三相异步电动机制动

2024-06-04

三相异步电动机制动(精选6篇)

三相异步电动机制动 第1篇

网络高等教育

目:关于三相异步电动机调速与制动问题的研究

学习中心: 浙江电大奥鹏学习中心

层 次: 高中起点专科 专 业: 电力系统自动化技术

年 级: 2010年秋 季 学 号: 201011852184 学 生: 胡天飞 指导教师: 王 凯

完成日期: 2012年08月30日

大连理工大学网络高等教育毕业大作业模板

内容摘要

目前,电力拖动是各行业生产机械的主要拖动形式;因此,三相异步电动机已经被广泛应用在各行各业和日常生活等领域。随着生产机械的不断更新和发展,对电动机的调速性能与制动问题要求越来越高。三相异步电动机由于三相异步电动机因其成本低,结构简单,可靠性高和维护少等优点在各种工业领域中得到广泛的应用,但其调速性能和制动性能都不如直流电动机,因此如何改进异步电动机的调速性能和制动问题,以提高调速性能和制动问题,就显得特别重要。本篇文章通过对鼠笼式三相异步电动机工作过程的分析,着重讨论了三相异步电动机 的调速和制动性能,介绍了三相异步电动机常用的调速和制动方法。

关键词:三相异步电动机;调速;制动

I

完整论文加QQ:1479352057

目 录

内容摘要...........................................................................................................................I 引 言..............................................................1 第1章 三相异步电动机工作原理.......................................2 第2章 三相异步电动机的调速方法.....................................4 2.1绕线式电动机转子串电阻调速..................错误!未定义书签。2.2液力耦合器调速..............................错误!未定义书签。2.3变极对数调速................................错误!未定义书签。2.4串级凋速....................................错误!未定义书签。2.5电磁转差离合器调速..........................错误!未定义书签。2.6改变定子电压调速............................错误!未定义书签。2.7变频调速....................................错误!未定义书签。第3章 三相异步电动机的制动方法.....................................5 3.l 反接制动.....................................................5 3.2发电机制动..................................错误!未定义书签。3.3能耗制动....................................错误!未定义书签。第4章 结语........................................错误!未定义书签。

II

完整论文加QQ:1479352057

三相异步电机主要用作电动机,拖动各种生产机械。三相异步电动机的调速方法有变极调速,变频调速和变转差率调速。其中变转差串调速包括绕线转子异步电动机的转子串接电阻调速、串级调速和降压调速。三相异步电动机有三种削动状态:能耗制动、反接制动(电源两相反接和倒拉反转)和回馈这三种制动状态的机械特性曲线、能量转换关系及用途.特点等均与直流电动机制动状态。本文主要针对变频调速及能耗制动作出了详细研究。

完整论文加QQ:1479352057

第1章 三相异步电动机工作原理

当电动机的三相定子绕组(各相差120度电角度),通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。当导体在磁场内切割磁力线时,在导体内产生感应电流,“感应电机”的名称由此而来。感应电流和磁场的联合作用向电机转子施加驱动力。我们让闭合线圈ABCD在磁场B内围绕轴xy旋转。如果沿顺时针方向转动磁场,闭合线圈经受可变磁通量,产生感应电动势,该电动势会产生感应电流(法拉第定律)。根据楞次定律,电流的方向为:感应电流产生的效果总是要阻碍引起感应电流的原因。因此,每个导体承受相对于感应磁场的运动方向相反的洛仑兹力F。确定侮个导体力F方向的一个简单的方法是采用右手三手指定则(磁场对电流作用将拇指置于感应磁场的方向,食指为力的方向。将中指置于感应电流的方向。这样一来,闭合线圈承受一定的转矩,从而沿与感应子磁场相同方向旋转,该磁场称为旋转磁场。闭合线圈旋转所产生的电动转矩平衡了负载转矩。

旋转磁场的产生:三组绕组问彼此相差120度,每一组绕组都由三相交流电源中的一相供电.绕组与具有相同电相位移的交流电流相互交叉,每组产生一个交流正弦波磁场。此磁场总是沿相同的轴,当绕组的电流位于峰值时,磁场也位于峰值。每组绕组产生的磁场是两个磁场以相反方向旋转的结果,这两个磁场值都是恒定的,相当于峰值磁场的一半。此磁场.在供电期内完成旋转。其速度取决于电源频率(f)和磁极对数(P)。这称作“同步转速”转差率只有当闭合线圈有感应电流时,才存在驱动转矩。转矩由闭合线圈的电流确定,且只有当环内的磁通量发生变化时才存在。因此,闭合线圈和旋转磁场之间必须有速度差。因而,遵照上述原理工作的电机被称作“异步电机”。同步转速(ns)和闭合线圈速度(n)之问的差值称作“转差”,用同步转速的百分比表示。运行过程中,转子电流频率为电源频率乘以转差率。当电动机起动时,转子电流频率处于最大值,等于定子电流频率。转子电流频率随着电机转速的增加而逐步降低。处于恒稳态的转差率与电机负载有关系。它受电源电压的影响,如果负载较低,则转差率较小,如果电机供电电压低于额定值,则转差率增大。同步转速 三相异步电动机的同步转速与电源频率成正比,与定子的对数成反比。

完整论文加QQ:1479352057

实际上,即使电压.正确无误,如果供电频率高于异步电机的额定频率,一也未必能够提高电机转速。必须首先确定其机械和电气容量。由于存在转差率,带负载的异步电机的转速稍稍低于表格中给出的同步转速。改变电动机的旋转方向,改变电源的相序即可实现,即交换通入到电机的三相电压接到电机端子中任意两相就行.完整论文加QQ:1479352057

第2章 三相异步电动机的调速方法

在电力拖动调速系统中,特别是在宽调速和快速可逆拖动系统中,多采用直流电动机拖动,其原因是直流电动机具有良好的调速性能。但是,直流电动机存在价格高、维护困难、需要专门的直流电源等一系列缺点。相比之下,交流电动机具有价格低、远行可靠、维护方便等一系列优点,因此在各个应用领域都希望尽可能采用交流电动机拖动。近年来,由于电力电子技术和计算机技术的发展,使得交流调速技术II益成熟,交流调运装置的容量不断扩大,性能不断提高,使得交流调速已显示出逐步取代直流调速的趋势。下面就三相异步电动机的几种调速方法做了一一介绍。

完整论文加QQ:1479352057

第3章 三相异步电动机的制动方法

和直流电动机一样,异步电动机在拖动生产机械时也有制动要求,如起重机把重物下降时,电气机车下坡时就需要制动。所谓制动是指电动机产生的电磁转矩和转子的旋转方向相反。具体来说,异步电动机的制动方法主要有以下三种方法。

3.l 反接制动

完整论文加QQ:1479352057

参考文献

[1]何秀伟.电机测试技术.北京:机械工业出版社,1988 [2]崔淑梅,郑萍,朱春波.多功能实用电机测试线路.微电机,1995(4)[3]姚立海,姚立敏,黄进.基于DAQ的电机测试系统.电测与仪表,1997(4)[4]陈伯时编,电力拖动自动控制系统,北京,机械工业出版社,[5]满木李编,电机原理及驱动,北京,洁华出版社,1997.2000.6

三相异步电动机制动 第2篇

北票市章吉营乡民企劳务服务站

胡君波

浅论三相异步电动机的机械特性、启动、制动与调速

摘 要:阐述了异步电动机结构,运行可靠、价格低、维护方便等一系列的优点,目前,异步电动机的电力拖动已被广泛地应用在各个工业电气自动化领域中。就三相异步电动机的机械特性出发,主要简述电动机的启动、制动、调速等技术问题。

关键词:三相异步电动机;电力拖动;机械特性;启动;制动;调速

异步电动机具有结构简单、运行可靠、价格低、维护方便等一系列的优点,因此,异步电动机被广泛应用在电力拖动系统中。尤其是随着电力电子技术的发展和交流调速技术的日益成熟,使得异步电动机在调速性能方面大大提高。目前,异步电动机的电力拖动已被广泛地应用在各个工业电气自动化领域中。就三相异步电动机的机械特性出发,主要简述电动机的启动,制动、调速等技术问题。一、三相异步电动机的机械特性文

三相异步电动机的机械特性是指电动机的转速n与电磁转矩Tem之间的关系。由于转速n与转差率S有一定的对应关系,所以机械特性也常用Tem=f(s)的形式表示。三相异步电动机的电磁转矩表达式有三种形式,即物理表达式、参数表达式和实用表达式。物理表达式反映了异步电动机电磁转矩产生的物理本质,说明了电磁转矩是由主磁通和转子有功电流相互作用而产生的。参数表达式反映了电磁转矩与电源参数及电动机参数之间的关系,利用该式可以方便地分析参数变化对电磁转矩的影响和对各种人为特性的影响。实用表达式简单、便于记忆,是工程计算中常采用的形式。

电动机的最大转矩和启动转矩是反映电动机的过载能力和启动性能的两个重要指标,最大转矩和启动转矩越大,则电动机的过载能力越强,启动性能越好。

三相异步电动机的机械特性是一条非线性曲线,一般情况下,以最大转矩(或临界转差率)为分界点,其线性段为稳定运行区,而非线性段为不稳定运行区。固有机械特性的线性段属于硬特性,额定工作点的转速略低于同步转速。人为机械特性曲线的形状可用参数表达式分析得出,分析时关键要抓住最大转矩、临界转差率及启动转矩这三个量随参数的变化规律。

二、三相异步电动机的启动

小容量的三相异步电动机可以采用直接启动,容量较大的笼型电动机可以采用降压启动。降压启动分为定子串接电阻或电抗降压启动、Y-D降压启动和自耦变压器降压启动。定子串电阻或电机降压启动时,启动电流随电压一次方关系减小,而启动转矩随电压的平方关系减小,它适用于轻载启动。Y-D降压启动只适用于正常运行时为三角形联结的电动机,其启动电流和启动转矩均降为直接启动时的1/3,它也适用于轻载启动。自耦变压器降压启动时,启动电流和启动转矩均降为直接启动时的l/k2(k为自耦变压器的变比),适合带较大的负载启动。

绕线转子异步电动机可采用转子串接电阻或频敏变阻器启动,其启动转矩大、启动电流小,适用于中、大型异步电动机的重载启动。软启动器是一种集电机软启动、软停车、轻载节能和多种保护功能于一体的新型电动机控制装置,国外称为Soft Starter。它的主要构成是串接于电源与被控电动机之间的三相反并联晶闸管及其电子控制电路。运用串接于电源与被控电动机之间的软启动器,以不同的方法,控制其内部晶闸管的导通角,使电动机输入电压从零以预设函数关系逐渐上升,直至启动结束,赋予电动机全电压,即为软启动。在软启动过程中,电动机启动转矩逐渐增加,转速也逐渐增加。软启动器实际上是个调压器,用于电动机启动时,输出只改变电压并没有改变频率。三、三相异步电动机的制动

三相异步电动机也有三种制动状态:能耗制动、反接制动(电源两相反接和倒拉反转)和回馈制动。这三种制动状态的机械特性曲线、能量转换关系及用途、特点等均与直流电动机制动状态类似。四、三相异步电动机的调速

三相异步电动机的调速方法有变极调速、变频调速和变转差率调速。其中变转差率调速包括绕线转子异步电动机的转子串接电阻调速、串级调速和降压调速。

变极调速是通过改变定子绕组接线方式来改变电机极数,从而实现电机转速的变化。变极调速为有级调速,变极调速时的定子绕组联结方式有三种:Y-YY、顺串Y-反串Y、D-YY。其中Y-YY联结方式属于恒转矩调速方式,另外两种属于恒功率调速方式。变极调速时,应同时对调定子两相接线,这样才能保证调速后电动机的转向不变。

变频调速是现代交流调速技术的主要方向,它可实现无级调速,适用于恒转矩和恒功率负载。

绕线转子电动机的转子串接电阻调速方法简单,易于实现,但调速是有级的,不平滑,且低速时特性软,转速稳定性差,同时转子铜损耗大,电动机的效率低。串级调速克服了转子串接电阻调速的缺点,但设备要复杂得多。

异步电动机的降压调速主要用于风机类负载的场合,或高转差率的电动机上,同时应采用速度负反馈的闭环控制系统。

三相异步电动机制动 第3篇

工业生产和居民生活中常用到电动机设备, 有的设备要求在运行完成停止时能迅速停车, 以提高效率。无论工业生产用的三相异步电动机, 或是生活用的单相电动机, 都可以用电气制动的方法来实现快速停车。

电动机制动常用的一般方法有: 机械制动、能耗制动、反接制动等。

机械制动为摩擦制动, 常通过电磁抱闸、摩擦盘等配套装置一起作用来达到制动目的; 机械制动装置形体较大。

能耗制动、反接制动为电气制动, 制动迅速, 为实现制动所附加的元件较小, 占用的空间也小, 在中、小容量的设备中更能体现其优点。

在现行的资料和文件中, 常介绍能耗制动、反接制动的工作原理, 但对于制动参数的工程计算机较少提及。

本文根据理论知识和作者工程实践应用经验, 分别讨论能耗制动、反接制动。主要针对交流电动机电气制动参数进行分析。

1 能耗制动的参数计算

1. 1 能耗制动的原理

能耗制动发生时, 首先将电动机定子绕组切断工作电源, 然后立刻使其定子绕组转接上一直流电源, 在定子上产生一固定不动的磁场, 而转子惯性运动, 转子绕组切割磁场, 产生制动作用, 使电动机迅速停转。

对于三相电动机, 直流电源可以加在定子绕组的一相绕组上, 也可以加在两相定子绕组上; 对于△接法的三相电动机, 直流电源从其中的两线加入时, 三个相绕组上都可同时获得直流电源, 此时施加的电磁力是较大的 ( 通过接触器控制, Y型接法的三相电动机也可三相绕组加直流电源) 。对于单相电机, 可直接加在主绕组上。无论何种接法, 都是为了在定子上产生稳定的磁场。

图1 为三相电动机能耗制动原理, 两相定子绕组加直流电源方法。R制动电阻用于使电动机得到适当的制动电流, 是本文主要描述的参数。直流电源一般通过交流电整流后得到, 不需要电容滤波; 若电动机容量较小, 还可通过控制变压器选用安全交流电压。

1. 2 能耗制动的参数计算

通入绕组进行能耗制动的直流电流必须适当, 既能满足电动机制动迅捷的要求, 还必须保证电动机等设备的安全。

能耗制动时, 当使用与电动机额定电流IN相同的电流进行制动, 当然能保证电动机的安全, 但制动时间可能较长。电动机额定电流IN指的是额定负载下长期允许通过电动机绕组的电流, 在此电流下运行电动机是安全的。为此我们需要选取合适的参数, 原则是制动迅速, 安全。

由于电动机属于电器设备, 具有热惯性, 当出现短时间过载的时候, 电动机并不会损坏, 而能耗制动过程时间往往只有不到2 s即可完成; 所以可以考虑让电动机在能耗制动时通入2 倍以上的电动机额定电流IN的直流电流实施制动。

三相电动机定子绕组有两种接法, Y形和△形接法, 其中Y形接法多用于小功率电动机, △形接法常用于3 k W以上功率的电动机。

1. 2. 1 能耗制动电流和电阻的计算

制动时, 若电动机为Y形接法, 此时从U、V相通入直流电, W相不通电, 处于悬空状态, 测得线电阻rUV, 参见图1, 则

制动电流

限流电阻

IZ—能耗制动所需直流电流 (A)

Uz—能耗制动所需直流电压 (V)

R—限流电阻

rUV—电动机绕组电阻 ( 可用仪表测得)

设电动机功率或额定电流IN已知, 选取IZ= 2IN则可通过调整UZ和R的参数来达到。

1. 2. 2 能耗制动限流电阻功率的计算

若已选定电阻R阻值, 还需要确定R的功率。

R的功率PR的选择

若直接按该式子计算, 将会得出很大功率的电阻, 而实际上制动电阻工作的时间在电动机的一个工作周期当中是很短的, 因此必须对R的功率PR进行折算, 即应当根据R在一个工作周期当中的负载持续时间来折算。方法为

P实—实际选取的电阻功率

t—电阻在一个工作周期中的实际工作时间

T—电动机一个工作周期时间

PR—折算前电阻功率

电动机一个周期的连续工作时间通常会大于10 min, 现仅按T = 10 min工作周期, 制动用时t = 2 s计算, 可以得出

仅为原值的6% , 所以, 可用功率很小的电阻充当制动电阻, 非常经济。

考虑到实际工作操作环境的不确定因素, 为了提高可靠性, 可将P实放大2 ~ 3 倍设置。

能耗制动适用于功率不大、负载惯性不大、制动频繁的生产机械的电动机, 制动时间通常可在2 s左右完成。

【例1】有一台3 k W鼠笼式三相电动机, 额定电压380 V, 定子绕组Y接法, 测得ruv= 4. 1 Ω, 求能耗制动装置。

解:3 k W的三相电动机, 额定电流IN≈2P=2×3=6 (A)

取制动电流IZ≈2IN=2×6=12 (A)

1) 直流电压估算。

UZ>IZ×ruv=12×4.1=49.2 (V)

取UZ≈100 V, 为整流后的直流电压

因为二极管桥式整流电路有UZ= 0. 9U2

所以, 对应的变压器次级电压U2=1.1UZ≈110 V

流过每个二极管的平均电流IV=0.5IZ=6 A

桥式整流装置选取额定电压300 V ~ 600 V, 额定电流12 ~15 A及以上的集成整流桥。

2) 制动电阻R计算。

所以

3) 制动电阻R功率的计算。

设制动时间t=2s, 电动机工作周期T=10 min=600 s

未折算前

则根据式 (3) 得

4) 配套的控制变压器的容量的计算

控制变压器的容量S = 1. 1U2I2= 1. 1 × 110 × 12 = 1 452 ( VA)

控制变压器工作的时间特性与制动电阻R一样, 所以也要参照式 ( 3) 进行折算, 否则控制变压器容量将会很大。

实际选取市场产品S = 100VA, 380V/110V控制变压器即可。

5) 由计算可得制动装置。

控制变压器:S=100 VA, 380 V/110 V

整流桥:600 V, 15 A

制动电阻:4. 2 Ω, 36 W

2 反接制动的限流电阻计算

反接制动就是在电动机需要迅速停止转动时, 将输入到定子绕组的电源的任意两相进行位置交换, 改变电源的相序, 以使电动机产生与原转向相反的电磁力矩, 让电动机转速迅速下降, 并使在电动机转速接近零时, 立即切断电源。反接制动的瞬间过程激烈, 会出现很大的电流和机械冲击。为了防止危害, 需限制制动电流, 可在电动机定子回路中串入制动电阻, 也可在绕线式电动机转子绕组上串联电阻来实现制动。

反接制动一般配套速度继电器来完成制动过程, 速度继电器主要用于检测反接制动时, 电动机转速接近零时刻, 发出信号, 使电动机主控接触器释放, 断开电源。图3 为三相电动机反接制动主电路原理图, KS为速度继电器。当然, 也可用时间继电器实现反接制动控制。

2. 1 定子回路串电阻的反接制动参数计算

反接制动是在三相电动机正常工作中突然是施加的, 主电路及工作的机械特性参见图3, 正常工作时, 电动机转速n≈n0电动机同步转速, 且n > 0; n0> 0 反接制动时刻, 由于机械惯性n任然保持, n > 0, 而电动机因旋转磁场转向改变n0变为负值, n0< 0; 此时转差率, 此时的电磁转矩对于机械转向而言, 是一个制动力矩。

计算串接的反接制动电阻, 要得到三相电动机的有关参数。通常三相电动机每一相的r1、x1、r'2、x'2、rm、xm六个基本参数可以通过空载实验和短路 ( 堵转) 实验, 根据三相电动机的T型等效电路获得。如图4 所示。

r1为三相电动机的转子绕组电阻, 可用万用表或电桥测出。

负载时, s = 0. 01 ~ 0. 09; 空载时, n≈n0, 转差率s更小, 所以等效转子电阻很大, 由和x'2组成的支路通过的电流很小, 可以忽略不计, 这时定子绕组通过的电流为激磁电流, 主要用于建立磁场, T型等效电路可近似看成图5。

短路 ( 堵转) 时, n = 0, s = 1, 相对而言由rm、xm组成的支路通过的电流很小, 可以忽略不计, 则T型等效电路, 可近似看成图6。

由图可得:

短路阻抗

其中, PK为实验得到的短路 (堵转) 有功功率。

通过测量及计算, 可以得出r1、r'2、xk参数。

2. 1. 1 反接制动电阻R的计算

当加限流电阻R进行反接制动时, 与短路试验一样, 流过rm、xm激磁支路的电流很小, 可忽略不计, 则T型等效电路, 可近改为图7。

因为制动的瞬间, , 所以制动电流

制动总阻抗

所以

2. 1. 2 反接制动电阻R功率的计算

反接制动的时间很短, 1 s内就可结束, 所以可以按能耗制动限流电阻功率计算的方法来确定; 此时电动机工作周期T按10 min计, 制动时间t按1 s计, 并假设制动电流IZ持续1 s。据此可得:

反接制动电流IZ可按大约2 倍电动机额定电流选择。

反接制动适用于小功率, 制动不频繁的生产机械的电动机, 制动时间通常可在1 s左右完成。

举例说明计算过程。

【例2】: 在例1 的基础上补充一些参数。电动机基本参数: PN= 3 k W, U1N= 380 V, 星形接法nN= 957 r / min, I1N= 6 A, KT=2.3, r1=2.1Ω。

分析: 要计算制动电阻, 首先要求得三相电动机的必要特性参数: r1、x1、r'2、x'2。获得这些参数, 可以通过上述实验的方法取得, 也可概略由以下方法求得。

解:首先可由nN=957 r/min判定同步转速n0=1 000 r/min

所以, 磁极对数

求得额定转差率

1) r1的取得

可用仪表直接测出, 本例测得r1=2.1Ω

2) 求电抗x1、x'2

总电抗xk= x1+ x'2, 可以通过电磁转矩与电抗的关系求得

(1) 额定电磁转矩

(2) 最大电磁转矩Tmax=KTTN=2.3×29.9=68.9 N·m

(3) 最大转矩的转差率由电磁转矩公式

( 4) 最大转矩时的转速nm= ( 1 - sm) n0= ( 1 - 0. 188) ×1 000 = 812 r / min

( 5) 总电抗xk

( 6) 每相电抗粗略时认为x1= x'2= 0. 5xk= 0. 5 × 7. 71 =3. 85 Ω

(7) 求r'2:由可得

2. 2 求制动电阻R

制动电阻R串接在定子绕组回路。设制动电流为额定电流的两倍, I1Z= 2IN。

反接制动时, 转子电流很大, 流过激磁支路的电流相对要小得多, 为了简化计算, 忽略激磁支路的影响 ( 见图7) 。因此有

所以可得

整理后得

2. 3 求制动电阻R的功率

反接制动时间很短, 约1 s就可完成。按T = 10 min一个工作周期来计, 与能耗制动计算相仿, 此时

3结语

本文讨论的几种制动装置参数的计算, 经实际验证效果良好, 若要提高工作可靠性, 可将电阻功率再适当放大些, 以免调试时, 因短时内频繁操作造成过热而损伤制动电阻。

参考文献

[1]周鹗.电机学[M].北京:中国电力出版社, 1958.

[2]冉文.电机与电气控制[M].西安:西安电子科技大学出版社, 2007.

[3]莫正康.晶闸管变流技术[M].北京:机械工业出版社, 1985.

三相异步电动机降压启动 第4篇

摘要:三相异步电动机以其优质价廉的优点,在工农业及日常生活中得到广泛应用。其启动方式有直接启动与降压启动两种方式,直接启动电流大,会对电网造成很大的冲击,直接影响电网中其它用电设备的正常工作,也会影响电动机本身及其拖动设备的使用寿命;因此,如何控制电动机启动电流,具有重要的经济价值。

关键词:三相异步电动机;软启动器;降压启动

一、引言

电动机的启动电流近似的与定子的电压成正比,因此要采用降低定子电压的办法来限制起动电流,即为降压起动。对于因直接起动冲击电流过大而无法承受的场合,通常采用降压起动,此时,起动转矩下降,起动电流也下降,所以只适合必须减小起动电流,又对起动转矩要求不高的场合。文章主要探讨了三相异步电动机的几种降压启动方式。

二、三相异步电动机的几种降压启动

一般容量在l0kw以下的小型电动机可以直接启动,但10kw以上的电动机则应考虑采用降压启动。有时为了限制和减少启动转矩对机械设备的冲击作用,允许全压启动的电动机也多采用降压启动方式。

三相异步电动机降压启动的方法有以下几种:定子电路串电阻(或电抗)降压启动、自耦变压器降压启动、Y-△降压启动、软启动器等。使用这些方法是为了限制启动电流(一般降低电压后的启动电流为电动机额定电流的2~3倍),减小供电干线的电压降落,保障各种电气设备正常运行。

1、三相异步电动机的串电阻(或电抗)降压启动

电动机串电阻(电抗)降压起动是指起动时,在电动机定子绕组上串联电阻(电抗),起动电流在电阻上产生电压降,使实际加到电动机定子绕组中的电压低于额定电压,待电动机转速上升到一定值后,再将串联电阻(电抗)短接,使电动机在额定电压下运行。由于定子串电阻降压启动的启动电流随定子电压成正比下降,而启动转矩则按电压下降比例的平方倍下降。显然,这种方法会消耗大量的电能且装置成本较高,三相异步电动机采用这种启动方法,适用于要求启动平稳小的容量电动机及启动不频繁的场合。

图1 定子串电阻降压启动控制线路图

2、三相异步电动机的自耦变压器降压启动

对于容量较大且正常运行时定子绕组接成星形的笼型异步电动机,可采用自耦变压器降压起动。它是指起动时,将自耦变压器接入电动机的定子回路,待电动机的转速上升到一定值后,再切除自耦变压器,使电动机定子绕组获正常工作电压。这样,起动时电动机每相绕组电压为正常工作电压的1/K倍(K——自耦变压器的匝数比。K= N1/N2),起动电流也为全压起动电流的1/K2倍。

(1)电动机自耦降压启动(自动控制接线图)

图2 三相异步电动机自耦降压启动接线图

图2是交流电动机自耦降压启动自动切换控制接线图,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故。

(2)电动机自耦降压启动(手动控制接线)

图3 三相异步电动机自耦降压启动接线图

自耦变压器降压起动手动控制接线如图3所示,图中操作手柄有三个位置:“停止”、“起動”和“运行”。操作机构中设有机械连锁机构,它使得操作手柄未经“起动”位置就不可能扳到“运行”位置,保证了电动机必须先经过起动阶段以后才能投入运行。

3、三相异步电动机的Y-△降压启动

三相异步电动机的Y-△降压启动是指,在启动时将异步电动机三相定子绕组接成星形,等启动完成后,再接成三角形。这样,电动机启动时每相绕组的工作电压为正常时绕组电压的1/,启动电流为三角形直接启动时的1/3。

图4 三相异步电动机 Y—Δ 降压启动控制线路图

4、固态降压启动器

固态降压启动器由电动机的起停装置和软启动控制器组成。固态降压启动器的启动方法有两种:(1)电流渐增启动方式,即在启动时,电流线性增加,直达全速为止。启动电流和转矩是可调的,启动电流和电压是按照用户设定的频率平滑连续无极增大。(2)是限流启动方式,即在启动时电动机电流保持恒定,通常可在额定电流的1.5~4.5倍之间进行调节,电动机的电压按斜坡函数稳定升高,直到设定的电流限值。启动电流大小能改变电动机达到额定转速所需要的时间,这种启动方式适合于惯性大的场合。

图5 软启动器主电路原理图

固态降压器有良好的软启动特性、可靠性高、寿命长、维护量小、电动机保护良好以及参数设置简单等优点,但是不能长时间用于启动扭矩要求很高的电动机驱动装置上。这种局限主要因为软启动器实际上是靠将自身电压斜坡式抬升到最大值来完成工作,由于扭矩与电压平方成正比,连接电动机不能从一开始就达到最大扭矩,因此,这种启动器更适合水泵、传送带、电梯等轻型易启动的设备。

5、液态降压启动器

水电阻降压起动可将启动电流控制在3倍额定电流以内,对电网和拖动动设备冲击小,能连续起动,不会烧毁,维护简单。

水电阻降压启动原理图

水电阻软起动装置是依靠溶解在水中的电解质离子导电的,电解质充满与两个平面极板之间(即水电阻的两个极),构成一个电容状的导电体,它能够限制电流的流通,自身压降小,属于无感性元件,也就是说既能降低电动机的启动电流,又使电动机获得较大的端电压,且提高了起动时的功率因数,所以能使电动机100%起动成功。

水电阻软起动装置还有一个特点,实现平稳起动。水电阻的阻值大小是依靠改变水电阻箱内导电介质的浓度和两个极板间的距离来完成的,在现场可根据电动机的实际需要调配,起动过程中,从初始电阻逐渐连续变化为零电阻,起动平稳,无二次冲击电流。

5、软启动

以上几种降压启动的方法是有级启动,启动的平滑性不高,应用一些自动控制线路组成的软启动器可以实现鼠笼式异步电机的无级平滑运动,这种方法称为软启动。软启动分为磁控式和电子式两种。磁控式故障率高,已被电子式取代。

启动过程电机所加的电压不是一个固定值,软启动装置输出电压按指定要求上升,被控电机电压由零安指定斜率上升至全电压,转速相应由零上升到规定转速。软启动能保证电机在不同负载下平滑启动,减少电机启动对电网冲击,又降低对自身承受的较大结构冲击力。

软启动可以设定起始电压、上升方式、启动电流倍数等参数,以适用重载、轻载启动不同情况。

三、异步电动机的优缺点

1、三相异步电动机的优点

三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相繞组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。

2、异步电动机存在的缺点

2.1笼型感应电动机存在下列三个主要缺点。

(1)起动转矩不大,难以满足带负载起动的需要。当前社会上解决该问题的多数办法是提高电动机的功率容量(即增容)来提高其起动转矩,这就造成严重的“大马拉小车”,既增加购买设备的投资,又在长期的应用中因处于低负荷运行而浪费大量电量,很不经济。第二种办法是增购液力偶合器,先让电动机空载起动,在由液力偶合器驱动负载。这种办法同样要增加添购设备的投资,并因液力偶合器的效率低于97%,因此至少浪费3%的电能,因而整个驱动装置的效率很低,同样浪费电量,更何况添加液力偶合器之后,机组的运行可靠性大大下降,显著增加维护困难,因此不是一个好办法。

(2)大转矩不大,用于驱动经常出现短时过负荷的负载,如矿山所用破碎机等时,往往停转而烧坏电动机。以致只能在轻载状况下运行,既降低了产量又浪费电能。

(3)起动电流很大,增加了所需供电变压器的容量,从而增加大量投资。另一办法是采用降压起动来降低起动电流,同样要增加添购降压装置的投资,并且使本来就不好的起动特性进一步恶化。

2.2绕线型感应电动机

绕线性感应电动机正常运行时,三相绕组通过集电环短路。起动时,为减小起动电流,转子中可以串入起动电阻,转子串入适当的电阻,不仅可以减小起动电流,而且由于转子功率因数和转子电流有功分量增大,起动转矩也可增大。这种电动机还可通过改变外串电阻调速。绕线型电动机虽起动特性和运行特性兼优,但仍存在下列缺点:

(1)由于转子上有集电环和电刷,不仅增加制造成本,并且降低了起动和运行的可靠性,集电环和电刷之间的滑动接触,是这种电动机发生故障的主要原因。特别是集电环与电刷之间会产生火花,使传统绕线型电动机在矿山、井下、石油、华工等防爆要求的场所,对于灰土、粉尘浓度很高的地方,也不敢使用,这就限制了其应用范围。

(2)当前的传统绕线型电动机为了提高可靠性,多数不提刷,因此运行时存在下列电能浪费:集电环和电刷间的摩擦损耗和接触电阻上的电损耗,电刷至控制柜短路开关间三根电缆的电损耗,若电动机与控制柜之间距离很长,则该损耗将非常严重。并且由于集电环与电刷产生碳粉、电火花和噪声,长期污染周围环境,损害管理人员和周围居民健康。

(3)传统绕线型电动机的起动转矩比笼型电动机的有所提高,但仍往往不能满足满载起动的需要,以至仍然需要增容而形成“大马拉小车”。

上述传统感应电动机存在的严重缺点的根本原因在于“起动”、“运行”和“可靠性”三者之间存在难以调和的矛盾,因此势必顾此失彼,不可兼优。

四、结语

异步电动机的起动问题是它在运行中的一个特殊问题。常用的方法有自耦变压器降压起动、Y-Δ起动、软起动、定子串电阻降压起动等。

在电网和负载两方面都允许全压直接起动的情况下,鼠笼式异步电动机仍以直接起动为宜,因为操纵控制方便,而且比较经济。自耦降压起动器是经常被用来起动较大容量鼠笼式异步电动机的降压起动装置。虽然自耦降压起动器是一种老式的起动设备,但利用自耦变压器的多触头降压,既能适应不同负载起动的需要,又能得到更大的起动转矩,加之还因装设有热继电器和低电压脱扣器而具有较完善的过载和失压保护,所以,至今仍被广泛应用。

参考文献:

[1]. 邓星钟,《机电传动控制》,华中科技大学出版社,2001.3

[2]. 秦曾煌,《电工学》,第五版,高等教育出版社,北京,2005.12

[3]. 李永东,《交流电机数字控制系统》,机械工业出版社,2002.5

上接第378页

是采用计算机技术和互感效应来进行的,互感效应必须要做到数据在采集和共享时必须要同步,哪一方面出现问题,智能化变电站都不能进行正常的工作。所以要对数据的采集和共享时多加派工作人员,一点要保证数据的同步化。

四、结论

我国的经济快速发展,人们的生活水平快速提高,对电力资源的需求也随之增加,只有加快变电站的工作进程,提高变电站的工程质量,才能满足人们的需求。因为要实现电力资源供求相等的目标,出现了一种智能化的变电站,运用计算机技术和互感效应达到了变电站工作的自动化,但是由于智能化变电站的技术不够完善,在实施过程中出现的问题有待解决。通过分析和论证通过对高压设备的智能化研究等改善方案,达到了加快工作进程,改善工程质量的预期目标。

参考文献:

[1]张波.变电站智能化改造关键技术研究与实施[J].科技创新与应用,2015-05-11.

[2]蒋蕾.小议智能变电站的关键技术及改造要点[J].河南科技,2014-03-07.

三相异步电动机教案(精) 第5篇

三相异步电动机结构 李 战 彬

三相异步电动机(1)

任务目标:

(一)知识

1、知道三相异步电动机的分类

2、认识三相异步电动机的基本结构

3、会进行三相异步电动机拆装

(二)技能

1、会进行三相异步电动机的拆装

2、会认三相异步电动机的名牌

3、会用万用表、摇表进行三相异步电动机的有关检测

(三)情感

1、陶冶热爱科学、相信科学的情操

2、锻炼吃苦耐劳、严谨工作的精神

教学重点:

1、认识三相异步电动机的基本结构

2、会进行三相异步电动机的拆装

教学难点:

三相异步电动机的拆装

课前准备:

1、同学们认真阅读《电机与电气》、《电工基础》等教材中的相关内容

2、三相异步电动机、万用表、摇表以及相关拆装工具

课时分配:

本节课的学习共需六个课时来完成。其中第1课时重在从理论方面学习三相异步电动机的分类、三相异步电动机的结构组成,各部分的作用、所用材料、具体形式等等;第2、3课时重在学生自己动手拆装三相异步电动机,在此来进一步巩固三相异步电动机的结构;第4课时又从理论上来进一步学习三相异步电动机的工作原理;第5、6课时又回到实践来进行具体的三相异步电动机的相关检测、铭牌识别等技能。

教学方法:

在行动导向教学理念指导下,主要采用项目教学法、任务驱动法、实践练习法、问题讨论法、多媒体展示法等等。任务实施:

课时

(一)(一)新课引入(5min):

1、老师从机电专业教学计划要求、今后工作的要求等方面来阐述三相异步电动机的重要性,为此我们必须学习好它。

2、播放有关三相异步电机的PPT幻灯片,让同学观看电动机在生活、生产中的一些应用,在思想上觉得电动机的应用非常广泛,我们要努力学习好它。

(二)下达任务书,并说明学习方式(2min)

1、你都见过哪些不同类型的三相异步电动机,三相异步电动机如何分类?

2、三相异步电动机结构上由哪些部分组成,各部分的作用、所用材料、具体形式如何?

(三)小组活动(15min)

1、将全班分成六个活动小组,每小组选出组长、记录员(分小组时要将具有不同学习特点的同学、不同学习层面上的同学合理搭配)。

2、老师下达任务书,同学以小组为单位展开活动,老师也可参与其中某组。

首先在小组长的负责下,将老师所下达的任务进行分解。然后同学自己进行资料搜集、阅读教材、查证等工作。最后在小组内讨论,将不同成员的活动结果进行汇总,形成小组活动结论。

3、在此过程中老师也可给同学提供一些相关的学习资料、也可播放相关多媒体等,同学也可随时咨询老师相关问题。小组活动成果可以用文字、表格、插图等形式来展示,以下表格可作参考

相异步电动机的分类 分类标准 主要类型

相异步电动机的结构

定子

铁芯

作用

料、缺

线式

作用

作用

笼形式

结构

结构

料、缺

组编号

成员姓名

(四)活动成果展评(20min:

1、组由一名中心发言人进行发言,展示本组活动成果,组内各其它成员随时进行补充(每小组时间控制在3min。

2、班同学发言,就该组的发言展开讨论。

3、师点评,就每组同学的活动成果指出其中的优点与不足,并提出改进的意见。

4、全班同学形成统一的结论,形成共识,本节教学基本完成。

(五)小结本节(3min

1、三相异步电动机按不同标准可分为许多不同类型

2、三相异步电动机结构上主要由定子和转子组成

(六)作业布置

1、课后每个同学找一台三相异步电动机,认真观察它的型号、结构,并作相关记录。

2、书面作业 三相异步电动机结构上由哪些部分组成,各部分的作用、所用材料、具体形式如何?

板书设计:

任 务

完成情况

1、按转子结构可分为:笼鼠式、绕线式

2、按防护形式可分为:开启式、防护式、封闭式

1、三相异步电动机如何分类?

3船用、化工用、高原用、温热带用

4、按容量大小可分为:大型、中型、小型和微型

5、具有特殊性能的电动机:高起动转矩电动机、高转差率电动机、高转速电动机等等。

2、三相异步电动机结构上

料 由哪些部分组成,各部分的作用、所用材料、具体形式

式 如何?

形式

料、缺

线式

料、缺

相关学习资料:

(一)三相异步电动机的分类

1、按转子结构可分为:笼鼠式、绕线式

2、按防护形式可分为:开启式、防护式、封闭式 3船用、化工用、高原用、温热带用

4、按容量大小可分为:大型、中型、小型和微型

5、具有特殊性能的电动机:高起动转矩电动机、高转差率电动机、高转速电动机等等。

(二)三相异步电动机的结构

三相异步电动机按转子结构的不同分为笼型和绕线转子异步电动机两大类。笼型异步电动机由于构造简单、价格低廉、工作可靠、维护方便,已成为生产上应用得最广泛的一种电动机。绕线转子异步电动机由于结构较复杂、价格较高,一般只用在要求调速和起动性能好的场合,如桥式起重机上。异步电动机由两个基本部分组成:定子(固定部分和转子(旋转部分。笼型和绕线转子异步电动机的定子结构基本相同,所不同的只是转子部分。

一、定子 三相异步电动机的静止部分。作用:产生旋转磁场和机械支撑。

三相异步电动机的定子由机座和装在机座中的定子铁心及定子绕组组成。机座一般由铸铁制成。定子铁心是由冲有槽的硅钢片迭成,片与片之间涂有绝缘漆。三相绕组是用绝缘铜线或铝线绕制成三相对称的绕组按一定的规则连接嵌放在定子槽中。过去用 A、B、C表示三相绕组始端,X、Y、Z表示其相应的末端,这六个接线端引出至接线盒。按现国家标准,始端标以 Ul、Vl、Wl,末端标以 U2、V2、W2。三相定子绕组可以接成如下图所示的星形或三角形,但必须视电源电压和绕组额定电压的情况而定。三相绕组的连接:

U1 V1 W1 0 0 0 W2 U2 V2 0 0 0 星形连接: 三角形连接:

U1 V1 W1 0 0 0 W2 U2 V2 0 0 0 一般电源电压为380V(指线电压,如果电动机定子各相绕组的额定电压是220V,则定子绕组必须接成星形;如果电动机各相绕组的额定电压为380V。则应将定子绕组接成三角形。

二、转子 三相异步电动机的旋转部分。作用:旋转,产生电磁转矩。

转子部分是由转子铁心和转子绕组组成的。转子铁心也是由相互绝缘的硅钢片迭成的。铁心外圆冲有槽,槽内安装转子绕组。根据转子

三相异步电动机电子教案 第6篇

三相异步电动机

教学要求

理解三相异步电动机有关概念及工作原理,清楚其定子、转子的结构形式,能正确分析三相异步电动机的磁场。会分析三相异步电动机运行时的电磁过程,掌握其等效电路的作法。清楚其运行过程中功率的传递情况,能够计算其功率和转矩。

教学重点

三相异步电动机的结构、工作原理、等效电路、功率和转矩、工作特性、等效电路、功率和转矩、工作特性、机械特性表达式、调速原理等。

教学难点

三相异步电动机的定子绕组的磁动势和电动势计算、相量图、能耗转差调速。

课时安排

本章安排14课时,其中实验4课时。

教学大纲

3.1 三相异步电动机的基本知识

3.1.1 三相异步电动机的基本结构 1.定子部分 2.转子部分 3.气隙

3.1.2 三相异步电动机的基本工作原理 1.旋转磁场的产生 2.基本工作原理 3.转差率

3.1.3 三相异步电动机的铭牌数据 1.型号 2.额定值

3.1.4 三相异步电动机的特点与分类 1.三相异步电动机的特点 2.三相异步电动机的分类

3.2 三相异步电动机的电磁关系

3.2.1 三相异步电动机的磁动势 1.定子磁动势 2.转子磁动势 3.合成磁动势

3.2.2 三相异步电动机的感应电动势 3.3三相异步电动机的等效电路与相量图

3.3.1 三相异步电动机的等效折算 1.频率折算 2.转子绕组折算

3.3.2 三相异步电动机的等效电路 1.折算后的基本方程 2.T形等效电路 3.简化等效电路 4.相量图

3.4 三相异步电动机的功率平衡、转矩平衡和工作特性

3.4.1 三相异步电动机的功率平衡 3.4.2 三相异步电动机的转矩平衡 3.4.3 三相异步电动机的工作特性 1.转速特性 2.转矩特性 3.定子电流特性 4.定子功率因数特性

3.5 三相异步电动机的机械特性

3.5.1 三相异步电动机机械特性的表达式 1.物理表达式 2.参数表达式 3.实用表达式

3.5.2 三相异步电动机的固有机械特性 3.5.3 三相异步电动机的人为机械特性 1.降低定子电压的人为机械特性 2.转子串联电阻的人为机械特性

3.6 三相异步电动机的启动

3.6.1 三相笼型异步电动机的启动 1.直接启动 2.降压启动

3.6.2 三项绕线型异步电动机的启动 1.转子串联电阻启动

2.转子串联频敏变阻器启动

3.7 三相异步电动机的制动

3.7.1 三相异步电动机能耗制动 3.7.2 三相异步电动机反接制动 1.电源反接制动 2.倒拉反接制动

3.7.3 三相异步电动机回馈制动 1.正向回馈制动 2.反向回馈制动

3.8 三相异步电动机的调速

3.8.1 三相异步电动机的变极调速 1.变极原理

2.变极调速时的容许输出

3.8.2 三相异步电动机的变频调速 3.8.3 三相异步电动机的变转差率调速 1.转子串联电阻调速 2.串级调速 3.改变定子电压调速

主要概念

上一篇:加装电梯问题建议下一篇:对老婆说的甜蜜经典个性签名