高一物理磁场教案

2024-05-20

高一物理磁场教案(精选8篇)

高一物理磁场教案 第1篇

要点一 通电导线在磁场中的运动及受力

1.直线电流元分析法:把整段电流分成很多小段直线电流,其中每一小段就是一个电流元,先用左手定则判断出每小段电流元受到的安培力的方向,再判断整段电流所受安培力的方向,从而确定导体的运动方向.

2.特殊位置分析法,根据通电导体在特殊位置所受安培力方向,判断其运动方向,然后推广到一般位置.

3.等效分析法:环形电流可等效为小磁针,条形磁铁或小磁针也可等效为环形电流,通电螺线管可等效为多个环形电流或条形磁铁.

4.利用结论法:(1)两电流相互平行时,无转动趋势;电流同向导线相互吸引,电流反向导线相互排斥;(2)两电流不平行时,导线有转动到相互平行且电流同向的趋势.

要点二 带电粒子在有界磁场中的运动

有界匀强磁场指在局部空间存在着匀强磁场,带电粒子从磁场区域外垂直磁场方向射入磁场区域,在磁场区域内经历一段匀速圆周运动,也就是通过一段圆弧后离开磁场区域.由于运动的带电粒子垂直磁场方向,从磁场边界进入磁场的方向不同,或磁场区域边界不同,造成它在磁场中运动的圆弧轨道各不相同.如下面几种常见情景:

图3-1

解决这一类问题时,找到粒子在磁场中一段圆弧运动对应的圆心位置、半径大小以及与半径相关的几何关系是解题的关键.

1.三个(圆心、半径、时间)关键确定

研究带电粒子在匀强磁场中做圆周运动时,常考虑的几个问题:

(1)圆心的确定

已知带电粒子在圆周中两点的速度方向时(一般是射入点和射出点),沿洛伦兹力方向画出两条速度的垂线,这两条垂线相交于一点,该点即为圆心.(弦的垂直平分线过圆心也常用到)

(2)半径的确定

一般应用几何知识来确定.

(3)运动时间:t=θ360°T=φ2πT(θ、φ为圆周运动的圆心角),另外也可用弧长Δl与速率的比值来表示,即t=Δl/v.

图3-2

(4)粒子在磁场中运动的角度关系:

粒子的速度偏向角(φ)等于圆心角(α),并等于AB弦与切线的夹角(弦切角θ)的2倍,即φ=α=2θ=ωt;相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ′+θ=180°.如图3-2所示.

2.两类典型问题

(1)极值问题:常借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值.

注意 ①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.

②当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.

③当速率v变化时,圆周角大的,运动时间长.

(2)多解问题:多解形成的原因一般包含以下几个方面:

①粒子电性不确定;②磁场方向不确定;③临界状态不唯一;④粒子运动的往复性等.

关键点:①审题要细心.②重视粒子运动的情景分析.

要点三 带电粒子在复合场中的运动

复合场是指电场、磁场和重力场并存,或其中某两场并存,或分区域存在的某一空间.粒子经过该空间时可能受到的力有重力、静电力和洛伦兹力.处理带电粒子(带电体)在复合场中运动问题的方法:

1.正确分析带电粒子(带电体)的受力特征.带电粒子(带电体)在复合场中做什么运动,取决于带电粒子(带电体)所受的合外力及其初始速度.带电粒子(带电体)在磁场中所受的洛伦兹力还会随速度的变化而变化,而洛伦兹力的变化可能会引起带电粒子(带电体)所受的其他力的变化,因此应把带电粒子(带电体)的运动情况和受力情况结合起来分析,注意分析带电粒子(带电体)的受力和运动的相互关系,通过正确的受力分析和运动情况分析,明确带电粒子(带电体)的运动过程和运动性质,选择恰当的运动规律解决问题.

2.灵活选用力学规律

(1)当带电粒子(带电体)在复合场中做匀速运动时,就根据平衡条件列方程求解.

(2)当带电粒子(带电体)在复合场中做匀速圆周运动时,往往同时应用牛顿第二定律和平衡条件列方程求解.

(3)当带电粒子(带电体)在复合场中做非匀变速曲线运动时,常选用动能定理或能量守恒定律列方程求解.

(4)由于带电粒子(带电体)在复合场中受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,根据隐含条件列出辅助方程,再与其他方程联立求解.

(5)若匀强电场和匀强磁场是分开的独立的区域,则带电粒子在其中运动时,分别遵守在电场和磁场中运动规律,处理这类问题的时候要注意分阶段求解.

一、通电导线在磁场中的受力问题

【例1】 竖直放置的直导线

图3-3

AB与导电圆环的平面垂直且隔有一小段距离,直导线固定,圆环可以自由运动,当通以如图3-3所示方向的电流时(同时通电),从左向右看,线圈将( )

A.顺时针转动,同时靠近直导线AB

B.顺时针转动,同时离开直导线AB

C.逆时针转动,同时靠近直导线AB

D.不动

答案 C

解析 圆环处在通电直导线的磁场中,由右手螺旋定则判断出通电直导线右侧磁场方向垂直纸面向里,由左手定则判定,水平放置的圆环外侧半圆所受安培力向上,内侧半圆所受安培力方向向下,从左向右看逆时针转,转到与直导线在同一平面内时,由于靠近导线一侧的半圆环电流向上,方向与直导线中电流方向相同,互相吸引,直导线与另一侧半圆环电流反向,相互排斥,但靠近导线的半圆环处磁感应强度B值较大,故F引>F斥,对圆环来说合力向左.

二、带电粒子在有界磁场中的运动

【例2】 如图3-4所示,

图3-4

在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B.一质量为m,带电荷量为q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响).

(1)如果粒子恰好从A点射出磁场,求入射粒子的速度.

(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线的夹角为φ(如图所示),求入射粒子的速度.

答案 (1)qBd2m (2)qBd(2R-d)2m[R(1+cos φ)-d]

解析 (1)由于粒子由P点垂直射入磁场,故圆弧轨迹的圆心在AP上,又由粒子从A点射出,故可知AP是圆轨迹的直径.

设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得mv21d/2=qv1B,解得v1=qBd2m.

(2)如下图所示,设O′是粒子在磁场中圆弧轨迹的圆心.连接O′Q,设O′Q=R′.

由几何关系得∠OQO′=φ

OO′=R′+R-d①

由余弦定理得(OO′)2=R2+R′2-2RR′cos φ②

联立①②式得R′=d(2R-d)2[R(1+cos φ)-d]③

设入射粒子的速度为v,由mv2R′=qvB

解出v=qBd(2R-d)2m[R(1+cos φ)-d]

三、复合场(电场磁场不同时存在)

【例3】 在空间存在一个变化的匀强电场和另一个变化的匀强磁场,电场的方向水平向右(如图3-5中由点B到点C),场强变化规律如图甲所示,磁感应强度变化规律如图乙所示,方向垂直于纸面.从t=1 s开始,在A点每隔2 s有一个相同的带电粒子(重力不计)沿AB方向(垂直于BC)以速度v0射出,恰好能击中C点,若AB=BC=l,且粒子在点A、C间的运动时间小于1 s,求:

图3-5

(1)磁场方向(简述判断理由).

(2)E0和B0的比值.

(3)t=1 s射出的粒子和t=3 s射出的粒子由A点运动到C点所经历的时间t1和t2之比.

答案 (1)垂直纸面向外(理由见解析) (2)2v0∶1 (3)2∶π

解析 (1)由图可知,电场与磁场是交替存在的,即同一时刻不可能同时既有电场,又有磁场.据题意对于同一粒子,从点A到点C,它只受静电力或磁场力中的一种,粒子能在静电力作用下从点A运动到点C,说明受向右的静电力,又因场强方向也向右,故粒子带正电.因为粒子能在磁场力作用下由A点运动到点C,说明它受到向右的磁场力,又因其带正电,根据左手定则可判断出磁场方向垂直于纸面向外.

(2)粒子只在磁场中运动时,它在洛伦兹力作用下做匀速圆周运动.因为AB=BC=l,则运动半径R=l.由牛顿第二定律知:qv0B0=mv20R,则B0=mv0ql

粒子只在电场中运动时,它做类平抛运动,在点A到点B方向上,有l=v0t

在点B到点C方向上,有a=qE0m,l=12at2

解得E0=2mv20ql,则E0B0=2v01

(3)t=1 s射出的粒子仅受到静电力作用,则粒子由A点运动到C点所经历的时间t1=lv0,因E0=2mv20ql,则t1=2mv0qE0,t=3 s射出的粒子仅受到磁场力作用,则粒子由A点运动到C点所经历的时间t2=14T,因为T=2πmqB0,所以t2=πm2qB0;故t1∶t2=2∶π.

 

高一物理磁场教案 第2篇

教学目标

1.了解电容器的连接形式,理解电容器串、并联时总电容与分电容、总电压与分电压、总电量与分电量等物理量的关系。

2.能理解电容器串、并联时等效电容量减小或增大的根本原因。

3.电容器混联时,能理顺求解思路,会正确选取电容器的耐压值。

教学重点

1.电容器的连接形式。

2.电容器串、并联时总电容与分电容、总电压与分电压、总电量与分电量等物理量的关系。

3.电容器串、并联时等效电容量减小或增大的根本原因。

4.电容器混联时电容、电压、电量的关系。

教学难点

1. 电容器串、并联时总电容与分电容、总电压与分电压、总电量与分电量等物理量的关系。

2.电容器串、并联时等效电容量减小或增大的根本原因。

3.电容器混联时电容、电压、电量的关系。

教学手段

利用多媒体讲解电容器的串并联关系,通过做练习题加深对电容器串并联特点、混联时的计算等方面的理解。

教学条件

电容器

课外作业

总结电容器的串并联与电阻的串并联的异同点。

检查方法

随堂提问

德育点

有容乃大,博大胸怀,串联分压

任务引入

通过讲解电容器在实际使用时,常常把几个电容器组合起来使用用以满足电路所需要的电容值或耐压值引入新课。

教学过程

不同的连接方式,可以得到不同的等效电容量。我们知道,决定电容器电容量大小的因素有 S、d 和 ε。把电容器进行串、并联的时候,总电容量会发生怎样的变化呢?

一、电容器的串联

定义:将几个电容器的极板依次首尾相连、中间无分支的连接方式,叫做电容器的串联。

特点:

1.串联电容器时,每个电容器所带电量都是Q,串联电容器组的总电量也是Q,即

教学设计——2.2.3认识电容器的连接关系

2.串联电容器的总电压等于各电容器端电压之和,即

教学设计——2.2.3认识电容器的连接关系

注意:串联电容器时,电容器实际分配的电压与其电容量成反比,若只有两只电容器,则每只电容器上分配的电压为:

教学设计——2.2.3认识电容器的连接关系 教学设计——2.2.3认识电容器的连接关系

3.串联电容器的等效电容量(总电容)的倒数等于各电容器的电容量的倒数之和,

即:

教学设计——2.2.3认识电容器的连接关系

当两个电容器串联时,其等效电容量为:

教学设计——2.2.3认识电容器的连接关系

若有n只相同容量的电容串联,且容量都是C0,则等效电容量为:

教学设计——2.2.3认识电容器的连接关系

结论:电容器串联之后,等效电容小于每个电容器的电容,这是因为串联后的电容器相当于加大了两极板间的距离,使总电容量减小。

【例 2.7】 现有两只电容器,其中一只电容器的电容量 C1 = 60 μF,额定工作电压为 50 V,另一只电容器的电容量 C2 = 40 μF,额定工作电压为 50 V,若将这两个电容器串联起来,接在 100 V 的直流电源上,问每只电容器上的电压是多少?这样使用是否安全?

解析过程略。

二、电容器的并联

定义:将几只电容器的一个极板连接在一起,另一个极板也连接在一起的连接方式,称为电容器的并联。

特点:

1.电容器并联后,电源要给每个电容器充电,使每个电容器的极板上都带有电荷。因此,总电荷量等于每个电容器上电荷量之和,即:

教学设计——2.2.3认识电容器的连接关系

2. 电容器并联时,每个电容器的两个极板都是与电源直接相连的`,所以每个电容器两端承受的电压都相等,并且都等于电源电压,即:

教学设计——2.2.3认识电容器的连接关系

3.并联后的等效电容量教学设计——2.2.3认识电容器的连接关系等于各个电容器的电容量之和,即:

教学设计——2.2.3认识电容器的连接关系

结论:电容器并联之后,等效电容大于每个电容器的电容,这是因为并联后的电容器相当于加大了两极板的正对面积,使总电容量增大。

【例 2.8】 电容器 C1 = 0.004 μF,耐压值为 120 V,电容器 C2 = 6 000 pF,耐压值为 200 V,现将它们并联使用,试求:它们的等效电容量;它们的耐压值;若将它们接入电压为 100 V 的电路中,每个电容器所带的电荷量和总电荷量是多少?

解析过程略。

注意:在应用电容器并联增大电容量时,任一电容器的耐压值都不能低于外加工作电压,否则该电容器会被击穿。所以,并联电容器组的耐压值应取电容器中耐压值小的那一电压值。

三、电容器的混联

定义:三个或三个以上的电容器进行连接时,既有串联又有并联的连接方式,叫做电容器的混联。

【例 2.9】 如图 2-63 所示,C1 = 120 μF,C2 = 40 μF,C3 = 80 μF,电容器 C1、C2 的耐压为 50 V,电容器 C3 的耐压为 60 V,试求:等效电容量;最大安全工作电压。

解析过程略。

任务小结

回顾本次任务所学知识,强调本节课的重点与难点,加深理解与记忆。

学习评价

让同学独立完成学后测评试题,检验同学掌握情况,并计入平时成绩。

课后作业

1.简述电容器串联的特点。

2.简述电容器并联的特点。

3.说一说电容器串联和并联后总电容量变化的根本原因。

教学后记

1.首先组织学生复习电容的决定性因素,知道电容大小与电容的正对面积和距离有关,并复习电阻大小与哪些因素有关,电阻串联和并联后的变化。

高中物理“电磁场论”的优化学习 第3篇

一、静电场

19世纪30年代, 法拉第提出一种观点, 认为在电荷的周围存在着有它产生的电场, 处在电场中的其他电荷受到的作用力就是这个电场给予的。

静电场是由静止电荷在其周围空间激发的电场。该静止电荷被称为场源电荷, 简称为源电荷。静电场是在电荷周围存在的一种特殊的物质, 看不见摸不着, 并非由分子、原子组成, 但客观存在。电荷与电荷之间的力的作用通过电场来实现。

静电场的电场线起始于正电荷或无穷远, 终止于无穷远或负电荷。静电场的电场线方向和场源电荷有着密切的关系。当场源电荷为正电荷时, 该电场的电场线成发散状; 当场源电荷为负电荷时, 该电场的电场线成收敛状。其电场力移动电荷做功具有与路径无关的特点。用电势差描述电场的能的性质, 或用等势面形象地说明电场的电势分布。

二、恒定电场

导线中的电场是恒定电场, 不是静电场。恒定电场是闭合回路中电源两极上带的电荷和导线和其他电学元件上堆积的电荷共同激发而形成的, 其特点是电场线处处沿着导体方向, 由于电荷的分布是稳定的 ( 即达到动平衡状态) , 由这种稳定分布的电荷形成的电场称为恒定电场。导线内的电场是在接通电源后的极短时间内 ( 以光速C) 完成的。

恒定电场是自由电荷在导体中定向移动的原因。由于在恒定电场中, 任何位置的电荷分布和电场强度都不随时间变化, 所以它的基本性质与静电场相同, 因此会对处在其中的电荷有力的作用, 也就会推动自由电荷发生定向移动形成电流, 但自由电荷不会一直加速, 会不断的与不动的粒子发生频发的碰撞 ( 形成电阻的微观本质) 受到不动的粒子对他运动的阻碍作用, 自由电荷做的是平均匀速率不变的运动。

在静电场中所讲的电势、电势差及其与电场强度的关系等, 在恒定电场中同样适用。

三、涡旋电场

实验表明, 磁场变化时线圈产生的感应电动势与导体的种类、形状、性质和构成均无关, 是由磁场本身的变化引起的。因此麦克斯韦提出了“变化的磁场会在其周围的空间激发一种电场, 正是这种电场使得闭合回路中产生了感应电动势和感生电流”的理论, 并将这种电场称为涡旋电场。

随时间变化的磁场在其周围空间激发的电场称为感应电场, 由于这种电场具有涡旋性, 所以又称为涡旋电场。涡旋电场是一种非保守场, 其电场线是无始无终的闭合曲线, 没有起点、终点。闭合的电场线包围变化的磁场。

现行中学物理教学大纲对“涡旋电场”不作要求, 但教材中却有多处涉及“涡旋电场”: 如在电磁感应现象中, 为了对电磁感应现象有更深入的理解, 根据磁通量变化原因不同, 把感应电动势分为动生电动势与感生电动势, 同时针对感生电动势, 引人了涡旋电场的概念。

总之, 涡旋电场与静电场有着明显的区别, 静电场是有源无旋场, 电荷是场源; 涡旋电场是无源有旋场。学生在学习高中物理遇到了三种电场:一种是由电荷激发的静电场, 一种是闭合回路中电源两极上带的电荷和导线和其他电学元件上堆积的电荷共同激发而形成的恒定电场, 最后一种是由变化的磁场在其周围激发的电场为感应电场, 即涡旋电场。

四、磁场

磁场是电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质, 一种看不见, 而又摸不着的特殊物质。磁铁周围存在磁场, 磁体间的相互作用就是以磁场作为媒介的。由于磁体的磁性来源于电流, 电流是电荷的运动, 因而概括地说, 磁场是由运动电荷或电场的变化而产生的。

磁场的基本特征是能对其中的运动电荷施加作用力, 磁场对电流、对磁体的作用力或力矩皆源于此。与电场相仿, 磁场是在一定空间区域内连续分布的矢量场, 描述磁场的基本物理量是磁感应强度矢量B, 也可以用磁感线形象地图示。然而, 作为一个矢量场, 磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场, 或两者之和的总磁场, 都是无源有旋的矢量场, 磁力线是闭合的曲线族, 不中断, 不交叉。换言之, 在磁场中不存在发出磁力线的源头, 也不存在会聚磁力线的尾闾, 磁力线闭合表明沿磁力线的环路积分不为零, 即磁场是有旋场而不是势场 ( 保守场) , 不存在类似于电势那样的标量函数。

五、电磁场

1820年, 丹麦物理学家奥斯特发现在通电的导体周围存在着磁场, 从而知道了电和磁相互依存的关系。电场、磁场是性质不同的两个场, 电场是电荷存在于空间的证据, 是电荷对空间的影响; 磁场是电荷加速于空间的证据, 是电流对空间的影响。但它们像一对孪生兄弟, 经常形影不离, 相互依存。若电荷静止则只有电场, 若只有一个磁体, 其磁场不随时间变化, 则只有磁场。变化的电场产生磁场, 静电场不能产生磁场; 变化的磁场产生电场, 静止的磁场不能产生电场。

时变电磁场与静态的电场和磁场有显著的差别, 出现一些由于时变而产生的效应。变化的电磁场在空间的传播形成了电磁波, 电磁波是电磁场的一种运动形态。然而, 在高频率的电振荡中, 磁电互变甚快, 能量不可能全部反回原振荡电路。于是, 电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。

1864年, 英国科学家麦克斯韦在总结前人研究电磁现象的基础上, 建立了完整的电磁波理论。他断定电磁波的存在, 推导出电磁波与光具有同样的传播速度。1887年, 德国物理学家赫兹用实验证实了电磁波的存在。电磁波以有限的速度传播, 具有可交换的能量和动量, 电磁波与实物的相互作用, 电磁波与粒子的相互转化, 等等, 都证明电磁场是客观存在的物质, 它的“特殊”只在于没有静质量。

摘要:高中物理学中有些物理量概念性很强, 相互之间又有着潜在联系, 学生经过新授课的学习后依然对这类知识点感觉吃力。这些综合性强、概念性强而且十分抽象的物理知识点, 往往是高中物理学的难点和重点。比如, 高中物理中的“电磁场论”。对于“场”这种物质, 我们即使将它放大一百亿倍, 甚至更大, 你也不可能观测到它们任何的内部构造, 无论如何我们也不会看到“场”这种物质任何内部特征。学生对静电场、涡旋电场的区别与联系, 还有电场与磁场及“电磁场”的关联似懂非懂, 感到很无助。对高中物理“电磁场论”的学习进行了探讨。

与地磁场相关的物理问题分析 第4篇

关键词:地球;磁场;物理分析

中图分类号:G632.0 文献标志码:B 文章编号:1674-9324(2012)01-0017-02

一种假说认为是由地球自转造成地幔负电层旋转产生的,即“磁现象的电本质”。近几年的高考以及新教材中,不断推出联系生产、生活、现代科学技术应用和近代物理知识的试题,其中不少是与地磁场有关的问题,在解决这类问题时,学生往往出现这样那样的错误。笔者将常见的地磁场问题作如下归类,希望对广大考生的复习有所帮助。

一、地磁场,不易把握的磁场分布

例1:假如飞机在我国上空匀速巡航,机翼保持水平,飞行高度不变。由于地磁场的作用,金属钒翼上有电势差。设飞行员左方机翼未端处的电势为U1,右方机翼未端处的电势力U2,则(?摇?摇)。

A.若飞机从东往西飞,U2比U1高;B.若飞机从西往东飞,U1比U2高;C.若飞机从南往北飞,U1比U2高;D.若飞机从北往南飞,U2比U1高

解析:本题考查了地磁场的分布知识以及电磁感应知识,同时注重考查了空间想象能力和学科间的综合能力。

二、地磁场,谜一般的来源猜想

例2:物理学家安培认为磁场是由于运动电荷产生的。这种设想对地磁场也同样适用。目前,地球上并没有发现相对地球定向运动的电荷。由此可见,地磁场的产生原因是由于地球的( )。

A.自转,带负电?摇B.绕太阳公转,带正电?摇C.自转,带正电 D.绕太阳公转,带负电

解析:地磁场的南极在地理北极附近,地磁场的北极在地理南极附近,根据安培定则可以判定引起地磁场的电流是与地轴垂直的圆形电流,其方向是由东向西,而地球的自转方向是由西向东,故地磁场的产生原因是由于地球自转,带负电造成的。应选A答案。

三、地磁场,显示器的“大敌”

在某一电视机的显像管里,从电子枪射出的电子束经加速电场加速后沿水平方向从南朝北运动,该处的地磁场在竖直方向的分量向下,大小为已知电子的电量,即为电子的质量。(当数字很小时,可作零处理)

四、地磁场,地球生命的“超大保护膜”

磁感强度大小为B2,且B2>B1。(1)将粒子在出发点x=0处作为第零次经过x轴,试求粒子到第n次(设n为奇数)经过x轴的整个过程中,在x轴方向的平均速度υ。(2)若B2/B1=4,当n很大时,υ与υ0的大小之比趋于何值。(2)解析:设粒子的质量为m,电荷量为q,粒子在磁场中做匀速圆周运动。

五、地磁场,动物运动的“导航器”

做过这样的实验:把几百只训练有素的信鸽分成两组,在一组信鸽的翅膀下缚了一块小磁铁,而在另一组信鸽的翅膀下缚一块大小相同的铜块,然后把它们带到离鸽舍数十乃至数千米的地方,分批放飞。结果绝大部分缚铜块的信鸽飞回到了鸽舍,而缚着磁块的信鸽却全部飞散了。这个实验证实了人们的一个猜想——鸽子高超的认路本领是依赖于( )。

A.鸽子靠对地磁场的感应来判别方向。

B.鸽子的眼力和对地形地貌极强的记忆力来判别方向。

C.鸽子发射、并接收反射回来的次声波来判别方向。

D.鸽子发射并接收反射回来的超声波来判别方向。

解析:这道要求我们从阅读试题的过程中收集到的信息、分析处理信息的应用类题。

六、地磁场引起的自然现象

假如我们在北极地区突然发现正上方的高空出现了射向地球的、沿顺时针方向生成的紫色弧状极光(显示带电粒子的运动轨迹)。则关于引起这一现象的高速粒子的电性及紫色弧状极光的弯曲程度的说法中,正确的是:(?摇?摇?摇)。

A.高速粒子带正电?摇?摇?摇B.高速粒子带负电

C.轨迹半径逐渐减小?摇?摇?摇D.轨迹半径逐渐增大

解析:在高纬度地区的高空,太阳发射的高速带电粒子进入两极附近时,其速度方向与磁感线基本上平行,此方向上的速度不受到洛仑兹力作用,但是高速带电粒子的运动方向毕竟不可能完全与磁感线平行,一定有与磁感线垂直的分量,就是这一点点与磁感线垂直的速度分量也会受到地磁场竖直方向的作用,假如当我们俯视时,不管水平速度方向如何,由左手定则不难得出:如果是正电荷则必然会受到向左的洛仑兹力作用,即正电荷会沿逆时针方向做圆周运动,而当我们在下方仰视时,正电荷会沿顺时针方向做圆周运动;此外,随着带电粒子向下运动则地磁场强度越来越大,那么它做圆周运动的半径就越来越小。以螺旋形的运动方式趋近于地磁道南北两极,故选项为AC。

高二物理第二章磁场优质教案 第5篇

1.指南针与远洋航海

学习目标

1、了解指南针在远洋航海中的作用,理解科学技术在社会发展中的作用。了解磁学基础知识。

2、知道磁感线,知道磁感线上任一点的切线方向就是该点的磁场方向。

3、了解磁感线描述条形磁铁、蹄形磁铁的磁场分布情况。

4、了解地理南北极与地磁南北极反向并且不重合,知道磁偏角。

自主学习

1.我国是最早在航海上使用指南针的国家,导航时兼用_______和_______,二者相互补充,相互修正。用罗盘指引航向,探索航道,将船只航向的变动与_________的变动的关系总结出来,画出的航线在古代称为________或________。

2.意大利航海家哥伦布用了三年时间完成了环球航行,通过这次航行,人类更加认识到地球是______。

3.磁体是通过______对铁一类物质发生作用的,磁场和电场一样,是______存在的另一种形式,是客观存在.

4. 磁体上磁性最强的部分叫 ______,同名磁极______,异名磁极_______。

5.规定:在磁场中的任意一点,小磁针____________ 方向就是那一点的磁场方向。

6.磁感线: 是在磁场中画出一些有方向的曲线,在这些曲线上每点的切线方向,亦即该点的____________方向,。磁感线的________表示磁场强弱。

7.地球在周围空间会产生磁场,叫________。地磁场的分布大致上就像一个________磁体。

8.地球具有磁场,宇宙中的许多__ ___都具有磁场。月球也有______。火星不象地球那样有一个_______的磁场,因此______ 不能在火星上工作。

9.分别用字母在图中空白处标出磁体的南北极

合作探究

【问题1】 如何确定磁场方向?

【问题2】放在地面上的小磁针静止时为什么指南指北?

【问题3】 磁感线与电场线的联系与区别:

电场线 磁感线

1. 电场线从_________出发,终止于_____. 1.在磁体内部,磁感线是从______极指向 极,外部是从______出发从______进去.

2.____电荷在电场中某点受到电场力的方向与该点的_____方向一致,也与该点所在电场线的____ __方向一致. 2.小磁针在磁场中静止时_________极的受力方向与该点的______方向一致,也与该点所在磁感线的_______方向一致.

3.电场中任何两条电场线都_____相交. 3.磁场中任何两条磁感线都______相交.

4.电场线的疏密表示电场的________. 4.磁场线的疏密表示磁场的__________.

【问题4】磁偏角指什么?地面附近的地磁场磁性强吗?

课堂检测

A组

1.关于磁感线的下列说法中,正确的是( )

A.磁感线是真实存在于磁场中的有方向的曲线

B.磁感线上任一点的切线方向,都跟该点磁场的方向相同

C.磁铁的磁感线从磁铁的北极出发,终止于磁铁的南极

D .磁感线有可能出现相交的情况

2.磁感线上某点的切线方向表示( )

A.该点磁场的方向

B.小磁针在该点的.受力方向

C.小磁针静止时N极在该点的指向

D.小磁针静止时S极在该点的指向

3.对磁感线的认识,下列说法正确的是( )

A.磁感线总是从磁体的北极出发,终止于磁体的南极

B.磁感线上某点的切线方向与放在该点小磁针南极的受 力方向相同

C.磁感线的疏密可以反映磁场的强弱

D.磁感线是磁场中客观存在的线

4.下列说法正确的是 ( )

A.磁极间的相互作用是通过磁场发生的

B.磁场和电场一样不是客观存在的

C.磁感线是实际存在的线,可由实验得到

D.磁感线类似于电场线,它总是从磁体的N极出发终止于S极

5.关于磁感应强度,下列说法不正确的是( )

A.磁感应强度表示磁场的强弱

B.磁感线密的地方,磁感应强度大

C. 空间某点的磁感应强度的方向就是该点的磁场方向

D.磁感应强度的方向就是通电导线在磁场中 的受力方向

B组

6.某磁场的磁感线分布如图21-1所示,则a、b两点磁场强弱是( )

A.a点强

B. b点强

C. a.b点一样强

D. 无法确定

7.下列说法正确的是( )

A.磁极间的相互作用是通过磁场发生的

B.磁场和电场一样也是客观存在的的物质

C.磁感线是实际存在的线,可由实验得到

D.磁感线类似于电场线,它总是从磁体的N极出发终止于S极

8.下列关于磁感线的说法不正确的是( )

A.磁感线是闭合曲线且互不相交

B.磁感线的疏密程度反映磁场的强弱

C.磁感线不是磁场中实际存在的线

D.磁感线是小磁针受磁场力后运动的轨迹

学有所得

【自主学习】:1、罗盘、观星,指南针指向,针路、针径。2、球形。3、磁场,物质。4.磁极,相互排斥,相互吸引。5、静止时N极所指。6、磁场,分布疏密。7、地磁场,条形。8、天体、磁场、全球性、指南针。9、略

【合作探究】问题1 方法一是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N极的指向即为该点的磁场方向.

方法二: 磁感线上任一点的切线方向就是该点的磁场方向

问题2:因为地球是有磁性的。

问题3:磁感线与电场线的联系与区别:

电场线 磁感线

1.电场线从__正电荷_______出发,终止于__负电荷___. 1.在磁体内部,磁感线是从__ _S___极指向N 极,外部是从___N极___出发从___S极___进去.

2.___正_电荷在电场中某点受到电场力的方向与该点的__场强___方向一致,也与该点所在电场线的_切线__方向一致. 2.小磁针在磁场中静止时___N______极的受力方向与该点的__场强____方向一致,也与该点所在磁感线的____切线___方向一致.

3.电场中任何两条电场线都__不___相交. 3.磁场中任何两条磁感线都___不___相交.

4.电场线的疏密表示电场的___强弱_____. 4.磁场线的疏密表示磁场的__强弱________.

问题4:地球的地理两极与地 磁两极并不重合,其间有一个交角,这个角就叫磁偏角。地面附近地磁场的磁性不强

高中物理磁现象和磁场教案选修3 第6篇

全章概述

本章的内容,特别是对磁场性质的定量描述,是以后学习电磁学的基础。本章的内容按照这样的线索展开。磁场的性质——磁场性质的定性和定量描述——磁场对电流和运动电荷的作用——安培力和洛伦兹力的应用。

本章的重点内容是磁感应强度、磁场对电流的作用和磁场对运动电荷的作用。磁感应强度描述了磁场的性质,它比较抽象,同时也是学习中的一个难点。掌握左手定则,熟练掌握安培力和洛伦兹力方向的判断以及安培力和洛伦兹力的计算,这是学好后续课程的基础。由于高中阶段有关磁场的知识大都是通过分析、逻辑推理和理论推导得出的结论,抽象思维上的难度比较大;而电流(运动电荷)方向,磁感应强度方向及磁场对电流(运动电荷)作用力的方向分布在三维空间,这就要求大家要具备较强的空间想象能力。因此,除了掌握重点知识,突破难点知识,还要在学习的过程中自觉地提高自己的抽象思维能力、逻辑推理能力和空间想象能力。

列举磁现象在生活、生产中的应用。了解我国古代在磁现象方面的研究成果及其对人类文明的影响。关注与磁相关的现代技术发展。

例1 观察计算机磁盘驱动器的结构,大致了解其工作原理。

1、了解磁场,知道磁感应强度和磁通量。会用磁感线描述磁场。例2 了解地磁场的分布、变化,以及对人类生活的影响。

2、会判断通电直导线和通电线圈周围磁场的方向。

3、通过实验,认识安培力。会判断安培力的方向。会计算匀强磁场中安培力的大小。例3 利用电流天平或其他简易装置,测量或比较磁场力。例4 了解磁电式电表的结构和工作原理。

1、通过实验,认识洛仑兹力。会判断洛仑兹力的方向,会计算洛仑兹力的大小。了解电子束的磁偏转原理以及在科学技术中的应用。

例5 观察阴极射线在磁场中的偏转。例6 了解质谱仪和回旋加速器的工作原理。

1、认识电磁现象的研究在社会发展中的作用。

3.1磁现象和磁场

新课程学习

3.1 磁现象和磁场

三维教学目标

1、知识与技能

(1)列举磁现象在生活、生产中的应用,了解我国古代在磁现象方面的研究成果及其对人类文明的影响,关注与磁相关的现代技术发展;

(2)知道磁场的基本特性是对处在它里面的磁体或电流有磁场力的作用;

(3)知道磁极和磁极之间、磁极和电流之间、电流和电流之间都是通过磁场发生相互作用的。

2、过程与方法:利用电场和磁场的类比教学,培养学生的比较推理能力。

3、情感、态度与价值观:在教学中渗透物质的客观性原理。教学重点:磁场的物质性和基本特性。教学难点:磁场的物质性和基本性质。教学方法:类比法、实验法、比较法。

教学用具:条形磁铁、蹄形磁铁、小磁针、导线和开关、电源、铁架台、投影片、多媒体辅助教学设备。教学过程:

第1节 磁现象和磁场

(一)引入新课

我国是世界上最早发现磁现象的国家。早在战国末年就有磁铁的记载。我国古代的四大发明之一的指南针就是其中之一,指南针的发明为世界的航海业作出了巨大的贡献。在现代生活中,利用磁场的仪器或工具随处可见,如我们将要学习的电流表、质谱仪、回旋加速器等。进人21世纪后,科技的发展突飞猛进、一日千里,作为新世纪的主人,肩负着民族振兴的重任,希望同学们勤奋学习,为攀登科学高峰打好扎实的基础。今天,我们首先认识磁场。

(二)进行新课

1、磁现象

教师:引导学生阅读教材“磁现象”两段,明确以下几个问题:

问题1天然磁石的主要成分是什么?永磁体吸引铁质物体的性质叫磁性。

问题2什么是永磁体、磁性和磁极?磁体有几个磁极,如何规定的?磁性最强的区域就是磁极。

2、电流的磁效应

教师:电现象和磁现象之间存在着许多相似,请你举例说明。

学生:讨论,交流,发表见解。电荷存在正负、磁体存在两极;电荷间有力的作用,且同号电荷相斥,异号电荷相吸;磁体间同样有力的作用,且同名磁极相斥,异名磁极相吸。

教师:电现象和磁现象间的相似是偶然的吗?如果你是一位物理学家,你会怎样认为呢? 教师:引导学生阅读教材80页思考问题:

问题1人们是通过那些自然现象,开始形成了相互联系和相互转化的思想? 问题2开始,奥斯特的实验研究均以“失败”告终,为什么?你从中有何启发?

问题3奥斯特是如何发现电流磁效应的?以前的实验为什么会失败?谈谈你的想法。奥斯特发现电流磁效应的实验有何意义,竟使安培、法拉第对奥斯特有如此高的评价? 学生:阅读教材,讨论、交流、发表见解。

3、磁场

提问:磁体对磁体有力的作用,奥斯特的电流磁效应实验说明电流对磁体也有力的作用。这些作用力都不需要直接接触,就能产生。那么,这些作用力是怎样产生的呢?是不是不需要任何媒介物就能产生? 答:是通过磁场产生的。

教师:你为什么会想到是通过磁场产生的?类比前面的学习谈一下自己的看法。

学生:奥斯特的电流磁效应实验说明电和磁是相互联系的。电荷的周围存在电场,电荷间通过电场产生相互作用,那么,磁体和电流的周围必然会存在磁场,磁体间、电流和磁体间则通过磁场产生相互作用。教师:既然电流的周围存在磁场,对磁体会产生力的作用,那么磁体对电流会产生力的作用吗?电流与电流之间有没有力的作用? 学生:有。因为力是相互的。

演示:如图3.1-3所示,通电导线与磁体间发生相互作用。学生:认真观察实验,体会磁体对通电导线产生力的作用。

结论:磁场是存在于磁体或电流周围空间的一种特殊物质。磁体和电流的周围存在磁场,磁体间、电流和磁体间、电流和电流间的相互作用,都是通过磁场产生的。

问题:大家猜想一下,磁场的基本性质是什么呢?与电场的基本性质是否相似?

学生:磁场的基本性质是对放入其中的磁体或电流产生力的作用。与电场的基本性质是相似的。(电场的基本性质是对放入其中的电荷产生力的作用)

结论:电荷之间存在相互作用的力,它不是电荷之间直接发生的,而是通过电场发生的(这一结论是从电荷间相互作用的现象结合“力是物体间的相互作用”推理得出的)。通过类比,可以推断出“磁极间的相互作用也是通过磁场而发生的”磁场也具有物质性。问题:请大家思考,悬吊着的磁针为什么会指示南北呢? 答:说明地球的周围有磁场,地磁场对磁针产生了磁场力。

4、磁性的地球

教师:地球的周围存在磁场,地球实际上就是一个巨大的磁体,它也有两个磁极,地磁南极和地磁北极。地磁场的南北极与地理的南北极并不重合。观察图3.1-4,地磁场的南北极连线与地理的南北极之间有一个偏角,叫做磁偏角。磁偏角的数值在地球上不同的地点是不同的。而且,地球的磁极在缓慢地移动,磁偏角也在缓慢地变化。

指出:许多天体和地球一样,也存在着磁场。如太阳、月亮、火星等都存在磁场。但它们的磁场有不同的特点。如火星的磁场不像地球的磁场那样是全球性的,而是局部的。因此指南针不能在火星上工作。对天体磁场的研究具有十分重要的科学意义。

5、课堂小节

6、作业:

1、完成P81 练习2、3

高二物理磁场和磁感线教案 第7篇

1、知道磁体周围存在着磁场和磁场具有方向性;

2、知道磁感线可用来形象地表示磁场及其方向。

(二)教具

条形磁体,蹄形磁体,小磁针,玻璃板,铁屑。

(三)教学过程

1、复习提问,引入新课

复习提问:什么是力?(力是物体对物体的作用)

当两磁极相互靠近时,其相互作用是怎样的?

(同名磁极互相排斥,异名磁极互相吸引)

进一步提问引入新课:

两磁极相互靠近并未接触时,它们是怎样发生作用的呢?放在磁体附近的大头针并未接触磁体却能被磁体所吸引,磁体又是怎样作用于大头针的?这节课我们就来研究探索这类问题。

2、进行新课

(1)引导学生通过实验认识磁场的存在

请同学们将小磁针、条形磁体摆放在桌子上,然后进行下列实验:

学生实验:首先在桌上放一圈小磁针,观察小磁针的指向;然后将条形磁体放到小磁针中间,观察小磁针的指向有什么变化;再拿开磁体,观察小磁针的指向。

提问:同学们刚才观察到什么现象?

(当条形磁体放到小磁针中间时,小磁针的指向都发生了偏转,不再指南北了,拿开磁体,小磁针又恢复了原来的指向)

教师进一步提问:当条形磁体放到小磁针中间时,磁体周围的小磁针都发生了偏转,说明小磁针都受到了磁力作用,这个力是磁体直接作用于小磁针的吗?为什么?

(不是。因为小磁针没有直接接触磁体)

教师指出:由上述现象我们可以推断出磁体周围的空间一定存在着一种物质,磁体是通过这种物质对小磁针发生了磁力的作用,使它发生了偏转。科学家把这种物质叫做磁场。板书:

一、实验表明:磁体周围的空间存在着磁场。

讲述:同学们也许会问:我们并没有看见磁场周围的磁场啊?看不见、摸不着的东西,我们可以根据它所表现出来的性质来研究它、认识它,这正是科学的力量所在,也是我们应该学习和掌握的科学研究方法。

紧接着提问:空气看不见、摸不着,我们可以根据什么来认识它?

(根据空气流动形成的风所产生的.作用来认识它)

电流看不见、摸不着,我们可以根据什么来认识它?

(根据电流所产生的效应来认识它)

教师指出:同样,磁场看不见、摸不着,我们可以根据它所表现出来的性质来认识它。

提问:磁场的基本性质是什么呢?

引导学生分析:从上面的实验可以看出,把小磁针放入磁体周围的磁场中时,要受到磁场的磁力作用;当两个磁极靠近时,它们之间的相互排斥或相互吸引也是磁场作用的结果。由此我们可以得出下列结论:

板书:二、磁场的基本性质是它对放入其中的磁体产生磁力的作用。磁体间的相互作用都是通过磁场发生的。

(2)研究磁场的方向

提问:我们知道,力是有方向的。既然磁场对放入其中的磁体都产生磁力的作用,那么磁场有没有方向呢?它的方向又是怎样的呢?

让学生再观察一次前面的实验,提问:

小磁针在磁场中是保持一定方向,还是上下、左右摆动,没有一定方向?这说明什么?(保持一定的方向,说明磁场是有方向的。)

教师讲解并板书:三、在磁场中的某一点,小磁针静止时北极所指的方向就是该点的磁场方向。

(3)通过实验研究磁感线

提问:磁场看不见、摸不着,有没有办法把磁场及其方向更形象、更直观地显示出来呢?讲述:我们知道,小磁针在磁场中要受到磁场的作用,小磁针的北极所指的方向就是该点的磁场方向。那么,我们可以在磁场中放上许许多多的小磁针,它们的分布情况和北极所指的方向就可以形象直观地显示出磁场的分布情况和方向。

进一步提问:小磁场在磁场中的分布情况是怎样的呢?下面我们用铁屑代替小磁针来做实验:(铁屑放入磁场中被磁化,每粒铁屑都变成了小磁针)

学生实验:在一块玻璃板上均匀地撒一些铁屑,然后把玻璃板放在条形磁体上,轻敲玻璃板,观察铁屑的分布有什么变化?换用蹄形磁体再做一次,观察蹄形磁体周围的铁屑分布有什么变化?

提问:同学们观察到了什么现象?

(观察到铁屑在磁场的作用下转动,最后有规则地排列成一条条曲线。)

进一步提问:这个现象对我们直观地显示磁场的分布情况有什么启示呢?师生讨论得出:因为铁屑的分布情况可以显示磁场的分布情况,所以我们可以仿照铁屑的分布情况,在磁体的周围画一些曲线,使任一点的曲线方向都跟该点小磁针北极所指的方向一致,这样就可以用这些有方向的曲线来描述磁场的情况。

教师指出:科学家把这样的曲线叫做磁感应线,简称磁感线。并且通过研究发现,磁体周围的磁感线的方向都是从磁体北极出来,回到磁体南极的。

板书:四、磁感线:可以用来形象、精确地描述空间磁场的分布情况。磁体周围的磁感线都是从磁体北极出来,回到磁体南极。

引导学生在黑板上画出条形磁体和蹄形磁体周围的磁感线。

提问:同名磁极、异名磁极间磁感线的分布情况又是怎样的呢?下面我们用同样的办法来研究。

学生实验:在一块玻璃上均匀地撤一些铁屑后,先放在异名磁极上,后放在同名磁极上,观察铁屑的分布情况。

仿照铁屑的分布情况,画出同名磁极、异名磁极间的磁感线。

教师强调:磁体周围的磁感线只是帮助我们描述磁场而假想的一条条曲线。磁场是客观存在的,而磁感线并不存在。

提问:知道一个磁场的磁感线分市情况后,你将怎样根据磁场的方向判断放在其中的小磁针的N、S极所受磁力的方向呢?

教师提出:在磁场中的某点,磁针北极所受磁力的方向跟该点的磁场方向一致,南极所受磁力的方向跟该点的磁场方向相反。

引导学生讨论课本中的想想议议:。

3、小结

提问:本节课我们主要研究了哪两个内容?

学生回答后,教师板书课题:

第二节磁场和磁感线

在这两个内容里我们应该掌握哪些知识呢?

引导学生进行归纳(略)。

(四)说明

高一物理磁场教案 第8篇

一、教学目标

1.理解磁感应强度和磁通量概念. 2.掌握用磁感线描述磁场的方法.

3.了解匀强磁场的特点,知道磁通密度即磁感应强度.

4.采用类比法,从电场强度概念引入分析,据比值法定义,建立磁感应强度概念.培养学生分析问题的能力和研究问题的方法.

二、重点、难点分析

磁感应强度是描述磁场性质的物理量,其概念的建立是本章的重点和难点.

1.在磁场中某处,垂直磁场方向放置的通电直导线,所受的磁场力与其导线长度和电流强度乘积的比值是不变的恒量,即只要在磁场中的位置不变,若是改变垂直磁场方向放置的导线长度,或改变其中的电流强度,则所受的磁场力改变,但磁场力与导线长度和电流强度乘积的比值是不变的,为一特定恒量,说明该恒量反映了磁场在该处的性质.如果改变磁场中的位置,再垂直磁场方向放置通电直导线,其所受磁场力与导线长度和电流强度乘积的比值又是一个不同的恒量,该恒量即反映磁场在这一位置场的性质.磁场的这种性质命名为磁感应强度.

这正可与电场类比:放在电场中某点的检验电荷所受到的电场力与其电量的比值是不变的恒量.它反映电场性质,命名为电场强度.

同是比值法定义.

2.磁通量是指穿过某个“面”的磁感线条数.因此一说磁通量必须指明是穿过哪个面的磁通量,“面”定了则面积大小定了,放在确定的磁场中,如果磁场方向与面的夹角不同,则穿过该面的磁感线条数不同.同样的面积,确定的磁场,垂直磁场方向放置,则穿过的磁感线条数最多,因此定义:垂直磁场方向放置的面积为S的面,其磁通量Φ=B·S.

3.磁感线的条数不是随意画的,它是由磁感应强度的大小决定的.垂直磁场方向单位面积上的磁通量棗即单位面积上的磁感线条数,叫磁通密度,B=Φ/S,即磁感应强度.

三、教具

干电池组,U形磁铁,水平平行裸铜线导轨,直铜棒,带夹导线三根,开关.

四、教学过程 1.引入新课: 复习电场,为用类比法建立磁感应强度概念作准备.

提问:电场的基本特性是什么?(对其中的电荷有电场力的作用.)空间有点电场Q建立的电场,如在其中的A点放一个检验电荷q1,什么?(比值为恒量,反映场的性质,叫电场强度.)

磁场的基本特征是什么?(对其中的电流,即通电导线有磁场力的作用.)

对磁场的这种特性如何描述呢? 2.观察实验

磁场对通电直导线有力的作用,引导学生作定性分析,得出:确定的磁场,对通电直导线的作用力大小与直导线的长度L、通入电流强度I,以及导线上电流方向与磁场方向夹角有关.

(1)通电导线在磁场中受到力的作用──磁场力F.F的方向与何有关?(磁场方向,电流方向,左手定则.)

(2)如果磁场确定,则F的大小与何有关?

如使导线与磁场平行放置,F=?垂直放置又如何? 如改变导线长度,F如何变化?

如果改变导线上的电流强度,F如何变化? 总结:精确的实验表明通电直导线垂直放置在确定的磁场中受到的磁场力F跟通过的电流强度I和导线长度L成正比,或者说跟I·L的乘积成正比.这就是说无论怎样改变电流强度I和导线长度L,乘积IL增大多少倍,则F也增大多少倍.比值F/IL是恒量.

如果改变在磁场中的位置,垂直磁场放置的通电导线F/IL比值又会是新的恒量,均反映磁场的性质.

正如电场特性用电场强度来描述一样,磁场特性用一个新的物理量──磁感应强度来描述.

3.板书:磁感应强度(B)

(1)定义:在磁场中垂直于磁场方向的通电导线,所受到的磁场力F跟电流强度I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,用B表示.

(2)公式:B=F/(I·L)

(3)矢量:B的方向与磁场方向,即小磁针N极受力方向相同.(4)单位:特斯拉(T)1T=1N/(A·m),即垂直磁场方向放置的长lm的导线,通入电流为1A,如果受的磁场力为1N,则该处的磁感应强度B为1T.

一般永久磁铁磁极附近的磁感应强度约为0.4T~0.7T;电机和变压器铁心中,磁感应强度为0.8T~1.4T,地面附近地磁场的磁感应强度约为0.5×10-4T.

4.板书:匀强磁场

磁感应强度的大小和方向处处相同的区域,叫匀强磁场.

其磁感线平行且等距.长的通电螺线管内部的磁场、两个靠得很近的异名磁极间的磁场都是匀强磁场.

如用B=F/(I·L)测定非匀强磁场的磁感应强度时,所取导线应足够短,以能反映该位置的磁场为匀强.

5.板书:磁通量(Φ)

在后面的电学学习中,我们要讨论穿过某一个面的磁场情况.我们知道,磁场的强弱(即磁感应强度)可以用磁感线的疏密来表示.如果一个面积为S的面垂直一个磁感应强度为B的匀强磁场放置,则穿过这个面的磁感线的条数就是确定的.我们把B与S的乘积叫做穿过这个面的磁通量.

(1)定义:面积为S,垂直匀强磁场B放置,则B与S的乘积,叫做穿过这个面的磁通量,用Φ表示.

(2)公式:Φ=B·S

(3)单位:韦伯(Wb)1Wb=1T·m2

磁通量就是表示穿过这个面的磁感线条数. 6.板书:磁通密度

磁通密度大,即穿过单位面积的磁感线条数多,一定是磁感线很密,7.课堂小结

(1)磁感应强度既反映了磁场的强弱又反映了磁场的方向,它和磁通量都是描述磁场性质的物理量,应注意定义中所规定的条件,对其单位也应加强记忆.

(2)磁通量的计算很简单,只要知道匀强磁场的磁感应强度B和所讨论面的面积S,在面与磁场方向垂直的条件下Φ=B·S.(不垂直可将面积做垂直磁场方向上的投影.)磁通量是表示穿过所讨论面的磁感线条数的多少.在今后的应用中往往根据穿过面的净磁感线条数的多少定性判断穿过该面的磁通量的大小.

例:如图所示,在条形磁铁中部垂直套有A、B两个圆环,试分析穿过A环、B环的磁通量谁大.

解:此题所给条件是非匀强磁场,不能用Φ=B·S计算,只能比较穿过两环的磁感线净条数多少,来判断磁通量的大小.条形磁铁的磁感线是从N极出发,经外空间磁场由S极进入,在磁铁内部的磁感线是从S极向N极,又因磁感线是闭合的平滑曲线,所以条形磁铁内外磁感线条数一样多.从下向上穿过A、B环的磁感线条数一样多,而从上向下穿过A环的磁感线多于B环,则A环从下向上穿过的净磁感线少于B环,所以B环的磁通量大于A环磁通量.

另外一个面积是S的面,垂直匀强磁场B放置,则穿过该面的磁通量Φ=B·S.如果该面转动180°则穿过该面的磁通量改变了2BS.

(3)磁感应强度概念的建立是通过类比法和用比值法定义的方法.同学们可总结一下,我们还在什么问题上使用过这两种方法,从而提高自己分析问题和研究问题的能力.

上一篇:单位性质标准下一篇:沂水一中六五普法规划