功能高分子材料提纲

2024-08-02

功能高分子材料提纲(精选6篇)

功能高分子材料提纲 第1篇

论文

(理工类)

课程名称:____ 功能高分子材料概论_ ___ 论文题目:__ 生物医用高分子材料的现状、研究进展 学 院: 先进材料与能源中心 ______ 学生姓名:_ 陈____俊 _______ 学

号: 2120*** ______ 完成时间: 2013 年 12月15日___ ________

摘要:了解生物医用功能高分子材料近年来的现状、发展方向及应用研究,综述国内外生物医用高分子材料的分类、特性及研究成果,展望对未来的生物医用高分子材料的发展趋势,通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。

关键词:功能高分子材料;生物医用高分子材料 生物医用高分子材料的现状

生物医用高分子材料(Poly-meric biomaterials)是指在生理环境中使用的高分子材料[1],它们中有的可以全部植入体内,有的也可以部分植入体内而部分暴露在体外, 或置于体外而通过某种方式作用于体内组织。医用高分子材料需长期与人体体表、血液、体液接触, 有的甚至要求永久性植入体内[2]。因此,这类材料必须具有优良的生物体替代性(力学性能、功能性)和生物相容性[3]。生物医用高分子材料需要满足的基本条件:在化学上是不活泼的,不会因与体液或血液接触而发生变化;对周围组织不会引起炎症反应;不会产生遗传毒性和致癌;不会产生免疫毒性;长期植入体内也应保持所需的拉伸强度和弹性等物理机械性能;具有良好的血液相容性;能经受必要的灭菌过程而不变形;易于加工成所需要的、复杂的形态[4]。医用高分子材料的特殊要求

医用高分子材料是要用在人身上的, 必须对人体组织无害, 所以对其要求十分严格, 总体上可以概括为以下四个方面: 1)生物功能性: 因各种生物材料的用途而异,如: 作为缓释药物时, 药物的缓释性能就是其生物功能性。

2)生物相容性: 可概括为材料和活体之间的相互关系, 主要包括血液相容性和组织相容性。组织相容性主要指无毒性, 无致癌性, 无热原反应, 无免疫排斥反应, 不破坏邻近组织等。血液相容性一般指不引起凝血, 不破坏红细胞, 不破坏血小板, 不改变血中蛋白, 不扰乱电解质平衡。

3)化学稳定性: 耐生物老化性或可生物降解性。对于长期植入的医用高分子材

料, 生物稳定性要好;对于暂时植入的医用高分子材料, 则要求在确定时间内降解为无毒的单体或片段.通过吸收、代谢过程排出体外。

4)生产加工性:首先, 严格控制用于合成医用高分子材料的原料纯度, 不能带入有害物质, 重金属含量不能超标;其次, 材料加工助剂必须符合医用标准;第三, 对于体内应用的高分子材料, 生产环境应当具有符合标准的洁净级别;第四, 便于消毒灭菌(紫外灭菌、高压煮沸、环氧乙烷气体消毒和酒精消毒等)。正因为对于医用高分子材料的要求严格, 相关的研发周期一般较长, 需要经过体外实验、动物实验、临床实验等不同阶段的试验, 材料市场化需要经国家药品和医疗器械检验部门的批准, 且报批程序复杂, 费用高。这也是生物材料的市场价格居高不下的一个重要原因。生物医用高分子材料的种类

生物医用高分子材料按性质可分为非降解和可生物降解两大类。非生物降解的生物医用高分子包括:聚乙烯、聚丙烯、聚丙烯酸酯、芳香聚酯、聚硅氧烷、聚甲醛等,其在生理环境中能长期保持稳定,不发生降解、交联或物理磨损等,并具有良好的力学性能。可生物降解的生物医用高分子材料则包括胶原、脂肪族聚酯、聚氨基酸、聚己内酯等,这些材料能在生理环境中发生结构性破坏,且降解产物能通过正常的新陈代谢被基体吸收或排出体外。非降解和可生物降解生物医用高分子材料在生物医学领域各具有自己独特的发展地位,然而,随着生物医学和材料科学的发展,人们对生物医用高分子材料提出了更高的要求,可生物降解生物医用高分子材料越来越得到人们的亲睐。因此,在这里主要讨论可生物降解医用高分子材料的种类。

根据来源来划分,可生物降解医用高分子材料可分为天然可生物降解和合成可生物降解两大类。生物医用高分子材料的应用

根据不同的角度、目的甚至习惯,医用高分子材料应用有不同的分类方法,尚无统一标准。主要在人造器官、人造组织、以及其它的一些高分子药剂等。4.1人造器官

(1)人工肾:四十年前荷兰医生用赛璐洛玻璃纸作为透析膜, 成功地滤除了患者血液中的毒素。目前人工肾以中空丝型最为先进, 其材质有醋酸纤维, 赛

璐洛和聚乙烯醇。其中以赛璐路居多, 占98%, 它是一种亲水性的、气体和水都能通过的材料, 同时要求有很好的选择过滤性, 病人的血液从人工肾里流过由它们所构成的中空丝膜, 就可将尿素、尿酸,Ca2+等物质通过, 并留在人工肾里继而排出, 而人体所需的营养、蛋白质却被挡住,留在血液里返回人体, 从而对血液起到过滤作用, 目前中空纤维膜已在西德的恩卡公司、日本旭化成和夕沙毛公司研究成功, 并用于工业化生产。(2)人工肺:人工肺并不是对于人体肺的完全替代,而是体外执行血液氧交换功能的一种装置,目前以膜式人工肺最为适合生理要求,它是以疏水性硅橡胶, 聚四氟乙烯等高分子材料制成。(3)人工心脏:1982年美国犹他大学医疗中心, 成功地为61岁的牙科医生克拉克换上了Jarvak一7型人工心脏, 打破了人造心脏持久的世界纪录, 美国人工心脏专家考尔夫博士指出闭,人工心脏研制成功与否取决于找到合适的弹性体, 作为人工心脏主体心泵的高分子材料,现在所用的材料主要为硅橡胶。(4)其它,如人工心脏瓣膜、心脏起搏器电极的高分子包覆层、人工血管、人工喉、人工气管、人工食管、人工膀胱等。4.2人造组织

指用于口腔科、五官科、骨科、创伤外科和整型外科等的材料,包括:(1)牙科材料:主要采用聚甲基丙烯酸甲酯系、聚砜和硅橡胶等,如蛀牙填补用树脂、假牙和人工牙根、人工齿冠材料和硅橡胶牙托软衬垫等;(2)眼科材料:这类材料特别要求具有优良的光学性质、良好的润湿性和透氧性、生物惰性和一定的力学性能,主要制品有人工角膜(PTFE、PMMA)、人工晶状体(硅油、透明质酸水溶液)、人工玻璃体、人工眼球、人工视网膜、人工泪道、隐型眼镜(PMMA、PHEMA、PVA)等;;(3)骨科材料:人工关节、人工骨、接骨材料(如骨钉)等,原材料主要有高密度聚乙烯、高模量的芳香族聚酰胺、聚乳酸、碳纤维及其复合材料;(4)肌肉与韧带材料:人工肌肉、人工韧带等,原材料有PET、PP、PTFE、碳纤维等;(5)皮肤科材料:人工皮肤,含层压型人工皮肤、甲壳素人工皮肤、胶原质人工皮肤、组织膨胀器。4.3药用高分子

(1)高分子缓释药物载体:药物的缓释是近年来人们研究的热点。目前的部分药物尤其是抗癌药物和抗心血管病类药物(如强心苷)具有极高的生物毒性而

较少有生物选择性,通常利用生物吸收性材料作为药物载体,将药物活性分子投施到人体内以扩散、渗透等方式实现缓慢释放。通过对药物医疗剂量的有效控制,能够降低药物的毒副作用,减少抗药性,提高药物的靶向输送,减少给药次数,减轻患者的痛苦,并且节省财力、人力、物力。目前存在时间控制缓释体系(如“新康泰克”等,理想情形为零级释放)、部位控制缓释体系(脉冲释放方式)。近年来研究较多的是利用聚合物的相变温度依赖性(如智能型凝胶),在病人发烧时按需释放药物,还有利用敏感性化学物质引致聚合物相变或构象改变来释放药物的物质响应型释放体系。(2)高分子药物(带有高分子链的药物和具有药理活性的高分子):如抗癌高分子药物(非靶向、靶向)、用于心血管疾病的高分子药物(治疗动脉硬化、抗血栓、凝血)、抗菌和抗病毒高分子药物(抗菌、抗病毒、抗支原体感染)、抗辐射高分子药物、高分子止血剂等。将低分子药物与高分子链结合的方法有吸附、共聚、嵌段和接枝等。第一个实现高分子化的药物是青霉素(1 962年),所用载体为聚乙烯胺,以后又有许多的抗生素、心血管药和酶抑制剂等实现了高分子化。天然药理活性高分子有激素、肝素、葡萄糖、酶制剂等。生物医用高分子材料的发展方向

(1)可生物降解医用高分子材料因其具有良好的生物降解性和生物相容性而受到高度重视, 无论是作为缓释药物还是作为促进组织生长的骨架材料, 都将得到巨大的发展。

(2)1906 年En rililich 首次提出药物选择性地分布于病变部位以降低其对正常组织的毒副作用, 使病变组织的药物浓度增大, 从而提高药物利用率这一靶向给药的概念。此后一个世纪以来, 靶向药物的载体材料一直吸引了医药工作者的兴趣。其中高分子纳米粒子以其特有的优点是近年来国内外一个极为重要的研究热点。

(3)任何一种材料都是通过其表面与环境介质相接触的, 因此材料的开发与应用必然涉及其表面问题的研究。一般高分子材料的表面对外界响应性较弱, 但有些高分子表面的结构形态会因外界条件(如pH、温度、应力、光及电场等)的改变在极短时间内发生相应的变化, 从而造成表面性质的改变, 此乃智能高分子表面。因此设计这类智能表面将是生物医用高分子材料发展的一个重要方面。

(4)随着科学的发展,由高分子材料制成的人工脏器正在从体外使用型向内

植型发展,为满足医用功能性、生物相容性的要求,把酶和生物细胞固定在合成高分子材料上,从而制成各种脏器,将使生物医用高分子材料发展前景越来越广阔。

(5)通常,在组织工程的应用中,高分子材料支架要负载上生长因子,以促进组织在生物体内的再生,另一方面,把特殊的粘附因子,如粘连蛋白结合到支架上,可使聚合物表面能够促进对某种细胞的粘附,而排斥其它种类的细胞,即支架对细胞进行有选择的粘附。为了使生长因子和粘附因子能够结合到可降解高分子材料上,就需要对材料进行表面改性,而有时表面改性很困难, 因此,可利用与天然聚合物杂化的方法来达到上述目的, 同时由于这些材料有良好的机械性能,又可以弥补天然聚合物强度不高、稳定性差的缺点。可见,生物杂化材料在这方面的表现是相当突出的, 必将成为医用生物高分子材料发展的一个主要趋势。

6.生物医用高分子材料的研究进展

近年来, 美国、欧洲和日本对生物医用高分子材料的研究与开发突飞猛进, 从人工器官到高效缓释高分子药物都取得了很多成果和巨大效益。据美国健康工业制造者协会资料报告, 1995 年世界市场达1 200 亿美元, 美国为510 亿美元, 预计在21 世纪将成为国民经济的支柱产业。

目前, 除人脑外的大部分人体器官都可用高分子材料来制作, 有保健作用的功能高分子也在开发之中。目前植入的人工器官市场已达30 亿美元/ a,人工心脏导管市场的年增长率为10 %, 1999 年达到6 亿美元。预计药物释放系统的营业额将1993 年的50 亿美元增长到2000 年的70 亿美元。目前, 生物材料制品的总产值已达40 亿美元, 其中生物高分子及制品的产值为25 亿美元。据统计: 截至1990 年, 美国、日本和西欧等国发表的有关医用高分子的学术论文和专利已超过3 万篇。

我国生物医学高分子研究起步较晚。自20 世纪70 年代末起, 北京大学和南开大学从事这一领域的研究。“九五”期间由何炳林与卓仁禧主持的国家自然科学基金重大项目组织大批科研力量进行研究, 在此领域取得了显著成绩。1998 年“生物医学高分子”项目获教育部科技进步一等奖。例如, 冯新德等设计合成的链段化聚醚氨酯以及由铈离子引发的接枝聚合物, 具有良好的抗凝血性能;通过丙交酯与己内酯的开环共聚合反应制备了恒速降解的生物降解高分子, 可用作药物缓释材料。何炳林等根据分子识别原理设计合成的血液净化材料不仅可通

过血液灌流清除肝衰竭[5]、肾衰竭、自免疫疾病患者体内积蓄的内源性物质[6] , 而且还可以救治安眠药等药物中毒患者, 已在临床试用千余例;在医用固定化酶和高分子修饰酶研究中, 发展了若干有效的反应方法, 使生物高分子保持高活性的前提下达到较高的固载量[7]。卓仁禧等不仅设计合成了大量的始于药物控释的生物降解聚磷酸酯, 而且发展了以4-二甲氨基吡啶催化磷酸酯的缩聚反应制备高分量聚磷酸酯[8] 和用脂肪酶催化含磷杂环化合物的开环聚合方法[9] , 并研究发现聚磷酸酯的免疫活性[10]。林思聪等提出设计抗凝血材料的表面结构的“维持正常构象”假说, 并发展了聚氨酯、聚硅氧烷、聚烯烃的表面接枝反应, 合成了多种表面抗凝血性能良好的新材料[11]。这些研究成果不仅在国际上产生了重要影响, 而且对于我国生物医用高分子领域的发展奠定了基础。如1988 年在昆明召开了国际高分子生物材料讨论会, 它是继在日本召开的Biomaterial Congress的Post-symposium。此外, 在天津、桂林、武汉、昆明也召开过多次国际生物医学高分子讨论会。目前, 国内主要有十几个高校和研究机构从事生物医用高分子研究, 研究队伍不断扩大, 研究方向几乎包括生物医用高分子的各个方面。

参考文献

[1] 凌绳,等.聚合物材料[M].北京:中国轻工出版社,2000,204.[2] 郑玉峰,李莉.生物医用材料学[M].哈尔滨工业大学出版社,2005,8.[3] 顾汉卿,徐国凤.生物医学材料学[M].天津科技翻译出版公司,1993.[4] 胡显文,等.生物技术通报,2000(4):15.[5] 李乃宏, 何炳林.高分子控制的药物传递[ J].中国生物医学工程学报, 1982(1): 40.[6] 何炳林, 马建标.血液净化高分子吸附材料[ J].高等学校化学学报, 1997, 18: 1212.[7] 马建标.高分子对酶、抗体、DNA 的修饰、固定化及其生物医学应用[ J].高等学校化学学报, 1997, 18: 1227.[8] Mao H Q, Zhou R X, Fan C L, et al.Studies on the phospho rylating polycondensation catalyzed by 4-dimethylaminopyridine[J].Macromol Chem Phys, 1995, 196: 655.[9] Wen J, Zhuo R X.Enzyme-catalyzed ring-opening polymerization of ethylene isopropy l phosphate [ J].Macromol Rapid Commun, 1998, 19: 641.[10] Zhou Yu, Zhuo Renxi, Liu Zhilan.Synthesis and pr opert ies of novel biodeg radable triblock co polymers of poly(5-met hy-l 5-methox ycarbony-l 1, 3-dioxan-2-one)and poly(ethylene glycol)[ J].Polymer , 2004, 45: 5459~5463.[11] 林思聪.高分子生物材料分子工程研究进展[ J].高分子通报, 1997(1): 1.

功能高分子材料提纲 第2篇

摘要:随着人民生活水平的提高,人们对于医疗保健方面的要求也越来越强,使得对于生物医用材料的要求也越苛刻。本文详细阐述了生物医用功能高分子材料近年来的应用研究及发展状况,综述了国内外生物医用高分子材料的分类、特性及研究成果,展望了未来的生物医用高分子材料的发展趋势。并评述了医用高分子材料在人工脏器、药剂及医疗器械方面的应用介绍了我国近年来的研究情况和存在的问题。

关键词:高分子材料;发展趋势;综述

1.概述

高分子材料和加工技术的发展, 使得人工合成材料在医学上的应用, 变得越来越广泛。数十年的医学发展和临床应用, 证明医用高分子材料在人体内外, 获得了成功的应用, 而医学的进步, 又给高分子材料提出了大量新的课题, 使其向“精细化” , “功能化” 的方向发展, 赋予了高分子材料以新的生命力。

生物医用高分子材料指用于生理系统疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的高分子材料。研究领域涉及材料学、化学、医学、生命科学。在功能高分子材料领域,生物医用高分子材料可谓异军突起,目前已成为发展最快的一个重要分支。生物医用功能高分子材料中有的可以全部植人体内,有的也可以部分植入体内而部分暴露在体外,或置于体外而通过某种方式作用于体内组织。随着现代生物工程技术的高度发展,又使得利用生物体合成生物材料成为可能。此类材料由于具有良好的生物相容性和生物降解性备受世人瞩目。

2生物医用功能高分子材料分类

生物医用高分子材料分合成和天然两大类,下面我们就分别对这两种材料进行详细的论述。2.1天然生物材料

天然生物材料是指从自然界现有的动、植物体中提取的天然活性高分子,如从各种甲壳类、昆虫类动物体中提取的甲壳质壳聚糖纤维,从海藻植物中提取的海藻酸盐,从桑蚕体内分泌的蚕丝经再生制得的丝素纤维与丝素膜,以及由牛屈肌腱重新组构而成的骨胶原纤维等。这些纤维由于他们来自生物体内且都具有很高的生物功能和很好的生物适应性,在保护伤口、加速创面愈方面具有强大的优势,已引起国内外医务界广泛的关注。自然界广泛存在的天然生物材料仍有着人工材料无可比拟的优越性能。例如:迄今为止再高明的材料学家也做不出具有高强度和高韧性的动物牙釉质,海洋生物能长出色彩斑斓、坚阊义不被海水腐蚀的贝壳等等。甲壳素又称几丁质(chitin),广泛存在于虾、蟹等甲壳动物及昆虫、藻类和细菌中,是世界上仅次于纤维素的第二大类天然高分子化合物。它是一种惰性多糖,用浓碱脱去乙酰基可转变成聚壳糖(chintosan)。甲壳素、聚壳糖及其衍生物具有良好的生物相容性和生物降解性。降解产物带有一定正电荷,能从血液中分离出血小板因子,增加血清中H-6水平,促进血小板聚集或凝血素系统,作为止血剂有促进伤口愈合,抑制伤口愈合中纤维增生,并促进组织生长的功能,对烧、烫伤有独特疗效。比如家蚕丝脱胶后可得到纯丝素蛋白成分,丝素蛋白是一种优质的生物医学材料,具有无毒、无刺激性、良好的血液相容性和组织相容性。根据研究报道,由于天然高分子医用材料的独特临床效果,它的应用前景相当广阔。2.2合成生物材料

由于天然材料的有限,人们需要大量的生物材料来维持他们的健康。合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官。因此,在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料。与天然生物材料相比,合成高分子材料具有优异的生物相容性,不会因与体液接触而产生排斥和致癌作用,在人体环境中的老化不明显。通过选用不同成分聚合物和添加剂,改变表面活性状态等方法可进一步改善其抗血栓性和耐久性,从而获得高度可靠和适当有机物功能响应的生物合成高分子材料。目前,使用于人体植入产品的高分子合成材料包括聚酰胺、环氧树脂、聚乙烯、聚乙烯醇、聚乳酸、聚甲醛、聚甲基丙烯酸甲酯、聚四氟乙烯、聚醋酸乙烯酯、硅橡胶和硅凝胶等。应用场合涉及组织粘合、手术缝线、眼科材料(人工玻璃体、人工角膜和人工晶状体等)、软组织植入物(人工心脏、人工肾、人工肝等)和人工管形器(人工器官、食道)等。

合成医用高分子材料发展的第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅橡胶的出现,随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚一氨)酯心血管材料,从此进入了以分子工程研究为基础的发展时期。目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段,其特点是这种材料一般由活体组织和人工材料有机结合而成,在分子设计上以促进周围组织细胞生长为预想功能,其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度。3.生物医用高分子材料的特性要求

医用高分子材料,是指在医学上使用的高分子材料。其对于挽救生命.救治伤残.提高人类生活质量等方面具有重要意义。能被用于医疗领域作为医用材料就必须有着它独特的性质,性能要求也必须十分苛刻。通过归纳,应当符合以下要求:(1)生物相容性。生物相容性是描述生物医用材料与生物体相互作用情况的。是作为医用材料必不可少的条件.包括血液相容性,组织相容性,生物降解吸收性。(1)生物功能性。生物功能性是指生物材料具有在其植入位置上行使功能所要求的物理和化学性质.具体有:可检查.诊断疾病;可辅助治疗疾病;可满足脏器对维持或延长生命功能的性能要求;可改变药物吸收途径:控制药物释放速度、部位.满足疾病治疗要求的功能等。(3)无毒性。无毒性即化学惰性。此外,还应具备耐生物化.物理和力学稳定性。易加工成型,材料易得、价格适当.便于消毒灭菌;以及还要防止在医用高分子材料生产。加工过程中引入对人体有害的物质。(4)可加工性:能够成型、消毒(紫外灭菌、高压煮沸、环氧乙烷气体消毒、酒精消毒)等。正因为对于生物医用高分子材料的要求严格,相关的研发周期一般较长,需要经过体外实验、动物实验、临床实验等不同阶段的试验,材料市场化需要经国家药品和医疗器械检验部门的批准,且报批程序复杂、费用高。所以生物材料的研发成本高、风险大。这也是目前生物材料的市场价格居高不下的一个重要原因。4.生物医用高分子材料的应用

根据不同的角度、目的甚至习惯,医用高分子材料应用有不同的分类方法,尚无统一标准。主要在人造器官、人造组织、以及其它的一些高分子药剂等。4.1人造器官

(1)人工肾:四十年前荷兰医生用赛璐洛玻璃纸作为透析膜, 成功地滤除了患者血液中的毒素。目前人工肾以中空丝型最为先进, 其材质有醋酸纤维, 赛璐洛和聚乙烯醇。其中以赛璐路居多, 占98%, 它是一种亲水性的、气体和水都能通过的材料, 同时要求有很好的选择过滤性, 病人的血液从人工肾里流过由它们所构成的中空丝膜, 就可将尿素、尿酸,Ca2+等物质通过, 并留在人工肾里继而排出, 而人体所需的营养、蛋白质却被挡住,留在血液里返回人

体, 从而对血液起到过滤作用, 目前中空纤维膜已在西德的恩卡公司、日本旭化成和夕沙毛公司研究成功, 并用于工业化生产。(2)人工肺:人工肺并不是对于人体肺的完全替代,而是体外执行血液氧交换功能的一种装置,目前以膜式人工肺最为适合生理要求,它是以疏水性硅橡胶, 聚四氟乙烯等高分子材料制成。(3)人工心脏:1982年美国犹他大学医疗中心, 成功地为61岁的牙科医生克拉克换上了Jarvak一7型人工心脏, 打破了人造心脏持久的世界纪录, 美国人工心脏专家考尔夫博士指出闭,人工心脏研制成功与否取决于找到合适的弹性体, 作为人工心脏主体心泵的高分子材料,现在所用的材料主要为硅橡胶。(4)其它,如人工心脏瓣膜、心脏起搏器电极的高分子包覆层、人工血管、人工喉、人工气管、人工食管、人工膀胱等。4.2人造组织

指用于口腔科、五官科、骨科、创伤外科和整型外科等的材料,包括:(1)牙科材料:主要采用聚甲基丙烯酸甲酯系、聚砜和硅橡胶等,如蛀牙填补用树脂、假牙和人工牙根、人工齿冠材料和硅橡胶牙托软衬垫等;(2)眼科材料:这类材料特别要求具有优良的光学性质、良好的润湿性和透氧性、生物惰性和一定的力学性能,主要制品有人工角膜(PTFE、PMMA)、人工晶状体(硅油、透明质酸水溶液)、人工玻璃体、人工眼球、人工视网膜、人工泪道、隐型眼镜(PMMA、PHEMA、PVA)等;;(3)骨科材料:人工关节、人工骨、接骨材料(如骨钉)等,原材料主要有高密度聚乙烯、高模量的芳香族聚酰胺、聚乳酸、碳纤维及其复合材料;(4)肌肉与韧带材料:人工肌肉、人工韧带等,原材料有PET、PP、PTFE、碳纤维等;(5)皮肤科材料:人工皮肤,含层压型人工皮肤、甲壳素人工皮肤、胶原质人工皮肤、组织膨胀器。4.3药用高分子

(1)高分子缓释药物载体:药物的缓释是近年来人们研究的热点。目前的部分药物尤其是抗癌药物和抗心血管病类药物(如强心苷)具有极高的生物毒性而较少有生物选择性,通常利用生物吸收性材料作为药物载体,将药物活性分子投施到人体内以扩散、渗透等方式实现缓慢释放。通过对药物医疗剂量的有效控制,能够降低药物的毒副作用,减少抗药性,提高药物的靶向输送,减少给药次数,减轻患者的痛苦,并且节省财力、人力、物力。目前存在时间控制缓释体系(如“新康泰克”等,理想情形为零级释放)、部位控制缓释体系(脉冲释放方 式)。近年来研究较多的是利用聚合物的相变温度依赖性(如智能型凝胶),在病人发烧时按需释放药物,还有利用敏感性化学物质引致聚合物相变或构象改变来释放药物的物质响应型释放体系。(2)高分子药物(带有高分子链的药物和具有药理活性的高分子):如抗癌高分子药物(非靶向、靶向)、用于心血管疾病的高分子药物(治疗动脉硬化、抗血栓、凝血)、抗菌和抗病毒高分子药物(抗菌、抗病毒、抗支原体感染)、抗辐射高分子药物、高分子止血剂等。将低分子药物与高分子链结合的方法有吸附、共聚、嵌段和接枝等。第一个实现高分子化的药物是青霉素(1 962年),所用载体为聚乙烯胺,以后又有许多的抗生素、心血管药和酶抑制剂等实现了高分子化。天然药理活性高分子有激素、肝素、葡萄糖、酶制剂等。5.国内外研究进展

近年来,美国、欧洲和日本对生物医用高分子材料的研究与开发突飞猛进,从人工器官到高效缓释高分子药物都取得了很多成果和巨大效益。据美国健康工业制造者协会资料报告,1995年世界市场达1200亿美元,美国为510亿美元,预计在21世纪将成为国民经济的支柱产业。现在美国商业化的生物技术是以医药品为主的。加拿大的生物技术的优势领域在医疗器材和制药业。在欧洲,英国的生物技术市场达到36亿欧洲货币单位。德国1997年投入生物技术研究与开发的总经费大约为33亿马克。生物技术是日本21世纪创新产业的主要技术领域之一。在“生物技术立国”的口号下,日本政府5年内投资2万亿日元,其中生物降解材料和药物生产商业化是其重点支持的领域。韩国制定了《韩国生物技术2000纲要》,在实施纲要的14年期间,政府和企业将投资200亿美元。

我国生物医学高分子研究起步较晚。自20世纪70年代末起,北京大学和南开大学从事这一领域的研究。“九五”期间由何炳林与卓仁禧主持的国家自然科学基金重大项目组织大批科研力量进行研究,在此领域取得了显著成绩。1998年“生物医学高分子”项目获教育部科技进步一等奖。我国现有医用高分子材料60多种,制品达400余种。早在1999年6月,科技部生物领域专家组就在南京和上海召开了“生物芯片技术”和“组织工程技术”研讨会,会议决定启动这2个研究项目H⋯,并作为该领域的重点课题。东南大学、清华大学、华中农业大学、上海第二医科大学、第一军医大学和华东理工大学等单位承担了这些课题,其某些研究成果已见报道。此外,中科院化学所、天津大学、中国科技大学、浙江大学、四川大学、军事医学科学院等单位也分别在组织工程、药物控释等方面展开了研究工作,使我国医用高分子材料的研究呈现出欣欣向荣的景象。6.结语

医用高分子材料与医疗水平的进步密切相关,其用途十分广泛。现代医学给人类健康带来福音的同时,也对医用材料的开发提出了挑战。现阶段医用高分子材料的研制具有重要的科学意义和非常巨大的社会经济效益。因此,加速我国对新型医用高分子材料的研究与开发将是今后相关材料领域刻不容缓的艰巨任务。7.参考文献

功能高分子材料提纲 第3篇

我校功能高分子材料课程是在大三的下学期开设, 考虑到这个阶段的学生面临考研复习、实习及为未来就业做各种准备等问题, 较难静下心来对课程进行深入学习, 而且采用传统的教学方法已经难以达到满意的教学效果。针对这些现象, 结合我校高分子材料专业的实际教学情况, 我们对功能高分子材料课程的教学方式和手段、教学方法、考核体系等进行了探索和改革, 以期提高学生的学习兴趣和主动性, 取得良好的教学效果。

1.讲 好绪论课 , 激发学生的学习兴趣

功能高分子材料主要研究的是新的制备方法、性能表征构效关系、应用开发等, 其教学内容具有多、杂、广、深的特点要使学生在32个学时中, 学习并掌握其全部内容确实存在困难。因此, 有必要精选授课内容, 认真讲好绪论课, 激发学生的自主学习兴趣。我们在绪论课上从功能高分子材料的发展历史讲起, 着重介绍课程特点、课程主要内容及学习方法, 特别突出学科的新兴前沿和不断完善, 说明本课程所涵盖的研究领域, 让学生认识到该课程的重要地位, 明确学习本课程的目的、任务、意义及要求, 通过绪论课的学习对本课程产生兴趣从而促使他们积极主动地学习课程, 为后续章节的教学奠定基础。

2.增加新颖和实用的教学内容

功能高分子材料是高分子材料中发展最快的领域, 每隔一段时间都有新的研究成果诞生。从事功能高分子材料教学工作的教师更要把握时代脉搏, 了解最先进、最前沿的技术不断调整、丰富和更新教学内容, 利用多媒体教学及时地把最新的功能高分子材料的研究成果介绍给学生, 扩大学生的功能高分子材料知识面, 增强学习意义。此外, 我们还注意课程内容与社会热点问题相结合, 通过学习让学生了解功能高分子材料在日常生活、军事、航空航天等领域具有的一些不可替代的作用, 加深学生对功能高分子材料实用性的认识。

3.鼓励学生利用互联网资源学习

在计算机应用技术高度发达的今天, 互联网上的各种资源取之不尽, 名师在线、网络课堂、精品课程等学习平台如果不加以利用, 实为一种资源浪费。我们在进行课堂教学时, 经常鼓励学生通过互联网学习, 并教会学生利用中国知网、万方数据库等查询学习资料。学生可以在数据库检索到自己关注的专业知识, 并了解与功能高分子材料相关的最前沿的科研动态。

除此之外 , 鼓励学生 浏览科学 网 (http://www.sciencenetcn) 、小木虫论坛 (http://emuch.net) 等门户论坛网站 , 在以高分子材料为主题的论坛社区上提出各种问题, 某些会员会给出答案。论坛上的会员可能是专家、学者、教师, 甚至是学生, 大家集思广益, 从而拓展思路, 解决难题。实践表明, 这些是比较有效的方式, 能引导学生利用网络进行学习。

4.互 动式教学 , 让学生做专题报告

针对功能高分子材料课程涵盖领域多的特点, 从热门的领域中选择几个作为报告题目, 把学生分成几个小组, 让各小组成员通过教材、网络和图书馆查找资料, 写出报告讲稿。而后适当地拿出一部分课堂时间, 让小组代表上台做“学术报告”, 老师也和其他同学一起对所介绍的内容进行提问。这种方式不仅活跃了课堂气氛, 提高了学生的积极性和对功能高分子材料的兴趣, 而且让学生由被动听讲变成主动学, 自主学习能力得以增强。这种互动式教学提高了学生查阅、整理文献的能力, 增强了学生的团队合作意识, 锻炼了学生的口头表达能力。

5.举办功能高分子材料知识竞赛

功能高分子材料课程的知识内容十分丰富, 要求学生掌握的内容较多, 在每章内容讲授结束时举办功能高分子材料知识竞赛, 是在紧密结合课堂教学的基础上, 考查学生对教材理论知识掌握程度和解决实际问题能力的比赛。竞赛设置了奖励分值的详细规则, 并作为课程考核的一个组成部分, 因而能大大调动学生的主观能动性, 起到调动学生学习和掌握专业知识的积极性, 提高学生在功能高分子材料领域中运用基础知识解决实际问题的能力的作用。开展功能高分子材料知识竞赛活跃了课程的学习氛围, 有利于提高学生的学习兴趣和促进良好学风的形成, 是一种有益的教学方式。

6.建立多元化的考核评价体系

传统的理论课程的综合成绩以期末考试成绩为主, 这种单一的考评方式存在较多缺陷, 不能全面反映学生的真实学习情况。功能高分子材料课程的考核既要考查学生对基础知识的掌握能力, 又要考查学生综合运用所学知识分析问题和解决问题的能力。在对学生的考核中, 总成绩的评定采用“平时成绩+考试成绩”的模式, 平时成绩占60%, 考试成绩占40%更加注重对学生学习过程的评价。平时成绩主要考查学生的学习状况, 由出勤率、课堂提问、小组讨论、专题报告、知识竞赛和完成作业组成。这种多元化的考核评价体系避免了由期末考试决定学习成绩的弊端, 鼓励学生端正学习态度, 不做考前突击, 不搞死记硬背, 有利于学风和考风建设。

7.结 语

教学内容、教学方法和考核体系的探索和实践是教育改革的重要组成部分。授课教师只有努力提高自身知识水平, 及时总结教学经验, 不断学习和尝试新的教学手段, 才能为社会培养出高素质人才。在传统教学的基础上, 通过增加学习过程的评价, 调动学生的学习积极性, 培养学生多方面的综合素质, 这方面的教学探索是有益的。但如何更好地提高教学质量和达到良好的教学效果, 需要继续努力、认真思考和完善每一个教学环节, 促进自身教学水平的提高, 从而为我校的功能高分子材料课程教学作出积极贡献。

摘要:功能高分子材料是我校高分子材料与工程专业的专业选修课, 其内容大多属于多学科交叉结合的边缘研究领域、具有前沿性、内容繁多等特点。本文结合我校高分子材料与工程专业功能高分子材料课程的基本特点, 以提高课程教学质量, 培养适应社会高速发展的高素质人才为目标, 对功能高分子材料的教学方法和手段进行了有益的探索和实践, 取得了良好的教学效果。

关键词:功能高分子材料,课程教学,教学探索

参考文献

[1]齐民华.功能高分子材料课程教学改革的思考[J].广东化工, 2011, 38 (5) :267.

[2]周立, 孙荣欣.《功能高分子材料》课程教学改革的探索[J].高校讲坛, 2010, 21:151.

[3]苗蔚, 程文喜.《功能高分子》教学实践与体会[J].广州化工, 2011, 39 (18) :172-173.

[4]于清波.《功能高分子》教学体会[J].化学工程与装备, 2008, 3:146-147.

[5]邹勇进.《功能高分子材料》课程教学的探讨与实践[J].高校讲坛, 2012, 11:234.

[6]张新荔, 罗卫华, 陈建山.《聚合反应工程》课程的教学探索和改进[J].广东化工, 2012, 39 (7) :216-217.

[7]刘冰.“仪器分析”课程教学探索和实践[J].新乡学院学报 (自然科学版) , 2013, 2:149-151.

功能高分子材料提纲 第4篇

【关键词】功能材料;高分子;现状;发展

材料是人类赖以生存和发展的物质基础,是人类文明的重要里程碑,如今有人将能源、信息和材料并列为新科技革命的三大支柱。进入本世纪80年代以来,一场与之相适应的“新材料革命”蓬勃兴起。功能材料是新材料发展的方向,而功能高分子材料占有举足轻重的地位,由于其原料丰富、种类繁多,发展十分迅速,已成为新技术革命必不可少的关键材料[1]。

1.功能高分子材料

功能高分子材料在其原有性能的基础上,赋予其某种特定功能。诸如:化学性、导电性、光敏性、催化性,对特定金属离子的选择螯合性,以及生物活性等特殊功能,这些都与在高分子主链和侧链上带有特殊结构的反应性功能基团密切相关。

2.功能高分子材料的研究现状

在原来高分子材料的基础上,可将功能高分子材料分为两类:一类是以改进其性能为目的的高功能高分子材料;另一类是为赋予其某种新功能的新型功能高分子材料[2]。

2.1高功能高分子材料

2.1.1化学功能高分子材料

化学功能高分子材料通常具有某种化学反应功能,它将具有化学活性的基团连接到以原有主链链为骨架的高分子上。离子交换树脂是一种带有可交换离子的活性基团、具有三维网状结构、不溶的交联聚合物,在水中具有足够大的凝胶孔或大孔结构,由于它具有高效快速分析和分离功能,目前已广泛用于硬水软化、废水净化、高纯水制备、海水淡化、溶液浓缩和净化、海水提铀,特别是在食品工业、制药行业、治理污染和催化剂中应用的更为广泛。

2.1.2光功能高分子材料

在光的作用下,实现对光的传输、吸收、贮存、转换的高分子材料即为光功能高分子材料。近年来,在数据传输、能量转换和降低电阻率等方面的应用增长迅速。感光性树脂由感光基团或光敏剂吸收光的能量后,迅速改变分子内或分子间的化学结构,引起物理和化学变化。光致变色高分子具有光色基团,不同波长的光对其照射时会呈现不同的颜色,而当其受到特定波长照射后又会恢复为原来的颜色。利用这种可逆反应可以实现信息的存储、信号的显示和材料的隐蔽,应用前景十分诱人。

2.1.3电功能高分子材料

依据材料的结构和组成,可将导电高分子分为两大类:一类是依靠高分子结构本身所能提供的载流子导电的结构型导电高分子,在电致显色、微波吸收抗静电、等领域显示出广阔的应用前景。另一类是高分子材料本身不具有导电性能,依靠添加在其中的炭黑或金属粉导电的复合型导电高分子,具有制备方便,实用性强的特点,在许多领域发挥着重要的作用,常用作导电橡胶电磁波屏蔽材料和抗静电材料。

2.1.4生物医用高分子材料

生物医用高分子包括医用高分子和药用高分子两大类。

医用高分子材料材料科学应用于生物医疗的交叉学科,将加工后的无生命的材料用来取代或恢复某些组织器官的功能。医用高分子材料作用于人体必须具备生物相容性、化学稳定性、耐腐蚀老化、易于加工等优点,主要用于人工器官、治疗疾患、诊断检查等医疗领域中。目前,医用功能高分子材料在心血管的植入、局部整形和眼睛系统的矫正等方面获得了较大成果。

新型高分子药物,具有缓释、长效、低毒的特点,分为两类:一类药物即为高分子本身,可以直接用作药物,也可以通过合成获得某些疗效。另一类高分子药物高分子本身没有药用价值,而是作为药物的载体,以离子键或共价键的形式连接具有药理活性的低分子化合物,制成高分子药物控制释放制剂。一方面达到将最小的剂量在作用于特定部位产生治效的目的;另一方面使药物的释放速率可控,在提高疗效的同时降低了毒副作用[3]。

2.2新型功能高分子材料

2.2.1高吸水性高分子材料

近年来开发的高吸水性树脂是一种新型功能高分子材料,它可吸收自身重量数百倍至上千倍的水,自身含有强亲水性基团同时具有一定交联度。此外,高吸水性树脂的保水性能极好,即使受压也不会渗水,而且具有吸收氨等臭气的功能。高吸水性树脂在石油、化工、轻工、建筑等部门被用作堵水剂、脱水剂、增粘剂、密封材料等;在农业上可以做土壤改良剂、保水剂、植物无土栽培材料、种子覆盖材料,并可用以改造沙漠,防止土壤流失等;在日常生活中,高吸水性树脂可用作吸水性抹布、餐巾、鞋垫、一次性尿布等。

2.2.2 CO2功能高分子材料

在不同催化剂作用下,以CO2为基本原料与其他化合物缩聚成多种共聚物。其中研究较多、已取得实质性进展、并具有应用价值和开发前景的共聚物是由CO2与环氧化合物通过开键、开环、缩聚制得的CO2共聚物脂肪族碳酸酯。把长期以来因石化能源燃烧和代谢而排放的污染环境、产生温室效应的CO2视为一种新的资源。利用它与其他化合物共聚,合成新型CO2共聚物材料,对解决当今世界日趋严重的CO2含量增高等问题有重要的现实意义。

2.2.3形状记忆功能高分子材料

形状记忆功能材料的特点是形状记忆性,它是一种能循环多次的可逆变化。即具有特定形状的聚合物受到外力作用,发生变形并被保持下来;一旦给予适当的条件(力、热、光、电、磁),就会恢复到原始状态。根据不同的触发材料记忆功能的条件,可将其分为电致型、光致型、热致型和酸碱感应型。形状记忆高分子材料是高分子功能材料研究新分支,在电子、印刷、纺织、包装和汽车工业中具有良好的发展前景。

2.2.4生态可降解高分子材料

随着人类对环境的重视,材料的可降解性成为新的性能指标,因此生态可降解高分子材料受到广泛重视。目前我国生态可降解性高分子材料的发展还处于复制和仿制国外产品的初级阶段,国外产品占据主要市场。高分子的降解主要是各种生物酶的水解,其中聚乳酸类高分子是已开发应用于生命科学新型生物可降解材料,尽管已形成了多个品种,但目前应用的生物可降解材料在生物相容性、理化性能、控制其降解速率和缓释性等方面仍存在较多问题,有待进一步研究[4]。

3.开发功能高分子材料的重要意义

功能高分子材料其独特的功能和不可替代的特性已带来各个领域技术进步,甚至质的飞跃,且在各行业已产生相当高的经济和社会效益,并导致许多新产品的出现。随着人们对有机高分子材料研究的逐步深入和加强,功能高分子材料的方向包括两方面:一方面,改进通用有机高分子材料,在不断提高它们的使用性能的同时,扩大其应用范围。另一方面,与人类自身密切相关、具有特殊功能的材料的研究也在不断加强。因此,功能高分子材料是未来材料科学与工程技术领域的重要发展方向,必将影响人类的生产和生活产[5]。

【参考文献】

[1]张恒翔,蔡建,邱莎莎.功能高分子材料在军用包装中的应用[J].包装工程,2011,(23):60~62.

[2]杨晓红,王海英.新型有机高分子材料发展[J].科技资讯,2009,(4):7.

[3]杨北平,陈利强,朱明霞.功能高分子材料发展现状及展望[J].广州化工,2011,(6):17~18.

[4]王正伟,刘吉平,王君等.新型功能高分子材料研究[J].现代化工,2007,(S2):514~516.

功能高分子材料提纲 第5篇

作为第三代超分子大环化合物的代表,杯芳烃具有特殊的分子识别能力和独特的`结构易修饰性.将杯芳烃掺杂或键合于高分子材料中,可得到各种具有分子识别功能的高分子材料.本文综述了含杯芳烃的高分子材料在化学传感器、色谱及传输分离等方面的研究和应用.

作 者:王丽 施宪法 胡晓均 刘宇 作者单位:王丽,胡晓均,刘宇(同济大学化学系,上海,92)

施宪法(同济大学化学系,上海,200092;南京大学配位化学国家重点实验室,南京,210093)

功能高分子材料提纲 第6篇

“低温工程学”重点实验室

开放课题基金使用和管理的若干规定

(试用)

根据本重点实验室的具体情况,特制定如下规定:

1、本实验室课题基金的使用办法只适用于经审批通过的开放课题基金。每个课题的支持强度一般为1万~2万元。

2、课题基金开支的范围:

(1)与资助的开放课题直接有关的科研费用(包括:材料费、小型器材购置等消耗费;大型仪器设备的测试费;小型仪器的租用费等)。

(2)客座人员往来的旅差费、住宿费。

(3)使用开放实验室内部公共设施应交纳的维护费。(4)水、电杂费等。

3、开放课题基金分配比例大约为:(1)测试费、租用费:60%;

(2)材料费、小型器材购置费:20%;(3)旅差费、住宿费及其他费用:20%;

4、课题基金管理的暂行办法:

(1)课题经费的使用权由各申请课题的负责人掌握,由于该经费在中国科学院理化技术研究所内进行财务结算,因此,所外单位可委托本开放实验室内相应的专门实验室或专人进行管理使用。

(2)有关课题基金中“材料费、材料费、小型器材购置费”等开支,可以自行安排使用,但课题研究结束后,所剩余的经费、原材料、小型器材等一律留在本实验室内,不得带走或他用。

(3)有关“大型仪器设备测试费、小型仪器租用费及一些其他费用”的开支,均是指使用本实验室内部开放实验室设备而言,对于使用本室外的仪器费用,本课题基金不负责支付。该项费用的结算方法根据所内使用仪器的收费计算,于年终一次性支付。(4)本年度内审批的课题基金,可以结转到下一年度继续使用。(5)每年12月底,被批准的开放课题负责人必须及时将课题进展情况向本室书面汇报,并附上相关的已发表或即将发表(需有同意接受函)的学术论文抽印本或复印件,对于尚未被录取(投寄中)的论文,则需附上论文全文复印件。开放实验室将根据课题进展情况,在下一年度奖励增加或酌情减少经费支持,对于执行情况较差的课题,将中断或取消原批准的经费。

(6)基金资助项目的成果如果是我室与项目负责人及所在单位共享。有关论文、成果的标注执行《中国科学院低温工程学重点实验室关于论著(成果)的署名规定》。

(7)项目结束后,由项目负责人认真填写《总结报告》,报送实验室办公室,并由学术委员会审议。

5、重点实验室关于论著(成果)的署名规定:

(1)凡受到中国科学院低温工程学重点实验室资助的项目均需按本规定执行。

(2)中国科学院低温工程学重点实验室对其资助的项目进行工作评价时,只考虑在作者所属单位中以中文或英文标注了“中国科学院低温工程学重点实验室”(理化技术研究所);英文:Key Laboratory of Cryogenics,TIPC,CAS”字样及/或在致谢中标注了“本文部分工作得到中国科学院低温工程学重点实验室开放课题资助;英文:Key Laboratory of Cryogenics,TIPC,CAS”字样的工作。

(3)实验室正式名称:

中 文:中国科学院低温工程学重点实验室(理化技术研究所)英文:Key Laboratory of Cryogenics,TIPC,CAS。

6、本规定由我室负责解释。

上一篇:以h开头的单词有哪些+意思下一篇:帕金森护理查房