等比数列知识点及例题

2024-06-19

等比数列知识点及例题(精选6篇)

等比数列知识点及例题 第1篇

数学基础知识与典型例题

数学基础知识与典型例题(第三章数列)答案

例1.当n1时,a1S11,当n≥2时,an2n2n2(n1)2(n1)4n

3,经检

验 n1时 a11 也适合an4n3,∴an4n3(nN)例2.解:∵aSn1nSnSn1,∴ Sn2Sn1

2n,∴

Sn2

n

n

11

设bn

Sn是公差为1的等差数列,∴bS112

n

则bnn

b1n1又∵b1

2a232,∴

Sn2

n

n

12,∴Sn

(2n1)2

n1,∴当n≥2时

anSnSn1(2n3)2

n2

∴a3

n1)n

(n≥2),Sn

(2n1)2

n1

(2n3)2

n2

(例3 解:a2

an1nSnSn1nan(n1)an1从而有n

n1an1 ∵a11,∴a1223,a3

13,a

4

5

13,a5

2143,∴a2n

(n1)(n2)321n(n1)

(n1).43

n(n1),∴Sn

na2nn

n1

例4.解:a

n

123n(n1)2(1n11111112n n

n1)∴Sn2(1)()()

223nn12(1)

n1n1例5.A

例6.解:S3

n1n12x3x24xnx

①xS2

n

n

x2x3xn1x

n1

nx

①②1xSn1

n1xx2

x

nx

n,xn

nxn

nx

n1

1nxn

nx

n1

11nx

n

nx

n1

当x1时,1xS

1x

n

n1x

nxn

11x

11x

∴Sn

1x

;

当x1时,Sn

1234n

n1n2

例7.C例8.192例9.C例10.解:a3

a58

a5q

a5

a54

542

2

1458

另解:∵a5是a2与a8的等比中项,∴542a82∴a81458

例11.D例12.C例13.解:a1S1321,当n≥2时,a2nSnSn13n2n[3(n1)22(n1)]6n5,n1时亦满足 ∴

an6n5,∴首项a11且 anan16n5[6(n1)5]6(常数)

∴an成等差数列且公差为

6、首项a

1

1、通项公式为an6n5

12a12111d354例14.解一:设首项为a2

1,公差为d则

)656(a1d2d d5

232

6a65

d17

122S奇S偶354

解二:

S偶32

S偶192

S偶S奇6dd5

SS奇162

27例15.解:∵a101001a18

a9aa9a10,∴a18

a

20

例16.解题思路分析: 法一:利用基本元素分析法 

S7a7671设{aan}首项为a1,公差为

d,则d7

12

d1

S1515a115142d75∴

Sn2

n(n1)

Sn2n1n

2

n52

此式为n的一次函数

∴ {

Sn12

9n

}为等差数列∴

Tn

n

4n

S2

法二:{a+Bn∴

7A77B7n}为等差数列,设Sn=An2

S215A1515B75

1解之得:A

S12

5n

B52

n

n,下略2

注:法二利用了等差数列前n项和的性质 例17.解:设原来三个数为a,aq,aq2 则必有 2aqa(aq2

32)①,(aq4)2

a(aq232)

② 由①:

q

4a2a

代入②得:a2或a

从而q5或13

∴原来三个数为2,10,50或2263389,9,9

例18.70

例19.解题思路分析:

∵ {an}为等差数列∴ {bn}为等比数列 

∴ b1b3=b22,∴ b23=1,∴ b2=1

b171b3

8,∴

8b12,∴

b1或

1

b1b214

b13

8b2

2∴ b2(1 或

b1n1

4)n12

32n

nn

42

2n5

b1a

n

n(2),∴ anlog1bn,∴ an=2n-3 或 an=-2n+5

例20.3n9n

等比数列知识点及例题 第2篇

(1)n1}当n时的变化趋势.观察数列{1n问题:

当n无限增大时, xn是否无限接近于某一确定的数值?如果是, 如何确定? 通过上面演示实验的观察:

(1)n1当n无限增大时, xn1无限接近于1.n问题:“无限接近”意味着什么?如何用数学语言刻划它.xn1(1)n1给定

11 nn1111, 由, 只要n100时, 有xn1, 100n10010011,只要n1000时, 有xn1, 给定1000100011,只要n10000时, 有xn1, 给定10000100001给定0,只要nN([])时, 有xn1成立.定义

如果对于任意给定的正数(不论它多么小), 总存在正整数N, 使得对于nN时的一切xn, 不等式xna都成立, 那末就称常数a是数列xn的极限, 或者称数列xn收敛于a, 记为

limxna,或xna(n).n如果数列没有极限, 就说数列是发散的.注意:

N定义:limxna0,N0, 使nN时, 恒有xna.n其中记号:每一个或任给的;:至少有一个或存在.数列收敛的几何解释:

a2axN2x2x1xN1ax3x

当nN时, 所有的点xn都落在(a,a)内, 只有有限个(至多只有N个)落在其外.注意:数列极限的定义未给出求极限的方法.n(1)n11.例1 证明limnnn(1)n111 .证

注意到xn1 nn任给0, 若要xn1, 只要

11,或 n, n所以, 取 N[], 则当nN时, 就有 1n(1)n11.nn(1)n11.即limnn

重要说明:(1)为了保证正整数N,常常对任给的0,给出限制01;

n(1)n11”的详细推理

(2)逻辑“取 N[], 则当nN时, 就有

n1见下,以后不再重复说明或解释,对函数极限同样处理逻辑推理.由于N立.严格写法应该是:任给0, 不妨取01,若要11N1,所以当nN时一定成立nN11,即得

1成nn(1)n11111< ,只要 n,所以, 取 N[], 则当nN时, 由于xn1=nn1111NN1,所以当nN时一定成立nN1,即得成立.也就

n是成立

n(1)n111.xn1=

nnn(1)n11.即limnn小结: 用定义证数列极限存在时, 关键是任意给定0,寻找N, 但不必要求最小的N.例3证明limq0, 其中q1.nn证

任给0(要求ε<1)若q0, 则limqlim00;

nnn若0q1, xn0q, nlnqln,nnlnln, 取N[](1), 则当nN时, 就有qn0, lnqlnqlimqn0.n0, q1,q1,, n

说明:当作公式利用:limq

等比数列知识点及例题 第3篇

关键词:数列通项式,递推公式,求法

由数列的前若干项, 运用观察、归纳、猜想的方法;找出各项与项数的关系式, 然后以此类推。由递推公式求通项通常有以下几种情况:

1.形如, 其中a为常数

由递推式有:a2-a1=q (1) , a3-a1=q (2) , ……, an-an-1=q (n-2) , 诸式相加有:, 即为累和法求数列通式.

例1 (2008年四川文16)

设数列{an}中, a1=2, an+1=an+n+1, 则通项an=_____.

解:∵a1=2, an+1=an+n+1∴an-an-1= (n-1) +1, an-1-an-2= (n-2) +1, an-2-an-3= (n-3) +1, ……, a3-a2=2+1, a2-a1=1+1, a1=2=1+1

2.形如, 其中a为常数

由递推式有:a2=p (1) a1, a3=p (2) a2, ……, an=p (n-1) an-1, 依次向后代入得:, 即为迭代法求数列通项式;

3.形如, 其中p、q、a为常数且p≠1

由递推式有:an+1=pan+q, an-1=pan-1+q, 两式相减得an+1-an=p (an-an-1) , (n≥2) , 则可得数列{an-an-1}为等比数列, 故可求得

例3 (2008年安徽文21)

设数列{an}满足a1=a, an+1=can+1-c, n∈N*, 其中a, c为实数, 且c≠0.

(Ⅰ) 求数列{an}的通项公式;

解 (1) 方法一:

由递推式有:an+1=can+1-c, an=can-1+1-c, 两式相减得:an+1-an=c (an-an-1) , (n≥2) 则数列{an-an-1}是以{a2-a1}为首项, 以c为公比的等比数列, 故可求得数列{an}的通项公式为an= (a-1) cn-1+1 (n∈N*)

方法二:令an+1+x=c (an+x) 所以an+1=can+ (c-1) x

由递推关系an+1=can+1-c得 (c-1) x=1-c, 解得x=-1所以an+1-1=c (an-1) 故数列{an-1}是首项为 (an-1) , 公比为c的等比数列, 则有an-1= (a-1) cn所以数列数列{an}的通项公式为an= (a-1) cn-1+1 (n∈N*)

4.形如, 其中p、a为常数, 且p≠1, q (n) 为非常数

例4 (2008年四川理20)

设数列{an}的前n项和为Sn, 已知ban-2n= (b-1) Sn.

证明:当b=2时, {an-n·2n-1}是等比数列;

变:当b=2时, 求an的通项公式.解法如下:

解:当b=2时, 由题意知an=2an-1+2n-1

所以数列{an}的通项公式是an= (n+1) 2n-1

5.形如, 其中p, q, y, a, b为常数

令pan+1+pan+ran-1=0所对应的方程为px2+qx+r=0, 设α, β为px2+qx+r=0的两根.

那么当α≠β时, an=Aαn+Bβn, 其中A、B由方程组唯一确定;α=β时, an= (A+B) αn, 其中A+B由方程组唯一确定.

例5 (2008年广东文21)

设数列{an}满足a1=1, a2=2, 数列{bn}满足b1=1, bn (n=2, 3, ……) 是非零整数, 且对任意的正整数m和自然数k, 都有-1≤bm≤bm+1+……+bm+k≤1

(1) 求数列{an}和{bn}的通项公式;

数列部分典型例题及训练 第4篇

每年高考与数列内容有关的试题,既有一条单纯关于数列内容的填空题,又有一条数列的综合题与实际应用题。在填空题中,主要考查等差、等比数列的概念和性质,重点是通项公式与前n项和的公式的灵活运用,突出了“小、巧、活”的特点。解答题属于中、高难度题,主要考查运算能力、逻辑思维能力、分析问题和解决问题的能力、数学归纳能力及综合创新能力。

类型一 等差数列前n项和的最值问题,具有丰富的知识背景和价值,问题的探索过程中,将涉及到函数与方程、数形结合、分类讨论等数学思想方法

【例1】 已知等差数列{an}的首项不为零,前n项的和记作Sn,且S9=S23,当a1>0时,n= 时,Sn有最 值.

分析 数列可以看成是定义域为正整数集或是其子集的一种特殊的函数,因此可将前n项的和Sn的最值问题转化为研究函数的最值问题,故建立函数Sn是解决本问题的关键所在。

解法一 由S9=S23,结合等差数列前n项和公式得9a1+36d=23a1+23×11d,所以2a1+31d=0,因为a1>0,故d<0.从基本量入手,以n为未知数,建立二元函数Sn,并研究其最值:Sn=-312nd+12n(n-1)d=d2(n-16)2-128d,由于d<0,所以Sn有最大值,当且仅当n=16时取到最大值.

点拨 本题的实质是用函数的观点分析、解决有关数列问题。通过相应的函数及其图象的特征变动地、直观地认识数列的性质。

由于等差数列是单调数列,所以其前n项和Sn的最值可以转化为研究项an符号的变化规律来求Sn的最大值,即转化为累加{an}中的所有非负项,从下标入手,合理搭配。

解法二 由于S9=S23,利用一般数列前n项和定义知:

a1+a2+a3+…+a9=a1+a2+a3+…+a23,得到a10+a11+…+a23=0,故a10+a23=0,又a16+a17=a10+a23,所以a16+a17=0,a16=-a17,而d<0,得到a16>0>a17,故当且仅当n=16时,Sn有最大值.

由于非常数等差数列的前n项和Sn是关于n的二次函数,二次函数具有良好的对称性,所以本题也可以从函数入手,数形结合解决。

解法三 易知Sn=pn2+(a1-p)n,其中p=d2,因为a1≠0,S9=S23,故d≠0.

考虑函数f(x)=px2+(a1-p)x是关于x的二次函数且其图象过原点.因f(9)=f(23),故其对称轴方程为x=16,而a1>0,则d<0,故当且仅当n=16时,Sn有最大值.

奇思妙想

1. 原题中将条件“a1>0”改为“a1<0”,其他条件不变,结论会有什么变化?

解析 a1<0时,d>0,故当且仅当n=16时,Sn有最小值.

2. 原题中将条件“S9=S23”改为“S10=S23”,其他条件不变,结论会有什么变化?

解析 a1>0时,由于a17=0,则当n=16或17时,Sn有最大值.

3. 本题是由S9=S23可以推出n=16时,Sn取到最值. 那么逆向探索:由n=16时,Sn取到最值,能否推出S9=S23?

解析 结论是不一定.

4. 问题进行一般化:将本题条件中的“S9=S23”改为“Sm=Sk(m≠k)”,你又能得到什么结论?

解析 问题变得复杂后,函数思想的优势便显现出来了.易知二次函数的对称轴方程为x=(m+k)2,

若a1>0,当m+k为偶数时,则当n=(m+k)2时,Sn有最大值;

若a1>0,当m+k为奇数时,则当n=(m+k±1)2时,Sn有最大值.

5. 由于等差数列与等比数列是一对对偶的同构数列,它们在很多方面具有极其相似的性质和结论,故考虑将原题进行类比研究.

如:已知等比数列{bn}的公比q>0且q≠1,首项b1>1,其前n项的积记作Tn,且T9=T23,则当n= 时,Tn有最 值.

解析 关键在数列{bn}中找到以“1”为项或者在“1”附近的项.

易知b1b2b3…b9=b1b2b3…b23,可得b1b32=1,故b16b17=1,又公比q>0且q≠1,首项b1>1知b16>1>b17>0,所以当n=16时,Tn有最大值.

类型二 已知两个不同等差数列前项和的比值,求对应项的比值问题。着重考察等差数列前项和与通项之间的联系

【例2】 已知数列{an},{bn}均为等差数列,它们的前n项的和分别为Sn,Tn,且SnTn=7n+45n+3,求a9b9.

分析 已知条件中涉及等差数列的和,而要求解的部分中只与项有关,故需沟通等差数列的和与项之间的联系,因此使用等差数列求和公式的第一种形式Sn=n(a1+an)2。并且对照所求结论,要将两项之和转化为一项的形式,所以还需使用等差数列的下标和性质获解。

解法一 a9b9=2a92b9=a1+a17b1+b17=17(a1+a17)217(b1+b17)2

=S17T17=415.

(一般地,同理可证明anbn=S2n-1T2n-1.)

点拨 根据等差数列前n项和公式的结构(这是思考问题、抓住问题本质的一个视角:结构特征),和式是关于n的常数项为0的二次函数。

解法二 可设Sn=kn(7n+45),Tn=kn(n+3),其中k为非零常数,

则a9=S9-S8=164k,b9=20k,故a9b9=415.

奇思妙想

1. 考虑原问题的逆命题. “已知数列{an},{bn}均为等差数列,它们的前n项的和分别为Sn,Tn,且anbn=7n+45n+3,求S9T9”.

解析 由于推导anbn=S2n-1T2n-1的过程是可逆的,故可以赋值令n=5即可得S9T9=10.

2. 原问题中的各条件不变,改为求“则使得anbn为整数的正整数n的个数有几个?”.

解析 由上例可得anbn=S2n-1T2n-1=7n+19n+1,显然分子大与分母,析出常数得anbn=S2n-1T2n-1=7+12n+1.

故要使得anbn为正整数,只需要分式部分的“n+1”为分子部分“12”的正约数即可,而12的正约数有1,2,3,4,6,12,显然1不合题意,舍去.所以令n+1=2,3,4,6,12,可得n=1,2,3,5,11,即正整数n的个数为5.

2. 数列{an}满足a1=a,a2=-a(a>0),且{an}从第二项起是公差为6的等差数列,Sn 是{an}的前n项和.

(1)当n≥2时,用a与n表示an与Sn;

(2)若在S7与S8两项中至少有一项是Sn的最小值,试求a的取值范围.

3. 已知等比数列{an}的首项a1=2 011,公比q=-12,数列{an}前n项和记为Sn,前n项积记为Tn.

(1) 证明:S2≤Sn≤S1;

(2) 求n为何值时,Tn取得最大值.

4. 已知数列{an}是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足a2n=S2n-1,n∈N*.数列{bn}满足bn=1an·an+1,n∈N*,Tn为数列{bn}的前n项和.

(1)求数列{an}的通项公式an和数列{bn}的前n项和Tn;

(2)若对任意的n∈N*,不等式λTn

5. 数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.若数列{an}为等差数列,

(1)求证:3A-B+C=0;

(2)若A=-12,B=-32,C=1,设bn=an+n,数列{nbn}的前n项和为Tn,求Tn.

数列经典例题4 第5篇

例1错误!未指定书签。.设{an}是公比为q的等比数列.(Ⅰ)推 导{an}的前n项和公式;(Ⅱ)设q≠1, 证明数列{an1}不是等比数列.例2 已知数列an的首项为a11,其前n项和为sn,且对任意正整数n有:n、an、Sn成等差数列.

(1)求证:数列Snn2成等比数列;(2)求数列an的通项公式. 例3错误!未指定书签。.已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an1,an2,的最小值记为Bn,dn=An-Bn.(I)若{an}为2,1,4,3,2,1,4,3,是一个周期为4的数列(即对任意n∈N,an4an),写出*d1,d2,d3,d4的值;

(II)设d为非负整数,证明:dn=-d(n=1,2,3)的充分必要条件为{an}为公差为d的等差数列;(III)证明:若a1=2,dn=1(n=1,2,3,),则{an}的项只能是1或者2,且有无穷多项为1.

第一讲 数列的极限典型例题 第6篇

数列的极限

一、内容提要

1.数列极限的定义

limxna0,nN,nN,有xna.注1 的双重性.一方面,正数具有绝对的任意性,这样才能有

xn无限趋近于axna(nN)

另一方面,正数又具有相对的固定性,从而使不等式xna.还表明数列xn无限趋近于a的渐近过程的不同程度,进而能估算xn趋近于a的近似程度.注2 若limxn存在,则对于每一个正数,总存在一正整数N与之对应,但这种N不是n唯一的,若N满足定义中的要求,则取N1,N2,,作为定义中的新的一个N也必须满足极限定义中的要求,故若存在一个N则必存在无穷多个正整数可作为定义中的N. 注3 xna(n)的几何意义是:对a的预先给定的任意邻域U(a,),在xn中至多除去有限项,其余的无穷多项将全部进入U(a,). 注4 limxna00,nN,n0N,有xna0.02.子列的定义

在数列xn中,保持原来次序自左往右任意选取无穷多个项所得的数列称为xn的子列,记为xnk,其中nk表示xn在原数列中的项数,k表示它在子列中的项数.

k注1 对每一个k,有nkk.

注2 对任意两个正整数h,k,如果hk,则nhnk.反之,若nhnk,则hk. 注3 limxna0,nkK,kK,有xna.k注4 limxnaxn的任一子列xnnk收敛于a.3.数列有界

对数列xn,若M0,使得对nN,有xnM,则称数列xn为有界数列. 4.无穷大量

对数列xn,如果G0,N,作limxn.

nnN,有xnG,则称xn为无穷大量,记 1 注1 只是一个记号,不是确切的数.当xn为无穷大量时,数列xn是发散的,即limxnn不存在.

注2 若limxn,则xn无界,反之不真.

n注3 设xn与yn为同号无穷大量,则xnyn为无穷大量. 注4 设xn为无穷大量,yn有界,则xnyn为无穷大量.

注5 设xn为无穷大量,对数列yn,若0,有yn,N,使得对nN,则xnyn为无穷大量.特别的,若yna0,则xnyn为无穷大量. 5.无穷小量

若limxn0,则称xn为无穷小量.

n注1 若limxn0,yn有界,则limxnyn0.

nn注2 若limxn,则limn1xnnil若m0;

nxn0,且N,使得对nN,xn0,则lim1xnn.

6.收敛数列的性质

(1)若xn收敛,则xn必有界,反之不真.(2)若xn收敛,则极限必唯一.

(3)若limxna,limynb,且ab,则N,使得当nN时,有xnyn.

nn注

这条性质称为“保号性”,在理论分析论证中应用极普遍.

(4)若limxna,limynb,且N,使得当nN时,有xnyn,则ab.

nn注

这条性质在一些参考书中称为“保不等号(式)性”.

(5)若数列xn、yn皆收敛,则它们和、差、积、商所构成的数列xnyn,xnyn,xnyn,xnyn0)也收敛,且有 (limnynnyn,xnlim

limxnynlimnnxnynlimxnlimyn,limnnn 2

lim7.迫敛性(夹逼定理)

xnynlimxnnnlimynn(limyn0).

n若N,使得当nN时,有ynxnzn,且limynlimzna,则limxna.

nnn8.单调有界定理

单调递增有上界数列xn必收敛,单调递减有下界数列xn必收敛. 9.Cauchy收敛准则

数列xn收敛的充要条件是:0,N,n,mN,有xnxm.

注 Cauchy收敛准则是判断数列敛散性的重要理论依据.尽管没有提供计算极限的方法,但它的长处也在于此――在论证极限问题时不需要事先知道极限值. 10.Bolzano Weierstrass定理 有界数列必有收敛子列.

111.lim1e2.7182818284nnn

12.几个重要不等式

(1)ab2ab, sinx  1.sinx  x.(2)算术-几何-调和平均不等式:

 对a1,a2,,anR, 记 2 M(ai) a1a2annn 1niani1,(算术平均值)G(ai)nna1a2anai,(几何平均值)

i1

H(ai)n1a11a21an11nni11ainnai11i.(调和平均值)有均值不等式:

H(ai) G(ai) M(ai),等号当且仅当a1a2an时成立.(3)Bernoulli 不等式:

(在中学已用数学归纳法证明过)对x0, 由二项展开式(1x)1nxnnn(n1)2!x2n(n1)(n2)3!x3xn,(1x)1nx,(n1)

(4)Cauchy-Schwarz 不等式: ak,bk(k1,2,,n),有

nn

akbkakbkk1k122n2kn2kabk1k1

(5)nN,13.O.Stolz公式 1n1ln(11n)1n

二、典型例题 1.用“N”“GN”证明数列的极限.(必须掌握)例1 用定义证明下列各式:(1)lim3n5n13nn622n1;

(2)设xn0,limxna,则limnnxna;(97,北大,10分)

(3)limlnnnn0(0)

证明:(1)0,欲使不等式

3n5n13nn662216n53nn6626n3nn26nn26n

成立,只须n,于是,0,取N[]1,当nN时,有

3n5n13nn62

2216n

limn3n5n13nn621.

(2)由limxna,xn0,知0,nN,xnaanN,有xnaa,则

xnaxnaxna

于是,0,N,nN,有

xnaxnaa,即

lim(3)已知nlnn,因为

20lnnnnxna.

lnnn22lnn12n22n12n4

2[n2]n4nn24,n2

2所以,0,欲使不等式

lnnn0lnnn4n24成立,只须n.

24

于是,0,取N1,当nN时,有



lnnn0lnnn4,n20. 即

lim

lnnnn评注1 本例中,我们均将xna做了适当的变形,使得xnag(n),从而从解不等式g(n)中求出定义中的N.将xna放大时要注意两点:①g(n)应满足当n时,g(n)0.这是因为要使g(n),g(n)必须能够任意小;②不等式g(n)容易求解.

评注2 用定义证明xna(n),对0,只要找到一个自然数N(),使得当nN()时,有xna即可.关键证明N()的存在性.

评注3 在第二小题中,用到了数列极限定义的等价命题,即:(1)0,(2)0,N,N,nN,有xnaM(M为任一正常数).nN,有xnak(kN).例2 用定义证明下列各式:(1)limnnn1;(92,南开,10分)

kn(2)limnna0(a1,kN)

nn证明:(1)(方法一)由于n1(n1),可令n1(0),则

nnnn(1)n1nn2n(n1)22nn(n1)22(n2)

当n2时,n1,有

n2

n n(n1)2242n24(nn1)

2即

0nn12nn.

0,欲使不等式n1nn12n成立,只须n42.

于是,0,取Nmax21,2,当nN时,有

n4n12n,即

limnnn1.

(方法二)因为 1nn(nn2个1n111)nnn11n2nn2n12n,所以

nn12n,0,欲使不等式

nn1nn12n成立,只须n42.

于是,0,取N21,当nN时,有

n4n12n,即

limnnn1.

(2)当k1时,由于a1,可记a1(0),则

an(1)n1nn(n1)22nn(n1)22(n2)

当n2时,n1

0nann2,于是有

nn(n1)24n2.

2

0,欲使不等式

nan0 nan4n2成立,只须n42.

对0,取Nmax21,2,当nN时,有



nan40 nan4n2.

1当k1时,ak1(a1),而

naknn1kn(a). n1k则由以上证明知0,N,nN,有0,即

n(ak)

0naknkn,k故

limnna0.

评注1 在本例中,0,要从不等式xna中解得N非常困难.根据xn的特征,利用二项式定理展开较容易.要注意,在这两个小题中,一个是变量,一个是定值.

评注2 从第一小题的方法二可看出算术-几何平均不等式的妙处. 评注3 第二小题的证明用了从特殊到一般的证法. 例 用定义证明:limannn!(山东大学)0(a0)证明:当0a1时,结论显然成立.

aaaaaaa0成立,当a1时,欲使

aa1a!nn!12nanaaa1只须n.于是0,取N1,当nN时,有 a!a!aa1ann!0aaa!an

a即

lim0.

nn!n例 设1,用“N”语言,证明:lim[(n1)n]0.

n证明:当0时,结论恒成立. 当01时,0,欲使(n1)n0n[(11n)1]n(11n1)1n1

只须n1111.于是0,取N111,当nN时,有 1n1(n1)n0

lim[(n1)n]0.

n2.迫敛性(夹逼定理)

n项和问题可用夹逼定理、定积分、级数来做,通项有递增或递减趋势时考虑夹逼定理.

ynxnzn,ynb,znc{xn}有界,但不能说明xn有极限.使用夹逼定理时,要求yn,zn趋于同一个数.

an例

求证:limnn!. 0(a为常数)分析:ann!aaaaaa,因a为固定常数,必存在正整数m,使123mm1nam1mam1,因此,自开始,am11,am21,,an1,且n时,an0.

证明:对于固定的a,必存在正整数m,使am1,当nm1时,有

an0mn!a1a2a3amanam1anamm!an,由于limanm!an0,由夹逼定理得limnn!0,即

limnann!0.

评注 当极限不易直接求出时,可将求极限的变量作适当的放大或缩小,使放大、缩小所得的新变量易于求极限,且二者极限值相同,直接由夹逼定理得出结果.

例 若{an}是正数数列,且lima12a2nannn0,则

limnnna1an0.

证明:由n1a12a2nana12a2nann,知

nn!na1a2ana12a2nann1n

即 na1a2ana12a2nann1n.

n!于是,0nna1a2ana12a2nann,而由已知

n!lima12a2nannn0及lim1nnn!0

limna12a2nann1nn!0

由夹逼定理得

limnnna1an0.

评注1 极限四则运算性质普遍被应用,值得注意的是这些性质成立的条件,即参加运算各变量的极限存在,且在商的运算中,分母极限不为0. 评注2 对一些基本结果能够熟练和灵活应用.例如:(1)limqnn0(q1)

(2)lim1nnan0(a0)

(3)limnna1(a0)

(4)limnnn1

(5)limann!0(a0)

(6)lim1nnn!0

例 证明:若limxna(a有限或),则

nlimx1x2xnnna(a有限或).

证明:(1)设a为有限,因为limxna,则0,nN1,有xnanN1,2.9 于是x1x2xnnax1ax2axnan

x1ax2axN1anAnnN1nxN11axnan

An2.

其中Ax1ax2axNa为非负数.

1因为limnAn0,故对上述的0,N2,nN2,有

An2.

取Nmax{N1,N2}当nN时,有

x1x2xnna22

limx1x2xnnna.

nN1,有xn2G,(2)设a,因为limxn,则G0,nN1,且x1x2xN0.于是 x1x2xnn

x1x2xN1nxN11xnn

xN11xnn

2G(nN1)n2G2N1nG

取N2N1,当nN时,2N1nGG,于是

x1x2xnn2GGG.

limx1x2xnnn

(3)a时证法与(2)类似.

评注1 这一结论也称Cauchy第一定理,是一个有用的结果,应用它可计算一些极限,例如:

112n1n0(已知limn(1)lim1nnn0);

(2)lim1233nnn1(已知limnnn1).

评注2 此结论是充分的,而非必要的,但若条件加强为“{xn}为单调数列”,则由x1x2xnnlimna可推出limxna.

n评注3 证明一个变量能够任意小,将它放大后,分成有限项,然后证明它的每一项都能任意小,这种“拆分方法”是证明某些极限问题的一个常用方法,例如:

若01,limana(a为有限数),证明:

nlim(anan1an2a0)n2n分析:令xnanan1an2a0,则

2na1.

(1)xnan(an1an)(an2an1)(a0a1)2nn1a0.

2n只须证

(an1an)(an2an1)(a0a1)0(n)

由于limana,故N,nnN,有anan1.于是

2n(an1an)(an2an1)(a0a1)

an1anan2an12NanN1anNN1anNanN1a0a1nn再利用lim0(01)即得.

n例 求下列各式的极限:(1)lim(n1nn122nn22nnnn2)

(2)limnn1121n

(3)limn135(2n1)2462n2n

2nn22解:(1)12nnnn1nn12nnnn212nnn12

n(n1)∵lim12,22nnnnn2nnnn(n1)12n12limlim,2nnn2n1nn12由夹逼定理,12nlim∴lim(n1nn1n22nn22nnnnn2)12

(2)1∵limnn1121nn111n

n1,由夹逼定理,∴limnn11121n1.

(3)∵1n2n352n11135(2n1)132n11,242n22n2462n242n∴2nnn135(2n1)2462n1.

∵lim12nnnn1,由夹逼定理,∴limn135(2n1)2462n2n12nn1.

评注 的极限是1,用此法体现了“1”的好处,可以放前,也可放后.若极限不是1,则不能用此法,例如:

xn23(n1)35(2n1),求limxn.

n解:∵xn0,xn单调递减,xn单调递减有下界,故其极限存在. 令limxna,∵xn1xnnn2∴limxn1limxnlimnn2n3n2

12a,n2n3,a∴a0,xn0. 即

limn 12 lim(1n112112n)(中科院)

评注 拆项:分母是两项的积,1n(n1)1n1n1

nn1n11n11n插项:分子、分母相差一个常数时总可以插项.3单调有界必有极限 常用方法:①xn1xn;②

xn1xn1

;③归纳法;④导数法.

xn1f(xn)

f(x)0

f(x)单调递增

x2xf(x2)f(x1)

x3x2 x2x1

f(x2)f(x1)

x3x2

f(x)0

f(x)单调递减

x2x1

f(x2)f(x1)

x3x2

x2x1

f(x2)f(x1)

x3x2不解决决问题.

命题:xn1f(xn),若f(x)单调递增,且x2x1(x2x1),则xn单调递增(单调递减).

求下列数列极限:

(1)设A0,x10,xn112(xnAxn(98,华中科大,10分));(2)设x10,xn133xn3xn;(04,武大)

(3)设x0a,x1b,xn12xn1xn22Axn12(n2,3,).(2000,浙大)

解:(1)首先注意xn1另一方面,因为

(xn)2xnAxnA,所以xn为有下界数列.

xn1xn12(xnAxn)xn12xn(Axn)0.

1A(或

xn1xn12(1Ax2n)A221)

故xn为单调递减数列.因而limxn存在,且记为a.

n

由极限的四则运算,在xn112Aa).并注意到xn12(xnAxn)两端同时取极限n,得a(aA0,解得a3(1xn)3xnA.

(2)注意到0xn1另一方面,由

33xn3xn3,于是xn为有界数列.

xn1xn33xn3xnxn3xn23xn33xn133xn133xn133xn122(3xn1)(3xn1)(42xn1)2

3xn1(3xn1)(2xn1)22

3xn1知xn1xnxnxn1(3xn1)(2xn1)3xn13xn1212xn10.

即xn1xn与xnxn1保持同号,因此xn为单调数列,所以limxn存在(记为a).

n

由极限的四则运算,在xn133xn3xn两端同时取极限n,得a33a3a.并注意到0xn3,解得a(3)由于xn1xn3.

xnxn12xnxnxn12x2x1(2)n1x1x0(2)1nba(2)n, n1n1又xnm0(xm1xm)x0xn(ba)1m1(a(ba)1(m0(2)21)na,)2 14

1(1所以

limxn(ba)limnn1(21)na)2(ba)3a2ba3.

2评注1 求递归数列的极限,主要利用单调有界必有极限的原理,用归纳法或已知的一些基本结果说明数列的单调、有界性.在说明递归数列单调性时,可用函数的单调性.下面给出一个重要的结论:设xn1f(xn)(n1,2,)xnI,若f(x)在区间I上单调递增,且x2x1(或x2x1),则数列xn单调递增(或单调递减).

评注2 第三小题的方法较为典型,根据所给的xn1,xn,xn1之间的关系,得到xn1xn与xnxn1的等式,再利用错位相减的思想,将数列通项xn写成级数的表达式.

例 设a1,b1为任意正数,且a1b1,设an则an,bn收敛,且极限相同. 证明:由an2an1bn1an1bn12an1bn12an1bn12an1bn1an1bn1,bn,an1bn1(n2,3,)

an1bn1bn,知

bnan1bn1bn1bn1bn1.

则0bnb1,即bn为单调有界数列.

又0anbnb1,且 anan12an1bn1an1bn1an12an1bn1an1an1bn1an1bn12an1(bn1an1)an1bn10,所以an亦为单调有界数列.

由单调有界必有极限定理,liman与limbn存在,且分别记为a与b.在nnan2an1bn1an1bn1与bnan1bn1两端同时取极限n,得a2abab与bab.

考虑到a1,b1为任意正数且0a1anbnb1. 即得ab0. 例(1)设x12,xn121xn,求limxn;

n 15(2)设x10,x22,且3xn1xn2xn10(n2,3,),求limxn.

n解:(1)假设limxn存在且等于a,由极限的四则运算,在xn12n1xn两端同时取极限n,得a21a,即a12.

2.又xn2,故a1下面只须验证数列xna趋于零(n).由于

xna11112a2xax1a,nxnaxna44n0xn1n1而limx1a0,由夹逼定理得limxna1nn42.

(2)由3xn1xn2xn10,知

3xn12xn3xn2xn13xn12xn23x22x16,则

xn123xn2.

65假设limxn存在且等于a,由极限的四则运算,得an.

下面只须验证数列xn6523n16.由于 趋于零(n)

5n1xnxn12622xn13553662x153n165.

2显然limn3650,由夹逼定理得limxnn65.

评注1 两例题中均采用了“先求出结果后验证”的方法,当我们不能直接用单调有界必有极限定理时,可以先假设limxna,由递归方程求出a,然后设法证明数列xna趋于

n零.

评注2 对数列xn,若满足xnakxn1a(n2,3,),其中0k1,则必有limxna.这一结论在验证极限存在或求解递归数列的极限时非常有用.

n评注3 本例的第二小题还可用Cauchy收敛原理验证它们极限的存在性.

设a1>0,an1=an+

(1)要证lim21an,证明limnan2n=1(04,上海交大)

an2an2n2n=1,只要证lim2n2n1,即只要证liman1ann(2n2)2n1an1,即证lim(an1an)2

2n(2)因an1=an+a2n12n,故an1an1an0,an1an11a2n

a(an1an)(an1an)1a2nan1anan11a2n121a2n因此只要证limn0,即只要证limann

(3)由an1an1an0知,{an}单调增加,假如{an}有上界,则{an}1an必有极限a,由an1=an+

知,a=a+,因此0,矛盾.aa11这表明{an}单调增加、没有上界,因此liman.(证完)

n

4 利用序列的Cauchy收敛准则 例(1)设x1x2(0x1),xnx2xn122,求limxn;

n(2)设x1y11,xn1xn2yn,yn1xnyn,求limx2122xnyn2n;

14解:(1)由x1(0x1),得x1x2.假设xk12212,则xk.有

xk1xk212xxk12

由归纳法可得

xn于是

xnpxnx2xnp122.

2xxn1 22 17

xnp1xn1xnp1xn1212n112xnp1xn1

xp1x112n1. 0(n)

x2xn122由Cauchy收敛准则知:limxn存在并记为a,由极限的四则运算,在xnn两端同时取极限n,得a22ax0. 注意到xn(2)设an12,故limxna11x.

nxnyn,显然an1.xn2ynxnyn11an由于an1xn1yn11,则

an1an11an11an1

anan11an1an114anan114n1a2a1.于是anpananpanp1anp1anp2an1an

anpanp1anp1anp2an1an

11

41np2p114aa aa2211n1n114414

14n113a2a10(n).由Cauchy收敛准则知:limxn存在并记为a.n由极限的四则运算,在an11xnyn11an2两端同时取极限n,得a2.

注意到an1,故limnlimann2.

评注1 Cauchy收敛准则之所以重要就在于它不需要借助数列以外的任何数,只须根据数列各项之间的相互关系就能判断该数列的敛散性.本例两小题都运用了Cauchy收敛准则,但细 18 节上稍有不同.其实第一小题可用第二小题的方法,只是在第一小题中数列xn有界,因此有xp1x1xp1x11.保证了定义中的N仅与有关.评注2 “对pN有limxnpxn0”这种说法与Cauchy收敛准则并不一致.这里

n要求对每个固定的p,可找到既与又与p的关的N,当nN,有xnpxn.而Cauchy收敛准则要求所找到的N只能与任意的有关.

5 利用Stolz定理计算数列极限

例 求下列极限

1323n3n (1)lim3n4n

lim(2)假设limana,证明:na12a2...nann2na2(00,大连理工,10)(04,上海交大)

证明:Stolz公式 lima12a2...nann2nlim(a12a2...nan(n1)an1)(a12a2...nan)(n1)n22nlim(n1)an12n111232

na21n n1nlnn(3)limn2n(4)lim

n(5)limna2n(a1)

n6 关于否定命题的证明(书上一些典型例题需背)

limxna

nxn发散

证明:xn112131nan1an发散.

例 设an0(n1,2,),且liman0,若存在极限limnn(北大,l,则l1.20)

7 杂例(1)lim1121231n(n1)

n

(2)(04,武大)lim(n1a2a2...nan),(a1)1n 1()1naalim()n2n1a1a(a1)1a

22n(3)lim(1x)(1x)(1x)(x1);n

2(4)设a13,an1anan(n1,2,),求:

上一篇:大学生课余时间利用方式调查报告下一篇:治愈系晚安问候语