艺、新材料的工程应做试验段,制定技术保障措施,再进行现场施工。

3.1.7 施工单位应按照经建设单位批准的施工总平面布置图进行现场布置。3.1.8 施工单位应对施工机具、运输车辆和设备必需通过的道路桥梁的承载能力等进行调查,不符合要求处,应予加宽或加固。

3.1.9 对正在使用的机场飞行区进行改(扩)建时,施工单位应与机场当局商议制订严密的保证飞行安全措施。3.2 施工测量

3.2.1 施工测量应以建设单位所提供的平面、高程控制点(网)及其成果为准。

3.2.2 施工测量前,施工单位应对建设单位所提供的平面、高程控制点(网)及其成果进行复测和验收,合格后方能作为施工测量的依据。

3.2.3 复测验收后,所有测量标志均由施工单位接管并妥善保护。工程竣工后,施工单位应将所有测量资料(含竣工测量资料)、图纸和计算成果,按工程项目分类装册,作为工程竣工验收资料的附件。

3.2.4 施工测量平面、高程控制点(网)的布置,可利用已有的平面、高程控制点(网)加密,间距宜不大于200m。根据施工需要也可在跑道一侧及其两端延长线上布置平面、高程控制点(网)

3.2.5 施工测量控制点标石的埋设,应根据施工需要而定。主要控制点应不影响飞行安全,且能长期保存。

3.2.6 施工测量控制点标石,除图根点可采用临时标志外,均应采用永久性的水泥混凝土标石。标石的顶面应不小于15cm×15cm,底面应不小于25cm×25cm。标石埋设深度一般地区应不小于80cm,在北方寒冷地区还应在最大冰冻线以下20cm;埋设高度应高出完工后场地标高5-10cm。

3.2.7 平面控制与高程控制测量应符合下列要求: 1 平面控制与高程控制网的布设,应以已知控制点为起点。各项工程控制网施测,应布设为闭合线路。3.2.8 测量精度要求 1 平面控制

1)施工控制点(网)的测量应符合国家标准《工程测量规范》(GB50026-93)中一级导线测量的各项规定,其测量精度要求如下:

导线长度

2.4km

平均边长

0.25km

测角中误差

8〞

测距中误差

15mm

测距相对中误差

≤1/14,000

方位角闭合差

16〞(n为测站数)

相对闭合差

≤1/10,000 2)施工放线定位测量应符合国家标准《工程测量规范》(GB50026-93)中二级导线测量的各项规定,其测量精度要求如下:

导线长度

≤1.2km

平均边长

0.10km

测角中误差

12〞

测距中误差

15mm

测距相对中误差

≤1/7,000

方位角闭合差

24〞(n为测站数)

相对闭合差

≤1/5,000

高程测量

1)施工控制点(网)的高程应符合国家标准《工程测量规范》(GB50026-93)中二等水准的规定,其精度要求如下:

每公里高程中误差

2mm

闭合差

mm(L为公里数)2)高程定位应符合国家标准《工程测量规范》(GB50026-93)中三等水准的规定,其精度要求如下:每公里高差中误差6mm 闭合差

mm(L为公里数)

3)各施工点的高程精度用水平仪直接后视高程控制点检测,不得两次转点引测。其高程误差为:道面、排水构筑物≤2mm,基础≤4mm,土方≤10mm。

(石)方工程 4.1 一般规定

4.1.1 施工前,应做好临时防讯、防洪、排水设施,并尽可能结合正式防洪、排水线路,但开挖深度宜保持在沟(管)的土槽面以上。排水沟渠应保证水流顺畅。4.1.2 施工前应做好临时供水、供电设施。4.1.3 施工前应修筑临时道路,保证行车安全。

4.1.4 对填土、挖土和借土各作业区的各类土壤,施工单位应在施工前测定其最佳含水量、最大干密度和天然密度,并按区编号列表,经监理工程师同意后,作为现场控制土方施工质量的依据。4.2 土基填筑

4.2.1 填方施工前土基作业区及借土区的草皮土、种植土、腐植土、树丛、树根、淤泥等以及各种建构、筑物应清除干净。

4.2.2 土基范围内的原地面的坑、洞、墓穴、沟、塘等应按设计要求进行妥善处理。

4.2.3 土基基底原状土的土质不符合设计要求时,应进行换填,换填深度应不小于30cm ,并应按要求的密度予以分层压实。

4.2.4 土基填料不得使用淤泥、沼泽土、白垩土、冻土、有机土、含草皮土、生活垃圾、树根和含有腐朽物质的土。采用盐渍土、黄土、膨胀土填筑土基时,应按设计要求施工。

4.2.5 经分解稳定的不含磁性的钢渣、粉煤灰以及其他工业废渣,在其有害物质不致污染环境情况下可用做土基填料。

4.2.6 土基填方前应对原地面进行平整、压(夯)实,达到设计要求的密度后,方允许在其上填筑。

4.2.7 用透水性不良的土填筑土基时,应控制其含水量在最佳压实含水量的±2%以内。

4.2.8 土基填筑应分层填筑、分层压(夯)实。采用一般能量机械压实时,每层的最大松铺厚度不应超过30cm ;采用能量较大的压(夯)实机具时,每层最大松铺厚度应通过试验确定。

4.2.9 土基填土时土块应打碎;填石或填土石混合料时石料最大粒径不宜超过层厚的2/3。

4.2.10 采用爆破后的石渣填筑时,颗粒应有一定级配。当石块级配较差、粒径较大、填层较厚、石块间的空隙较大时,可在每层表面的空隙里填入石屑、石渣或中、粗砂等细料,再用振动压路机反复碾压,使空隙密实。

4.2.11 原地面自然坡度陡于1:5时,原地面应挖成台阶(台阶宽度不小于1m,高宽比1:2),台阶顶面应向内倾斜,并用压(夯)实机加以压(夯)实。填筑应从最低一层台阶填起,并分层压(夯)实。

4.2.12 土基填土宜采用同类土,至少要求各层填土用同类的土,不得将不同土壤混填,同时应将

透水性强的土壤填在上层。4.2.13 土基填石时,当石料岩性相差较大时,应将不同岩性的石料分层或分段填筑。土基填土石混合料时,当土石混合料其岩性或土石混合比相差较大时,应分层或公段填筑。如不能分层或分段填筑,应将含硬质石块的混合料铺于填筑层的下面,同时石块不得过分集中,上层再铺含软质石料的混合料,然后整平碾压。

4.2.14 土石混合料中,石料含量超过70%时,应先填筑大块石料,放置平稳,用小石块、石渣或石屑嵌缝找平,然后碾压;当石料含量少于70%时,土石可混合铺填,但应避免大块硬质石料集中。

4.2.15 用装载机、自卸车、推土机及挖掘机等运填土时,应有专人指挥卸土位置、分层厚度、土壤分类,并配备推土机或平地机平土,以保证填土均匀。

4.2.16 填方分几个作业段施工时,两段交接处如不在同一时间填筑,则先填地段应按1:1坡度分层预留台阶;若两个地段同时填筑,则应分层相互交叠衔接,其搭接长度不得小于2m。两段施工面高差不得大于2m。

4.2.17 填筑高度10m及以上时,应埋设沉降观测点,定期观测沉降。

4.2.18 填筑高度20m以上时属高真方,除了满足土基密度要求外,还应满足设计沉降要求。

4.2.19 填筑接近设计高程时,应对高程加强测量检查。

4.2.20 为保证土基表面平整,在已竣工的土基上,不允许施工机械在其上行驶;雨后湿软,禁止任何车辆和行人通行。4.3土面区填筑

4.3.1 除下列各点之外,土面区填筑技术要求与土基填筑相同: 土面区内的沟、坑、塘等不要求进行特殊处理,但应排除积水,晾干淤泥。2 土面区填方地段的植物土可不挖除,但应清除树根、草丛和稻根。除跑道端安全区和升降带平整区表面下20cm深度外,泥炭、淤泥、草皮土、腐植土、膨胀土、盐渍土等,晾干后均可做为土面区填土。但不同类土壤不宜混填。4.3.2 石方或土石混合料填筑接近设计高程时,距设计高程15cm内应采用不得夹有石块的土填至设计标高。4.4土(石)方开挖

4.4.1 土(石)方开挖时,对计划用在土面区的植物土和其他表土应存放在指定地点。

4.4.2 对挖出的适用的土类,不同类别的土壤不应混杂堆放。4.4.3 土方开挖应自上而下进行,不得乱挖、超挖,严禁掏洞取土。

4.4.4 土方开挖如遇特殊土质时,应报请监理工程师和设计部门提出处理方案。4.4.5 弃土应运至建设单位和有关部门指定地点堆放。弃土堆的边坡不应陡于1:1.5。

4.4.6 土方挖至接近设计高程时,应对高程加强测量检查,并根据土质情况预留压(夯)实沉降值,避免超挖。

4.4.7 对挖方地区的暗坑、暗穴、暗沟、暗井等不良地质体,应按设计要求进行妥善处理。

4.4.8 挖方过程中如遇地下水应采取排水措施;挖土时应避免挖方段地面积水。4.4.9 开挖石方应根据岩石的类别、风化程度和节理发育程度等确定开挖方式。对于软质岩石和强风化岩石,可采用机械开挖或人工开挖;对于坚硬岩石应采取爆破法开挖。

4.4.10 石方进行爆破作业时,必须由经过专业培训并取得爆破证书的专业人员施爆。施工单位制定的爆破方案应报建设单位批准。

4.4.11 土基区的石方开挖,应按土基设计高程超挖30~40cm,换填普通士;土面区宜超挖15~20cm,换填普通士或草皮土。

4.4.12 石方爆破,特别是进行中、大型爆破时,必须做好确保周围建筑物、各类设施及人员生命财产安全的措施。4.5土、石方压实 4.5.1 土方应有足够的密实度。土方压实过程中,应按照设计要求,严格控制土壤含水量和密实度。为提高土方压实效果,土壤含水量应控制在最佳含水量±(1%~2%)的范围内。

4.5.2 土基区和土面区的土方密实度要求不得小于表4.5.2的规定值。表4.5.2土方密实度要求

位 土基顶面或土面以下深度(cm)重型击实法的密实度(%)飞行区指标Ⅱ A、B C、D、E、F 土 基

区 填

方 0~100 96 98 100~400 93 95 >400 92 93 挖

填 0~30 96 98 土

面 填

方 跑道端安全区 0~80 85 90 >80 83 88 升降带平整区 0~80 85 90 >80 83 88 其它土面区 0~80 80 85 >80 80 85 区 挖方及零填 跑道端安全区 0~30 85 90 升降带平整区 0~30 85 90 其它土面区 0~20 80 85 注:1 表列仅为一般土质压实要求。特殊土质,通过现场试验分析经设计单位研究确定压实标准; 在多雨潮湿地区或当土质为高液限粘土时,根据现场实际情况并经设计单位同意,可将表内密实度适当降低1%~3%;

对于高填方地区,除了满足土基密实度要求外,还应满足沉降控制要求。4.5.3 填土必须分层填筑,分层压实。不同土质的土不得混填。按土质类别、压实机具性能等,经过试验确定最大松铺厚度。当填筑至土基顶面时该层最小压实厚度应不小于10cm。

4.5.4 碾压工作一般是先用轻型后用重型机具,先慢后快。每次运行碾压机具应两侧向中央进行,主轮应重叠15cm左右。压实时应特别注意避免引起不均匀沉陷。碾压机具的时速宜控制在2~3km/h。

4.5.5 原地面碾压过程中,如发现碾压机械的轮迹突然增大时,应检查下面是否有暗坑、暗沟、暗井、暗坟或不稳定土壤,并应采取措施妥善处理。

4.5.6 电缆沟、排水沟和小坑塘的填土,当不能用大型机械碾压时,可用小型机械或人工分层夯实,并应在整个深度内均匀地达到要求的密实度,同时应注意不得损坏下埋的构筑物和电缆。

4.5.7 挖方区的设计面、填方区的原地面及各层填土的密实度,需经试验室取样试验合格后才允许进行上一层的施工。

4.5.8 施工中应防止出现翻浆或弹簧土现象,特别是在雨季施工时,应集中力量分段突击填土碾压。填土应加强临时排水设施。如发现翻浆或弹簧土现象时,应采取下列措施处理: 成片翻浆或弹簧土地段,在地下水位较高地区或在雨季施工时,应在土基两侧设置盲沟。

当土基在冰冻线内,处理局部翻浆或弹簧土时,应与设计单位研究处理措施。4.5.9 采用强夯夯实时,根据土、石方材料性质通过试验确定有关施工参数。4.5.10 石方填筑和碾压之前,应用大型推土机摊铺平整,个别不平处应用人工配合以石屑找平。

4.5.11 石方填筑和土石混合料填筑的密实度采用固体体积率控制,可用灌砂法或水袋法检测,土基区应不小于83%,土面区应不小于72%。其标准干密度应根据每一种填料的不同含石量的最大干密度作出标准干密度曲线,然后根据试坑挖取试样的含石量,从标准干密度曲线上查出对应的标准干密度。4.6低温施工

4.6.1 连续15d昼夜平均气温在00C以下进行施工时,属于低温施工。4.6.2 大面积土基填土,禁止低温施工。

4.6.3 局部土基填土必须延至低温期结束的工程,应制订低温施工组织设计方案(包括工程数量、施工方法、防冻措施、施工工期等),经监理工程师、建设单位批准后,方可进行施工。4.7雨季施工

4.4.1 雨季施工应符合下列要求: 根据地形、地势作好防洪及排水(截水)系统。利用场区永久或临时排水系统,排除场区水流或洼地积水。雨季土基填土应特别注意填料的选择,选用含水量合适的土,如土质过湿应晾干后再用。雨天开挖土方时,在取土面和工作地段,应保持一定的排水坡度,以便雨停后即可施工;若取土地点地下水位较高,应挖纵横向排水沟,将水引出,降低地下水位。4 土基填挖土方,不宜全面铺开,应做到随挖、随填、随摊铺、随碾压密实,充分利用雨停间隙施工。5 分层填土,每层表面应有1.0%~1.5%的横坡,并整平。雨前或每日收工前应将摊铺的松土碾(夯)压完毕,若来不及碾(夯)压实及时覆盖。

4.7.2 雨季石方爆破,宜尽可能打水平炮眼,以免炸药、雷管受潮发生哑炮。

4.8 施工质量控制

4.8.1 为保证压实质量,应按规定检查土基的密实度。取样检验数目,应符合表4.8.1的规定。

4.8.2 土基及土面区竣工高程和平整度应符合表4.8.2规定。

表4.8.1 土基及土面区密实度检测要求 项

目 频

数 检测方法 标

基 每层1000m21点 环刀法、灌砂法或水袋法 密实度符合表4.5.2要求;固体体积率符合4.5.11 条件要求

跑道端安全区,升降带平整区 每层1000m21点 同上 同上 其他土面区 每层2000m21点 同上 同上 坑、沟、塘等处理 每层≤500m21点 同上 同上

表4.8.2 土基及土面区平整度及高程检测要求 项

目 频数 检测方未能 标准值(mm)土

基 高

程 10m×10m方格网控制 水准仪 +

10、-20平整度 每1000m2 1点 3m直尺(最大值)≤20 跑道端安全区,升降带平整区 高

程 20m×20m方格网控制 水准仪 +30平整度 每2000m2 1点 3m直尺(最大值)≤50 其他土面区 高

程 20m×20m方格网控制 水准仪 +50平整度 每5000m2 1点 3m直尺(最大值)+50

5基础工程 一般规定

5.1.1 基础工程应在对其下部的土基和相关隐蔽工程质量检查验收合格后施工。5.1.2 基础为多层时应在对其下层质量检查验收合格后方充许进行上层施工。5.1.3 施工前应对采料场和已进场的材料,按设计的规格和质量要求进行检验。不合格的材料严禁使用。

5.1.4 应避免在做好的基础上重挖埋设电缆管线、供油管线或其它管线。不能避免时,对被破坏的基础应恢复到设计要求的平整度和密实度后,方可进行上部的道面工程施工。

5.1.5 基础厚度较大或层次材料不同时,应分层施工。

5.1.6 基础工程在正式开工前应铺试验段,检测各项技术指标能否达到设计要求。5.2 水泥稳定土 5.2.1 一般规定 水泥稳定土基础按照土中颗粒的粒径大小和组成不同,分为水泥稳定粗粒土、水泥稳定中粒土和水泥稳定细粒土。道面工程的基层和底基层可使用水泥稳定粗粒土和水泥稳定中粒土;不得使用水泥稳定细粒土和水泥土。水泥稳定土混合料施工应采用厂拌法集中拌和并采用摊铺机摊铺。3 硫酸盐含量超过0.25%的土,不应用水泥稳定。水泥剂量应以水泥质量占全部粗细颗粒的干质量的百分比表示,即水泥剂量=水泥质量/干土质量。水泥稳定土的各项试验应按《公路工程无机结合料稳定材料试验规程》(JTJO57)进行。

5.2.2 材料质量标准和混合料组成设计 1 水泥

1)普通硅酸盐水泥、矿渣硅酸盐水泥和火山灰质硅酸盐水泥均可用于水泥稳定土。2)水泥强度等级宜采用32.5的水泥。不应使用快硬水泥及早强水泥。宜选用初凝时间3h以上和终凝时间6h以上的水泥,如达不到要求可掺缓凝剂。3)禁止使用已受潮变质的水泥。

4)使用水泥稳定中粒土和粗粒土时,水泥剂量不宜超过6%。

各类饮用水均可用于水泥稳定土施工。如遇可疑水源应进行试验鉴定。集料

1)水泥稳定土做底基层,最大粒径不应大于37.5mm,其颗粒组成应符合表5.2.2规定的级配范围。宜选用均匀系数大于

10、塑性指数小于12的土。

2)水泥稳定土做上基层时,最大粒径不应超过31.5mm,其颗粒组成应符合表5.2.2规定的列级配范围。

表5.2.2 水泥稳定土的颗粒组成范围 通过质量

百分率(%)部 位

目 底 基 层 基

层 筛

寸(mm)37.5 100 31.5 90~100 100 26.5 90~100 19 67~90 72~89 9.5 45~68 47~67 4.75 29~50 29~49 2.36 18~38 17~35 0.6 8~22 8~22 0.075 0~7① 0~7① 液限(%)<28 塑性指数 <12 <9 注:集料中0.5mm以下细粒土有塑性指数时,小于0.075mm颗粒含量不应超过5%;细粒土无塑性指数时,小于0.075mm颗粒含量不应超过7%。3)水泥稳定土碎石或砾石的压碎值应不大于30%。4 混合料组成设计

1)稳定土7d浸水抗压强度应符合设计规定。

2)同一土样按最小、中间和最大水泥剂量进行试配,通过击实试验,确定各种混合料的最佳含水量和最大干(压实)密度。按规定达到的密实度分别计算不同水泥剂量的试件应有的干密度,即试件的干密度=击实试验所得最大干密度×现场要求密实度。3)按最佳含水量和计算所得干密度制备强度试验的试件。试件在规定养生温度下保湿养生6d、浸水24h后,进行无侧限抗压强度试验。计算试验结果的平均值和偏差系数,偏差系数范围为10%~15%,若大于此值,应重做试验,并找出原因,加以解决。根据达到要求的强度标准选择水泥用量。

在此剂量下,试件室内试验结果的平均抗压强度 R 应符合下式的要求:

R ≥Rd/(1-ZaCv)式中:Rd----设计抗压强度;

CV----试验结果的偏差系数(以小数计);

Za----标准正态分布表中随保证率(或置信度a)而变的系数,取保证率95%,即Za=1.645。

4)工地实际采用的水泥剂量应比室内试验确定的剂量多0.5%。5.2.3 混合料拌和、运输、摊铺和压实 1 混合料拌和 1)在正式拌制混合料之前,应先调试所有设备,使混合料的颗粒组成和含水量达到规定的要求。

2)水泥稳定土混合料采用专用稳定土集中厂拌机械拌制时,土块最大尺寸不得大于15mm。配料应准确,保证集料的最大粒径和级配符合要求。

3)拌和混合料的用水量应根据集料和混合料含水量的大小及时调整,含水量宜略大于最佳值,使混合料运到现场摊铺后碾压时的含水量不小于最佳值。4)严格控制混合料的拌和时间,保证混合料拌和均匀。

5)每盘搅拌机混合料的体积,不得超过搅拌机上标示的搅拌机的容量。2混合料运输

1)水泥稳定土混合料运输宜采用自卸机动车,并以最短时间运到摊铺现场。2)混合料从搅拌站运至摊铺现场时应保持水份,必要时应对运料车辆加盖。3)运输道路路况应良好,避免运料车剧烈颠簸,致使混合料产生离析现象。3混合料摊铺和碾压

1)混合料运到现场后,应采用沥青混凝土摊铺机或稳定土摊铺机摊铺混合料,摊铺机宜连续摊铺。

2)在摊铺机后面应设专人消除粗细集料离析现象。

3)基础分两层施工时,在铺筑上层前应在下层顶面先洒水湿润。

4)混合料每层摊铺厚度应根据碾压机具类型确定。用12t~15t三轮压路机碾压时,每层的压实厚度不应超过15cm ;用18t~20t三轮压路机和振动压路机碾压时,每层的压实厚度不应超

过20cm ;采用能量大的振动压路机碾压时,经过试验可适当增加每层的压实厚度。压实厚度超

过上述规定时,应分层铺筑,每层最小压实厚度为10cm。

5)水泥稳定土混合料的密实度(重型击实法)上基层不得少于98%;底基层不得小于97%。

6)水泥稳定土施工时严禁用薄层贴补法进行找平。

7)当混合料的含水量达到最佳含水量时,应立即用轻型两轮压路机并配合12t以上压路机在结构层全宽内进行碾压。碾压时应重叠1/2轮宽,后轮应超过两段的接缝处。后轮压完道面全宽时为一遍,一般需压6~8遍,直到达到要求的密实度为止。8)压路机的碾压速度,头两遍1.5~1.7km/h为宜,以后逐渐增加到2.0~2.5km/h。9)为保证稳定土层表面不受损坏,严禁压路机在已完成的或正在碾压的地段上调头或急刹车。

10)碾压过程中,水泥稳定土的表面应始终保持湿润,如水份蒸发过快,应及时补洒适量的水份。

11)碾压过程中,如有“弹簧”、松散、起皮等现象,应采取有效措施处理。达到质量要求。

12)水泥稳定土应尽可能缩短从加水拌和至碾压终了的延迟时间,延迟时间不应超过2h。宜在水泥初凝前并应在试验确定的延迟时间内完成碾压,达到要求的密实度。碾压结束之前,其纵横坡度应符合设计要求。

13)用摊铺机摊铺混合料时,不宜中断,如因故中断时间超过2h ,应设置横向接缝。设置横向接缝时,摊铺机应驶离混合料末端,人工将末端含水量合适的混合料修整整齐,紧靠混合料处放置与压实厚度相同的方木,整平紧靠方木处的混合料,方木另一侧应支撑牢固以防碾压时将方木移动,用压路机将混合料碾压密实。在重新摊铺混合料之前,将固定物及方木移去,并将四周清理干净。摊铺机返回到已压实层的末端,重新开始摊铺下一段的混合料。

14)宜采用多台摊铺机前后相距5m~8m并排同步向前推进摊铺混合料,以减少纵向接缝数量。在纵向接缝处,必须垂直相接,严禁斜面搭接。纵缝的设置,在前一幅摊铺时,靠中央的一侧用方木或钢模板做支撑,支撑高度与稳定土层的压实厚度相同。养护结束后,在摊铺另一幅之前,拆除支撑。5.2.4 水泥稳定土冬、雨季施工 水泥稳定土结构层施工期的日最低气温应在50C以上,在有冰冻的地区,并应在第一次重冰冻(-30C~-50C)到来之前半个月至一个月完成。水泥稳定土在雨季施工时,应注意天气变化,降雨时应停止施工,对已经摊铺的混合料应尽快碾压密实。雨季施工时应采取措施保护水泥和细集料,防止雨淋。应根据集料和混合料含水量的大小,及时调整搅拌时混合料的用水量。5.2.5 养护及交通管制 水泥稳定土底基层分层施工时,如上层水泥稳定土采用重型振动压路机碾压,则下层水泥稳定土碾压完后,宜养护7d后再铺筑上层水泥稳定土。底基层养生7d后,方可铺筑基层。每一施工段碾压完成并经检查密实度合格后,应立即开始养护。基础养护期不应少于7d。养护宜采取湿治养护,如无纺布、麻布袋、砂等。在整个养护期间应保持潮湿状态,不应忽干忽湿。在干旱缺水地区也可采用不透水薄膜、乳化沥青养护。4 养护结束后,应将覆盖物清除干净。5 养护期间应限制重型车辆在基础上行驶。养护期后临时在基础上开放交通作为通道时,应采用保护措施。5.3 石灰稳定土 5.3.1 一般规定 石灰稳定土按照土中颗粒的粒径大小和组成不同,分为石灰稳定粗粒土、石灰稳定中粒土和石灰稳定细粒土。石灰稳定土只适用于机场飞行区道面工程的底基层,并只能使用石灰稳定土粗粒和石灰稳定中粒土。石灰稳定土混合料施工应用厂拌法集中拌和并采用摊铺机摊铺。硫酸盐含量超过0.8%的土和有机质含量超过10%的土,不宜采用石灰稳定。4 石灰稳定土的石灰剂量以石灰质量占全部粗细颗粒干质量的百分率表示,即石灰剂量=石灰质量/干土质量。石灰稳定土的各项试验应按《公路工程无机结合料稳定材料试验规程》(JTJ057)进行。

5.3.2 材料质量标准和混合料组成设计

石灰

1)石灰应采用磨细生石灰,其技术指标应符合表5.3.2的规定。

2)应尽量缩短石灰的存放时间。石灰在野外堆放时间较长时,应妥善覆盖保管,不应遭日晒雨淋。

表5.3.2 石灰的技术指标

类 别 指 标

项 目 钙质生石灰 镁质生石灰

级 Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ

有效钙加氧化镁含量(%)≥85 ≥80 ≥70 ≥80 ≥75 ≥65 未消化残渣含量

(5mm园孔筛的筛余,%)≤7 ≤11 ≤17 ≤10 ≤14 ≤20 钙镁石灰的分类界限,氧化镁含量(%)≤5 ≥5 注:硅、铝、镁氧化物含量之和大于5%的生石灰,其有效钙加氧化镁含量指标为:Ⅰ等≥75%,Ⅱ等≥70%,Ⅲ等≥60%;未消化残渣含量指标与镁质生石灰指标相同。水

饮用水可用于石灰稳定土施工。如遇可疑水源应进行试验鉴定。3集料

1)级配碎石、末筛分碎石、砂砾、碎石土、砂砾土、煤矸石及粒状矿渣均可做石灰稳定土材料。石灰稳定土中碎石、砂砾或其他粒状材料的含量应在70%以上,并应具有一定级配。

2)用做底基层的石灰稳定土,颗粒最大粒径不应超过37.5mm.3)石灰稳定土中碎石或砾石的压碎值应不大于35%。

4)用石灰稳定不含粘性土或无塑性指数的级配砂砾、级配碎石、未筛分碎石时,应添加15%左右的粘性土。

混合料组成设计

1)石灰稳定土底基层的7d浸水抗压强度应符合设计规定。

2)用同一种土样按最小、中间和最大石灰剂量进行试配,确定混合料的最佳含水量和最大干密度。

3)按规定达到的密实度,分别计算不同石灰剂量试件应有的干密度,即试件干密=击实试验所得最大干密度×规定达到的密实度。

4)按最佳含水量和计算所得干密度制备试件。试件在规定温度下保湿养生6d、浸水24h后进行无侧限抗压强度试验,计算试验结果的平均值和偏差系数,偏差系数范围为10%-15%。若大于此值应重做试验,并找出原因,加以解决。

5)根据设计要求的抗压强度标准,选择合适的石灰剂量。在此剂量下,试件室内试验结果的平均抗压强度

R应符合下式的要求: R ≥Rd/(1-ZaCv)式中:Rd----设计抗压强度;

CV----试验结果的偏差系数(以小数计);

Za----标准正态分布表中随保证率(或置信度a)而变的系数,取保证率95%,即Za=1.645。

工地实际采用的石灰剂量应比室内确定的剂量多0.5%左右。5.3.3混合料拌和、运输、摊铺和压实

混合料拌和、运输、摊铺和压实程序和要求按本规范5.2.3条各款规定执行。石灰稳定中粒土和粗粒土的密度应不小于97%。5.3.4石灰稳定土冬、雨季施工 石灰稳定土结构层施工期的日最低气温应在50C以上;在有冰冻地区,应在第一次重冰冻(-30C~-50C)到来之前的一个月至一个半月完成。稳定土层宜有半个月以上温暖气候期养护。在雨季施工石灰稳定土时,应做好排除表面水的措施,防止混合料过分潮湿。3 雨季施工时应采取措施,保护石灰免受雨淋。5.3.5 养护及交通管制 石灰稳定土养护期不宜少于7d。在养护期间应保持一定的湿度,不应过湿或忽干忽湿。

在养护期间除洒水车外,应封闭交通。石灰稳定土底基层分层施工时,下层石灰稳定土碾压完成后,可立即铺筑上层石灰稳定土,不需专门的养护期。5.4 石灰工业废渣稳定土 5.4.1 一般规定 石灰工业废渣稳定土分为石灰粉煤灰类稳定土和石灰其他废渣类稳定土。可利用的工业废渣包括:粉煤灰、煤渣、锅炉矿渣、钢渣(已崩碎稳定)及其它冶金矿渣和煤矸石等。

石灰工业废渣稳定土可用于基层和底基层。但二灰、二灰土和二灰砂不宜和用做基层。石灰工业废渣混合料采用质量配合比计算,以石灰:粉煤灰:集料的质量比表示。有机质含量超过10%的土不宜使用。石灰工业废渣混合料应采用专用稳定土集中厂拌机械拌制,并采用摊铺机进行摊铺。

石灰工业废渣稳定土的各项试验应按《公路工程无机结合料稳定材料试验规程》(JTJ057)进行。

5.4.2 材料质量标准和混合料组成设计

石灰

1)工业废渣稳定土所用石灰采用磨细生石灰,其技术指标应符合表5.3.2生石灰质量要求。

2)应尽量缩短石灰的存放时间。石灰在野外存放应覆盖防潮。

粉煤灰

1)粉煤灰中SiO2、Al203和Fe203的总含量应大于70%。

2)粉煤灰的烧失量不应超过20%。

3)粉煤灰的比表面积宜大于2500cm2/g。

4)可采用干粉煤灰或湿粉煤灰,湿粉煤灰含水量不宜超过35%。使用时应将凝块的粉煤灰打碎过筛,并清除有害杂质。

煤渣

煤渣的最大粒径不应大于30mm,颗粒组成应有一定级配,不宜含有杂质。二灰稳定土

1)二灰稳定中粒土和粗粒土不宜含有塑性指数的土。

2)二灰稳定土用做底基层时,集料的最大粒径不应超过37.5mm。各种细粒土、中粒土和粗粒土都可用二灰稳定后做底基层。

3)二灰稳定土用做基层时,二灰质量应占15%~30%;集料颗粒的最大粒径不应超过31.5mm,粒径小于0.075mm的颗粒含量宜接近0。

4)二灰稳定级配砂砾和二灰稳定级配碎石中的颗粒组成应符合表5.4.2规定的级配范围。

表5.4.2二灰稳定集料中集料颗粒组成范围要求 应用层位 底 基 层 基

集料种类 级配砂砾 级配碎石 级配砂砾 级配碎石 通过下列筛孔(mm)的质量百分率(%)37.5 100 100 31.5 58~100 90~100 100 100 19.0 65~85 72~90 85~100 81~98 9.5 50~70 48~68 55~75 52~70 4.75 35~85 30~50 39~59 30~50 2.36 25~45 18~38 27~47 18~38 1.18 17~35 10~27 17~35 10~27 0.60 10~27 6~20 10~25 6~20 0.075 0~15 0~7 0~10 0~7

5)碎石或砾石的压碎值对于基层应不大于30%;对于底基应不大于35%。水

各类饮用水均可用于石灰工业废渣稳定土。混合料组成设计

1)石灰工业废渣稳定土的7d浸水抗压强度应符合设计要求规定。

2)石灰工业废渣稳定土的组成设计应根据设计要求的强度标准,通过试验确定石灰与粉煤灰或石灰与煤渣的比例,确定石灰粉煤灰或石灰煤渣与碎石(或砾石)的质量比例,并确定混合料的最佳含水量。3)采用二灰级配集料做基层时,石灰与粉煤灰的比例可用1:2~1:4;石灰、粉煤灰与集料的比例可用20:80~15:85。

4)采用石灰煤渣做基层或底层时,石灰与煤渣的比例可用20:80~15:85。5)采用石灰、煤渣、集料做基层或底层时,石灰:煤渣:集料可选用(7~9):(26~33):(67~58)。

6)为提高石灰工业废渣的早期强度,可外加1%~2%的水泥。

7)制备不同比例的二灰土或二灰集料混合料,用重型击实法确定各种二灰土或二灰集料的最佳含水量和最大干密度。

8)按规定达到的密实度分别计算不同配比时二灰、二灰集料试件应有的干密度,即试件的干密度=击实试验所得最大干密度×规定达到密度实度。

9)按最佳含水量和计算所得的干密度制备试件,试件在规定温度下保湿养护6d、浸水24h后,进行无侧限抗压强度试验,计算试验结果的平均值和偏差系数,偏差系数范围为10%~15%。

10)根据设计的抗压强度标准,选定混合料的配合比。在此配合比下,试件室内试验结果的平均抗压强度 R 应符合下式的要求: R ≥Rd/(1-ZaCv)式中:Rd----设计抗压强度;

CV----试验结果的偏差系数(以小数计);

Za----标准正态分布表中随保证率(或置信度a)而变的系数,取保证率95%,即Za=1.645。

5.4.2混合料拌和、运输、摊铺和压实。在正式拌制混合料之前,应先调试所有设备,使混合料的颗粒组成和含水量都达到规定的要求。拌和时土块最大粒径不应大于15mm;粉煤灰块不应大于12mm,且9.5mm和2.36mm筛孔的通过量应分别大于95%和75%。3 配料应准确,拌和应均匀。

混合料的含水量应略大于最佳含水量,使混合料运到现场摊铺后碾压时的含水量接近最佳值。石灰工业废渣稳定土基层密实度应不小于98%,底基层密实度应不小于97%。5 拌成的混合料的堆放时间不宜超过24h ,宜在当天将拌成的混合料运到现场摊铺,不宜将拌成的混合料长时间堆放。

其他要求同本规范 5.2.3条。

5.4.3 石灰工业废渣稳定土冬、雨季施工

石灰工业废渣稳定土结构层施工期的日最低温度应在50C以上;在有冰冻地区,应在第一次重冰冻(-30C~-50C)到来之前一个半月完成。石灰工业废渣稳定土在雨季施工时,石灰、粉煤灰和细集料应有覆盖,防止雨淋过湿。应根据集料和混合料含水量的大小,及时调整搅拌用水量。5.4.4 养护及交通管制 石灰工业废渣稳定土层从碾压完成后的第二天开始养护。必须保湿养护,防止其表面干燥。2 石灰工业废渣基层分层施工时,下层碾压完毕后,可以立即铺筑上一层,不需专门养护期。对于二灰稳定粗、中粒土的基层,养护期一般为7d。4 在养护期间,除洒水车外,应封闭交通。石灰工业废渣稳定土层上未铺封层或面层时,禁止开放交通;当施工中断,临时开放交通时,应采取保护措施,防止表面遭破坏。5.5 级配碎石 5.5.1 一般规定 级配碎石可用于道面工程的基层和底基层。用做基层和底基层的级配碎石应由预先筛分成几组的不同粒径的碎石(如:3.75~19mm,19~9.5mm,9.5~4.75mm的碎石)及4.75mm以下的石屑组配而成。缺乏石屑时,可以掺加细砂砾或粗砂。级配碎石用做基层时,其最大粒径宜控制在31.5mm以下;用做底基层时,其最大粒径宜控制在37.5mm以下。级配碎石的施工应采用集中厂拌法拌制混合料,并用摊铺机摊铺混合料。5.5.2 材料质量标准及混合料组成 轧制碎石的材料可采用各种类型的坚硬岩石、圆石或矿渣。圆石的粒径应是碎石最大粒径的3倍以上;矿渣应采用已崩碎稳定的,其干密度不小于960kg/m3。

碎石中针片状颗粒的总含量不应超过20%。碎石中不应有粘土块、植物等有害物质。3 石屑可采用碎石场中的细筛余料或专门轧制的细碎石集料;也可采用级配较好的天然砂砾或粗砂代替石屑。级配碎石的颗粒组成和塑性指数应满足表5.5.2的规定。

表5.5.2级配碎石或级配碎砾石的颗粒组成范围 应用层位 基

层 底 基 层

通过下列筛孔(mm)的质量百分率(%)37.5 100 31.5 100 83~100 19.0 85~100 54~84 9.5 52~74 29~59 4.75 29~54 17~45 2.36 17~37 11~35 0.6 8~20 6~21 0.075 0~7② 0~10 液限(%)<28 <28 塑性指数 <6(或9①)<6(或9①)注: 1 潮湿多雨地区塑性指数宜小于6,其他地区塑性指数宜小于9。2 对于无塑性的混合料,小于0.075mm的颗粒含量应接近高限。当粒径小于0.5mm细粒土塑性指数偏大时,塑性指数与小于0.5mm以下颗粒含量乘积应满足:在年降雨量小于600mm的地区,地下水位对土基没有影响时,乘积不应大于120;在潮湿多雨地区,乘积不应大于100。级配碎石所用石料的压碎值对于基层不应大于26%;对于底基层不应大于30%。5.5.2 级配碎石的拌和、运输、摊铺和压实 在中心搅拌站级配碎石混合料可采用强制式拌和机、卧式双转轴浆叶式拌和机或普通水泥混凝土拌和机等机械集中拌和。不同粒径的碎石和石屑应分别堆放。雨季施工期间,石屑等细集料应有覆盖,防止雨淋。在搅拌之前应调试搅拌设备,要求混合料配料准确、搅拌均匀、含水量达到规定要求。

级配碎石混合料运到现场后应采用沥青混凝土摊铺机或其他碎石摊铺机摊铺碎石混合料。摊铺机后面应设专人消除粗、细集料离析现象。整形后,当混合料含水量等于或略大于最佳含水量时,立即用12t以上三轮压路机、振动压路机或轮胎压路机进行碾压。碾压时由两侧向中心,后轮应重叠1/2轮宽,后轮必须超过两段的接缝处。后轮压完道面全宽时即为一遍,一般需碾压6~8遍,直至达到要求的密实度为止。压路机的碾压速度,头两遍以1.5~1.7km/h为宜,以后逐渐增加到2.0~2.5km/h。7 采用12t以上三轮压路机碾压,每层的压实厚度不应超过16cm;采用重型振动压路机和轮胎压路机碾压时,每层压实厚度可达20cm。碾压过程中应设专人添加细料,以填满空隙达到密实稳定。碎石混合料按重型击实试验法确定的密实度,对于基层应不小于98%,对于底基层应不小于96%。9 严禁压路机在已完成或正在碾压的地段上调头或急刹车。横向接缝的做法是,用摊铺机摊铺混合料时,靠近摊铺机当天未压实的混合料,可与第二天摊铺的混合料一起碾压,应注意结合部分混合料的含水量。必要时应人工补充洒水,使其含水量达到规定要求。应减少纵向接缝。纵缝必须垂直相接,不应斜接。在前一幅摊铺时,在靠后一幅的一侧应用方木或钢模板做支撑,方木或钢模板的高度与级配碎石的压实厚度相同。在摊铺后一幅之前,将方木或钢模板除去。5.6 级配砂砾 5.6.1 一般规定级配砂砾主要用于道面工程的底基层。天然砂砾应符合规定的级配要求。塑性指数偏大的砂砾,可加少量石灰降低其塑性指数,也可用无塑性的砂或石屑进行掺配,使其塑性指数降低到符合要求。3 可在天然砂砾中掺加部分碎石或轧碎砾石,以提高混合料的强度和稳定性。5.6.2 材料质量标准及混合料组成 用做底基层的级配砂砾,砾石最大粒径不应超过53mm。2 砾石颗粒中细长及扁平颗粒含量不应超过20%。3 级配砂砾集料的压碎值应不大于30%。级配砂砾的颗粒组成和塑性指数应满足表5.6.2 规定。表5.6.2 级配砂砾底基层的级配范围

筛孔尺寸(mm)53 37.5 9.5 4.75 0.6 0.075 通过质量百分比 100 80~100 40~100 25~85 8~45 0~15 液限(%)<28 塑性指数 <9 5.6.3 级配砂砾的拌和、运输、摊铺和压实 集料用自卸汽车运到摊铺现场后,用平地机或其他合适的机具将混合料均匀地摊铺,其松铺系数约为1.25~1.35。

2用平地机进行拌和,一般需拌5~6遍。拌和过程中,用洒水车洒水。拌和结束后,混合料的含水量应均匀,无粗细颗粒离析现象。用平地机将拌和均匀的混合料按设计的纵横坡度进行整平和整形。整形后,当混合料含水量等于或略大于最佳含水量时,立即用12t 以上三轮压路机、振动压路机或轮胎压路机进行碾压。碾压时由两侧向中心,后轮应重叠1/2轮宽,后轮必须超过两段的接缝处。后轮压完道面全宽时即为一遍,一般需碾压6~8遍,达到要求的密实度为止。

压路机的碾压速度,头两遍以1.5~1.7km/h为宜,以后用2.0~2.5km/h。采用12t以上三轮压路机碾压,每层的压实厚度不应超过16cm;采用重型振动压路机和轮胎压路机碾压时,每层压实厚度可达20cm。

级配砾石混合料按重型击实法确定的压实度应不小于96%。两作业段的横缝,应搭接拌和。第一段拌和后,留5m~8m不进行碾压,第二段施工时,前段留下未压部分与第二段部分一起整平后碾压。应尽量减少纵向接缝,纵缝应搭接拌和。第一幅全宽碾压密实,在后一幅拌和时,应将相邻的前幅边部约50cm搭接拌和,整平后碾压。5.7 施工质量控制

5.7.1 基层、底基层的外形尺寸检查项目、频度、质量标准和检验方法,应符合表5.7.1的规定。

表5.7.1 基层、底基层的外形尺寸检查项目、频度、质量标准和检验方法

工程类别 项

目 频度 质量标准 检验方法 底 基

层 高程(mm)10m×10m方格网控制 +5-15 水准仪

厚度(mm)均

值 每5000m26个点-10 挖坑或钻孔取芯 单个值-25 挖坑或钻孔取芯

宽度(mm)每100延米1处 +0以上 用尺量 横坡度(%)每100延米3处 ±0.3 水准仪

平整度(mm)每100延米3处 <12 每外用3m直尺连续量10尺,取最大值 基

层 高程(mm)10m×10m方格网控制 +5-10 水准仪

厚度(mm)均

值 每400026个点-8 挖坑或钻孔取芯 单个值-10 挖坑或钻孔取芯

宽度(mm)每100延米1处 +0以上 用尺量 横坡度(%)每100延米3处 ±0.3 水准仪

平整度(mm)每100延米3处 <8 每外用3m直尺连续量10尺,取量最大值

5.7.2基层、底基层质量控制的项目、频度、质量标准和检验方法应符合表5.7.2的规定。

表5.7.2 基层、底基层质量控制的项目、频度和质量标准 工程类别 项

目 频

度 质量标准 检验方法 级 级 配 配 碎 砂

石 砾 底基层 含水量 异常时随时试验 本规范规定范围内 现场观察 级配 异常时随时试验 本规范规定范围内 现场观察 拌和均匀性 随时试验 无粗细集料离析现象 现场观察 密实度 每2000m23点 本规范规定范围内 灌砂法或水袋法

塑性指数 每4000m21次,异常时随时增加试验 小于本规范规定值 现场取样,试验室试验 级 配 碎

石 基层 含水量 异常时随时试验 本规范规定范围内 现场观察 级 配 每2000m21次 本规范规定范围内 现场取样,试验室试验 拌和均匀性 随时观察 无粗细集料离析现象 现场观察

密实度 每2000m2检查3点 本规范规定范围内 灌砂法或水袋法

塑性指数 每1000m21次,异常时随时增加试验 小于本规范规定值 现场取样,试验室试验

集料压碎值 现场观察,异常时随时试验 不大于本规范规定值 现场取样,试验室试验 水 泥 或 石 灰 稳 定

土 级 配 每2000m21次 本规范规定范围内 现场取样,试验室试验

集料压碎值 现场观察,异常时随时试验 不大于本规范规定值 现场取样,试验室试验 水泥或石灰剂量 每5000m2或每台班1次,至少6个样品 不少于设计值-1.0% 现场取样,试验室试验

含水量 异常时随时试验 符合本规范规定要求 现场观察

拌和均匀性 现场随时观察 无灰条、灰团,色泽均匀,无离析现象 现场观察 密实度 每2000m2检查3次以上 本规范规定范围内 灌砂法或水袋法

抗压强度 每2000m2不小于6个试件 符合本规范规定要求 现场取样,试验室试验 石 灰 工 业 废 渣 稳 定

土 配合比 每2000m21次 石灰剂量不小于设计值-1% 现场取样,试验室试验 级 配 每2000m21次 本规范规定范围内 现场取样,试验室试验 含水量 现场观察,异常时随时试验 最佳含水量+1% 现场观察 拌和均匀性 随时观察 无灰条、灰团,色泽均,无离析现象 现场观察 密实度 每2000m2检查3次以上 本规范规定范围内 灌砂法或水袋法

抗压强度 每2000m2不小于6个试件 符合本规范规定要求 现场取样,试验室试验 5.7.3 对于无机结合料稳定基层,应钻取试件检查其整体性。水泥稳定基层的龄期7~10d时,应

能取出完整的芯样。二灰稳定基层的龄期20~28d时,应能取出完整的芯样。垫

6.1 垫层材料应以就地取材为原则,通常采用中粗砂、砂砾、碎石以及工业废渣等材料;必要时也可选用水泥、石灰稳定土,石灰粉煤灰稳定土等。垫层的结构材料和规格应符合设计要求。

6.2 用于垫层的材料应有一定的强度和稳定性,在寒冷地区垫层材料还应具有抗冻性。6.3 垫层厚度较大需分层设置时,上、下垫层强度应由高向低排列。

6.4 垫层材料的摊铺和碾压要求可参照同类基础材料的施工方法进行,密实度应符合设计要求。水泥混凝土道面基础注浆加固 7.1 浆液材料要求

7.1.1 水泥:宜采用强度等级不低于42.5的硅酸盐水泥或普通硅酸盐水泥,受潮变质结块的水泥不得使用。水泥的各项指标应符合现行国家标准,并附有出厂试验单。7.1.2 粉煤灰:在满足强度要求的前提下,可用磨细粉煤灰或粗灰代替部分水泥,掺量应通过试验确定,一般掺入量为水泥重量的20%~30%。7.1.3 水:应采用饮用水。

7.1.4 细砂:在浆液中可掺入一定量的细砂,通过试验确定其可灌性及砂浆强度。7.1.5 外加剂:为改善浆液的性能,可在浆液拌制时加入如下外加剂,但应通过试验确定: 加速浆液凝固的水玻璃,其模数为3.0%~3.3%,一般掺量为水泥用量0.5%~3%。提高浆液的扩散能力和可灌性的表面活性剂(或减水剂),一般掺量为水泥用量0.5%~3%。为提高浆液的均匀性和稳定性,防止固体颗粒离析和沉淀,可掺入膨润土,其掺量不宜大于水泥用量的3%。7.2 技术要求

7.2.1注浆前应查明现有水泥混凝土道面板破损、脱空、沉降等情况及道面下基础结构类型。

7.2.2 施工前设计单位应向施工单位提供注浆设计文件、施工图纸与技术要求。施工单位应根据设计要求进行施工。

7.2.3 根据现场条件,布置施工组织方案。对不停航条件下进行注浆施工时应作不停航施工组织方案和安全保障措施。

7.2.4 注浆正式开始前,应预先作注浆试验段,检验注浆的机具设备、注浆流量、压力、材料配合比、强度等是否达到设计要求。

7.2.5 施工单位应根据试验结果与设计文件,提出正式的施工组织设计方案,经监理工程师审定批准后实施。

7.2.6 根据每一块水泥混凝土板的平面尺寸大小,注浆孔一般为3~5个,成梅花型布置,使被加固的基础材料在平面和一定深度范围内形成一个整体。7.2.7 根据设计要求孔数在每块水泥混凝土板上布孔,每孔应作标记。

7.2.8 钻孔钻至设计深度后,应采用空压机进行吹孔,吹孔时间不得少于10s,吹孔完成后方可进行注浆。注浆前应对注浆孔采取封孔措施,防止浆液外溢。

7.2.9 注浆量取决于不同的基础类型、基础材料的孔隙率、浆液的配合比、浆液的渗透性等因素。

7.2.10注浆施工顺序宜采取先外围、后内部的施工方式。对于单块道面板注浆孔布置为5孔时,一般先注边部四孔,中间孔根据中溢浆情况决定注浆时间。紧邻注浆范围以外有边界约束条件时,也可采用自内侧开始,顺次往外侧注浆方法。

7.2.11 注浆开始前应充分作好准备工作,包括机具仪表、管材、注浆材料、水、电、计量设备等。注浆一经开始即应连续进行,力求避免中断。

7.2.12 浆液经集中搅拌均匀后运至现场搅拌桶前,并经筛网过滤,注浆过程中应不停缓慢搅拌,每批浆液应在初凝时间前注完。7.2.13 达到以下三个条件之一,即可停止注浆: 1 注浆过程中每块板角的抬升量达到设计要求;

注浆过程中道面板四周板缝或其它注浆孔出现大量冒浆; 3 注浆量达到设计注浆量两倍时尚未达到上述两条要求的。

7.2.14 施工单位对注浆施工过程应准确记录,应有计算机控制压力和流量记录,并采用自动流量表和压力表自动打印记录,及时整理分析资料,作好施工日志及图表,以便指导注浆工程顺利进行,为验收工作作好准备。

7.2.15 施工时应现场取样制作7d、28d抗压强度试件各一组。施工中的每批注浆材料应保留足够的试件,以满足检查及验收的需要。

7.2.16 在夏季炎热条件下注浆时,用水温度不得超过300C~350C,应避免盛浆桶和浆液连续暴晒。

7.2.17 冬季施工时,当日平均温度低于50C或日最低温度低于-30C时,应停止施工。7.3 质量检查与控制

7.3.1 注浆过程中应用水准仪和标尺检查每块道面板角四点高程值是否符合设计要求。

7.3.2 施工过程中,每一台班检查注浆材料配合比与抗压强度值(7d、28d)应不低于设计规定值。

7.3.3 施工过程中,监理工程师必须每天检查施工单位水泥实际用量、浆液配合比及注入的浆液量是否相匹配。

7.3.4 注浆工程完成一个月后应对道面进行检测,宜采用重锤式弯沉仪(HWD)进行道面无破损检测,检测的数量应不低于灌浆道面板总量的5%。同时根据基层材料情况可以采取钻孔取芯检查浆液的充填和密实情况,取芯数量跑道按5000m2~10000m2取一试样,其它道面可根据实际注浆面积由监理工程师确定。

本规范用词说明

为便于在执行本规范条文时区别对待,对于要求严格程度不同的用词说明如下: 1 表示很严格,非这样做不可的用词: 正面词采用“必须,”反面词采用“严禁”。2 表示严格,在正常情况下均应这样做的用词:

军用机场沥青混凝土道面结构设计指标确定 第3篇

1 沥青混凝土道面的性能特点及优势

1.1 沥青混凝土道面的性能特点

1.1.1 结构性能

沥青混凝土道面是层状体系结构, 由土基、底基层、基层和沥青面层等结构层次组成, 各结构层具有不同的性能要求和功能特点。在沥青道面结构中, 面层与基层之间的模量比较小, 因而可以避免在面层底面产生过大的水平拉应力, 从而防止或减缓结构层的开裂, 提高道面结构的使用寿命。

1.1.2 功能性能

宏观上, 沥青混凝土由具有粘弹性特征的沥青胶结料和集料组成, 因此具有一定的强度和柔韧性;微观上, 由于混合料内部存在孔隙, 沥青胶结料在外力作用下可以在不损坏结构的情况下发生局部移动, 因而具有较好的变形调节能力。宏观和微观的结构特点使沥青混凝土面层具有特有的性能。由下卧层变形引起的不平整度往往是长波的, 比其它道面的突变性不平整具有更好的行驶舒适性;表面构造由粗集料提供, 借助于粗集料的抗磨耗能力, 其抗滑能力的耐久性更好;材料的柔性保证了混合料的阻尼性能, 可以降低轮胎与道面之间的摩擦噪声。

1.1.3 与土基的协同工作性

沥青道面与土基的协调工作主要从两方面得到体现: (1) 与土基的变形协调, 即沥青道面可以在相当程度上屈服土基的变形, 不仅确保道面结构的完好, 而且使道面的不平整性更加平顺; (2) 沥青道面结构层之间的模量比更加合理, 土基不均匀变形在沥青面层中形成的附加拉应力得到改善。

1.1.4 与飞机运行的协同性

飞机的起落架、仪表等部件的使用寿命与跑道的平整度关系密切, 如图1所示。道面平整度越差, 起落架的使用寿命水平与预期使用寿命的差距就越大。沥青道面平整度高, 平顺性好, 飞机运行相对舒适, 即使由于土基变形而产生不平整情况时, 也往往具有长波特征, 相对于其它道面的短波不平整对飞机所造成的颠簸要小, 附加重力加速度低, 有利于机械和仪表的使用寿命 (见图1) 。

1.2 民用机场沥青混凝土道面的优势

机场的交通量大, 为了不影响机场的正常运营, 机场道面的维护工作往往要求在不停航条件下实施。在这一方面, 沥青混凝土道面的维护优势非常突出, 包括预养护、日常养护和应急快速修复。

1.2.1 预养护

预养护是对道面早期的功能性缺陷进行修复, 沥青道面在出现结构性破坏之前, 可以通过预养护充分延长其使用寿命。沥青道面预养护的处理措施丰富, 养护工艺相对简单, 养护所需时间短, 具有良好的经济效益。

1.2.2 日常养护

沥青道面的日常养护实施速度快, 一般不会影响航班的运行。

1.2.3 应急快速修复

沥青混凝土的快速养护技术相对比较成熟, 现在的储存式沥青混凝土、泡沫沥青混凝土以及乳化沥青混凝土等材料, 以及就地加热修复等技术均可直接用于机场沥青混凝土道面的应急快速修复中, 修复时间已缩短到15min左右, 可以有效保障机场的正点运行。

2 国内某机场沥青混凝土道面应用分析

2.1 国内某机场建设概况

机场性质为国内干线机场, 在民航机场分类中属于中型机场。飞行区按4E级标准规划, 近期按4D级建设, 满足B767型飞机起降要求设计。机场建设一条长2800m、宽45m、两侧道肩各宽7.5m、总宽度60m的跑道;一条长2800m、道面宽23m的平行滑行道。

2.2 机场建设的场地条件

机场建设地属南亚热带润湿气候区, 年平均气温较高, 为22.1℃, 光照充足, 雨量充沛, 无雪, 少霜, 季风性显著, 年主导风向为偏东风, 冬干冷, 夏湿热。夏季多台风, 冬春有霜冻、低湿阴雨等灾害。年降水分布不均, 年降雨量变幅大, 年平均降雨量为1548mm, 年最大降雨量为2039mm, 年最小降雨量为1282mm, 降雨集中在4~9月份, 占全年降雨量80﹪左右。光照充足, 年日照时数2000h左右。

根据机场建设区地质勘察报告, 场地的特殊地层为软土, 主要为海陆交互相沉积的淤泥 (<2-1>) 及淤泥质土 (<2-5>、<2-9>) 。淤泥 (<2-1>) 层在本场地绝大多数钻孔中有揭露, 广泛分布在地基浅层, 层厚0.50~21.40m, 平均厚度3.66m, 基本连续层状产出;淤泥质土 (<2-5>、<2-9>) 部分钻孔有揭露, 分布很不连续, 呈薄层状或透镜体状产出, 其中淤泥质土 (<2-5>、) 层厚0.70~15.30m, 平均厚度5.56m, 淤泥质土 (<2-9>) 层厚0.90~24.30m, 平均厚度6.70m。三层软土均呈流塑~软塑状, 属中~高灵敏度高压缩性土层, 在施工中易产生流泥、触变、蠕变及震陷, 且其强度差、承载力较低。而基岩层炭质粉砂岩和泥质粉砂岩的中、微风化岩均为易软化岩石, 有遇水易软化的不良地质特性。

场区内最大填方高度约11m, 最大挖方高度约60m, 容易产生不均匀沉降。

2.3 机场建设沥青道面的优劣条件分析

根据机场跑道沥青混凝土道面的性能特点和发展趋势, 通过对新建机场建设沥青混凝土道面的自然条件、地基和土基条件、外部条件, 经济评价以及所面临的各项技术问题的系统分析, 认为该机场建采用沥青混凝土道面既有有利因素, 也有不利因素。

2.3.1 两种不同道面之间的比较

由于本身的结构、材料和构造特性, 沥青混凝土道面相对于水泥混凝土道面具有以下主要优点:

(1) 沥青混凝土材料具有较好的变形屈服性, 因此沥青混凝土道面可以在一定程度内调节由于地基不均匀沉降带来的附加应力, 保证道面结构的完好。这不仅有利于复杂条件下的地基处理, 而且可以更好地保证跑道道面的结构性能和功能性能。

(2) 在适宜的温度条件下, 沥青混凝土道面可以提供足够的结构强度, 由于其材料具有粘弹性, 面层模量与基层之间的模量比差距不大, 使得飞机荷载作用下整个道面结构协同受力, 可以更加有效地保证道面结构的耐久性和行驶的舒适性。

(3) 沥青混凝土是一种多孔材料, 表面的宏观和微观构造丰富, 可以为飞机提供较高的摩擦力。同时, 沥青道面的摩擦系数在使用年限内衰变幅度小、速度慢, 而且摩擦系数可以通过预防性养护等措施得以有效恢复。

(4) 沥青道面与飞机轮胎的接触相对较为柔性, 并且由于沥青道面不存在接缝, 使得飞机一直在一个平顺、连续的平面上高速运行。既增加了旅客的舒适性, 又减少了对飞机起落架及其它部件的损伤。

(5) 沥青混凝土道面由于材料特有的柔韧性和高阻尼特性, 使飞机滑行过程中产生的轮胎-道面噪音低于其它道面, 有利于环境噪音的降低。

(6) 沥青道面具有较低的刚度, 可以方便地实施道面的铣刨和切割, 而且维护措施多样, 影响交通时间短。对道面实施维护所需消耗的能源低、浪费的资源少、而且可以在较短的时间内实施大范围的不停航施工, 维护性能优势明显。

(7) 对沥青道面实施预防性养护等先进技术方便, 从而在道面的寿命周期内节省费用, 延长道面使用寿命。沥青道面在进行维修养护时, 可以采用冷再生、热再生等技术手段, 对洗刨的旧沥青混合料加以综合利用, 从而达到节约资源的目的。

沥青混凝土道面也存在一些不利因素, 譬如在强降雨作用下容易产生水损害, 受紫外线影响显著、设计使用年限短等。

2.3.2 结合新建机场的建设条件进行比较

(1) 建设沥青道面的有利因素

(1) 本机场所在地年平均气温适中, 不存在极端低温, 为沥青混凝土道面建设提供了良好的自然气候条件, 有利于避免沥青混凝土低温开裂等问题, 确保沥青道面的使用性能。

(2) 由于场区软土广泛分布, 深挖高填, 土岩组合、河流穿越等因素必然导致差异沉降的出现。沥青混凝土道面与地基之间具有良好的协同工作性, 屈服变形能力强, 对地基变形具有较强的适应性, 因此沥青混凝土道面结构可以更好地适应不均匀的变形, 保证道面的整体使用性能。

(3) 跑道大部分处于填方区, 最小填方高度都在4m以上, 填方最高为11m左右。因此, 尽管场区地下水位较高, 但对道面下的土基影响还是较小的, 有利于沥青道面结构的整体稳定和使用寿命;场区内道面土基的填料总体优良, 可以为沥青混凝土道面结构提供良好的支撑条件。

(4) 近年来, 我国在沥青材料及其改性技术、沥青混合料类型及其性能、沥青铺面施工装备和工艺等方面发展迅速, 为高性能沥青混凝土道面的建设提供了较为先进的材料和施工条件;同时, 国内多条跑道道面沥青混凝土加铺的成功实施也为新建沥青混凝土道面积累了一定的经验。

(2) 建设沥青道面的不利因素

(1) 新建机场地区的年均降雨量1548mm, 年平均降雨日数178d, 这对于沥青混凝土道面的长期性能较为不利;且该地区光照充足, 年日照时数2000h左右, 紫外线会加速沥青混合料中的沥青老化, 丧失粘结力和变形能力, 促进沥青道面的损坏。

(2) 通过经济分析, 按相同使用期考虑, 相对水泥混凝土道面而言, 建设沥青混凝土道面费用较高。

综合考虑上述因素, 对于该新建机场的特定条件来说, 由于复杂的地质条件, 软土层厚、填筑厚度大, 导致道面土基工后沉降量较大, 差异沉降较难控制, 不排除因地质条件发生突变产生较大差异沉降的可能性。沥青道面能更好地适应差异沉降变形;如将来跑道局部出现较大差异沉降, 沥青道面可以满足快速修复及大面积不停航施工的要求, 可以避免机场及航空公司因跑道修复停航的经济损失。因此, 机场跑道及部分快速出口滑行道采用沥青道面。

3 结语

综上所述, 机场沥青混凝土道面具有平整、抗滑、舒适、减震等良好的适应性能和机械化施工程度高、工期短、养护方便等施工优点。沥青混凝土道面在民用机场的应用有着水泥混凝土无法比拟的优势, 但与此同时, 沥青混凝土道面也会受多种不利因素的制约。机场建设中道面结构的选型需要充分结合工程建设的实际情况, 综合分析、论证沥青混凝土道面的适应性和可行性。我国机场沥青道面使用比例与国际发展趋势差别明显, 有历史的原因、习惯的原因、技术的原因, 也有决策的原因。通过严谨的分析、研究, 采用科学、合理的设计理念和方案, 我国机场沥青混凝土道面的建设势必会有一个良好的发展趋势。

参考文献

[1]游庆龙, 凌建明.材料非线性对沥青道面结构力学响应的影响[J].同济大学学报 (自然科学版) , 2015 (6) :866~871.

[2]陈鸿毅, 李平, 胡雨铭, 等.抗紫外光老化剂对民用机场沥青道面用沥青性能的影响[J].西安工业大学学报, 2015 (6) :466~472.

[3]赵小楠.民用机场沥青混凝土道面设计措施研究[J].军民两用技术与产品, 2015 (6) :121.

上一篇:害虫让生活更美好作文500字下一篇:教师学习新课标心得体会范文