航空航天特殊材料加工技术

2024-06-09

航空航天特殊材料加工技术(精选9篇)

航空航天特殊材料加工技术 第1篇

航空航天特殊材料加工技术

——激光切割加工工艺在航空航天领域的应用

激光制造技术在国防和航空航天领域的产业化应用前景远大,具有效率高、能耗低、流程短、性能好、数字化、智能化的特点,本文主要介绍了激光切割加工的组成、工作原理及各激光切割加工工艺技术在航空领域中的应用。针对现状,我国将继续发挥激光制造技术的优势,改变我国航空航天领域的关键器件和技术主要依赖进口的现状,最终形成我国新一代激光制造产业链。

激光切割加工的组成及工作原理

激光加工有四部分组成,分别是激光器、电源、光学系统、机械系统。工作原理 :

激光加工利用高功率密度的激光束照射工件,使材料熔化气化而进行穿孔、切割和焊接等的特种加工。早期的激光加工由于功率较小,大多用于打小孔和微型焊接。到20世纪70年代,随着大功率二氧化碳激光器、高重复频率钇铝石榴石激光器的出现,以及对激光切割加工机理和工艺的深入研究,激光加工技术有了很大进展,使用范围随之扩大。数千瓦的激光切割加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。各种专用的激光切割加工设备竞相出现,并与光电跟踪、计算机数字控制、工业机器人等技术相结合,大大提高了激光加工机的自动化水平和使用功能。

随着激光制造技术的发展,桥梁、船舶等结构都由传统的铆接工艺发展到采用激光焊接技术,但先进的激光焊接技术难以在飞机制造中开展广泛的应用。长久以来,飞机结构件之间的连接一直采用落后的铆接工艺,主要原因是飞机结构采用的铝合金材料是热处理强化铝合金(即高强铝合金),一经熔焊后,热处理强化效果就会丧失,而且晶间裂纹难以避免。因此,普通氩弧焊等熔焊方法在飞机制造中的应用成为禁区。另一方面,在80年代初,铝及其合金的激光加工十分困难,被认为是不可能的。主要是由于铝合金存在对10.6mm波长激光的高反射和自身的高导热性。在当时,激光加工主要使用波长为10.6mm的CO2激光器,而铝对CO2激光的反射率高达97%,通常作为反射镜使用。但是,激光加工的优越性又极大地吸引着从事激光材料加工的科研工作者。他们为此付出了大量的时间和精力来研究铝合金激光加工的可能性。

目前,高强铝合金激光焊接成果已经成功应用于欧洲空中客车公司飞机制造中,其铝合金内隔板均采用激光加工,实现了激光焊接取代传统铆接工艺。激光焊接技术的采用,大大地简化了飞机机身的制造工艺,使机身重量减轻18%,成本下降21.4%~24.3%,被认为是飞机制造业的一次技术大革命。空客A380的制造就采用了激光焊接技术,极大地减轻了飞机自重,增加了载客量。德国政府2006年公布的科技发展计划中将激光焊接技术列为航空工业两大尖端发展技术之一。

在航空领域,航空发动机的备件价格很高,因而在很多情况下维修零件是比较划算的。但是修复后零件的质量必须满足安全要求。例如,飞机螺旋桨叶片表面上出现损伤时,必须通过一些表面处理技术进行修复。除了考虑螺旋桨叶片所要求的高强度、高耐疲劳性,还必须考虑表面修复后的耐腐蚀性。选择一种合适的表面处理技术对螺旋桨叶片进行修复,对节省装备维护费用,提高装备使用寿命具有很重要的意义。

航空航天特殊材料加工技术 第2篇

航空整体结构件加工技术

本文以航空整体结构件为研究对象,在分析各个加工关键技术的研究现状、存在问题和发展趋势的基础上,提出了相应的解决策略和可行的.技术方法,力求为实现航空整体结构件的高效、高精度加工提供理论依据.

作 者:杨勇 李剑峰 Yang Yong Li Jianfeng 作者单位:山东大学机械工程学院刊 名:航空制造技术 ISTIC英文刊名:AERONAUTICAL MANUFACTURING TECHNOLOGY年,卷(期):“”(24)分类号:V2关键词:

航空铝合金及其材料加工分析 第3篇

一、航空铝合金及其材料的加工性能

航空建设中, 飞机在飞行过程中, 对铝合金及其材料的要求比较高, 需要发挥铝合金材料的高韧性、高强度、抗疲劳的特征, 而且还要具有抗腐蚀的特点。考虑到飞机零件的全周期寿命, 规范好铝合金及其材料的加工性能。

首先是铝合金及其材料加工时的静强度性能, 保障铝合金在给定设计载荷的状态下, 保持安全稳定的状态, 禁止发生破坏, 防止航空零部件出现永久变形的问题。静强度性能对铝合金材料的要求是:不出现疲劳裂纹, 保障零部件在全周期寿命中的安全性。静强度性能设计中, 铝合金材料可能会隐藏初始的缺陷, 潜在疲劳裂纹的风险。根据已经出现的疲劳裂纹, 规划出零部件整体结构的外载荷, 便于铝合金材料在维修中能及时发现和处理损伤与破坏。

然后航空铝合金及其材料加工性能控制方面, 考虑到飞机运行中的蒙皮温度影响因素, 长期处于高温的状态中, 铝合金材料的性能会逐步下降。一般情况下, 协和式飞机的速度在2.2Ma时, 飞机头部的温度, 最高可以达到149℃, 铝合金材料的性能, 明显下降。在某个温度点, 铝合金材料的性能会表现出急剧下降的状态, 影响了材料的拉伸强度。铝合金材料加工性能中, 必须注重温度对材料性能的影响, 保障铝合金在一定温度区间中的稳定性, 预防出现温度过高材料强度降低的情况。

最后是航空铝合金及其材料服役性能的运用。飞机不同部位的铝合金材料, 服役性能有明显的差异, 例如:疲劳、抗压强度、断裂韧性等, 均是材料服役性能的范围。除此以外, 部分特殊的结构材料中, 还包括剪切强度与耐腐蚀等特征。我国航空运输中的商业飞机, 正在朝着超音速的方向发展, 延长飞机的运行寿命, 增加航空材料市场的竞争力, 深入研究商业飞机的结构, 规划好铝合金及其材料的性能, 投入到加工生产中。

二、航空铝合金及其材料的加工应用

航空铝材料中, 加入了铜、镁、锌等材料, 构成铝合金产物, 用来提高航空铝合金材料的强韧度, 体现高强铝合金的加工性能。高强铝合金在航空行业中的运用, 比强度、比模量方面, 有明显的优势。铝合金及其材料的加工工艺简单, 加工技术较为成熟, 促使铝合金在航空制造中具有很强的竞争力, 属于飞机制造中的重要材料。铝合金在航空飞机整机制造的材料中, 占有量高达70%~80%, 随着航空事业的发展, 飞机处于改型、创新的环境中, 铝合金及其材料加工, 受到很大的重视, 满足零部件制造的需求。

铝合金及其材料在航空制造中, 同样受到一定的压力, 尤其是复合材料的出现, 此类材料强度、综合性能方面均具有明显的优势, 增加了铝合金及其材料加工的压力。铝合金及其材料中, 提出了变形铝合金的运用, 如:2XXX合金 (Al-Cu- (Mg) ) , 制造的产品中, 有轧制板材、锻件等, 采用变形铝合金, 能够提高优质的损伤容限性能, 维护铝合金材料的强度及抗腐蚀性能。高强铝合金, 也是航空铝合金材料的发展趋势, 高强铝合金中, 7050铝合金的使用量非常大, 其在航空飞机中的规格也非常大。用7050铝合金生产的飞机的翼盒内翼梁, 表明航空铝合金及其材料的加工应用, 进入了高强、耐腐蚀、高韧性、高损伤容限的环境内。高强铝合金的应用, 促使屈服度由300MPa变为600MPa, 提高屈服强度的过程中, 还能提高断裂韧性。

以航空商业飞机为例, 分析铝合金及其材料的应用, 投入应用的铝合金材料, 表现出综合性能, 促使铝合金具备足够强的竞争力。列举铝合金及其材料的实践应用, 如:

(1) 101.6mm~254mm的7140-T7651铝合金厚板, 其在飞机制造中, 表现出强韧性的特点, 此项铝合金材料的性能要优于7050铝合金, 与2139-T8XX板材厚度相比, 损伤容限性能较好, 密度低、质量轻, 能够作为铝合金材料的替代物, 减轻航空商业飞机的重量。

(2) 2198-T8X铝合金, 高损伤容限、高强度、高热稳定性, 均较为明显, 属于一类优质的铝合金加工应用材料。

(3) 2027铝合金材料的强度、损伤容限性能, 与2024铝合金相比, 制造的挤压件和板材, 性能分别提升了20.5%~25%、10%。

(4) 7 0 8 5铝合金改进为7 0 8 5-T7651, 制作航空商业飞机的厚板, 屈服强度与7 0 8 5铝合金相比, 长向高出了6 0 M P a~8 0 M P a, 短横向是50MPa~60MPa。

航空铝合金及其材料的应用中, 铝合金厚板可以直接制作成飞机的整体构件, 不采取焊接、铆接的方法, 由此降低使用零件的数量, 间接提高构件的刚度与可靠性, 辅助降低零部件的质量。飞机制造中, 高强铝合金厚板的厚度, 基本可以达到300mm, 按照航空飞机的生产要求, 降低高强铝合金的残余应力, 消减残余的应力, 达到航空铝合金材料的加工需求。

三、航空铝合金及其材料的加工调控

航空铝合金及其材料的加工中, 针对材料的成分、组织提出调控的要求, 确保铝合金及其材料加工, 符合航空飞机制造的规范标准。

1. 成分调控

航空铝合金的成分调控, 需根据航空制造的要求, 增加铝合金中的主元素含量, 改变铝合金的性能, 便于提高合金强度。铝合金成分调控中的主元素, 含量比重不能影响铝合金的集体成分。根据金属材料的动力学、热力学, 把控好铝合金的强度、韧性等成分应用, 适当地增加铝合金内的成分, 有利于提升铝合金的性能, 调控铝合金材料的成分, 改变铝合金的性能, 优化铝合金在航空制造中的运用, 使铝合金材料表面、中心位置, 性能上不能出现较大的差距, 保证铝合金材料的整体性能。

2. 组织调控

组织调控是航空铝合金及其材料加工中不可缺少的部分, 负责铝合金材料的制备。航空铝合金及其材料, 经过组织调控后, 生产出高质量、无裂纹的铸造, 专门用于制造大规模的零部件, 解决铝合金材料的分配处理问题。铝合金材料组织调控过程中, 禁止发生熔体偏析的问题, 便于结晶出较宽的高强铝合金材料, 减轻铝合金材料铸造的难度, 优化铝合金组织调控的环境。

结语

航空铝合金及其材料的加工, 按照性能设计、应用以及调控的方法, 提高航空铝合金的基础性能, 避免影响铝合金及其材料在航空运行中的实际运用, 完善航空铝合金的加工环境, 最主要的是利用调控的方法, 缓解航空制造中的材料压力, 表明铝合金及其材料加工的重要性, 严格按照航空制造的规范, 把控铝合金及其材料的加工过程。

参考文献

[1]张新明, 刘胜胆.航空铝合金及其材料加工[J].中国材料进展, 2013 (1) :39-55.

[2]陈守伟.航空铝合金加工时的变形控制[J].中国新技术新产品, 2012 (17) :90-92.

航空航天特殊材料加工技术 第4篇

前言

激光技术作为科学技术发展的重要产物,对带动相关行业领域的发展具有不可替代的作用。但较多领域如航空航天、机械加工在应用激光技术中,并未取得良好的效果,究其原因在于未使激光技术中较多技术手段的优势发挥出来,这就要求实际运用正确认识激光技术的本质并结合具体行业要求进行技术手段选择。因此,本文对航空航天领域、机械加工行业中现代激光技术的运用研究,具有十分重要的意义。

机械加工行业中激光技术的运用分析

a打标与切割技术的运用

机械加工行业中,一般对设备产品进行特殊符号、标记的设计都要求利用到激光打标技术。该技术应用极为广泛,如机械加工行业中的仪表、仪器、量具、汽车工业以及电子工业等,都涉及到打标工作。一般打标技术涉及到的对象多集中在印刷电路板、合成材料、橡胶、陶瓷、塑料、铝合金以及不锈钢等方面。另外,机械加工过程中往往也涉及较多材料处理工作,此时便要求引入切割技术,其主要通过聚焦镜的应用融化材料,并在激光束作用下将熔化材料吹走,这样便有相应的切缝形成。现代机械加工领域中,都将激光切割技术作为高新加工方式,能够使传统切割过程中变形过大、缝隙过大以及操作时间较长等问题得到解决。

b焊接与淬火技术的运用

关于激光焊接技术,其实质为将设备构件至于激光下,使构件能够连接为一体。将该技术引入机械加工领域中,其优势主要表现在对多种类型金属都可进行焊接,的 且焊接后不会出现凹陷或其他变形现象,整个焊缝在外表上极为美观。目前机械加工领域中焊接技术的运用主要表现在两方面,即:①焊接金刚石锯片,可直接利用该技术实现;②对壳体类零件、汽车板以及钢板等,可利用激光焊接技术。该技术的运用对于解决传统机械加工中焊接质量不高、焊接表面美观性差等问题可起到明显的作用。另外,在淬火技术运用方面,其主要对工件表面利用高能激光进行扫描,这样整个工件面温度上升极快,且可瞬间自冷。所以其优势集中表现为:①相比一般淬火硬度,激光淬火方式下的制品将超出其15%左右;②加工时间较短,且可直接利用计算机对整个操作进行控制,具有一定的自动化加工特点,生产效率极高;③技术应用下不会产生较多的污染,且不必引入冷却介质便可快速完成低温淬火。

c熔覆技术与打孔技术的运用

对于机械加工领域中的再制造工程,常涉及到旧设备修复工作,而设备修复的主要技术便以激光熔覆为主。实际应用过程中,可直接对旧设备二次加工,提升设备的使用性能,能够满足现代企业发展中资源节约的要求。另外,机械加工领域中的激光技术,也表现在打孔技术方面。一般对于较软材料、金属材料或非金属材料等,往往需进行不同类型孔的加工,该过程中便可引入打孔技术。从打孔技术应用的优势看,主要表现在打孔精密度较高,能够准确定位中心孔,且能够自由控制打孔深度,不会产生较大的变形问题。

航空航天领域中激光技术的运用分析

a航空航天工业中激光焊接的应用

一般该工业较多零部件的焊接多引入铆接方式,其应用下尽管能够熔铝合金材料,但由于热处理效果较差,极易导致晶间裂纹的产生。而将激光焊接方式引入,这些问题可直接得到解决,且整个机身制造过程都得以简化。相关实践研究发现,利用激光焊接取代铆接工艺,其可使机身自重降低许多,这样相应的制造成本也会节约,可见激光焊接的作用极为明显。此外,该工业领域中,对于零件冷却孔打孔工作,要求引入激光打孔方式,其成本較低且打孔效果较高。

b航空航天工业中激光切割的应用

传统用于该工业中的切割手段很难保证外壳材料得到有效处理,原因在于外壳材料多具有硬度高、强度高等特点。而在激光切割技术运用下,许多如发动机机匣、主旋翼、尾翼壁板以及蒙皮等自带处理中都可起到良好的效果。

c航空航天工业中表面与成形技术的应用

由于航空发动机较多构件在价格上较为昂亏,若不断更换将会耗费极多的成本,因此可引入激光表面技术,对受损的构件进行修复,如发动机叶片受损后,便可采取表面技术中的三维修复措施,可保证修复后的构件整体性能不受到影响。由此可见,航空工业中的构件制造与修复很大程度需依托表面技术、成形技术来实现。

结论

现代激光技术的运用为航空工业以及机械加工工业提供坚实的技术保障。实际应用中,应结合具体的行业领域要求,合理选择相应的技术手段,如机械加工领域中的焊接、打标打孔以及切割等,以及航空工业中焊接、切割、成形与表面技术等,确保激光技术作用得到充分发挥,才能推动相关行业领域的快速发展。

参考:

[1]马付建.超声辅助加工系统研发及其在复合材料加工中的应用[D].大连理工大学,2013.

[2]李伟.钛合金表面B_4C/G激光合金化层的组织与耐磨性研究[D].山东大学,2014.

航空航天特殊材料加工技术 第5篇

【摘 要】近几年国家科技的进步,航空制造业已成为衡量国家发达水平的重要因素之一。航空发动机是飞行器的核心部件,航空发动机材料与制造技术向着高温化、复合化、轻量化、整体化、高效率、低成本的方向发展。因此发动机典型零部件的加工技?g与刀具应用对航空业的发展起着重要的作用。由于航空零件多为难加工材料,精密程度较高,零件形状结构较为复杂,零件的切除率大,对于生产工艺提出了较高要求。从技术实现角度出发,对航空发动机典型零件进行加工,技术人员应该坚持严谨的工作态度,使用配套的装备解决材料难加工的问题。

【关键词】 航空发动机 零件 数控加工技术

一、航空发动机典型零件加工装备需求

1、航空发动机典型零件加工对数控设备的需求

航空制造业对零件加工精度和效率日益提高的需求不断推动机床技术的发展,是机床产品创新的源动力。高速高精度加工中心、复合加工和多轴联动数控机床的出现都与客户需求密切相关。机床的发展方向如下:(1)自动化程度高,即要求设备具有数字化和前沿性的特征,软件功能强大,自动化程度高。(2)高度集成性,附加设备少,设备高度集成,能够实现工艺复合。(3)柔性化,设备通用程度高,生产适用性强。(4)高精度、高效率、智能化,设备需具备精度高,技术成熟度高等特点。(5)高稳定性,精度保持时间长,故障率低。

2、航空发动机典型零件刀具技术需求

先进的航空产品要求航空零件具有更优异的性能、更低的成本和更高的环保性,而加工工艺要求具有更快的加工速度、更高的可靠性、高重复精度和可再现性。航空钛合金、高温合金零件难切削的工件材料,复杂而薄壁的形状,高精度的尺寸和表面粗糙度要求,同时大的金属去除量等特点,对切削刀具的高效、精密、安全性等提出更高的要求。刀具作为切削加工的主体之一,在解决航空材料的加工难题中起着至关重要的作用。传统刀具已不能满足现代先进高效加工的要求,刀具行业进入了“高精度、高效率、高可靠性和专用化”的现代刀具生产新格局。刀具质量稳定,刀具精度高,可转位数控刀片各批次产品尺寸精度分散性能控制在一定范围内,成形刀具精度应能完全满足加工部位要求。能针对涡轮机匣、风扇机匣、涡轮盘、风扇盘、长轴、叶片、叶轮等典型零部件,提供完整的刀具配套和解决方案。

二、航空发动机典型零件加工技术探讨

1、发动机零件材料控制和CAD模型加工方案分析

在航空发动机典型零件加工活动中,技术人员可以使用金属制作成复合材料的零件。在零件的切削加工中应该加入性能独特的原材料,添加钨和钼能够降低零件切削加工处理的难度。在发动机零件的切削加工中添加钨能够提高材料的高温强度和常温强度,添加钼能够显著提升材料的强度和韧性,提升发动机零件的使用效果。但是,在发动机典型零件加工中添加合金元素时,技术人员应该重视材料导热系数明显下降的问题。在制定零件加工方案的过程中,技术人员应该认真分析零件的抗拉强度和冲击韧度问题,选择合适的材料进行加工处理。发动机曲轴一般使用QT700材料及虚拟性加工,缸盖选用ZL101(ZALSI7Mg)材料进行加工。在零件处理过程中,可以采用零件图形的数字处理方法,在三维立体模式中对零件加工的细节进行优化。根据加工设计的标准确定零件处理的工步和进给路线,选择合适的机床类型开始对零件进行加工。使用CAD模型处理方法,对发动机零件设计和加工方案进行数字化处理。建立单个典型精密零件的CAD模型特征信息表,包括制造资源库的容量信息、该典型零件加工的工艺技术规范和工艺特征,针对零件的几何特征信息进行加工特征的读取,从而确定合适的切削参数。

2、核心零部件建工与刀具装备的选择分析

发动机缸盖的主要加工内容为进气门座圈/导管切削和上平面螺纹攻丝加工,技术人员应该选择合适的刀具材料装备。在加工技术应用中,技术人员应该合理控制每齿进给量和每转进给量,根据切削零件的进给量选择合适的切削速度。在主轴转速控制中,技?g人员还应该考虑到加工余量和耐用度的问题,提升典型零件的抗弯强度和断裂韧度。航空发动机的凸轮轴是一种重要零件,它一般使用HT250型号的材料进行加工,其抗拉强度为250MIN/MPa,它的硬度和抗拉强度承受力都比较低,在高温和高压的状态下很容易发生变形,其硬度为170~241HBS之间,航空发动机凸轮轴的材料力学性能有严格标准,其伸长率不能小于0.5%,冲击韧度不小于10~110kJ/?O,导热系数不小于0.580W/cm-k。除了发动机的凸轮轴之外,航空发动机的典型零件还有曲轴、缸体、缸盖和连杆等零件。典型零件加工的技术重点是要选择合适的刀具材料装备,适合加工曲轴的刀具材料为PCD/CBN等,而适合加工缸体和缸盖的装备材料为高速钢等。

3、零件涂装技术控制与质量检查细节介绍

根据零件的尺寸选择合适的精铣端面槽,使用精密镗床加工出镗精密孔,并且对发动机典型零件的孔径进行检查。技术人员可以采用三坐标测量机等精密仪器,对零件的尺寸加工进行检查。使用在线测量的方式,及时地发现零件加工中存在的问题,将加工半成品的零件运送到车铣复合加工中心进行处理。半成品的航空发动机零件通常需要加装土层,根据不同零件的应用特点,选择不同的涂层进行加工。TiN类的发动机零件为金黄色,它的硬度最低,为1800~2300HV之间,此种典型零件符合低速下的通用涂装的技术要求,此类零件加装涂层一般为CVD/PVD类的涂层。TiN类的发动机零件为紫黑色,它的硬度比较高,为2300~3500HV之间,此种典型零件符合高速下的通用涂装的技术要求,此种材料可以用来加工制作难加工的航空零件。此类零件加装涂层一般为CVD类的涂层。

结 语

航空航天特殊材料加工技术 第6篇

电子束加工是利用高能量密度的电子束对材料进行加工处理的方法,电子束作为一种热源,通过调整其能量密度、束斑直径、束流作用时间和材料本身的热物理特性,可以产生加热、熔化和汽化等多种加热效果。电子束加工包括焊接、打孔、热处理、表面加工、熔炼、镀膜、物理气相沉积、雕刻以及电子束曝光等,其中电子束焊接是发展最快、应用最广泛的一种电子束加工技术。电子束加工的特点是功率密度大,能在瞬间将能量传给工件,而且电子束的能量和位置可以用电磁场精确和迅速地调节,实现计算机控制。因此,电子束加工技术广泛应用于制造加工的许多领域,如航天、电子、汽车、核工业等,是一种重要的加工方法。

近年来,随着电磁场控制技术的发展,并结合电子束在磁场中易控的特点,开发了一种新型的电子束加工方法――快速扫描电子束加工技术。这种通过电磁场的控制实现电子束的快速偏转扫描的方法越来越显出其技术的优势,在航空航天制造领域中获得了广泛的应用。

快速扫描电子束加工技术原理与特点

快速扫描电子束加工技术的原理如图1 所示,就是通过对电子枪偏转线圈和聚焦线圈的控制,使电子束在工件上按特定的轨迹、速率和能量快速偏转而实现快速扫描电子束加工。由于电子束几乎没有质量和惯性,可以实现非接触的偏转,而且通过电压控制,可以在不同的位置切换时控制束流通断,这样,束流就可以在构件的不同位置以极高的频率切换。由于材料的热惯性,通过束流与材料的相互作用,在这些位置上就会同时产生冶金效果,实现电子束的扫描加工。如果在不同的束流之间改变聚焦位置或者束流强度,则可以实现多功能加工技术,如多束流加工技术、电子束“毛化”技术以及电子束快速成型技术等。

(1)多束流电子束加工(Multibeam Technology)是指采用2束以上的电子束对材料或结构进行处理和加工的一种方法。多束流电子束可以由多个电子枪产生,也可以由1个电子枪通过电磁场的控制而产生。电子束在不同的位置快速移动,由于移动的频率很高从而产生多束的效果。本文所提到的多束流电子束都是指由1个电子枪通过电磁场控制而产生的多束。

(2)电子束“毛化” 技术(Electron Beam Surfi-sculpt)是英国焊接研究所(TWI)Bruce Dance 等人近年来发明的一种新型电子束加工技术,它借助于电磁场对电子束的复杂扫描控制而在金属材料表面产生特殊的成形效果。其基本过程是在真空环境中,通过快速响应偏转线圈和复杂信号控制程序精确控制电子束流,使其按照某种特定的方式、特定的规律、一定的速度和能量作用于材料表面,并在材料表面形成金属的微小熔池。一旦材料开始形成熔池,电子束将通过磁场的扫描控制被迅速转移到其他位置,而熔化的液态金属在表面张力及金属蒸汽压力的共同作用下,向束流移动相反的方向流动,并在熔池后方快速冷却、凝固。随着束流的重复扫描,熔池前端的金属被继续转移到熔池后端,经过不断的堆积、冷却、凝固,逐渐形成一定形状和大小的“凸起”(毛刺),产生表面“毛化”的效果,而在熔池前端形成很小的凹坑或者凹槽状的“刻蚀”。

本文由振动流化床干燥机http://czcbgz.com 双锥回转真空干燥机czcbgz.com 联合整理发布(3)电子束快速成型技术(Electron Beam Melting,EBM)是一种集成了计算机、数控、电子束和新材料等技术而发展起来的先进制造技术。电子束在计算机的控制下按零件截面轮廓的信息有选择地熔化金属粉末,并通过层层堆积,直至整个零件全部熔化完成;最后,去除多余的粉末便得到所需的三维产品。与激光及等离子束快速成型相比,电子束快速成型技术具有能量利用率高、加工速度快、运行成本低、高真空保护等优点,是高性能复杂粉末冶金件的理想快速制造技术。

快速扫描电子束加工技术的国内外现状 多束流加工技术

电子束扫描技术早在20世纪70 年代就已经用于消除电子束焊接缺陷,但是由于控制技术的限制,最近才开始用于多束流焊接和其他加工技术。德国Steigerwald、PTR和Pro-beam等公司都进行过相关研究,主要是在束流偏转设备方面;Aachen大学的焊接研究所在这方面的研究也比较多,主要是在多束流的束流品质、能量分配及加工过程中热、力、冶金的相互作用方面。英国焊接研究所的Oliver Nello等人设计和建立了可编程偏转系统,该系统具有使电子束在X、Y轴快速偏转并以相似的速度调节电子束焦点(Z轴)的能力,可用于电子束多束流焊接过程应力变形控制的研究。

在国内,北京航空制造工程研究所“十一五”期间在国家自然科学基金(多束流电子束加工的热效应)的基础上搭建了多束流技术试验平台,开展了多束流扫描控制技术的研究,并用于电子束焊接过程中应力和变形的动态控制,降低了试件的焊接残余应力,从而减小最终变形。上海交通大学曾对扫描轨迹可控的电子束加工技术进行研究,初步实现了扫描方式的灵活控制,并尝试进行了一些相关的试验,但由于试验设备等条件的限制,比较侧重于理论方面的验证和控制平台的搭建,相应系统有待于进一步优化和完善,工程应用研究也有待于进一步的开展。电子束“毛化”技术

自发明电子束“毛化”技术以来,英国焊接研究所在该领域开展了大量的研究工作,开发了成熟的电子束“毛化”设备,而且在工艺研究方面也取得了长足的进步。通过控制电子束的工艺参数(包括电子束的加速电压、电流和聚焦),加上特殊的扫描波形,即可在不同的金属(如不锈钢、钛合金及铝合金等)上产生各种不同的表面,包括高宽比大的尖峰突起、蜂窝结构、无毛刺的孔穴、刀刃、通道、旋涡和网纹。

对任何纹理的结构,都可以通过改变尺寸、形状、入射角和特征分布来定制客户所需的表面。目前已经成功制备尺寸从10μm~20mm的毛刺。图2是电子束毛化的几种表面形貌。该技术不仅能够加工其他工艺无法实现的表面造型,而且在真空操作下可以避免表面污染。

在国内,有关电子束“毛化”技9术的研究刚刚起步,北京航空制造工程研究所在现有电子束焊接设备和电子束加工技术的基础上率先开展研究,通过分析电子本文由振动流化床干燥机http://czcbgz.com 双锥回转真空干燥机czcbgz.com 联合整理发布 束“毛化”技术的原理,设计了快速偏转扫描线圈,搭建了电子束扫描控制系统,实现了电子束“毛化”技术,并在不同的金属表面产生不同的毛化形貌,见图3。3 电子束快速成型技术

相对于激光及等离子快速成型,电子束快速成型出现较晚,但自2001年瑞典Arcam公司确立电子束快速制造技术以来,该技术凭借在粉末近净成型精度、效率、成本及零件性能等方面的独特优势,在国外很快成为研究前沿。美国北卡罗来纳州大学、英国华威大学、德国纽伦堡大学、波音公司、美国Synergeering集团、德国Fruth Innovative Technologien公司及瑞典VOLVO公司积极开展了相关研究工作。研究表明,EBM能显著地减少生产时间并降低生产成本,尤其适合形状复杂金属部件的小批量生产,任何外表奇异复杂的金属部件都可以一次快速成型。其技术与设备被用于生产零部件的直接制造业,并在航空制造、汽车制造、医疗植入物及模具制造等领域均有出色表现。

目前,国内航空航天、汽车及生物医学等领域对复杂结构及多孔结构有巨大需求,但由于电子束快速成型设备及工艺还不成熟,暂时无法满足航空航天高性能复杂零件实际应用要求。清华大学进行过电子束选区快速成型技术研究,并购买了1 台中压的国产电子束设备,将其真空室进行改造,增加Z 向工作台,安装铺粉系统,利用电磁场的控制使电子束按照预定的轨迹进行逐行扫描,从而实现简单的三维零件的快速成型。由于束流品质(如束斑品质、束流稳定性、聚焦效果等)的影响,电子束扫描控制的精度和灵活性还有待进一步提高,制作试件的质量检测和力学性能也正在研究中。

快速扫描电子束加工技术的应用 多束流电子束加工技术

多束流电子束加工技术主要应用于多束流焊接技术,用于提高焊接效率,减少焊接变形,改善难熔易裂材料的焊接性、焊缝性能等。多束流电子束的应用可以方便、迅速(通过电磁场非接触地控制几乎没有质量的电子运动)地调节电子束加工过程中的热量分布,从而对其力学过程和冶金过程进行动态控制,减小应力和变形,防止焊接过程中的热裂倾向,形成高质量的加工部件。图4是德国Pro-beam 公司采用3束电子束同时焊接的实例,结果表明与单束电子束焊接相比,此种方式可以明显减小齿轮焊接变形,而且大大提高了加工效率。

另外,多束流电子束加工技术还可用于异种材料的连接:通过调节不同位置的停留时间,控制在不同区域的能量输入。例如,接头一边的材料熔化,而另一边的材料仍处于加热状态(扩散焊),这样就可以实现固态不完全熔化的异种材料的有效连接。可见,多束流电子束加工技术在多方面都有很大的应用潜力。电子束“毛化”技术

英国焊接研究所正在研究将电子束“毛化”技术应用到金属与的连接技术上,将这种技术称为Comeld技术。该技术先通过电子束“毛化”在金属表面上形成毛本文由振动流化床干燥机http://czcbgz.com 双锥回转真空干燥机czcbgz.com 联合整理发布 刺,预处理后将复合材料置于金属上,通过加温、加压共同固化,即可得到这种金属和复材连接的Comeld接头,如图5 所示。

根据TWI的研究,这种Comeld接头比传统的同尺寸接头能承受更高的载荷,断裂前吸收的能量也远高于后者,而且可以通过优化毛刺的结构及分布形式提高这种接头的韧性。此项技术在未来金属与复合材料连接领域有着重要的应用。

另外,电子束“毛化”技术还可以用在金属材料的表面改性如涂层制备上,如图

6、图7所示。这种表面处理技术在促进基质与涂层的粘合方面具有非常广阔的应用前景。它可以通过增加表面粗糙度来增加涂层附着力,避免分层。毛刺的形状与尺寸可以影响涂层的微观组织,甚至可以改变涂层表面上的裂纹生长机理。同时,凹入特征改善了同邻接部件的机械互锁,而突出特征有助于关节界面均匀分布应力。该技术的灵活性还可应用于定制特殊表面,例如,将突起特征排列在最大应力的方向,或者改变结构特征的密度使部件上应力均匀分布。由于该工艺在真空下完成,生成的表面非常洁净,有助于连接应用。3 电子束快速成型技术

电子束快速成型技术一经面世即引起各国众多科研机构以及制造业界的高度重视,目前已有美国、德国、意大利及日本一些高技术公司和科研机构将该技术用于机械制造业以及航空航天、汽车和医疗植入器材等领域。美国Calcam公司采用电子束快速制造技术制备出了全致密、力学性能优于锻件的Ti6Al4V叶轮部件。瑞典Arcam公司采用电子束快速成型技术制造了特殊的钛合金点阵结构及复杂的部件,见图8和图9。

国内在无法获得设备及相关技术的条件下进行自主开发研究,在钛合金电子束快速成型研究方面取得了较大的进展。西北有色金属研究院多孔材料国家重点实验室开展了电子束快速成型工艺的研究工作,在钛及钛合金复杂结构及多孔结构的电子束快速制造工艺、应力及变形控制方面积累了实践经验,并制造出复杂的钛合金叶轮样件。

结束语

快速扫描电子束加工技术在国外已经相当成熟,在航空航天、汽车、医疗等方面的应用也越来越广泛。国内众多研究单位进行的一系列基础理论和应用研究为快速扫描电子束加工技术的发展奠定了基础,尤其是近几年随着控制技术的发展,快速扫描电子束加工技术在国内发展迅速,已经逐渐应用到工程实践中,进一步推动了国内精密制造技术的发展。(end)文章内容仅供参考()()(2010-8-27)

难加工材料超声辅助切削加工技术 第7篇

高性能合金(如高温合金、钛合金、高强度钢等)、复合材料、硬脆材料(如光学玻璃、工程陶瓷和功能晶体)等先进材料具有优异的性能,在航空、航天、军工、电子和汽车等领域得到越来越广泛的应用。复合材料具有密度低、比强度和比模量高、可设计性强、耐腐蚀性能好、抗疲劳性能好和结构尺寸稳定性好等优点,在航空航天领域主要用于制造如机翼、尾舵、刹车盘、制动鼓、仪器舱段、支架等复杂结构件和零件。这些经过成型制备的复合材料结构件和零件上,许多连接装配和附件安装用的孔、窗口、型腔和安装定位面等需要进行精密机械加工。航空航天领域典型的复合材料和硬脆材料结构件和零件如图1 所示。这些结构件和零件不仅对加工精度和加工质量要求高,而且对加工效率也有很高要求。由于这些复合材料硬脆材料具有硬度高、脆性大和耐磨性好等特点,材料切削加工性差,零件加工要求高,很难用传统机械加工方法和加工工具进行加工。因此,如何实现难加工材料零件的高质高效精密加工已成为当前国内外关注的课题。为了适应各种先进材料不断扩大的应用需求,一方面,传统机械加工技术通过自身的不断更新发展以及与其他相关技术的融合,在一些难加工材料加工领域(尤其在加工、铝合金和钛合金结构件加工等)表现出了加工精度和加工效率方面的优势。另一方面,利用光、电、声、热、化学、磁和原子能等能量进行加工的特种加工方法(包括、超声、、电化学、高压水切割等)得到了较快的发展,在一些高性能合金和硬脆材料等难加工材料加工领域显示出一定的优越性。但是,无论是传统机械加工,还是特种加工方法,多数是直接利用单一能量进行加工,在加工效率、精度、表面质量和工具寿命等方面必然存在一定缺点和局限。于是,利用多种形式能量的综合作用的复合加工技术出现了。复合加工技术可以根据加工材料特性以及加工精度和效率的要求,通过传统加工和特种加工方法的复合,不同特种加工方法的复合等多种形式组合出各具特点的新的复合加工方法,达到优势互补,成为机械加工技术的重要发展方向之一。

超声加工作为20 世纪初发展并开始应用于工业领域的一种非常有效的特种加工方法,特别适合于加工玻璃、陶瓷、石英、金刚石、硅等各种硬脆材料,并已得到了广泛应用。将超声加工与传统的切削加工结合所形成新的加工技术是一种典型的复合加工技术,多年来的研究和应用实践表明,这一复合加工技术既充分发挥了机械加工和超声加工这两种加工技术的优点,又弥补了两种技术的局限和不足,因而具有一些突出优点。超声辅助切削加工技术不仅可以有效降低切削力、提高加工质量、减小磨损和提高加工效率,而且拓展了可加工材料和可加工零件的适用范围和应用领域。近年来,国内外研究人员针对难加工材料的超声辅助切削加工开展了大量的研究,一些机床生产商还开发了超声辅助切削加工机床。超声辅助切削加工技术已成为难加工材料零部件加工中主要先进加工技术之一,具有重要的应用价值和广阔的应用前景。

本文针对航空航天等领域中典型难加工材料零件加工的技术需求和应用背景,结合作者和国内外学者的研究成果,介绍了几种超声辅助切削加工技术的原理、特点和应用效果,以及这一复合加工技术的一些新的进展。

超声辅助切削加工技术的原理、系统与分类

本文由吊篮 联合整理发布

超声辅助切削加工是在传统切削加工中工具与工件相对运动的基础上,在切削工具或工件上施加超声振动,以获得更好加工性能的加工方法。超声辅助切削加工过程中,通过工具对被加工材料的机械和超声复合作用,使工具与被加工材料的接触状态和作用机制发生变化,主要通过机械切削作用、高频微撞击作用以及超声空化作用等进行材料去除。由于超声振动的引入,改变了材料去除机理,降低了工具与工件之间的摩擦力,减少了工具与工件的接触时间,增强了工具对工件的切削去除作用,从而有效地提高了材料去除率,减小切削力,降低切削热,减少刀具磨损,改善加工精度和质量。

超声辅助切削加工系统主要由超声电源、超声能量传输系统、超声换能器、超声变幅杆、工具或工件、冷却液供给单元等组成。在超声辅助切削加工过程中,超声电源通过超声发生器将产生大于15kHz 的高频电信号,并经过功率放大后输出功率超声信号,通过传输系统将功率超声信号传输到超声换能器,再经过超声换能器将电信号转换成相应频率的机械振动,通过超声变幅杆将机械振动的幅度增大,并传递给工具或工件,使其产生超声振动,实现超声辅助切削加工。根据超声辅助切削加工的方式不同,超声辅助切削加工技术的分类如图2 所示。

本文结合航空航天难加工材料零件的加工,介绍了超声辅助车削、超声辅助钻孔、超声辅助磨削和超声辅助切割等几种先进加工技术。

超声辅助车削技术

超声辅助车削是在普通车削机床运动基础上,在上施加超声振动。超声振动方向主要有沿着工件旋转方向切向的振动和沿着进给方向的振动。图3 为作者研制的一种安装在普通卧式上的超声辅助车削加工装置。

采用聚晶金刚石(PCD)刀具普通车削和超声辅助车削碳纤维复合材料的加工表面形貌和刀具磨损对比如图4 和图5 所示。与普通车削加工表面相比,超声辅助车削表面碳纤维和基体过渡部位相对较光滑,碳纤维复合材料表面加工质量明显改善,刀具磨损量可减小约30% 左右[1-2]。采用硬质合金刀具普通车削和超声辅助车削Ni718 和C263 等高温合金并和普通车削加工质量进行对比试验表明,超声辅助车削的加工表面粗糙度降低25%~50%,圆度提高40%~50%[3]。超声辅助车削还可应用于铝基碳化硅等金属基复合材料的加工,和普通车削加工相比表面粗糙度可降低25% 左右,切削力降低1/3~1/2[4]。超声辅助车削作为先进的复合加工技术,已在发动机轴、叶轮胚体、机匣和活塞等航空难加工材料零件加工领域获得了重要应用。

二维的超声椭圆振动车削(UEVC)是新发展起来的一种加工方法。目前UEVC 的驱动主要包括两种方式:一种是非共振方式,目前主要是基于平行配置压电叠堆和相互垂直配置压电叠堆的直驱结构,这种椭圆振动需要两个激振源同时激振,其工作原理和基于该原理研制的加工装置如图6 所示[5]。另一种是共振方式,主要是利用变幅杆的两个模态振动组合实现椭圆振动,其工作原理如图7 所示。

本文由吊篮 联合整理发布 研究表明,这种方法不仅能够减小切削力,改善加工精度和表面质量,减少刀具磨损,而且能实现脆性材料延性切削,既可以用于宏观加工,也可以进行微细结构加工。近几年来这种加工方法受到国际学术界和工程界的高度关注。此外,名古屋大学的社本教授等人还提出了三维UEVC 的概念,代表了UEVC 的最新进展[6]。

超声辅助钻削技术

超声辅助钻削技术是在传统钻削机床的加工运动基础上,在旋转的钻削工具上施加超声振动,实现超声辅助钻削。图8 所示为作者研制的超声辅助钻削装置。

超声辅助钻削较早应用于钛合金、高温合金和复合材料等难加工材料的钻削加工。利用硬质合金超声辅助钻削和普通钻削镍基高温合金材料的出口形貌和切屑形貌如图9 和图10 所示。结果表明,超声辅助钻削的出口毛刺小且少,切屑为断续切屑,利于切屑的排出。与普通钻削加工相比,超声辅助钻削高温合金的表面粗糙度可以降低60%[9]。利用WC 硬质合金钻头超声辅助钻削Ti6Al4V 钛合金材料时,切削力比普通钻削降低20% 左右[10]。目前,超声辅助钻削在航天器、飞机机体和发动机中难加工材料关键零部件的定位孔、连接孔、冷却孔和深小孔的加工中具有重要应用价值和应用前景,特别在航空航天结构件的加工装配中,可用于钛合金蒙皮和复合材料蒙皮与合金骨架之间装配连接孔加工。复合材料/ 合金叠层结构的钻孔加工,可以减小钻削力,延长刀具寿命,减小合金连续切屑对复合材料的损伤,改善钻孔质量。

超声辅助磨削技术

超声辅助磨削技术是采用电镀或烧结法制备的固结超硬(金刚石和立方氮化硼)磨削工具,在磨削工具或工件上施以超声振动的复合加工方法。根据施加超声振动的方式不同,分为两种形式:一种是在传统的基础上,通过在工件上施加超声振动,实现超声辅助磨削加工。图11 所示为在一种在传统卧式平面磨床上通过对工件上施加超声振动进行加工的典型超声辅助磨削加工装置[11]。另一种是利用或,将超声振动施加于旋转的磨削工具上实现超声辅助磨削加工,也称为旋转超声加工(RUM)。图12所示为作者研制的采用超声振动旋转工具的超声辅助磨削加工系统。超声辅助磨削加工系统包括超声加工电源、超声功率传输装置、超声振动刀柄、磨削工具和加工机床等,该系统中的超声振动刀柄内集成有超声换能器和传输超声装置,采用通用刀柄(如HSK、BT 和SK 等刀柄系列)结构与不同的数控机床或加工中心的主轴连接,可夹持杯型砂轮、平行砂轮、空心磨头、圆柱磨头、球形磨头等不同结构形式的磨削工具。该系统利用磨削工具的轴向超声振动和旋转运动,并结合数控机床或加工中心的加工运动,可以实现平面、内外圆面、制孔、型腔和复杂曲面的超声辅助磨削。

作者采用超声振动刀柄夹持电镀金刚石砂轮加工了碳纤维复合材料、铝基碳化硅复合材料、反应烧结碳化硅陶瓷和光学玻璃等难加工材料取得较好的加工效果。其中采用电镀金刚石杯形砂轮进行碳纤维复合材料超声辅助平面磨削和普通磨削后的加工表面和砂轮表面形貌分别如图14 所示。结果表明超声辅助磨削加工的表面纤维丝翘起较少,边沿没有毛刺;超声辅助磨削后的工具表面磨粒磨损小,本文由吊篮 联合整理发布 工具表面几乎没有堵塞现象;超声辅助磨削时磨削力可以降低约50%,表面粗糙度改善约10%~30%[13]。超声辅助磨削加工C/SiC 陶瓷基复合材料,磨削力可降低约20%,表面粗糙度可改善约30%[12]。

以固结金刚石的空心磨头为磨削工具“以磨代钻”是进行陶瓷、玻璃和复合材料等硬脆难加工材料高效精密制孔的有效加工方法。在此基础上,采用超声振动刀柄夹持电镀或烧结金刚石空心磨削工具,可以实现这些硬脆难加工材料的超声辅助磨削制孔。

利用电镀金刚石空心磨头对碳纤维复合材料进行超声辅助磨削和普通磨削制孔加工, 加工后的出口形貌和工具表面形貌如17 所示.由图可以看出超声辅助磨削加工孔的出口处几乎没有毛刺工具磨损较小,几乎没有堵塞现象[14]。采用金属结合剂金刚石空心磨头进行陶瓷基复合材料超声辅助磨削制孔,与普通磨削制孔相比,轴向磨削力可以降低约60%,加工效率可以提高约10%,且孔壁和进出口质量明显改善[15]。近年来,德国在超声辅助加工技术应用方面处于领先水平。德国的Hermann Sauer 公司和Deckel Maho公司将超声技术和先进的机床技术相结合,开发出了ULTRASONIC 系列超声复合加工中心,已在光学、医药、半导体、汽车和航空航天等工业领域得到应用。

超声辅助切割加工技术

超声辅助切割加工技术是在传统切割加工工具上施加超声振动的一种复合切削加工技术。采用固结磨料旋转将锯片切割技术用于陶瓷、光学玻璃和蓝宝石等硬脆材料划片、开槽、切断等加工。在硅和蓝宝石晶圆、面板玻璃等划片和切割中得到广泛应用。日本DISCO 公司在已有金刚石薄锯片切割技术基础上,开发了采用旋转切割片的超声辅助切割加工技术[16]。采用金刚石旋转切割片进行超声辅助切割时,切割力更小,切割片不易堵塞,刀具寿命,可以采用高进给速度提高加工效率3倍以上,可使用更细粒度的切割片获得更好的加工质量和使用更薄的切割片获得更窄的切缝。

采用硬质合金尖刀和圆片刀等切割刀片的超声辅助切割加工技术主要用于复合材料铺设时预浸纤维材料的裁剪和下料以及蜂窝结构复合材料的切割和复杂型面加工等。与普通切割相比,采用超声辅助切割时,切削力小,材料不易变形,可提高切割精度;可以采用高的进给速度大幅度提高加工效率;可以减小刀具与工件间的摩擦力,降低切割温度,减小刀具磨损;可以解决普通切割加工中粘刀等问题。

结束语

复合加工技术是先进加工技术的重要发展方向之一,超声辅助切削加工技术是涉及技术领域较宽,应用范围较广的先进复合加工技术。国内外对难加工材料超声辅助切削加工技术的基础研究和应用研究结果表明,这种先进复合加工技术可以有效降低切削力、提高加工质量和精度、减少刀具磨损和提高加工效率,既可用于碳纤维复合材料、颗粒增强复合材料、陶瓷及陶瓷基复合材料等复合材料结构本文由吊篮 联合整理发布 件的加工,也可用于光学棱镜、陶瓷盘、玻璃腔体、反射镜轻量化结构和陶瓷活塞等硬脆材料精密零件的加工,在航空航天等领域具有广阔的应用前景。为了实现难加工材料高质量、高精度、高效率的加工,满足不同应用领域难加工材料零件的加工要求,目前,超声辅助切削加工技术通过借鉴其他加工技术的发展经验,正不断向微细化、高效化、精密化、自动化和智能化等方向发展。(end)文章内容仅供参考()()(2012-8-24)

航空航天特殊材料加工技术 第8篇

1 切削特殊难加工金属对刀具材料的要求

由于特殊难加工金属具有较高的物理性能、化学性能和力学性能, 对刀具材料以及刀具结构、几何参数等都提出了新的要求。刀具材料的选择对加工效率、加工质量以及成本和刀具的寿命等有着重要的影响。因此, 切削特殊难加工金属除了要求刀具材料具备普通刀具材料的一些基本性能之外, 还对刀具材料有更高的要求, 主要包括:

1) 高的硬度和耐磨性:切削特殊难加工金属, 刀具材料的硬度必须高于普通加工刀具材料的硬度 (一般在HRC60以上) 。刀具材料的硬度愈高, 其耐磨性愈好。2) 高的强度和韧性:刀具材料要有很高的强度和韧性, 以便承受切削力、振动和冲击, 防止刀具脆性断裂。3) 良好的热稳定性和热硬性:刀具材料要有很好的耐热性, 要能承受高温, 具备良好的抗氧化能力。4) 良好的高温力学性能:刀具材料要有高温强度、高温硬度和高温韧性。5) 较小的化学亲和力:刀具材料与工件材料的化学亲和力要较小。

2 涂层刀具

涂层刀具是通过在韧性较好的刀具基体上涂覆硬质耐磨的金属化合物薄膜, 以获得远高于刀具基体的硬度和优良的切削性能。常用的刀具基体材料主要有高速钢、硬质合金、陶瓷等。涂层可以是单涂层, 也可以是双涂层或多涂层, 甚至可以是几种涂层材料复合而成的复合涂层。

涂层刀具可以分成硬涂层刀具和软涂层刀具。硬涂层刀具的涂层材料主要有氮化钛 (Ti N) 、碳化钛 (Ti C) 、碳氮化钛 (Ti CN) 、氮化铝钛 (Ti AIN) 等。涂层刀具的主要优点是硬度高、耐磨性能好。Ti N涂层的硬度高、耐磨性好, 具有很高的化学稳定性, 可大大减少刀具与工件之间的摩擦系数;Ti C涂层与被切削金属的亲和力小, 润湿性好, 抗氧化性强, 具有良好的抗摩擦磨损性能;Ti Al N涂层刀具, 不仅具有Ti N的硬度和耐磨性, 而且在高速切削时, 氧化生成AI2O3, 起到抗氧化和抗扩散磨损的作用, 具有良好的切削性能, 其最高工作温度可达800℃。

3 陶瓷刀具

陶瓷刀具的材料主要有氧化铝基和氮化硅基两大类, 是通过在氧化铝和氮化硅基体中分别加入碳化物、氮化物、硼化物、氧化物等得到的, 此外还有多相陶瓷。

陶瓷刀具具有硬度高、耐磨性能及高温力学性能优良、化学稳定性好、不易与金属发生粘结等特点。陶瓷刀具的最佳切削速度通常可比硬质合金刀具高3~10倍, 适用于高速切削钢、铸铁及其合金等。陶瓷刀具主要应用于耐磨材料、淬硬材料和难加工材料等的粗精加工。

陶瓷刀具的选用:陶瓷刀具已应用于加工各种铸铁、钢件和镍基高温合金, 但品种不同的陶瓷刀具都有不同的加工范围, 具体来说, 氧化铝基陶瓷主要用于加工淬硬+钢和耐磨铸铁, 氮化硅基陶瓷主要用于加工铸铁、高温合金和镍基合金等材料。

4 超硬金属刀具

1) 立方氮化硼 (CBN) 刀具立方氮化硼 (CBN) 刀具具有极高的硬度 (仅次于PCD) 和热硬性, CBN刀具是高速精加工或半精加工淬硬钢、冷硬铸铁和高温合金等的理想刀具材料。由于CBN刀具加工高硬度零件时可获得良好的加工表面粗糙度, 因此采用CBN刀具切削淬硬钢可以实现“以车代磨”。

立方氮化硼刀具的选用立方氮化硼刀具主要用于加工淬硬钢和高硬铸铁以及一些难加工材料, 被加工材料的硬度愈高愈能体现立方氮化硼刀具的优越性, 并可以实现以车代磨, 大幅度地提高加工效率。立方氮化硼刀具的性能受其中的CBN含量、CBN粒径和结合剂的影响, CBN的含量越高, 其硬度和耐磨性越好。

2) 聚晶金刚石 (PCD) 刀具聚晶金刚石 (PCD) 材料具有高硬度、高耐磨性、高导热性及低摩擦系数等特点。PCD刀具可以实现有色金属及耐磨非金属材料 (如石墨和合成材料) 的高速、高精度、高稳定性加工。与硬质合金刀具相比, 刀具寿命提高了65~145倍;采用高强度Al合金刀体的切削速度达3000~4000m/min, 有的达到7000m/m in, 适合于高速加工。

5 刀具材料与工件材料的匹配

刀具、工件两方面材料的机械、物理、化学性能必须得到合理的匹配, 切削过程方能正常进行, 并获得较高的适耐用度;否则, 刀具就可能发生急剧磨损, 其耐用度很短。例如, 硬度高的工件材料, 就必须用更硬的刀具来加工。高速钢刀具硬度不够, 不能用来切削淬硬钢和冷硬铸铁, 硬质合金和陶瓷刀具则能胜任, CBN刀具更佳。加工硬脆材料, 不仅要求刀具有很高的硬度, 还要求有高的弹性模量, 否则刃部难以支撑。用硬质合金刀具加工淬硬钢及其他硬脆材料, 必须采用弹性模量较高、WC含量较多的K类或M类牌号。以上是机械性能的匹配, 不仅考虑刀具材料的常温机械性能;还应考虑其高温性能。在加工导热性差的工件时, 应采用导热性较好的刀具, 以使切削热得以导出从而降低切削温度。这是物理性能匹配的例子。

工件、刀具双方材料中的化学元素如有容易化合、相互发生化学作用或扩散作用者, 应设法回避。例如, 含钛的金属材料———钛合金、高温合金、奥氏体不锈钢等, 应当用不含钛或少含钛元素的刀具进行切削。硬质合金 (多数涂层材料含钛) 均不能使用;应采用K类、M类硬质合金或高速钢。凡加工塑性材料产生长切屑且与前刀面发生摩擦者, 应特别注意刀一屑双方元素的相互扩散, 故加工非淬硬钢材应当采用P类硬质合金或A1203基陶瓷, 而不能采用K类合金与Si3N4基陶瓷。金刚石在600~700℃以上时将转化为石墨, 铁元素将起催化作用而加速这种转化, 故金刚石刀具不能加工钢铁材料。化学作用在低温条件下一般进行缓慢, 在高温下加剧。

面对种类繁多的特殊难加工金属工件材料, 如何正确地选择适合与相应工件材料的刀具, 以提高加工生产率, 降低加工成本, 这是一个十分重要的问题。

摘要:在金属切削加工领域, 经常会遇到淬火钢、冷硬铸铁、高温合金、奥氏体不锈钢等特殊难加工金属材料, 车削这些钢材, 对刀具的综合机械性能要求很高。刀具技术包括刀具材料、刀具结构的优化和刀具的装夹技术等。

航空航天特殊材料加工技术 第9篇

高能束流加工技术是21世纪最重要的先进制造技术之一,具有非接触、能量精确可控、材料适应性广、柔性强、质量优、资源节约、环境友好等综合优势,既可用于大批量高效自动化生产,又适用于多品种、小批量加工,甚至个性化产品的订制,因此成为传统制造业改造升级不可或缺的重要技术。高能束流加工技术在工业中所占的比重已成为衡量一个国家工业制造水平高低的重要指标之一,是研制生产高、精、尖武器装备的关键技术,对保障国家安全具有重要意义。经过多年的发展,高能束流加工技术已经发展为焊接、切割、制孔、快速成形、刻蚀、微纳加工、表面改性、喷涂及气相沉积等多种门类,在航空、航天、船舶、兵器、核能、交通、医疗等诸多领域发挥着重要的作用。

本文以为高能束流加工技术在航空领域发展为背景,重点介绍了高能束焊接、高能束快速成形和高能束表面工程技术当前的技术现状及重点应用,同时,针对新型飞机及发动机技术新需求,阐述高能束在航空制造中的发展趋势。

高能束流焊接技术应用及发展趋势

高能束焊接在提高材料利用率、减轻钛合金结构重量、降低成本方面独具优势,这使得以高能束流为热源的先进焊接技术——电子束焊接、激光焊接、激光复合热源焊接技术成为航空整体结构连接制造的发展趋势,应用范围也逐渐扩大。国际先进航空制造公司空客、波音、洛克希德·马丁、Eclipse 等在军民机制造中,都相继采用电子束焊接、激光焊接技术作为飞机结构的连接方法。

电子束焊接是制造飞机主、次承力结构件和机翼骨架的必选技术,也是衡量飞机制造水平的一把标尺,如美国F-14战机钛合金中央翼盒、F-22战机后机身钛合金梁、机翼梁、A380的发动机钛合金托架均为电子束焊接。此外,电子束焊接也是航空发动机制造的关键技术之一,如:发动机机匣、压气机整体叶盘、涡轮、燃烧室等部件的焊接。而激光焊接则是实现大尺寸、薄壁机身结构件焊接的优选方案,具有焊接效率高、变形小、接头质量高等优点。如空中客车公司在A380机身壁板上的首次成功应用激光焊接技术,与铆接结构相比,其减重约18%,降低成本约21.4%~24.3%。另外,激光焊接在发动机部件焊接与修复上也有重要应用,激光焊接修复技术利于近净成形,减少裂纹产生,已应用的有航空发动机涡轮叶片、导向叶片和气路封严系统的零部件,如:欧盟第六框架研究项目AROSATEC就开展了压气机定子与叶栅、高压和低压叶片出口与盖板连接,以及涡轮机匣的激光焊接技术研究。美国通用电气公司成功地完成了喷气发动机的导流板和导向叶片的激光焊接组装,有效地解决了镍基合金小型零件激光焊接变形与裂纹等问题。美国霍尼韦尔公司修复的叶片已累计飞行2千万个飞行小时。美国伍德集团公司利用激光粉末合金熔焊技术可以修理过去认为不可修的单晶和DS合金零部件。

随着高能束焊接技术发展,新束源研发方面不断进步,在航空结构制造上发挥的作用也越来越大,如在电子束焊接方面,注重大功率、高可靠性的电子束枪的研制,目前国外电子束焊接设备功率一般大于60kW,最高可达到200kW,加速电压在150kV以上,同时利用先进的高压逆变电源技术提高了高压性能、设备稳定性,降低了噪声;在激光焊接方面,目前,CO2激光和YAG(注)激光这两类激光器的功率增大已达到极限,难以实现大型结构中厚板焊接。以盘式激光和光纤激光为代表的高亮度大功率激光技术,尤其是光纤激光,束流品质高,其功率也已超过50kW,且还有提高潜力,可实现薄板高效焊接,20mm以上厚板的高质量焊接,和现场移动焊接,因此,光纤激光焊接大有替代CO2激光和YAG激光之势。

高能束流快速成形技术应用及发展趋势

高能束流快速制造技术是基于离散/堆积原理的增材成型技术,由零件的3D模型可直接制造出任意复杂形状的金属零件,能够大大减少制造工序、缩短生产周期,节省材料、降低成本等特点。自上世纪90年代中期以来,该技术已发展为多种门类,如激光选区熔化(SLM)、电子束熔化制造(EBM)、激光近净形制造(LENS)、金属直接沉积(DMD)、形状沉积制造(SDM)以及电子束自由成形(EBFFF)等。采用的热源主要为激光、电子束和电弧等束源,该技术根据材料在沉积时的不同状态可以分为:熔覆沉积技术,材料在沉积反应时才送入沉积位置,由高能束在沉积区域产生熔池并高速移动,熔化后沉积下来;选区沉积技术,材料在沉积反应前已位于沉积位置上,再用高能束逐点逐行烧结或熔化。

熔覆沉积快速成形技术

同轴送粉激光快速成形技术,可制备叠层材料、功能复合材料、裁缝式地制成"变成分"的材料或零件和修复钛合金叶片、整体叶盘等构件,且其力学性能达到锻件的水平。其相关成果已应用在武装直升机、波音787客机、F/A-18E/F及F-22战机上,如:AeroMet公司利用Lasform技术制造了F-22战机的TC4钛合金接头,满足疲劳寿命2倍要求;F/A-18E/F的翼根吊环,满足疲劳寿命4倍要求且静力加载到225%仍未破坏。

金属丝材高能束熔融沉积技术是在高能束送丝焊接基础上发展起来的,其中熔化丝材的电子束自由成型快速制造技术,由于在真空环境工作,其冶金质量高,特别是钛合金等材料的快速制造,其发展速度非常快。1995年,美国麻省理工学院首次试制了In718合金涡轮盘。目前,已可以制造出形状比较复杂的零件,最大沉积速率3500cm3/h,性能达到锻件水平,另外,西雅基公司利用该项技术制造了F-22上的钛合金AMAD支座、吊耳和万向结以及直升飞机的螺旋桨支架等。

选区熔化沉积成形技术

激光选区烧结技术(SLS),由于光斑或熔池较小,无需附加支撑,因此该技术制造的零件精度较高且形状较复杂。激光选区熔化技术(SLM)是在SLS技术的基础上发展起来的,两者的不同之处在于后者所采用的是一种金属材料与另一种低熔点材料(可以是低熔点金属或有机粘接材料)的混合物,在加工过程中,低熔点材料熔化或部分熔化,但熔点较高的金属材料被已熔化的低熔点材料包覆粘结在一起,从而形成类似于粉末冶金烧结坯件的原型。但这种零件还需要经过高温重熔或渗金属填补孔隙等后处理以后才能使用。

上一篇:少年宫财务管理制度下一篇:培训一天总结