等比数列练习范文

2024-06-19

等比数列练习范文(精选12篇)

等比数列练习 第1篇

探究点1 等比数列中基本量的计算

1、在等比数列{an}中,若公比q=4,且前3项之和等于21,则该数列的通项公式an=__________.2、设Sn为等比数列{an}的前n项和,8a2+a5=0,则等于()

3、等比数列{an}中,|a1|=1,a5=-8a2,a5>a2,则an=()

4、正项等比数列{an}的前n项和为Sn,且S5=72+6,S7-S2=142+12,则公比q等于

5、等比数列{an}的前n项和为Sn,且4a1,2a2,a3成等差数列.若a1=1,则S4=()

探究点2 等比数列的判定

1、已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N.(1)求证:{an-1}是等比数列;

(2)求数列{Sn}的通项公式,并求出使得Sn+1>Sn成立的最小正整数n.122an是等比数列,-

12、已知数列{an}的首项a1=an+1,n=1,2,3,…,求证:数列3an+1an*S5S

2并求数列{an}的通项公式.

探究点3 等比数列的性质

1、已知等比数列{an}中, a1+a2+a3=-3,a1a2a3=8.则an2、各项都是正数的等比数列{an}的公比q1, a2=1,则a1a5a1a6=a4a

53.{an}是等比数列,且an>0,a2a4+2a3a5+a4a6=25则a3+a5=

4.各项都是正数的等比数列{an}中,a1a2a3....a30230,则a2a5a8....a26a291、已知数列an通项公式:an4lg3n1lg9n1nN求证:数列an是等差数列

2、在等差数列{an}中,a2a810,log2a3log2a74,求an3、已知f(x)3x11,数列an满足 f()(n2),且a11,求a8的值。x3anan

124、设数列{an}是等差数列,数列{bn}的前n项和为Sn=3(bn-1),若a2=b1,a5=b2.(1)求数列{an}的通项公式;

(2)求数列{bn}的前n项和Sn.5、已知等差数列{an}中的四项:1,a1,a2,4,等比数列{bn}中的四项:1,b1,b2,b3,4,(1)分别求出{an}与{bn}的公差和公比;(2)求出

6、已知数列{an}的前n项和为Sn,Sna2a1的值。b21(an1)(nN)3

(1)求a1,a2;(2)求证:数列{an}是等比数列,并求{an}的通向公式.11例1 已知数列{an}满足a1=,an+1=an+,求an.2n+n

例2 设数列{an}满足a1=2,an+1-an=3·22n-1.(1)求数列{an}的通项公式;

(2)令bn=nan,求数列{bn}的前n项和Sn.2n例3已知数列{an}满足a13,an+1=a,求an.n+1n

例4 已知数列{an}中,a1=1,an+1=2an+3,求an.511n+1例5已知数列{an}中,a1=,an+1=an+2,求an.63

等比数列练习 第2篇

1、在等比数列{an}中,an>0,且an+2=an+an+1,求该数列的公比q;

2.等比数列{a n }中,已知a9 =-2,求此数列前17项之积;

3.等比数列{an}中,a9+a10=a(a≠0),a19+a20=b,求a99+a100;

4、设{an}是由正数组成的等比数列,且公比不为1,比较a1a8与a4a5的大小;

5.已知{an}是等比数列,且an0,a2a42a3a5a4a625,求a3a5;

6.设{an}是正数组成的等比数列,公比q2,且a1a2a3a302,求 a3a6a9a30?

7.某厂2011年12月份产值计划为当年1月份产值的n倍,求该厂2011产值的月平均增长率;

8.已知三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数。30

{an}中的部分项组成的数列ak1,ak2,akn恰为等比数列,9、数列 {an}为等差数列(d0),且k11,k25,k317,求akn;

10.已知数列满足a1=1,an+1=2an+1(n∈N*)

(1)求证数列{an+1}是等比数列;

等差数列与等比数列的类比 第3篇

1. 本课是在学习了类比推理这一内容后的探究课, 学生在高一已经学习过等差数列与等比数列, 但是肯定会遗忘较多的内容。教师首先安排复习等差数列的定义及简单的性质, 使学生利用类比的方法来复习等比数列, 在这个过程中体会“差与比, 加与乘, 乘与乘方, 除与开方”的类比, 从而为后面的学习打下了基础。

2. 类比推理的方法对学生来说是比较难的, 很多学生不知道从何处去类比, 数列是一个比较好的题材, 通过有关问题的解决, 既加深了对等差数列与等比数列的认识, 又让学生对类比的方法、实质有所体验, 还可让学生体验“大胆猜想——小心论证”的严谨的数学发现历程。

二、案例内容

1. 设置情境。

展示图片 (李四光的照片) , 回顾李四光发现大庆油田的过程:

中亚西亚与松辽平原有着极其相似的地质结构, 因为中亚西亚有大量的石油, 于是他推测松辽平原也有大量的石油。后来经过勘探, 发现了大庆油田。

提问:李四光这种思维方式蕴含了哪种推理方法?

学生:类比推理。

通过上述的情境设置, 很自然地引入本节课的课题, 又可以帮助学生更好地理解类比推理的概念。根据奥苏伯尔的有意义学习理论, 学生在概念学习时, 原有认知结构中是否有用来同化新知识的适当观念是决定数学概念能否顺利掌握的关键因素。如果学生头脑中没有适当的知识作为理解新概念的固定点, 那么原有认知结构的扩充和新概念结构的建立就不可能发生。经过情境设置展现了原有知识结构, 使学生对概念的认识更加深刻。

2. 复习回顾等差数列与等比数列 (设置如下表格)

在上述问题中, 可以先一起复习等差数列, 让学生利用类比的思想自行得出等比的相关概念。通过这一回顾, 使学生体会到等差数列和等比数列在概念形式上的相似之处。

3. 运用类比推理进行探究。

在认识了运用类比推理进行探究的方法之后, 教师设置了如下若干性质探究的问题供学生思考。

[问题1]在等差数列{an}中, 若a10=0, 则有a1+a2+…+a7=a1+a2+…+a12, 类比上述性质, 在等比数列{bn}中, 若b10=0, 则有__________。

问题1让学生来类比等比数列中相应的性质, 并加以证明。一方面从形式上可以帮助学生进一步体会等差与等比性质中“和与积”的类比, 另一方面, 从证明方法上也进行类比证明。这样的问题, 在学生理解性质后, 初步体验了发现问题并解决问题的“类比”方法。

接着, 进行如下变式练习:

等差数列{an}中, 若a10=0, 则有a1+a2+…+an=a1+a2+…+a19-n, 类比上述性质, 在等比数列{bn}中, 若b9=1, 则有__________。

启发引导学生如何通过类比得到正确结论, 使学生经历运用类比思想方法研究数列问题的过程。

[问题2]已知等差数列{an}的前n项和为, 用类比的方法, 写出等比数列{bn}的前n项积的表达式Tn=________。

[问题3]等差数列有如下性质:若数列{a n}为等差数列, 则当时, 数列{bn}也是等差数列;类比上述性质, 相应地, 若数列{cn}是正项等比数列, 当dn=_______时, 数列{dn}也是等比数列。

通过上述两个问题, 让学生进一步体会“加、减、乘、除”依次变成“乘、除、乘方、开方”的变换。

[问题4]若{a n}为等差数列, 则{an+1+a n}也成等差数列。由此经过类比, 若{b n}为等比数列你能得到什么结论?

在教学过程中发现, 有近85%的学生最初得到了{bn+1·bn}也为等比数列, 并能给予“证明”。看来学生对于“和”与“积”的类比已经掌握的比较好了, 但是个别学生得出{bn+1+bn}为等比数列。这时教室出现了两种不同的声音, 下面是一段课堂实录:

生1:我判断并证明了等比数列的和“{bn+1+bn}”仍然是等比数列, 且公比为数列{bn}的公比。

(师环视四周, 似乎每个人都投以赞同的目光, 并且频繁点头表示同意。)

生2:我有点不同意 (全班只有他一人有不同意见) , 我觉得, 对数列-1, 1, -1, 1, …这个数列来说, 其和不是等比数列。

(此时全班恍然。)

师:我们来看一下生1的证明过程 (投影仪) :

∴{an+1+an}是等比数列。你们看证明过程严密吗?

生3:当q=-1时, 他的第二步不成立。 (此时同学们又都给予肯定。)

师:答得好。本来我们不知道这一反例, 但在证明过程中发现了问题的存在, 由此找到了反例, 说明同学们在发现问题时, 能够进行大胆猜想、小心论证的严密的科学态度。

师:学到这里, 你有什么样的感受呢?

生4:在等差数列和等比数列的类比中, 我发现除了形式上存在着类比之外, 正确的要加以证明, 错误的可以举出反例。

生5:我感到就算是类比的结论在形式上未必一致, 但证明方法有相似之处。

这番交流的过程中, 学生的思维几经“冲浪”辗转, 他们的好奇心和探索热情已被唤起, 严谨的数学发现历程正在探索中内化着。

[问题5]若Sn是等差数列{an}的前n项和, 则Sk, S2k-Sk, S3k-S2k也是等差数列。在等比数列中是否也有这样的结论?为什么?

由于上一个题的反例的启发, 学生可以找到反例从而得出Sk, S2k-Sk, S3k-S2k不成等比数列的结论, 也有同学得出成等比数列的结论, 这是受通项之间的类比的影响导致的。经过讨论, 对结论进行论证, 反驳, 同学们进一步指出“成等比数列”的说法虽然不对, 但在“类比——发现”的探究过程中也有不少新的收获, 教师顺势提出开放性的问题:如何改动使得结论能够成立 (用St构造一个等比数列) ?这个过程, 将“类比——发现——自悟”方式的核心——学生在思维上经过反复的类比、验证, 自我领悟并掌握类比的思想方法, 体现在了教学过程中。

三、案例反思

为将“类比——发现——自悟”的方式更加清晰地在教学中体现, 教师的教学设计应向更加注重思维方式转变。设计的数学问题关注一题多变、多题环环相扣的连锁关系, 同时体现思维“严密性”, 并且搭建脚手架, 帮助学生努力实现“发现——自悟”的过程。

在实施教学的过程中, 努力让学生体验:从形式上得到类比的特征, 从本质上体验思维的过程, 了解类比不仅是形式上的“相似”, 而是从相似中得到猜想, 再由论证使之成为正确的类比。这样的教学方式, 有利于激发学生的思维, 使学生在辩证思维中掌握类比的思想方法。

数列、不等式、推理证明专项练习 第4篇

1.已知-π2<α<β<π2,则α-β2的取值范围是.

2.当x>0时,则f(x)=2xx2+1的最大值为.

3.对于平面几何中的命题“如果两个角的两边分别对应垂直,那么这两个角相等或互补”,在立体几何中,类比上述命题,可以得到命题:“”,这个类比命题的真假性是.

4.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品件.

5.设a,b为正实数.现有下列命题:

①若a2-b2=1,则a-b<1;

②若1b-1a=1,则a-b<1;

③若|a-b|=1,则|a-b|<1;

④若|a3-b3|=1,则|a-b|<1.

其中的真命题有.(写出所有真命题的编号)

6.用锤子以均匀的力敲击铁钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的1k(k∈N*),已知一个铁钉受击3次后全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的47,请从这个实事中提炼出一个不等式组是.

7.已知a∈R+,函数f(x)=ax2+2ax+1,若f(m)<0,比较大小:f(m+2)1.(用“<”或“=”或“>”连接).

8.观察下列等式:

1-12=12

1-12+13-14=13+14

1-12+13-14+15-16=14+15+16

……

据此规律,第n个等式可为.

9.设关于x,y的不等式组2x-y+1>0,x+m<0,y-m>0表示的平面区域内存在点P(x0,y0)满足x0-2y0=2,求得m的取值范围是.

10.在等比数列{an}中,已知a6-a4=24,a3·a5=64,则数列{an}的前8项和为.

11.已知函数y=ax+b的图象如图所示,则1a-1+2b的最小值=.

12.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示n条直线交点的个数,当n>4时,f(n)=.

13.已知x,y∈R,满足2≤y≤4-x,x≥1,则x2+y2+2x-2y+2xy-x+y-1的最大值为.

14.数列{an}满足(sn-n2)(an-2n)=0(n∈N),其中sn为数列{an}的前n项和,甲、乙、丙、丁四名同学各写了该数列的前四项:甲:1,3,5,7;乙:1,4,8,7;丙:1,4,4,7;丁:1,3,8,4.请你确定这四人中所有书写正确的学生.

二、解答题(共90分)

15.已知不等式mx2-nx-n2<0,

(1)若此不等式的解集为{x|-1

(2)若m=2,求此不等式的解集.

16.已知等比数列{an}的前n项和是Sn,满足an+1=(q-1)Sn+1(q≠0).

(1)求首项a1的值;

(2)若S4,S10,S7成等差数列,求证:a3,a9,a6成等差数列.

17.已知集合A={x|x2-(3a+3)x+2(3a+1)<0,x∈R)},B={x|x-ax-(a2+1)<0,x∈R}.

(1)求4B时,求实数a的取值范围;

(2)求使BA的实数a的取值范围.

18.设向量a=(x,2),b=(x+n,2x-1)(n∈N*),函数y=a·b在[0,1]上的最小值与最大值的和为an,又数列{bn}满足:nb1+(n-1)b2+…+bn=(910)n-1+(910)n-2+…+910+1.

(1)求证:an=n+1;

(2)求数列{bn}的通项公式;

(3)设cn=-anbn,试问数列{cn}中,是否存在正整数k,使得对于任意的正整数n,都有cn≤ck成立?证明你的结论.

19.如图,某生态园欲把一块四边形地BCED辟为水果园,其中∠C=∠D=90°,BC=BD=3,CE=DE=1.若经过DB上一点P和EC上一点Q铺设一条道路PQ,且PQ将四边形BCED分成面积相等的两部分,设DP=x,EQ=y.

(1)求x,y的关系式;

(2)如果PQ是灌溉水管的位置,为了省钱,希望它最短,求PQ的长的最小值;

(3)如果PQ是参观路线,希望它最长,那么P、Q的位置在哪里?

20.设正整数a,b,c满足:对任意的正整数n,an+bn=cn+1.

(1)求证:a+b≥c;

(2)求出所有满足题设的a,b,c的值.

参考答案

一、填空题

1.(-π2,0)

2.1

3.如果两个二面角的两个半平面分别对应垂直,则这两个二面角相等或互补.(答案不唯一)假命题

4.80

5.①④

6.47+47k<147+47k+47k2≥1

7.>

8.1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n

9.(-∞,-23)

10.85或255

11.3+22

12.12(n-2)(n+1)

13.103

14.甲、丙、丁

二、解答题

15.(1)因为mx2-nx-n2<0的解集为{x|-1

所以-1,2是方程mx2-nx-n2=0的两个根.

根据根与系数的关系,有nm=-1+2=1,-n2m=(-1)×2=-2,

解得m=n=2.

(2)m=2,不等式mx2-nx-n2<0即2x2-nx-n2<0,

2x2-nx-n2<0(2x+n)(x-n)<0.

(1)若n=0,则原不等式为2x2<0,解集为.

(2)若n>0,则n-(-n2)=3n2>0,即-n2

(3)若n<0,则n-(-n2)=3n2<0,即-n2>n,原不等式的解集为(n,-n2).

故当n=0时,不等式的解集为;

当n>0时,解集为(-n2,n);

当n<0时,解集为(n,-n2).

16.(1)由an+1=(q-1)Sn+1可得an=(q-1)Sn-1+1(n≥2),

两式相减得an+1-an=(q-1)an,所以an+1=qan(n≥2).

欲使数列{an}等比数列,只需a2=qa1即可,

因为a2=(q-1)S1+1=(q-1)a1+1,所以(q-1)a1+1=qa1,所以a1=1.

若由a22=a1·a3,求出a1=1再验证数列{an}是等比数列,参照上述解法给分.

(2)方法一:若q=1,2S10≠S4+S7,与已知矛盾,故q≠1.

由2S10=S4+S7,得

2a1(1-q10)1-q=a1(1-q4)1-q+a1(1-q7)1-q,

即2a1q8=a1q2+a1q5,即2a9=a3+a6,所以a3,a9,a6成等差数列.

方法二:由S4,S10,S7成等差数列,可得2S10=S4+S7,

因为S7=S4+q4S3,S10=S4+q4S3+q7S3,可得q4S3+2q7S3=0,

因为S3≠0,所以q3=-12,

又2a9-(a3+a6)=a1q2(2q6-q3-1)=0,所以a3,a9,a6成等差数列.

17.(1)若4∈B,则4-a3-a2<0a<-3或3

∴当4B时,实数a的取值范围为[-3,3]∪[4,+∞).

(2)∵A={x|(x-2)(x-3a-1)<0},B={x|a①当a<13时,A=(3a+1,2).

要使BA,必须a≥3a+1a2+1≤2,此时-1≤a≤-12;

②当a=13时,A=,使BA的a不存在;

③当a>13时,A=(2,3a+1),

要使BA,必须a≥2a2+1≤3a+1,此时2≤a≤3.

综上可知,使BA的实数a的取值范围是[2,3]∪[-1,-12].

18.解:(1)∵y=x(x+n)+4x-2=x2+(4+n)x-2在[0,1]上为增函数,

∴an=-2+1+4+n-2=n+1﹒

(2)∵nb1+(n-1)b2+…+bn=(910)n-1+(910)n-2+…+910+1=10[1-(910)n],

∴(n-1)b1+(n-2)b2+…+bn-1+0=10[1-(910)n-1](n≥2)﹒

两式相减得b1+b2+…+bn=(910)n-1(n≥2),

∴b1+b2+…+bn-1=(910)n-2(n≥3).

两式相减得bn=-110·(910)n-2(n≥3).

又b1=1,b2=-110,

∴bn=1,(n=1)-110·(910)n-2,(n≥2,n∈N*).

(3)由cn=-2,(n=1)n+110·(910)n-2,(n≥2,n∈N*)及当k≥3时ckck-1≥1,ckck+1≥1,得k=9或8﹒

又n=1,2也满足,∴存在k=8,9使得cn≤ck对所有的n∈N*成立.

19.(1)延长BD、CE交于点A,则AD=3,AE=2,则S△ADE=S△BDE=

S△BCE=32.

∵S△APQ=3,

∴14(x+3)(y+2)=3,

∴(x+3)(y+2)=43.

(2)PQ2=AP2+AQ2-2AP·AQcos30°

=(x+3)2+(43x+3)2-2×43×32

≥2×43-12=83-12,

当(x+3)2=(43x+3)2,即x=243-3时,

PQmin=83-12=223-3.

(3)令t=(x+3)2,∵x∈[33,3],∴t∈[163,12],(x的范围由极限位置定)

则PQ2=f(t)=t+48t-12,

∵f′(t)=1-48t2,令f′(t)=1-48t2=0,得t=43,

∴f(t)在(0,43)上是减函数,在(43,+∞)上是增函数,

∴f(t)max=max(f(163),f(12)}=f(12)=4,PQmax=2,

此时t=(x+3)2=12,x=3,y=0,P点在B处,Q点在E处.

20.证明:(1)依题意,当n=1时,a+b=c2,

则a+b-c=c2-c=c(c-1),

因为c∈N*,所以c(c-1)≥0,

从而a+b-c≥0,故a+b≥c;

(2)an+bn=cn+1即(ac)n+(bc)n=c,(*)

若a>c,即ac>1,则当n≥logacc时,

(ac)n≥c,而(bc)n>0,于是(ac)n+(bc)n>c,与(*)矛盾;

从而a≤c,同理b≤c.

若a≤c,则0

又c∈N*,故c=1或2,

当c=1时,an+bn=1,而an+bn≥2,故矛盾,舍去;

当c=2时,(ac)n+(bc)n=2,从而ac=bc=1,故a=b=2,

综上,所有满足题意的a,b,c依次为2,2,2.

(作者:夏志勇,海安县曲塘中学)

等比数列的性质练习题 第5篇

题型1已知等比数列的某些项,求某项

【例1】已知an为等比数列,a22,a6162,则a10题型2 已知前n项和Sn及其某项,求项数.【例2】⑴已知Sn为等比数列an前n项和,Sn93,an48,公比q2,则项数n⑵已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.题型3 求等比数列前n项和

【例3】等比数列1,2,4,8,中从第5项到第10项的和.【例4】已知Sn为等比数列an前n项和,an1332333n1,求Sn

【例5】已知Sn为等比数列an前n项和,an(2n1)3n,求Sn.【新题导练】

1.已知an为等比数列,a1a2a33,a6a7a86,求a11a12a13的值.an的前n项和,a23,a6243,Sn364,则n; 2.如果将20,50,100依次加上同一个常数后组成一个等比数列,则这个等比数列的公比为.3.已知Sn为等比数列

4.已知等比数列an中,a21,则其前3项的和S3的取值范围是

5.已知Sn为等比数列

an前n项和,an0,Sn80,S2n6560,前n项中的数值最大的项为54,求S100.考点2 证明数列是等比数列

【例6】已知数列nN.其中为实数,an和bn满足:a1,an12ann4,bn(1)n(an3n21),3

⑴ 对任意实数,证明数列an不是等比数列;

⑵ 试判断数列

bn是否为等比数列,并证明你的结论.1

【新题导练】

6.已知数列{an}的首项a1

22an1,an1,n1,2,3,….证明:数列{1}是等比数列;3an1an

考点3 等比数列的性质

【例7】已知Sn为等比数列

【新题导练】

7.已知等比数列an前n项和,Sn54,S2n60,则S3n.an中,an0,(2a4a2a6)a436,则a3a5.an的前n项和,已知ban2nb1Sn 考点4 等比数列与其它知识的综合 【例8】设Sn为数列

⑴证明:当b

⑵求

【新题导练】

8.设Sn为数列2时,ann2n1是等比数列; an的通项公式 an的前n项和,a1a,an1Sn3n,nN*.n⑴ 设bnSn3,求数列bn的通项公式;

⑵ 若an1

an(nN),求a的取值范围.

7.等差数列

8.已知数列an中,a410且a3,a6,a10成比数列,求数列an前20项的和S20. an的前n项和为Sn,Sn3(an1)nN; 1⑴求a1,a2的值;

⑵证明数列

高中数学必修等比数列练习题 第6篇

高中数学必修等比数列练习题

一、选择题:

1、是 , , 成等比数列的( )

A.充分条件 B.必要条件

C.充要条件 D.既不充分也不必要条件

2、已知 , , , 是公比为2的等比数列,则 等于( )

A.1 B. C. D.

3、已知 是等比数列,且 , ,那么 的值是( )

A.5 B.6 C.7 D.25

4、在等比数列 中,已知 , ,则该数列前5项的积为( )

A. B.3 C.1 D.

5、的三边 , , 既成等比数列又成等差数列,则三角形的形状是( )

A.直角三角形 B.等腰三角形

C.等腰直角三角形 D.等边三角形

6、在等比数列 中, ,则 等于( )

A.1023 B.1024 C.511 D.512

7、三个数成等比数列,其积为1728,其和为38,则此三数为( )

A.3,12,48 B.4,16,27 C.8,12,18 D.4,12,36

8、一个三角形的三内角既成等差数列,又成等比数列,则三内角的公差等于( )

A. B. C. D.

9、等差数列 中, , , 恰好成等比数列,则 的值是( )

A.1 B.2 C.3 D.4

10、某种电讯产品自投放市场以来,经过三年降价,单价由原来的174元降到58元,这种电讯产品平均每次降价的百分率大约是( )

A.29% B.30% C.31% D.32%

11、若log4(x+2y)+log4(x-2y)=1,则∣x∣-∣y∣的最小值是。

12、使不等式sin2x+acosx+a21+cosx对一切xR恒成立的.负数a的取值范围是 。

二、解答题(本题满分60分,每小题20分)

13、已知点A(0,2)和抛物线y2=x+4上两点B,C使得ABBC,求点C的纵坐标的取值范围。

14、如图,有一列曲线P0,P1,P2……,已知P0所围成的图形是面积为1的等边三角形,Pk+1是对Pk进行如下操作得到:将Pk的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(k=0,1,2,)。记Sn为曲线Pn所围成图形的面积。

(1) 求数列{Sn}的通项公式;

(2) 求limSn.

n

15、设二次函数f(x)=ax2+bx+c(a,b,cR,a0)满足条件:

(1) 当xR时,f(x-4)=f(2-x),且f(x)

(2) 当x(0,2)时,f(x)((x+1)/2)2;

(3) f(x)在R上的最小值为0.

等比数列前n项和练习一 第7篇

1.数列111

2,4,8,…的前10项和等于()A.1B.5111023D.11024 512C.1024512

2.已知Sn是等比数列{an}的前n项和,a5=-2,a8=16,则S6等于()A.21B.-2117D.-1788C.88

3.在等比数列{an}中,公比q=-2,S5=44,则a1的值为()A.4B.-4C.2D.-2

4.在等比数列{a=8,q=11

n}中a12,an=2,则Sn等于()

A.31B.31

2C.8D.15

5.设S}的前n项和,8a0,则Sn为等比数列{an2+a5=S2

=()

A.11B.5C.-8D.-116.已知数列{an}为等比数列,Sn是它的前n项和,若a2·a3=2a1,且a4与2a7 的等差中项为5

4S5=()A.35B.33C.31D.29

7.在等比数列{a=1

n}中,q2S5=2,则a1等于________

8.等比数列{an}中,a2=9,a5=243,数列{an}的前4项之和为 9.设等比数列{an}的前n项和为Sn.若a1=1,S6=4S3,则a4=__________ 10.在等比数列{an}中,a3=-12,前3项和S3=-9,求公比q.11.等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列.

(1)求{an}的公比q;(2)若a1-a3=3,求Sn.12.已知等比数列an中,a2=2,a5=128(1)求通项an

等比数列练习 第8篇

关键词:等比数列;通项公式;前 项和公式;广义公式

中图分类号:G642 文献标识码:A 文章编号:1002-7661(2011)12-020-01

例题:设等比数列 的公比 ,前 项和为 ,则为多少?

分析:题中要求的是 的“值”,在已知条件中, 是“唯一”的一个已知量,由此判定要求的 肯定和q有关系,因此需建立一个 与 的关系,由于数列 是等比数列,容易联想到等比数列前 项和公式:

以及通项公式:.

除以 ,发现 可以转化为只与 有关的表达式,即

此外, , .

从而 ,进而由 易知 .

解:法一: 设等比数列 的首项为 ,

又 .

法二:设等比数列 的首项为

因,

所以, 将 代入,即得

总结:方法一从等比数列通项公式和前n项和公式出发,分别表示的分母和分子,拆解表达式,进而找到 与已知量q之间的关系式;法二从 出发,用 表达 .主要运用避重就轻、化繁为简的思想。

思考:在例题条件下, ?

显然, 是可以用以上两方法进行求解。这是因为 与 均可由 与 表示为 ( 表示 的函数).解答等比数列问题,常常需要对通项公式和前n项和公式进行变形,下面从例题的角度推导出等比数列的广义公式.

等比数列通项公式: .

(因 时,等比数列为常数列,故以下讨论中不考虑此情况.)

由(1)有, ,两式作商化简:

等比数列前 项和公式:

(2)式中令 代入(3)式,化简:

在例题条件下,由公式(4)得:

,即 .

综上所述,等比数列通项公式、前 项和公式的广义公式分别如下:

等差与等比数列综合专题练习题 第9篇

值时,n=()A.11a<-1,且它的前n项和Sn有最大值,那么当Sn取得最小正a10

anB.17C.19D.21 2.已知公差大于0的等差数列{

求数列{an}的通项公式an. }满足a2a4+a4a6+a6a2=1,a2,a4,a8依次成等比数列,3.已知△ABC中,三内角A、B、C的度数成等差数列,边a、b、c依次成等比数列.求证:△ABC是等边三角形.

4.设无穷等差数列{an}的前n项和为Sn.是否存在实数k,使4Sn=(k+an)2对一切正整数n成立?若存在,求出k的值,并求相应数列的通项公式;若不存在,说明理由.

答:存在k=0,an=0或k=1,an=2n-1适合题意.

5.设数列{an}的前n项和为Sn,已知a1=1,Sn=nan﹣2n(n﹣1),(n∈N*)(Ⅰ)求证数列{an}为等差数列,并写出通项公式;(Ⅱ)是否存在自然数n,使得S1S22S3

3Sn

n400?

若存在,求出n的值;若不存在,说明理由;

6.已知等差数列{an}的前n项和为Sn,且S10=55,S20=210.(1)求数列{an}的通项公式;

a(2)设bnm、k(k>m≥2,m,k∈N*),使得b1、bm、bk成等比数列?若存在,an+1

求出所有符合条件的m、k的值;若不存在,请说明理由.

2a1+9d=11a1=1,解:(1)设等差数列{an}的公差为d,即,解得所以an=a1+(n-1)d2a1+19d=21d=1.**2=n(n∈N).(2)假设存在m、k(k>m≥2,m,k∈N),使得b1、bm、bk成等比数列,则bm=

an1mkm21kb1bk.因为bn=,所以b1=,bm=,bk=所以(=×.整理,22k+1an+1n+1m+1k+1m+1

2m2

得k=-m+2m+1

以下给出求m、k的方法:因为k>0,所以-m2+2m+1>0,解得1-2

已知二次函数y=f(x)的图象经过坐标原点,其导函数为f(x)=3x2-2x,.数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上

3m(1)求数列{an}的通项公式;(2)设bn=,Tn是数列{bn}的前n项和,求使得Tn<对所20anan+1

有n∈N*都成立的最小正整数m.17.已知点(1是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)3

-c,数列{bn}的首项为c,且前n项和Sn满足Sn-Sn-1Sn+Sn+1(n≥2).(1)求数列{an}

11000和{bn}的通项公式;(2)若数列{前n项和为Tn,问Tn>n是多少? 2009bnbn+1

8.已知定义域为R的二次函数f(x)的最小值为0,且有f(1+x)=f(1-x),直线g(x)=4(x-1)的图象被f(x)的图象截得的弦长为4,数列{an}满足a1=2,(an+1-an)g(an)+f(an)=0

等比数列练习 第10篇

【说明】 本试卷满分100分,考试时间90分钟.一、选择题(每小题6分,共42分)

1.等差数列{an}前四项和为40,末四项和为72,所有项和为140,则该数列共有()A.9项 B.12项 C.10项 D.13项 【答案】C 【解析】∵a1+a2+a3+a4=40, an+an-1+an-2+an-3=72.∴a1+an=4072=28.4又n(a1an)=140, 2故n=10.*2.给出下列等式:(ⅰ)an+1-an=p(p为常数);(ⅱ)2an+1=an+an+2(n∈N);(ⅲ)an=kn+b(k,b为常数)则无穷数列{an}为等差数列的充要条件是()A.(ⅰ)B.(ⅰ)(ⅲ)C.(ⅰ)(ⅱ)D.(ⅰ)(ⅱ)(ⅲ)【答案】D

2【解析】易知三个都是,另外还有一个常见的是{an}的前n项和Sn=an+bn,(a,b为常数).3.等差数列{an}中,若a1+a4+a7=39,a3+a6+a9=27,则前9项的和S9等于()A.66 B.99 C.144 D.297 【答案】B 【解析】a1+a4+a7=39a4=13,a3+a6+a9=27a6=9,S9=9(a1a9)9(a4a6)=99.224.等差数列{an}的公差为d,前n项的和为Sn,当首项a1和d变化时,a2+a8+a11是一个定值,则下列各数中也为定值的是()

A.S7 B.S8 C.S13 D.S15 【答案】C 【解析】因a2+a8+a11=3a7,故a7为定值.又S13=13(a1a13)=13a7, 2∴选C.5.已知数列{an}中,a3=2,a7=1,又数列{

1}是等差数列,则a11等于()an1A.0 B.【答案】B C.D.-1 23-1

值为_________________.【答案】5 【解析】当x1+x2=1时,f(x1)+f(x2)4x14x224x1x22(4x14x2)=x=1.x2x1x2x1x2142424(44)241210)+f()+…+f(),倒序相加有 ***S=[f()+f()]+[f()+f()]+…+[f()+f()]=10.111111111111设S=f(即S=5.10.数列1,2+3,4+5+6,7+8+9+10,…,的一个通项公式an=__________________.n(n21)【答案】

2【解析】前n项一共有1+2+3+…+n=

n(n1)n(n1)个自然数,设Sn=1+2+3+…+n=,则 22an=Sn(n1)Sn(n1)22n(n1)n(n1)n(n1)n(n1)[1][1]n(n21)2222.22

2三、解答题(11—13题每小题10分,14题13分,共43分)

11.{an}是等差数列,公差d>0,Sn是{an}的前n项和,已知a2a3=40,S4=26.(1)求数列{an}的通项公式an;(2)令bn=1,求数列{bn}的所有项之和T.anan14(a1+a4)=2(a2+a3)=26.2【解析】(1)S4=又∵a2a3=40,d>0,∴a2=5,a3=8,d=3.∴an=a2+(n-2)d=3n-1.(2)bn=11111()=anan1(3n1)(3n2)33n13n2***n]().3(n1)3n2323n22(3n2)Tn=[()()2

2113212.已知f(x)=x-2(n+1)x+n+5n-7,(1)设f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列;(2)设f(x)的图象的顶点到x轴的距离构成{bn},求{bn}的前n项和.2(1)证明:f(x)=[x-(n+1)]+3n-8, ∴an=3n-8.∵an-1-an=3, ∴{an}为等差数列.

∴a1=22a1-2,解得a1=2.当n=2时,有a2=22S2-2,S2=a1+a2, 将a1=2代入,整理得(a2-2)=16, 由a2>0,解得a2=6.当n=3时,有a3=22S3-2,S3=a1+a2+a3, 将a1=2,a2=6代入,整理得(a3-2)=64, 由a3>0,解得a3=10.所以该数列的前三项分别为2,6,10.(2)由an=22Sn-2(n∈N),整理得Sn=

*

等比数列练习 第11篇

1、在等比数列{an}中,公比q=2,且a1a2a3a30230,则a3a6a9a30等于()

A、2B、2C、2D、22、每次用相同体积的清水洗一件衣物,且每次能洗去污垢的102016153,若清洗n次后,存留的污垢在1%以4

下,则n的最小值为()A、2B、3C、4D、63、若实数a、b、c成等比数列,则函数yax2bxc与x轴的交点的个数为()

A.0B.1C.2D.无法确定

4、某种商品投产后,计划两年后使成本降低36%,那么平均每年应降低成本()

A、18%B、20%C、24%D、3%

5、若{an}是等比数列,a4a7512,a3a8124且公比q为整数,则a10等于()

A、-256B、256C、-512D、5126、在等比数列{an}中,a3 和 a5 是二次方程 xkx50 的两个根,则a2a4a6的值为()

(A)55(B)55(C)5(D)257、已知an是等比数列,a22,a521,则a1a2a2a3anan1()4

3232nA.1614nB.1612nC.D.1412n338、三个数的比值为3:5:11,各减去2后所得的三数成等比数列,则原来三个数的和为______

9、正项等比数列{an}其中a2a511则lga3lga4_______。

10、已知数列{an}前n项和Snn2n1,那么它的通项公式an_____

11、在等差数列an中,a1,a2,a4这三项构成等比数列,则公比q。

xbx10的四个根组成以2为公比的等比数列,12、设两个方程xax10、则ab________。

13已知关于x的二次方程anx2an1x10(nN)的两根,满足6263,且a11

第18讲 等差数列、等比数列 第12篇

等差数列和等比数列与高中数学的有些章节具有相应的应用与交汇.各地以往的高考中一般在选择题、填空题中考查等差(比)数列的定义、基本量的运算和特有性质,而在解答题中考查等差(比)的判断与证明、求通项公式、与函数及不等式的综合考查等.

统计表明,各地高考试卷大多设置一大一小两题,涉及该讲知识的大约10分.其中的小题,并多在选择题居中的位置,或填空题靠后的位置,一般为基本运算或类比推理等.而大题位置靠前,并设置在本道题的第一小问,一般以考查等差(比)基础知识和基本运算为主,更多地是为第二问及以后的运算解答提供支持与铺垫.

各地文、理科试卷在选择部分与大题中出现时的差别不大,往往文理科试卷题完全一样,而若以填空题出现时文理通常以姊妹题的方式出现.

命题特点

等差、等比数列是一个重要的数列类型,高考命题主要考查等差、等比数列的概念、基本量的运算及由概念推导出的一些重要性质,灵活运用这些性质解题,可达到避繁就简的目的.解等差、等比数列的问题时,通常考虑两类方法:①基本量法,即运用条件转化成关于[a1]和[d](或[q])的方程(组);②巧妙运用等差、等比数列的性质.

1. 等差、等比数列的基本运算

例1 等比数列[x,3x+3,6x+6,…]的第四项等于 ( )

A.-24 B.0

C.12 D.24

解析 因为[x,3x+3,6x+6,…]成等比,则[(3x+3)2=x(6x+6)],解得:[x=-3].由等比数列性质[a1?a4=a2?a3]得:[-3×a4=-6×(-12)],解得第四项等于-24.

点拨 解决特殊数列——等差或等比数列的基本运算问题的关键是利用好公式.以本题为例,首先利用等比中项知识建立了关于未知数[x]的方程,再利用等比的性质:当正整数[p,q,r,s]满足[p+q=r+s]时,[ap?aq=ar?as],从而获解.

例2 已知[△ABC]的一个内角为[120°],并且三边长构成公差为4的等差数列,则[△ABC]的面积为________.

解析 设三边长分别为[a-4,a,a+4(a>4)],显然边[a+4]所对的内角为[120°],由余弦定理得:[(a+4)2=a2+(a-4)2-2a(a-4)cos120°?a=10],即三边长为[6,10,14],因此[SΔABC=12×10×6sin120°=153].

点拨 本题对三角形三边赋值时采用了常用的技巧——对称设法,此时三个数成等差时设为:[a-d,a,a+d;]四个数成等差可设为:[a-3d,a-d,a+d,a+3d]等.

例3 对于整数数列[an],如果[ai+i][(i=1,2,3,…)]为完全平方数,则称数列[an]具有“高大上品质”.不论数列[an]是否具有“高大上品质”,如果存在与[an]不是同一数列的[bn],且[bn]同时满足下面两个条件:①[b1,b2,b3,...,bn]是[a1,a2,a3,...,an]变换次序后的另一个排列;②数列[bn]具有“高大上品质”,则称数列[an]具有“高大上潜质”.下面三个数列:①数列[an]的前[n]项和[Sn=n3(n2-1)];②数列1,2,3,4,5;③1,2,3,…,11.具有“高大上品质”的为________;具有“高大上潜质”的为___________.

解析 对于①,当[n≥2]时,[an=Sn-Sn-1=n2-n,]又[a1=0],[所以an=n2-n(n∈N*)].所以[ai+i=i2(i=1,2,3,…)]是完全平方数,数列[an]具有“高大上品质”.对于②,数列1,2,3,4,5具有“高大上潜质”,数列[bn]为3,2,1,5,4.对于③,数列1,2,3,…,11不具有“高大上潜质”,因为11,4都只有5的和才能构成完全平方数,所以数列1,2,3,…,11不具有“高大上潜质”.故具有“高大上品质”的为①;具有“高大上潜质”的为②.

点拨 本题是由数列的基础知识引出的一种探索问题,构思起点高,但解决问题的手段很常规.考生在碰到此类问题时要细致品味个中涵义,不能被表面的文章所禁锢.

2. 等差、等比数列的判定

等差、等比数列的判定通常作为解答题的第1问来考查,一般用下面的基本方法来判定:①利用定义:[an+1-an=]常数,或[an+1an=]常数;②利用中项的性质:[2an=an-1+an+1(n≥2)]或[a2n=an-1?an+1(n≥2)].

例4 已知数列[an]满足:[a1=1,a2=3],且[an+2=3an+1-2an],令[bn=an+1-an].

(1)证明:数列[bn]是等比数列;

(2)求数列[an]的通项公式.

解析 (1)因为[an+2=3an+1-2an],

∴[an+2-an+1=2(an+1-an)].

又因为[a1=1,a2=3],所以[b1=a2-a1=2],则[bn+1bn=2].

故数列[bn]是首项为[2],公比为2的等比数列.

(2)由(1)得,[bn=2n],

所以[an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1]

[=bn-1+bn-2+b1+a1][=2n-1+2n-2+…+2+1=2n-1].

点拨 本题主要考查等比数列的判定及数列求和,同时考查推理论证能力及转化化归能力.

3. 创新与拓展

例5 古希腊毕达哥拉斯学派的数学家研究过各种多边形数. 如三角形数1,3,6,10,[1,a1,a3],第[n]个三角形数为[n(n+1)2=12n2+12n]. 记第[n]个[k ]边形数为[N(n,k) (k≥3)],以下列出了部分[k ]边形数中第[n]个数的表达式:

nlc202309032100

三角形数 [N(n,3)=12n2+12n],

正方形数 [N(n,4)=n2],

五边形数 [N(n,5)=32n2-12n],

六边形数 [N(n,6)=2n2-n],

可以推测[N(n,k)]的表达式,由此计算[N(10,24)=]_________.

解析 三角形数[N(n,3)=12n2+12n],正方形数[N(n,4)=n2=(12+12︸2×12)n2+(12-12)n,],五边形数[N(n,5)=32n2-12n=(12+12+12︸3×12)n2+(12-12-12)n],六边形数[N(n,6)=2n2-n=(12+12+12+12︸4×12)n2+(12-12-12-12︸2×(-12))n],

推测[k]边形

[N(n,k)=(12+12+...+12+12︸(k-2)×12)n2+(12-12-12-12-...-12︸(k-4)×(-12))n][=12(k-2)n2-12(k-4)n].

所以[N(10,24)=12×(24-2)×102-12×(24-4)×10]

[=1100-100=1000].

点拨 对课本上出现的三角形数、四边形数加以引申与拓展,利用类比和推理的方式思考问题,展现出数学学习中不断深化、不断提高、循序渐进的理念.对问题的不断探求有助于加深我们对基础知识的认知.

备考指南

(1)要把握基础知识, 在复习时,首先要把握好等差、等比数列的概念与通项公式的推导方法,熟练掌握它们基本量与其他量间的互化关系.同时要熟练并准确掌握与之相关的等差、等比中项概念与运算公式等.

(2)重点掌握等差、等比数列各自特殊的性质,并达到准确熟练运用的能力.

(3)善于利用类比和归纳推理的方法将非等差(比)数列,通过适当变形、换元等方式,从而转化变成等差(比)数列,达到从一般到特殊的转化目标.

限时训练

1.在等差数列[an]中,[a3+a4+a5=12],那么[a1+a2+…+a7=] ( )

A.14 B.21 C.28 D.35

2.在[a,b]之间插入[n]个数构成等差数列,则其公差为 ( )

A.[b-an] B.[a-bn+1] C.[b-an+1] D.[b-an-1]

3. 在等比数列[an]中,已知[a1=19,a5=9] ,则[a3=] ( )

A.1 B.3 C.[±1] D.[±3]

4. 数列[an]是公差不为0的等差数列,且[a1,a3,a7]为等比数列[bn]的连续三项,则数列[bn]的公比为 ( )

A. [2] B. [4] C. [2] D. [12]

5. 如果[-4,a,b,c,-9]成等比数列,那么 ( )

A. [b=6,ac=36] B. [b=-6,ac=36]

C.[b=±6,ac=-36] D. [b=±6,ac=36]

6. 数列[an]的首项为3,[bn]为等差数列且[bn=an+1-an],若[b3=-2,b10=12],则[a8=] ( )

A. 0 B. 3 C. 8 D. 11

7. 两个正数[a,b(a>b)]的等差中项是[52],[-6]是它们的等比中项,则双曲线[x2a2-y2b2=1]的离心率[e]= ( )

A. [52] B. [132] C. [53] D. [133]

8. 已知方程[(x2-2x-m)(x2-2x+n)=0]的四个根组成一个首项为[14],公差为正的等差数列,则[m-n=] ( )

A. [-118] B. [±118] C. [±12] D. [12]

9. 已知等比数列[an],记[bn=am(n-1)+1+am(n-1)+2+...][+am(n-1)+m],[cn=am(n-1)+1?am(n-1)+2?...?am(n-1)+m(m,n∈N*)],记公比为[q],则一定正确的是 ( )

A. 数列[bn]为等差数列,公差为[qm]

B. 数列[bn]为等比数列,公比为[q2m]

C. 数列[cn]为等比数列,公比为[qm2]

D. 数列[cn]为等比数列,公比为[qmm]

10.已知数列[an]满足[3an+1+an=0,a2=-43,]则[an]的前10项积等于 ( )

A.[31-3-10] B.[31+3-10]

C.[-410345] D.[410345]

11.若[2,a,b,c,9]成等差数列,则[c-a=]_________.

12.设等比数列[an]的首项为[1],公比为[-2],则[a1+|a2|+a3+|a4|=]_________.

13.等差数列[an]中,公差[d≠0],且[2a3-a72+2a11=0],数列[bn]是等比数列,且[b7=a7],则[b6b8]=___________.

14.观察下列等式:

(1+1)=2×1

(2+1)(2+2)=[22×1×3]

(3+1)(3+2)(3+3)=[23×1×3×5]

照此规律, 第[n]个等式可为________.

15.已知等差数列[an]的公差[d=1],前[n]项和为[Sn].

(1)若[1,a1,a3]成等比数列,求[a1];

(2)若[S5>a1a9],求[a1]的取值范围.

16. 已知数列[an]满足:[a1=1,a2=a(a>0).]数列[bn]满足[bn=anan+1].

(1)若[an]是等差数列,且[b3=12,]求[a]的值及[an]的通项公式;

(2)当[bn]是公比为[3a+4]的等比数列时,[an]能否能构成等比数列?若能,求出[a]的值;若不能,请说明理由.

17. 等差数列[an]的前[n]项和为[Sn],已知[a1=2,][S6=22].

(1)求[Sn];

(2)若从[an]中抽取一个公比为[q]的等比数列[akn],其中[k1=1],且[k1

18. 给定常数[c>0],定义函数[f(x)=2|x+c+4|-|x+c|],数列[a1,a2,a3,…]满足[an+1=f(an),n∈N*].

(1)若[a1=-c-2],求[a2]及[a3];

(2)求证:对任意[n∈N*,an+1-an≥c];

(3)是否存在[a1],使得[a1,a2,…an,…]成等差数列?若存在,求出所有这样的[a1],若不存在,请说明理由.

上一篇:文言文阅读、分析、概括设题类型下一篇:《小黄鸡和小黑鸡》教学反思