六级数学圆专题复习

2024-07-05

六级数学圆专题复习(精选9篇)

六级数学圆专题复习 第1篇

圆中小专题

专题一、圆中折叠问题

例1、如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为____________

1、如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连接CD,若点D与圆心不重合,∠BAC=22.5°,则∠DCA的度数为_______.2、如图,AB是半圆O的直径,C是半圆O上一点,将半圆沿弦BC折叠,恰好经过点O,则∠ABC=__________

例2、以半圆中的一条弦BC(非直径)为对称轴将弧BC折叠后与直径AB交于点D,若AD:DB=2:3,且AB=10,则CB的长为()

1、将弧BC沿弦BC折叠交直径AB于点D,若AD=4,DB=5,则BC的长是______

2、如图,半圆形纸片的直径AB=10,AC是弦,∠BAC=15°,将半圆形纸片沿AC折叠,弧AC交直径AB于点D,则线段AD的长为____________

3、如图,已知半圆O的直径AB=4,沿它的一条弦折叠.若折叠后的圆弧与直径AB相切于点D,且AD:DB=3:1,则折痕EF的长.

例3、有一张矩形纸片ABCD,已知AB=2cm,AD=4cm,上面有一个以AD为直径的半圆,如图甲,将它沿DE折叠,使A点落在BC上,如图乙,这时,半圆还露在外面的部分(阴影部分)的面积是()

1、如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是

.(结果保留π)

2、如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,直径AB和弧BC交于点D,已知AB=6,则图中阴影部分的面积和周长分别等于________________.

专题二、弧长和面积

例、如图,将半圆O绕直径的端点B逆时针旋转30°,得到半圆O′,弧交直径AB于点C,若BC=2,则图中阴影部分的面积为_________

练习1、如右图,将直径AB为3的半圆绕A逆时针旋转60°,此时AB到达AC的位置,求阴影部分的面积为_______________

练习2、将△ABC绕点B逆时针旋转到△A′BC′使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,则图中阴影部分面积为____________________

练习3如图,E是正方形ABCD内一点,连接EA、EB并将△BAE以B为中心顺时针旋转90°得到△BFC,若BA=4,BE=3,在△BAE旋转到△BCF的过程中AE扫过区域面积是___________

例、如图,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,B为切点,弦BC∥0A,连接AC,求阴影部分的面积____________

1、如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE,若E是弧AC的中点,⊙O的半径为2,求图中阴影部分的面积._____________

2、如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是________________

专题三、圆锥展开图

例、如图1,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____

1、如图2,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为1,扇形的圆心角等于120°,则围成的圆锥模型的高为____________

2、如图3,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为_____________

专题四、沿圆锥表面爬行的最短路径

例、如图,圆锥的底面直径AB=2,母线长VA=3,点C在母线长VB上,且VC=1,有一只蚂蚁沿圆锥的侧面从点A到点C,则这只蚂蚁爬行的最短距离是()

练习1、如图,圆锥形甜筒的母线长OA为6,AC是底面圆的直径,底面圆的半径为3.若一只蚂蚁在底面上点A处,在母线OC的中点B处有一粒残余甜点,蚂蚁要沿圆锥侧面吃到甜点,需要爬行的最短距离为

2、如图,圆锥的底面半径为1,母线长为3,一只蚂蚁要从底面圆周上一点B出发,沿圆锥侧面爬到过母线AB的轴截面上另一母线AC上,问它爬行的最短路线是多少?

六级数学圆专题复习 第2篇

证明直线是圆的切线,通常有的两种方法:

一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径.

【例1】如图1,已知AB为⊙O的直径,点D在AB的延长线上,BD=OB,点C在圆上,∠CAB=30º.求证:DC是⊙O的切线.

思路:要想证明DC是⊙O的切线,只要我们连接OC,证明∠OCD

=90º即可.

证明:连接OC,BC.

∵AB为⊙O的直径,∴∠ACB=90º. ∵∠CAB=30º,∴BC=∵BD=OB,∴BC=

1AB=OB.

2OD.∴∠OCD=90º. 2

∴DC是⊙O的切线.

【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线.本题在证明∠OCD=90º时,运用了“在一个三角形中,如果一条边上的中线等于这条边的一半,那么这个三角形是直角三角形”,当然也可以从角度计算的角度来求∠OCD=90º.

二、如果直线与圆的公共点没有确定,则应过圆心作直线的垂线,证明圆心到这条直线的距离等于半径.

【例2】如图2,已知OC平分∠AOB,D是OC上任意一点,⊙D与OA相切于点E.求证:OB与⊙D相切.

思路:连接DE,过点D作DF⊥OB于点F,证明DE=DF即可,这可由角平分线上的点到角两边的距离相等证得.

请同学们写出证明过程.

2【评析】一定要防止出现错将圆上的一点当作公共点而连接出半径.同学们一定要认真体会证明切线时常用的这两种方法,作辅助线时一定要注意表述的正确性.

【例3】如图3,已知AB为⊙O的直径,C为⊙O上一点,AD和过C点

3的切线互相垂直,垂足为D.求证:AC平分∠DAB.

思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径.

证明:连接OC.

∵CD是⊙O的切线,∴OC⊥CD.

∵AD⊥CD,∴OC∥AD.∴∠1=∠2.

∵OC=OA,∴∠1=∠3.∴∠2=∠3.

∴AC平分∠DAB.

【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直切线.

【例4】如图4,已知AB为⊙O的直径,过点B作⊙O的切线BC,连接

OC,弦AD∥OC.求证:CD是⊙O的切线.

思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也

就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明

CD是⊙O的切线,只要证明∠ODC=90º即可.

证明:连接OD.

∵OC∥AD,∴∠1=∠3,∠2=∠4.

∵OA=OD,∴∠1=∠2.∴∠3=∠4.

又∵OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.

∵BC是⊙O的切线,∴∠OBC=90º.∴∠ODC=90º.

∴DC是⊙O的切线.

【评析】本题综合运用了圆的切线的性质与判定定理.一定要注意区分这两个定理的题设与结论,注意在什么情况下可以用切线的性质定理,在什么情况下可以用切线的判定定理.希望同学们通过本题对这两个定理有进一步的认识.本题若作OD⊥CD,就判断出了CD与⊙O相切,这是错误的.这样做相当于还未探究、判断,就以经得出了结论,显然是错误的.

“图形的认识——圆”复习专题 第3篇

1. 如图,点A、B、C在⊙O上,∠ACB=30°,则sin∠AOB的值是( ).

2. 两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( ).

A. 两个外离的圆B. 两个外切的圆

C. 两个相交的圆D. 两个内切的圆

3. 如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,,则阴影部分图形的面积为( ).

A. 4π B. 2π C. π D.2π/3

4. 如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是( ).

A. 当弦PB最长时,△APC是等腰三角形B. 当△APC是等腰三角形时,PO⊥AC

C. 当PO⊥AC时,∠ACP=30°D. 当∠ACP=30°,△PBC是直角三角形

二、填空题

5. 直角三角形的两直角边长分别为16和12,则此三角形的内切圆半径是______.

6. 如图,PA、PB分别切⊙O于点A、B,若∠P=70°, 则∠C的大小为______°.

7. 如图 ,△ABC是正三角形 ,曲线CDEF叫做正三角形的渐开线,其中的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是______.

8. 如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a,0),半径为5. 如果两圆内含,那么a的取值范围是________.

9. 在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为______(结果保留π).

10. ⊙O的半径为4 cm,直线l与⊙O相交于A、B两点,,P为直线l上一动点,以1 cm为半径的⊙P与⊙O没有公共点. 设PO=d cm,则d的范围是______.

三、解答题

11. 操作:如图 ,△ABC是直角三角形 ,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母. (保留痕迹,不写作法)

(1) 作BAC的平分线,交BC于点O;

(2) 以O为圆心,OC为半径作圆.

综合运用:在你所作的图中,

(1) AB与⊙O的位置关系是______;(直接写出答案)

(2) 若AC=5,BC=12,求⊙O的半径.

12. 如图,AB是⊙O的直径,AE交⊙O于点F,与⊙O的切线CD互相垂直,垂足为D.

(1) 求证:∠EAC=∠CAB;

(2) 若CD=4,AD=8:①求⊙O的半径;②求tan∠BAE的值.

13. ∠ABC=90°,O为射线BC上一点,OB=4,以点O为圆心,1/2 BO长为半径作⊙O交BC于点D、E.

(1) 当射线BA绕点B按顺时针方向旋转多少度时与⊙O相切? 请说明理由.

(2) 若射线BA绕点B按顺时针方向旋转与⊙O相交于M、N两点(如图(2) ,求的长.

14. 已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.

(1) 求AD的长;

(2) BC是⊙O的切线吗? 若是,给出证明;若不是,说明理由.

15. 如图,⊙O的半径为1,正方形ABCD顶点B的坐标为(5,0),顶点D在⊙O上运动.

(1) 当点D运动到与点A、O在同一条直线上时,试证明直线CD与⊙O相切;

(2) 当直线CD与⊙O相切时,求CD所在直线对应的函数关系式;

(3) 设点D的横坐标为x,正方形ABCD的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值.

参考答案

1. C 2. D 3. D 4. C

5. 4 6. 55 7. 4π 8. -2<a<2 9.5π/2 -4

10. d>5 cm或2 cm≤d<3 cm

11. (1) 相切 (2)10/3

12. (1) 证明:连接OC. (2) 解:①连接BC. 证明△ACD∽△ABC,⊙O的半径为5. ②连接CF与BF. 证明△DCF∽△DAC,求DF=2,∴tan∠BAD=BF/AF =8/6 =4/3 .

13. (1) 当射线BA绕点B按顺时针方向旋转60°或120°时与⊙O相切.(2)的长为l=π.

14. (1) AD=2 (2) 连接OB,证明四边形BCDO为矩形.

高中数学专题复习与研究 第4篇

解决第一类型的参数问题,通常要用“分类讨论”的方法,即根据问题的条件和所涉及到的概念;运用的定理、公式、性质以及运算的需要,图形的位置等进行科学合理的分类,然后逐类分别加以讨论,探求出各自的结果,最后归纳出命题的结论,达到解决问题的目的。它实际上是一种化难为易。化繁为简的解题策略和方法。

一、科学合理的分类

把一个集合A分成若干个非空真子集A■(i=1、2、3···n)(n≥2,n∈N),使集合A中的每一个元素属于且仅属于某一个子集。即

①A■∪A■∪A■∪···∪A■=A

②A■∩A■=φ(i,j∈N,且i≠j)。

则称对集A进行了一次科学的分类(或称一次逻辑划分)

科学的分类满足两个条件:条件①保证分类不遗漏;条件②保证分类不重复。在此基础上根据问题的条件和性质,应尽可能减少分类。

则称对集A进行了一次科学的分类(或称一次逻辑划分)

科学的分类满足两个条件:条件①保证分类不遗漏;条件②保证分类不重复。在此基础上根据问题的条件和性质,应尽可能减少分类。

二、确定分类标准

在确定讨论的对象后,最困难是确定分类的标准,一般来讲,分类标准的确定通常有三种:

(1)根据数学概念来确定分类标准

例如:绝对值的定义是:

所以在解含有绝对值的不等式|log■x|+|log■(3-x)|≥1时,就必须根据确定logx,

log■(3-x)正负的x值1和2将定义域(0,3)分成三个区间进行讨论,即0<x<1,

1≤x<2,2≤x<3三种情形分类讨论。

例1、已知动点M到原点O的距离为m,到直线L:x=2的距离为n,且m+n=4

(1)求点M的轨迹方程。

(2)过原点O作倾斜角为α的直线与点M的轨迹曲线交于P,Q两点,求弦长|PQ|的最大值及对应的倾斜角α。

解:(1)设点M的坐标为(x,y),依题意可得:■+|x-2|+=4

根据绝对值的概念,轨迹方程取决于x>2还是x≤2,所以以2为标准进行分类讨论可

得轨迹方程为:

解(2)如图,由于P,Q的位置变化,弦长|PQ|的表达式不同,故必须分点P,Q都在曲线y■=4(x+1)以及一点在曲线y■=4(x+1)上而另一点在曲线y■=-12(x-3)上可求得:

从而知当a=■或a=■时,

(2)根据数学中的定理,公式和性质确定分类标准。

数学中的某些公式,定理,性质在不同条件下有不同的结论,在运用它们时,就要分类讨论,分类的依据是公式中的条件。

例如,对数函数y=log■x的单调性是分0<a<1和a>1两种情况给出的,所以在解底数中含有字母的不等式;如log■>-1就应以底数x>1和0<x<1进行分类讨论,即:当x>1时,■>■,当0<x<1时,■<■

三、分类讨论的方法和步骤

(1)确定是否需要分类讨论以及需要讨论时的对象和它的取值范围;

(2)确定分类标准科学合理分类;

(3)逐类进行讨论得出各类结果;

(4)归纳各类结论。

初中数学圆复习教案怎么设计 第5篇

九年制义务教育九年级数学(北师大版)下册第章第节“直线和圆的位置关系”。本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与圆的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。

二、设计理念

鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动,帮助学生有意识地积累活动经验,获得成功的体验。教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索——说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合,促进学生形成科学地、能动地认识世界的良好品质。

三、教学目标:

(1)激发学生亲自探索直线和圆的位置关系

(2)通过实践让学生理解直线与圆的三种位置关系——相交、相切、相离的含义

(3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

(4)让学生们自主讨论通过学习“直线与圆的位置关系”有哪些收获,在现实生活中有哪些体现。

四、教学重点

直线与圆的三种位置关系——相交、相切、相离

从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。

五、教学难点:

探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。

初中数学圆的复习教案有哪些 第6篇

一、教科书内容和课程学习目标

(一)本章知识结构框图

本章知识结构如下图所示:

(二)教科书内容

本章是在学习了直线图形的有关性质的基础上,来研究一种特殊的曲线图形──圆的有关性质。圆也是常见的几何图形之一,不仅日常生活中的许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以看到圆。圆的有关性质,也被广泛的应用。圆也是平面几何中最基本的图形之一,它不仅在几何中有重要地位,而且是进一步学习数学以及其他科学的重要的基础。圆的许多性质,比较集中地反映了事物内部量变与质变的关系、一般与特殊的关系、矛盾的对立统一关系等等。结合圆的有关知识,可以对学生进行辩证唯物主义世界观的教育。所以这一章的教学,在初中的学习中也占有重要地位。

本章是在小学学过的一些圆的知识的基础上,系统的研究圆的概念、性质、圆中有关的角、点与圆、直线与圆、圆与圆、圆与正多边形之间的位置、数量关系。本章共分为四个小节,第1小节是“圆”,主要是圆的有关概念和性质,圆的概念和性质是进一步研究圆与其他图形位置、数量关系的主要依据,是全章的基础。这一节包括“圆”“垂直于弦的直径”“弧、弦、圆心角”“圆周角”四个部分。“24.1.1 圆”的主要内容是圆的定义和圆中的一些相关概念。圆的定义是研究圆的有关性质的基础。在小学,学生接触过圆,对它有一定的认识。教科书首先结合生活中一些圆的实际例子,在学生小学学过的画圆的基础上,通过设置一个观察栏目,用“发生法”给出了圆的定义。进一步的教科书又分析了圆上每一个点与圆心的距离都等于定长,同时到定点的距离等于定长的点都在圆上,这样实际上从点和集合的角度进一步认识圆,这样再认识之后,学生对圆的认识就加深了。接下来,是与圆有关的一些概念,如半径、直径、弦、弧等,对于这些概念要让学生结合图形进行认识,并多进行比较,以搞清他们的异同。

在接下来的几部分,教科书探究并证明了垂径定理、弧、弦、圆心角的关系定理、圆周角定理。垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据,同时也为进行圆的计算和作图提供了方法和依据;圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等等问题提供了十分简便的方法。所以垂径定理及其推论、圆周角定理及其推论是本小节的重点,也是本章的重点内容。而垂径定理及其推论的条件和结论比较复杂,容易混淆,圆周角定理的证明要用到完全归纳法,学生对与分类证明的必要性不易理解,所以这两部分内容也是本节的难点。

“24.2 与圆有关的位置关系”包括三部分内容,点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系。在“点与圆的位置关系”中,教科书首先结合射击问题,给出了点与圆的三种不同位置关系,接下来讨论了过三点的圆,并结合“过同一直线上的三点不能作圆”介绍了反证法。在“直线与圆的位置关系”中,教科书首先讨论了直线与圆的三种位置关系,然后重点研究了直线与圆相切的情况,给出了直线与圆相切的判定定理、性质定理、切线长定理,在此基础上介绍了三角形的内切圆。在“圆与圆的位置关系”中,重点是讨论圆与圆的不同位置关系。本小节中,直线与圆的位置关系是中心内容,切线的判定定理、性质定理、切线长定理等则是研究直线与圆的有关问题时常用的定理,是本节的重点内容。反证法的思想在前面章节有所渗透,在这一小节正式提出,它是一种间接证法,学生接受还是有一定的困难,所以对于反证法的教学是本节的一个难点;另外切线的判定定理和性质定理的题设和结论容易混淆,证明性质定理又要用到反证法,因此这两个定理的教学也是本节的难点,这些也同时是本章的难点。

正多边形是一种特殊的多边形,它有一些类似于圆的性质。例如,圆有独特的对称性,它不仅是轴对称图形、中心对称图形,而且它的任意一条直径所在直线都是它的对称轴,绕圆心旋转任意一个角度都能和原来的图形重合。正多边形也是轴对称图形,正n边形就有n条对称轴,当n为偶数时,它也是中心对称图形,而且绕中心每旋转,都能和原来的图形重合,可见正多边形和圆有很多内在的联系。另外,正多边形也在生产和生活中有着广泛的应用,所以教科书接下来安排了“正多边形和圆”的内容。教科书回顾学生已经了解的正多边形概念的基础上,以正五边形为例,证明了利用等分圆周得到正五边形的方法,接下来介绍了正多边形的有关概念,如中心、半径、中心角、边心距等,并进一步介绍了画正多边形的方法。正多边形的有关计算是本节的重点内容,这些计算都是几何中的基础知识,正确掌握它们也要综合运用以前所学的知识,这些知识在生产和生活中也常要用到。本节的教学难点在学生对正n边形中“n”的接受和理解上。学生对三角形、四边形、圆等这些具体图形比较习惯,对于泛指的n边形不习惯。为了降低难度,教科书涉及的证明、计算等问题都是结合具体的多边形为例的,教学时要注意把这种针对具体图形的结论和方法推广,使学生实现由具体到抽象,特殊到一般的认识上的飞跃,提高学生的思维能力。

教科书接下来的24.4节的主要内容是一些与圆有关的计算,包括两部分“弧长和扇形的面积”“圆锥的侧面积和全面积”。“弧长和扇形的面积”是在小学学过的圆周长、面积公式的基础上推导出来的,应用这些公式,就可以计算一些与圆有关的简单组合图形的周长和面积。由于圆锥的侧面展开图是扇形,所以教科书接下来介绍了圆锥的侧面积和全面积的计算。这些计算不仅是几何中基本的计算,也是日常生活中经常要用到的,运用这些知识也可以解决一些简单的实际问题。圆锥的侧面积的计算还可以培养学生的空间观念,因此对这部分内容的教学也要重视。

(三)课程学习目标

1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征。

2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。

3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆。

4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积。

5.结合相关图形性质的探索和证明,进一步培养学生的合情推理能力,发展学生的逻辑思维能力和推理论证的表达能力;通过这一章的教学,进一步培养学生综合运用知识的能力,运用学过的知识解决问题的能力,同时对学生进行辩证唯物主义世界观的教育。

二、本章编写特点

(一)突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合

圆是日常生活中常见的图形之一,也是平面几何中的基本图形,本章重点研究了与圆有关的一些性质。教科书在编写时,注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。

例如结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角、圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生能对发现的性质进行证明,使直观操作和逻辑推理有机的整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续。

(二)注意联系实际

圆是人们日常生活和生产中应用较广的一种几何图形,不仅日常生活中许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以见到圆。这部分内容与实际联系比较紧密。在教科书编写时,也充分注意到这一点。例如,在引入圆、正多边形等概念时,举出了大量的实际生活中的例子;在介绍点与圆、直线与圆、圆与圆的位置关系时,也是注意从它们在实际生活中的应用引入;利用垂径定理解决求赵州桥的主桥拱半径的问题;根据海洋馆中人们视野的关系引出研究圆周角与圆心角、圆周角之间的关系;利用正多边形的有关计算求亭子的地基;实际问题中有关弧长、扇形的面积、圆锥的侧面积和全面积的计算问题等等。教科书的例、习题中也有一些实际应用的例子等等。这些材料都是从实际中提炼出来的,要通过这些知识的教学,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题。教学时,还可以根据本地区的实际,选择一些实际问题,引导学生加以解决,提高他们应用知识解决问题的能力。

(三)重视渗透数学思想方法

教学中不仅要教知识,更重要的是教方法,本章重涉及的数学思想方法也比较多。例如,圆周角定理证明中的通过分类讨论,把一般问题转化为特殊情况来证明;研究点与圆、直线与圆、圆与圆的位置关系时的分类的思想;研究正多边形的有关问题是通过把问题转化为解直角三角形来解决的;正多边形的画图是通过等分圆来完成的;等等。通过这些知识的教学,使学生学会化未知为已知、化复杂为简单、化一般为特殊或化特殊为一般的思考方法,提高学生分析问题和解决问题的能力。

另外,在本章,通过理论联系实际,对学生进行唯物论认识论的教育;通过圆的许多性质之间的内在联系,圆与其他图形之间量变与质变的关系,一般与特殊之间的关系等,对学生进行辩证唯物主义观点的教育;使学生增强民族的自豪感和振兴中华的使命感,对他们进行学习目的的教育,培养他们良好的个性品质。

三、几个值得关注的问题

(一)进一步培养推理论证能力

初中数学复习圆中计算与证明 第7篇

1.如图,点O在⊙A外,点P在线段OA上运动.以OP为半径的⊙O与⊙A的位置关系不可能是下列中的()

A.外离.

B.相交.

C.外切.

D.内含.

2.⊙O的半径为,圆心O到直线的距离为,则直线与⊙O的位置关系是

()

A.

相交

B.

相切

C.

相离

D.

无法确定

3.如图,圆锥的高为12,母线长为13,则该圆锥的侧面积等于

A.

B.

C.

D.

4.如图,△ABC内接于⊙O,∠C

=45°,AB=2,则⊙O的半径为

A.1

B.

C.2

D.

5.如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是

cm.

6.已知:如图,在△ABC中,AB

=

AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,联结PC,交AD于点E.

(1)求证:AD是圆O的切线;

A

B

C

D

P

E

O

(2)若PC是圆O的切线,BC

=

8,求DE的长.

7.已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.(1)判断直线BD与⊙O的位置关系,并证明你的结论;

(2)若⊙O的半径等于4,求CD的长.8.如图,⊙O的直径=6cm,点是延长线上的动点,过点作⊙O的切线,切点为,连结.若的平分线交于点,你认为∠的大小是否发生变化?若变化,请说明理由;若不变,求出∠的度数.

A

O

B

P

C

9.已知:在⊙O中,AB是直径,AC是弦,OE⊥AC

于点E,过点C作直线FC,使∠FCA=∠AOE,交

AB的延长线于点D.(1)求证:FD是⊙O的切线;

(2)设OC与BE相交于点G,若OG=2,求⊙O

半径的长;

(3)在(2)的条件下,当OE=3时,求图中阴影

部分的面积.10.如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;

(2)若⊙O的半径为3,AB=4,求AD的长.【参考答案】

D

A

C

B

6.(1)证明:∵AB

=

AC,点D是边BC的中点,∴AD⊥BD.

又∵BD是圆O直径,∴AD是圆O的切线.……2分

(2)解:连结OP,由BC

=

8,得CD

=

4,OC

=

6,OP

=

2.∵PC是圆O的切线,O为圆心,∴.

由勾股定理,得.

在△OPC中,在△DEC中,7.解:(1)直线BD与⊙O相切.

证明:如图3,连结OB.-

1分

图3

∠OCB=∠CBD

+∠D,∠1=∠D,∴

∠2=∠CBD.

AB∥OC,∴

∠2=∠A

∠A=∠CBD.

OB=OC,∴,∵,∴

∠OBD=90°.-

--

-2分

直线BD与⊙O相切.

3分

(2)解:∵

∠D=∠ACB,∴

.-

4分

在Rt△OBD中,∠OBD=90°,OB

=

4,∴,.

.-

5分

8.解:∠的大小不发生变化.

…………………………………

1分

M

P

C

B

A

O

·

连结,PC是⊙O的切线,∴∠OCP=Rt∠.

∵PM是∠CPA的平分线,∴∠APC=2∠APM.

∵OA=OC,∴∠A=∠ACO,∴∠COP=∠A+∠ACO=2∠A.

在Rt△OCP中,∠OCP=90°,∴∠COP+∠OPC=90°,∴2∠A+2∠APM=90°,∴∠CMP=∠A+∠APM=45°.

……………………………………

4分

即∠的大小不发生变化.

9.证明:(1)连接OC(如图①),∵OA=OC,∴∠1=∠A.∵OE⊥AC,∴∠A+∠AOE=90°.∴∠1+∠AOE=90°.又∠FCA=∠AOE,图①

∴∠1+∠FCA=90°.即∠OCF=90°.∴FD是⊙O的切线.……………………………………………………2分

(2)连接BC(如图②),∵OE⊥AC,∴AE=EC.又AO=OB,∴OE∥BC且.……………3分

∴△OEG∽△CBG.图②

∴.∵OG=2,∴CG=4.∴OC=6.………………………………………………………………5分

即⊙O半径是6.(3)∵OE=3,由(2)知BC=2OE=6.∵OB=OC=6,∴△OBC是等边三角形.∴∠COB=60°.………6分

在Rt△OCD中,.∴

.………………………………………………7分

10.(1)证明:

如图,连接AO并延长交⊙O于点E,连接BE,则∠ABE=90°.∴

∠EAB+∠E=90°.……………………1分

∠E

=∠C,∠C=∠BAD,∴

∠EAB+∠BAD

=90°.∴

AD是⊙O的切线.……………………2分

(2)解:由(1)可知∠ABE=90°.∵

AE=2AO=6,AB=4,∴

.…………………………………………………3分

∠E=∠C=∠BAD,BD⊥AB,∴

…………………………………………………4分

.…………………………………………………5分

第二组

1.如果两圆半径分别为3和4,圆心距为6,那么这两圆的位置关系是

A.相交

B.内切

C.外离

D.外切

2.如图,点A、B、C在⊙O上,若∠BOC=100°,则∠BAC的度数是()

A.25°

B.50°

C.100°

D.150°

3.若两圆的半径分别是2cm和5cm,圆心距为3cm,则这两圆的位置关系是

A.外离

B.相交

C.外切

D.内切

4.如图,点A、B、C是⊙O上三点,∠C为20°,则∠AOB的度数为__________°.

5.如图,小正方形方格的边长为1cm,则的长为___________cm.

6.已知:如图,在△ABC中,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,过B、D、E三点作⊙O.

(1)求证:AC是⊙O的切线;

(2)设⊙O交BC于点F,连结EF,若BC=9,CA=12.求的值.7.已知:如图,AB为⊙O的直径,AD为弦,∠DBC

=∠A.(1)求证:

BC是⊙O的切线;

(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.8.已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF的延长线于点C.

(1)判断直线CE与⊙O的位置关系,并证明你的结论;

(2)若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长.

9.如图,△ABC中,AB=AE,以AB为直径作⊙O交BE于C,过C作CD⊥AE于D,DC的延长线与AB的延长线交于点P

.(1)求证:PD是⊙O的切线;

(2)若AE=5,BE=6,求DC的长.10.已知:如图,⊙O的直径=8cm,是延长线上的一点,过点作⊙O的切线,切点为,连接.

(1)

若,求阴影部分的面积;

(2)若点在的延长线上运动,的平分线交于点,∠的大小是否发生变化?若变化,请说明理由;若不变,求出∠的度数.

【参考答案】

A

B

D

6.解:(1)联结OD

∵DE⊥DB,∴∠BDE=90°

∴BE是⊙O的直径

∵OB=OD,∴∠OBD=∠ODB

∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠CBD=∠ODB,∴BC∥OD

∵,∴BC⊥AC,∴OD⊥AC

-------------------1分

∵OD是⊙O的半径

∴AC是⊙O的切线

-------------------2分

(2)设⊙O的半径为r,在△ABC中,∠ACB=90°,BC=9,CA=12

-------------------3分

∵BC∥OD,∴△ADO∽△ACB.

∴.∴.

∴.∴

-------------------4分

又∵BE是⊙O的直径.∴.∴△BEF∽△BAC

∴.

-------------------5分

7.(1)证明:

AB是⊙O的直径,∴

∠ADB=90°.…………………………

1分

∠ABD

+∠A=90°.

又∵∠DBC=∠A.

∠ABD+∠DBC=90°.

∠ABC=90°.

∴BC是⊙O的切线.

………………………2分

(2)解:

OC∥AD,∠ADB=90°,∴

OE

⊥BD,∠OED

=∠ADB=

∠BEC=90°.

BE=BD

=3.

………………………4分

又∵∠DBC

=∠A,∴

△CBE∽△BAD.

∴,即.

∴AD

=.

……………………………5分

8.解:(1)直线CE与⊙O相切.

证明:如图,连结

OD.

∵AD平分∠FAE,∴∠CAD=∠DAE.

∵OA=OD,∴∠ODA=∠DAE.

∴∠CAD=∠ODA.

∴OD∥AC.

∵EC⊥AC,∴OD⊥EC.

∴CE是⊙O的切线. …………………………………2分

(2)如图,连结BF.

AB是⊙O的直径,∴

∠AFB=90°.

∵∠C=90°,∴∠AFB=∠C.

∴BF∥EC.

∴AF∶AC=

AB∶AE.

AF∶FC=5∶3,AE=16,∴5∶8=AB∶16.

∴AB=

10.……………………………………………5分

9、(1)证明:连结OC

…………………1分

∵PD⊥AE于D

∴∠DCE+∠E=900

AB=AE,OB=OC

∴∠CBA=∠E=∠BCO

又∵∠DCE=∠PCB

∴∠BCO+∠PCB=900

∴PD是⊙O的切线

……………2分

(2)解:连结AC

………………3分

AB=AE=5

AB是⊙O的直径

BE=6

AC⊥BE且EC=BC=3

AC=4

∠CBA=∠E

∠EDC=∠ACB=90°

∴△

EDC∽△BCA

………………4分

∴=

即=

DC=

…………………5分

10.解:(1)

联结OC.∵

PC为⊙O的切线,∴

PC⊥OC

.∴

∠PCO=90°.----------------------------------------------------------------------1分

∠ACP=120°

∠ACO=30°

OC=OA,∴

∠A=∠ACO=30°.∴

∠BOC=60°--------------------------------------------------------------------------2分

OC=4

-------------------------------------------3分

(2)

∠CMP的大小不变,∠CMP=45°

--------------------------------------------------4分

由(1)知

∠BOC+∠OPC=90°

PM平分∠APC

∠APM=∠APC

∠A=∠BOC

∠PMC=∠A+∠APM=(∠BOC+∠OPC)=

45°---------------------------5分

第三组

1.如图,已知扇形,的半径之间的关系是,则的长是长的A.倍

B.

C.2倍

D.倍

2.如图,在边长为1的等边三角形ABC中,若将两条含圆心角的、及边AC所围成的阴影部分的面积记为S,则S与△ABC

面积的比等于

A.B.C.D.3.如图是某几何体的三视图及相关数据,则判断正确的是

()

A.B.C.D.4.若两圆的半径分别为和3,圆心距为1,则这两圆的位置关系是

A.内含

B.内切

C.相交

D.外切

5.如图,AB是⊙O的弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠BED=30°,⊙O的半径为4,则弦AB的长是

A.4

B.

C.2

D.

6.已知,O的半径为3cm,O的切线长AB为6cm,B为切点.则点A到圆上的最短距离是

cm,最长距离是

cm.7.如图,是⊙O的直径,⊙O交的中点

于,E是垂足.(1)求证:是⊙O的切线;

(2)如果AB=5,tan∠B=,求CE的长.8.已知:如图,点是⊙上一点,半径的延长线与过点的直线交于点,.

(1)求证:是⊙的切线;

(2)若,求弦的长.

9.如图,点D是⊙O直径CA的延长线上一点,点B在⊙O上,且AB=AD=AO.

(1)求证:BD是⊙O的切线;

(2)若点E是劣弧BC上一点,弦AE与BC相交

于点F,且CF=9,cos∠BFA=,求EF的长.

10.如图,四边形ABCD内接于,BD是的直径,于E,DA平分.(1)求证:AE是的切线;

(2)若

【参考答案】B

B

A

B

B,.7.(1)

证明:

连接,∵D是BC的中点,∴BD=CD.∵OA=OB,∴OD∥AC.………………………………….1分

又∵DE⊥AC,∴OD⊥DE.∴DE是⊙O的切线……………………………..2分

(2)

解:连接AD,∵是⊙O的直径,∴∠ADB=90°.在Rt△ADB中,tan∠B=,AB=5,∴设AD=x,则BD=2x,由勾股定理,得

x2+(2x)2

=25,x

=

∴=2………………………………………………….……………………..3分

∵AD⊥BC,BD=CD,∴AB=AC,∴∠B=∠C.∴Rt△ADB∽Rt△DEC

…………………………………………………………………..4分

∴CE

=

.…………………………………………………………………………………..5分

8.(1)证明:如图,联结.

…………………………………1分

∵,∴

是等边三角形.

∴,.

…………………………………2分

所以,是⊙的切线.

…………………………………3分

(2)解:作于点.

∵,∴

又,所以在中,.

在中,∵,∴

由勾股定理,可求.

所以,.

…………………………………5分

9.(1)证明:联结BO,……………………………1分

方法一:∵AB=AD,∴∠D=∠ABD,∵AB=AO,∴∠ABO=∠AOB,………………2分

又在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180°,∴∠OBD=90°,即BD⊥BO,∴BD是⊙O的切线.

3分

方法二:∵AB=AO,BO=AO,∴AB=AO=BO,∴△ABO为等边三角形,∴∠BAO=∠ABO=60°,∵AB=AD,∴∠D=∠ABD,又∠D+∠ABD=∠BAO=60°,∴∠ABD=30°,…………………2分

∴∠OBD=∠ABD+∠ABO=90°,即BD⊥BO,∴BD是⊙O的切线.

……………………………………………………3分

方法三:∵

AB=AD=AO,∴点O、B、D在以OD为直径的⊙A上

…………2分

∴∠OBD=90°,即BD⊥BO,∴BD是⊙O的切线.

……………………………………………………3分

(2)解:∵∠C=∠E,∠CAF=∠EBF,∴△ACF∽△BEF,……………………

4分

∵AC是⊙O的直径,∴∠ABC=90°,在Rt△BFA中,cos∠BFA=,∴,又∵CF=9,∴EF=6.…………………5分

10.(1)

数学专题复习的方法与技巧 第8篇

六级数学圆专题复习 第9篇

有关切线证明问题,通常给出直线与圆的交点时,要连半径通过证明半径与直线垂直,解决问题,证垂直的方法:(1)证明三角形全等,得出对应角相等,进而证得垂直;(2)通过证平行得出角相等,推出90度角得垂直;(3)通过角之间的关系,推出两角互余,证垂直。若直线与圆没有交点,可过圆心作直线的垂线,证明垂线段长等于半径即可,这个类型的证明多用全等三角形来解决。

不规则图形面积的求法,通常是转化为三角形的面积与扇形面积和差来解决。在具体证明解题时,要根据题中的条件确定解题思路。在解题时注意三角形中位线定理,等腰三角形的性质的运用;圆与平行四边形、菱形、正方形的综合题要学会从整体上着眼,从局部入手,充分运用特殊四边形的性质解题。

在解决这类问题时,经常要运用解直角三角形的知识来建立方程,求相关的量,总而言之,这类题综合性较强,解题时要认真分析,书写要严谨。

典型题解析

1.(2019葫芦岛)如图,点M是矩形ABCD的边AD延长线上一点,以AM为直径的⊙O交矩形对角线AC于点F,在线段CD上取一点E,连接EF,使EC=EF.(1)

求证:EF是⊙O的切线;

(2)

若cos∠CAD=,AF=6,MD=2,求FC的长.解析

:(1)连接OF,∵四边形ABCD是矩形可得∠CDA=900,∴∠DCA+∠DAC=900

∵EC=EF,OF=OA

∴∠EFC=∠DCA,∠OFA=∠DAC

∴∠EFC+∠OFA=900

∴∠EFO=1800-(∠EFC+∠OFA)=900

∴OF⊥EF

∴EF是⊙O的切线

(3)

过点O作OH⊥AF,垂足为H。

∵AF=6

∴AH=3

∵cos∠CAD=,cos∠CAD=

∴AO=5

∵AM=2AO=10,MD=2

∴AD=8

∵cos∠CAD=,cos∠CAD=

∴AC=

∴CF=AC-AF=-6=

2.(2019.铁岭)如图,在平行四边形ABCD中,AD=2AB,以点A为圆心、AB长为半径的⊙A恰好经过BC的中点E,连接DE,AE,BD,AE与BD交于点F.(1)

求证:DE与⊙A相切

(2)

若AB=6,求BF的长。

解析:(1)∵四边形ABCD是平行四边形

∴BC=AD=2AB.∵点E是BC的中点

∴BE=AD

∵AE=AB

∴AE=AB=BE

∴∠CBA=∠AEB=600

∵DC∥AB

∴∠C+∠CBE=1800

∴∠C=1200

∵CD=AB,AB=BE=CE

∴CD=CE

∴∠CDE=∠CED=300

∴∠DEA=1800-(∠CED+∠AEB)=900

∴AE⊥DE

∴DE与⊙A相切

(3)

过点B作BH⊥AE,垂足为H.则AH=HE,∵AB=6,∴AD=2AB=12,BE=6,AH=EH=3

∴BH=

∵BE∥AD

∴△FBE∽△FDA

∴EF=AE=2

∴FH=EH-EF=1

∴BF=

3.(2018.抚顺)如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H.(1)

判断直线DC与⊙O的位置关系,并说明理由;

(2)

若HB=2,cos∠D=,请求出AC的长.解析:连接OC.∵OC=OA

∴∠OAC=∠OCA

∴∠COP=∠OAC+∠OCA=2∠OAC

∵∠D=2∠A,∴∠D=∠COP

∵DE⊥OA

∴∠DEP=900

∴∠D+∠P=900

∴∠COP+∠P=900

∴OC⊥DC

∴DC与⊙O相切

(3)

∵cos∠D=,cos∠D=

又OB=OC,BH=2

解得:OC=5

∴OH=3,OC=0A=5

∴CH=,AH=8

∴AC=

4.(2020.丹东)如图,已知△ABC,以AB为直径的⊙O交AC于点D,连接BD,∠CBD的平分线交⊙O于点E,交AC于点F,且AF=AB.(1)

判断BC所在直线与⊙O的位置关系,并说明理由;

(2)

若tan∠FBC=,DF=2,求⊙O的半径.解析:(1)∵AB为直径

∴∠ADB=900

∴∠DFB+∠DBF=∠ADB=900

∵BF是∠CBD的平分线,AF=AB.∴∠DBF=∠CBF,∠ABF=∠AFB

∴∠CBF+∠ABF=900

∴BC⊥AB

∴BC所在直线与⊙O相切

(2)

∵tan∠FBC=,∠DBF=∠CBF,DF=2

∴tan∠DBF=,∴BD=5

∵AF=AB

∴AD=AF-BD=AB-2

∵BD2+AD2=AB2

∴25+(AB-2)2=AB2

解得

:AB=

5.(2017.铁岭)如图,AB是半圆O的直径,点C是半圆上一点,连接OC,BC,以点C为顶点,CB为边作∠BCF=∠BOC,延长AB交CF于点D.(1)

求证:直线CF是半圆O的切线;

(2)

若BD=5,CD=,求弧BC的长.解析

:(1)∵OC=OB

∴∠OCB=∠OBC

∴∠OBC+∠OCB+∠BOC=1800

∴∠OCB+∠BOC=900

∵∠BCF=∠BOC

∴∠OCB+∠BCF

=900

∴OC⊥CF

∴直线CF是半圆O的切线;

(2)设半径为r

则有:r2+CD2=(r+BD)2

r2+75=(r+5)2

解得,r=5

∵OB=BD,∠OCD=900

∴BC=OB=OC=5

∴∠BOC=600

∴弧BC=

6.(2020.锦州)平行四边形ABCD的对角线AC,BD交于点E,以AB为直径的⊙O经过点E,与AD交于点F,G是AD延长线上一点,连接BG,交AC于点H,且∠DBG=∠BAD.(1)

求证:BG是⊙O的切线;

(2)

若CH=3,tan∠DBG=,求⊙O的直径.解析:(1)∵AB是直径

∴∠BEA=900

∵四边形ABCD是平行四边形

∴平行四边形ABCD是菱形

∴AB=AD

∴∠BAE=∠BAD.∵∠DBG=∠BAD.∴∠DBG=∠BAE

∵∠BAE+∠ABE=900,∴∠DBG

+∠ABE=900,∴BG⊥AB

(2)设HE=x

∵tan∠DBG=

tan∠BAE=,∴BE=2HE=2x,AE=4x

∵CE=AE,CH=3

∴3+x=4x,解得:x=1,即

AE=4,BE=2

∴AB=

7.(2019.本溪)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)

求证:DP是⊙O的切线;

(2)

若tan∠PDC=,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.7.解析:(1)连接OD.∵四边形ABCD是正方形

∴CD=CB,∠DCP=∠BCP=450

∵CP=CP

∴△DCP≌△BCP

∴∠CDP=∠CBP

∵∠DCB=900

∴∠CEB+∠CBE=900

∵OD=OE,∠OED=∠CEB

∴∠ODE=∠OED=CEB

∴∠ODE+∠CDP=900

∴OD⊥DP

∴DP是⊙O的切线

(2)∵tan∠PDC=tan∠CBE=,BC=4

∴DE=CE=2

∵BC∥AF

∴∠EFA=∠CBE

∴tan∠DFE=

∴DF=4

∴FE=

∴OD=

过点P作PH⊥DC垂足为H.∵tan∠PDC==

∴DH=2PH

∵∠PCH=∠CPH=4500

∴PH=CH

∵DH+CH=4

∴DH=,PH=CH=

∴DP=

∴OP=

8.(2018.抚顺)如图,Rt△ABC中,∠ABC=900,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由:

(2)若BE=4,DE=8,求AC的长.解析:理由如下:

连接OC.∵CB=CD,OB=OD,OC=OC

∴△OBC≌△ODC

∴∠ODB=∠OBC=900

∴OD⊥DC

∴直线CD与⊙O相切

(2)设半径

为r,则OE=DE-OD=8-r,OB=r

∵OB2+BE2=OE2

∴r2+16=(8-r)2

解得:r=3

即OB=3,AB=6,OE=5

∵∠OEB=∠CED,∠EBO=∠EDC=900

∴△OEB∽△CED

∴EC=

∴BC=CE-BE=10-4=6

∴AC=

9.(2020。辽阳)如图,在平行四边形ABCD中,AC是对角线,∠CAB=900,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;

(2)若∠ABC=600,AB=4,求阴影部分的面积.解析

:连接AE.∵四边形ABCD是平行四边形

∴BA=DC,∠B=∠ADC

∵AE=AB,∴∠ABE=∠AEB,DC=AE

∵BC∥AD

∴∠EAD=∠AEB=∠CDA

∵DA=AD

∴△DAC≌△ADE

∴∠DEA=∠ACD

∵CD∥AB

∴∠DCA=∠BAC=900

∴∠DEA=∠ACD=900

∴AE⊥DE

∴DE与⊙A相切

(2)过点E作EH⊥AC垂足为H.∵∠ABC=600,AE=AB=4

∴∠EAB=600,AC=

∴∠CAE=300

∴FE=1

∴阴影部分的面积=S△AEC-S扇形FAE=

10.(2018.葫芦岛)如图AB是⊙O的直径弧AC=弧BC,E是OB的中点,连接CE并延长到点F,使EF=CE,连接AF交⊙O于点D,连接BD,BE.(1)求证:直线BF是⊙O的切线;

(2)若OB=2,求BD的长。

解析:(1)连接OC.∵B是⊙O的直径弧AC=弧BC

∴∠COA=∠COB=900

∵E是OB的中点

∴CE=FE

∵EF=CE,∠CEO=∠FEB

∴△CEO≌△FEB

∴∠FBA=∠COB=900

∴AB⊥BF

∴直线BF是⊙O的切线

(2)∵△CEO≌△FEB

∴BF=OC=OB=2

又∵AB=2OB=4

∴AF=

由AB∙BF=AF∙DB得

DB=

11.(2020.葫芦岛)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)

求证:DF是⊙O的切线;

(2)

若CF=1,DF=,求图中阴影部分的面积。

解析:(1)证明

:连接OD,AD.∵AB是⊙O直径

∴∠ADB=900

∵AB=AC,OD=OA

∴∠BAD=∠CAD,∠OAD=∠ODA

∴∠CAD=∠ODA

∴OD∥AC

∴∠AFG=∠ODG

∵DF⊥AC

∴∠ODG=∠AFG=900

∴OD⊥FD

∴DF是⊙O的切线

(2)∵CF=1,DF=,∠DFC=900

∴∠C=600,CD=2

∵AB=AC,∠ADB=900

∴∠OBD=∠C=600,DB=DC=2

∵OD=OB

∴△ODB是等边三角形

∴∠BOD=600,OD=2

∴∠OCG=300

∴DG=

∴图中阴影部分的面积=S△ODC-S扇形DOB=

12.(2017.本溪)如图,△PAB内接于⊙O,平行四边形ABCD的边AD是⊙O的直径,且∠C=∠APB,连接BD.(1)

求证:BC是⊙O的切线。

(2)

若BC=2,∠PBD=600,求AP与弦AP围成的阴影部分的面积。

解析

:(1)连接OB.∵四边形ABCD是平行四边形

∴∠C=∠DAB

∵∠C=∠APB

∴∠DAB=∠APB

∴弧BD=弧AB

∵AB是直径

∴∠AOB=∠BOD=900

∵AD∥BC

∴∠OBC=∠AOB==900

∴OB⊥BC

∴BC是⊙O的切线。

(2)连接OP.∵∠PBD=600

∴∠PAD=∠PBD=600

∵OP=OA

∴△OAP是等边三角形

∴∠AOP=600,OH=

∵AD=BC=2

∴OA=1

∴AP与弦AP围成的阴影部分的面积=S扇形OAP-S△OAP=

13.(2017.铁岭)如图,四边形ABCD中,连接AC,AC=AD,以AC为直径的⊙O过点B,交CD于点E,过点E作EF⊥AD于点F.(1)

求证:EF是⊙O的切线;

(2)

若∠BAC=∠DAC=300,BC=2,求弧BCE的长。(结果保留)

解析:(1)证明:连接OE,AE.∵AC为直径

∴∠AEC=∠AED=900

∵AC=AD

∴CE=DE

∵OA=OC

∴OE∥AD

∴∠OEF=∠EFD

∵EF⊥AD

∴∠OEF=∠EFD=900

∴OE⊥EF

∴EF是⊙O的切线;

(2)连接OB.∵∠BAC=∠DAC=300,∠CAE=∠CAD

∴∠BAE=∠CAE+∠BAC=450

∴∠BOE=2∠BAE=900

∵AC是直径

∴∠ABC=900

∴AC=2BC=4

∴弧BCE的长=

14.(2017.抚顺)如图,在△ABC中,∠ACB=900,AC=CB,点O在△ABC的内部,⊙O经过B,C两点,交AB于点D,连接CO并延长交AB于点G,以GD,GC为邻边作GDEC.(1)

判断DE与⊙O的位置关系,并说明理由。

(2)

若点B是弧DBC的中点,⊙O的半径为2,求弧BC的长。

解析:(1)DE与⊙O的位置相切,理由如下:

连接OD.∵∠ACB=900,AC=CB

∴∠B=∠A=450

∴∠DOC=2∠B=900

∵四边形DECB是平行四边形

∴ED∥CG

∴∠EDO+∠DOC=1800

∴∠EDO=900

∴OD⊥DE

∴DE与⊙O的位置相切

(2)∵点B是弧DBC的中点

∴弧CB=弧DB

∴∠DOB=∠COB

∵∠DOB+∠COB+∠DOC=3600,∠DOC=900

∴∠COB=1350

∵⊙O的半径为2

∴弧CB=

15.(2017.营口)如图,△ABC中,∠ACB=900,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.(1)

求证:AB为⊙O的切线;

(2)

若tan∠A=,AD=2,求BO的长.解析:(1)证明:过点O作OH⊥AB,垂足为H.则∠OHB=900

∵BO为△ABC的角平分线,∴∠HBO=∠CBO

∵∠ACB=900,∴∠OHB=∠ACB,又BO=BO

∴△BOH≌△BOC

∴OH=OC=R

∴AB为⊙O的切线

(2)设OH=3k,由tan∠A=得,AH=4K,根据勾股定理

得,AO=5k。

∵AD=2,AO=AD+OD,OD=OH=3k.∴5k=2+3k,解得:k=1

∴OC=3,AC=8

在Rt△ACB中

tan∠A=

∴BC=6

∴OB=

16.(2018.本溪)如图,在Rt△ABC中,∠C=900,点O,D分别为AB,BC的中点,连接OD,作⊙O与AC相切于点E,在AC边上取一点F,使DF=DO,连接DF.(1)

判断直线DF与⊙O的位置关系,并说明理由;

(2)

当∠A=300,CF=时,求⊙O的半径。

解析:(1)直线DF与⊙O的位置相切,理由如下:

连接OE,过点O作OH⊥DF,垂足为H.∵⊙O与AC相切于点E,∴OE⊥AB

∵点O,D分别为AB,BC的中点

∴OD∥AC

∴∠ODC+∠C=1800,又∠C=900,∴∠ODC=∠OEC=∠C=900

∴四边形DCEO是矩形

∴DC=OE=R

∵∠ODH=∠CFD,DF=DO,∠OHD=∠DCF=900

∴△OHD≌△DCF

∴OH=DC=OE=R

∴直线DF与⊙O的位置相切

(2)∵OD是△ABC的中位线

∴OD=AC,∵四边形DCEO是矩形

∴OD=CE

∴OD=AE

在Rt△OEA中,∠A=300,∠OEA=900

∴OD=AE=OE=R

∵△OHD≌△DCF

∴DH=CF=

在Rt△OHD中,OH2+DH2=OD2

上一篇:情系中秋作文800字下一篇:2022腊八节养生原则有哪些