高等数学证明方法

2024-05-28

高等数学证明方法(精选12篇)

高等数学证明方法 第1篇

高等数学中不等式的证明方法

摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此,不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神,创新思维,使一些较难的题目简单化、方便化。

关键词:高等数学;不等式;极值;单调性;积分中值定理

Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints.Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(毕业论文参考网原创论文)ches of mathematics.It has been a special study.Today there are a large number of inequalities in higher mathematics.This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem.We can resolvethe problems identified through these methods.It can bring up our innovative spirit

and thinking and some difficult topics may be more easy and Convenient,Keyword: Higher Mathematics;Inequality;Extreme value Monotonicity;Integral Mean Value

Theorem

文章来自:全刊杂志赏析网(qkzz.net) 原文地址:http://qkzz.net/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm

【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的不等式试题,对一些常用的不等式证明方法进行总结。

【关键词】不等式; 中值定理; 泰勒公式; 辅助函数; 柯西施瓦茨; 凹凸性

在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

式法、函数的凹凸性法、柯西施瓦茨不等式。

1中值定理定理法

利用中值定理(罗尔中值定理、拉格朗日中值定理、柯西中值定理)的方法来证明不等式首先要熟记各个中值定理的应用条件,可将原不等式通过变形找到一个辅助函数,使其在所给区间上满足中值定理的条件,证明的关键是处理好ξ点,分析函数或其导数在该点的性质即可得到所要结论,在证明过程中也会出现反复应用同一定理或同时应用几个定理进行证明的情况。

例1设e4e2(b-a)。

解:对函数ln2x在[a,b]上应用拉格朗日中值定理,得ln2b-ln2a=2lnξξ(b-a),a<ξ设φ(x)=lnxx,φ′(x)=1-lnxx2当x>e时,φ′(x)<0,所以φ(x)单调减少,从而φ(ξ)>φ(e2),即lnξξ>lne2e2=2e2,故ln2b-ln2a>4e2(b-a)。

也可利用函数的单调性证明,可设φ(x)=ln2x-4e2x

例2设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),证明在(a,b)内至少存在一点ξ,使得f′(ξ)>0。

解:因f(x)不恒为常数且f(a)≠f(b),故至少存在一点c∈(a,b),使得f(c)≠f(a)=f(b)。

若f(c)>f(a)则在[a,c]上f(x)满足拉格朗日中值定理条件,因此至少存在一点ξ∈(a,c)(a,b),使得f′(ξ)=1c-a[f(c)-f(a)]>0。

若f(c)

2利用辅助函数的单调性证明

辅助函数方法比较常用,其主要思想是将不等式通过等价变形,找到一个辅助函数,通过求导确定函数在所给区间上的单调性,即可证明出结论。常用的方法是,直接将不等号右端项移到不等号左端,另不等号右端为零,左端即为所求辅助函数。

例3试证:当x>0时,(x2-1)lnx≥(x-1)2。

解:设f(x)=(x2-1)lnx-(x-1)2,易知f(1)=0。

又f′(x)=2xlnx-x+2-1x,f′(1)=0, f′(x)=2lnx+1+1x2,f′(1)=2>0

f(x)=2(x2-1)x3可见,当00,因此有当00。又由f′(1)=0及f′(x)是单调增加的函数推知,当00,因此进一步有f(x)≥f(1)=0(00时,(x2-1)lnx≥(x-1)2。

文章来自:全刊杂志赏析网(qkzz.net) 原文地址:

例4设b>a>e,证明ab>ba。

分析:要证ab>ba,只需证blna>alnb或lnaa>lnbb

解一:令f(x)=xlna-alnx(x≥a),因为f′(x)=lna-ax>1-ax≥0(x≥a)

所以f(x)在x≥a时单调增加。因此当bφa时,有f(b)>f(a)=0,即有blna>alnb,也即ab>ba。

解二:令f(x)=lnxx,x>e,则有f′(x)=1-lnxx2<0(x>e),因此f(x)单调减少,故当b>a>e时,有lnaa>lnbb即ab>ba。

3利用泰勒展开式证明

泰勒展开式的证明常用的是将函数f(x)在所给区间端点或一些特定点(如区间的中点,零点)进行展开,通过分析余项在ξ点的性质,而得出不等式。另外若余项在所给区间上不变号,也可将余项舍去而得到不等式。

例5设f(x)在[0,1]上具有二阶可导函数,且满足条件|f(x)|≤a,|f(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明|f′(x)|≤2a+b2。

分析:已知f(x)二阶可导,应考虑用二阶泰勒展开式。本题涉及证明|f′(x)|≤2a+b2,应在特定点x=c处将f(x)按泰勒公式展开。

解: 对f(x)在x=c处用泰勒公式展开,得

f(x)=f(c)+f′(c)(x-c)+f′(ξ)2!(x-c)2(1)

其中ξ=c+θ(x-c),0<θ<1,在(1)式中令x=0,有

f(0)=f(c)+f′(c)(0-c)+f′(ξ)2!c2, 0<ξ1

在(1)式中令x=1,有f(1)=f(c)+f′(c)(1-c)+f′(ξ)2!c2, 0

上述两式相减得

f(1)-f(0)=f′(c)12![f′(ξ2)(1-c)2-f′(ξ1)c2],于是

|f′(c)|=|f(1)-f(0)-12 [f′(ξ2)(1-c)2-f′(ξ1)c2]|

≤|f(1)|+|f(0)|+12|f′(ξ2)|(1-c)2+12 |f′(ξ1)|c2

≤2a+b2[(1-c)2+c2],又因当c∈(0,1)时,有

(1-c)2+c2≤1故 |f′(c)|≤2a+b2

因这里ξ与x有关,可将其记为ξ(x),那么当令x分别取0和1时,对应的ξ可分别用ξ1和ξ2表示。

4柯西施瓦茨不等式

(〖jf(z〗baf(x)g(x)dx)2〖jf)〗≤〖jf(z〗baf2(x)dx〖jf)〗·〖jf(z〗bag2(x)dx〖jf)〗

柯西施瓦茨不等式是一个常用的不等式,在证明过程中我们可以直接利用常用不等式进行证明,即方便又快捷。

例6设f(x)在区间[a,b]上连续,且f(x)>0,证明〖jf(z〗baf(x)dx〖jf)〗·〖jf(z〗ba1f(x)dx≥(b-a)2。〖jf)〗

证明:(〖jf(z〗baf(x)1f(x)dx)2〖jf)〗≤〖jf(z〗baf(x))2 dx〖jf)〗·〖jf(z〗ba(1f(x))2dx〖jf)〗

即得〖jf(z〗baf(x)dx〖jf)〗·〖jf(z〗ba1f(x)dx≥(b-a)2〖jf)〗

5利用函数图形的凹凸性进行证明

函数的凹凸性证明方法首要是找到辅助函数f(x),利用函数f(x)在所给区间[a,b]的二阶导数确定函数的凹凸性。

f′(x)>0 函数为凹的,则 f(a)+f(b)>2f(a+b2);

f′(x)<0 函数为凸的,则 f(a)+f(b)<2f(a+b2),从而证明出结论。

例7xlnx+ylny>(x+y)lnx+y2,(x>0,y>0,x≠y)

令 f(t)=tlnt(t>0), f′(t)=lnt+1, f′(t)=1t>0, 故 f(t)=tlnt在(x,y)或(y,x),x>0,y>0是凹的,于是

12[f(x)+f(y)]>f(x+y2)

即12[f(x)+f(y)]>x+y2ln x+y2

即xlnx+ylny>(x+y)lnx+y2

类似的如:证明 ex+ey2>ex+y2,(x≠y)。

文章来自:全刊杂志赏析网(qkzz.net) 原文地址:http://qkzz.net/article/16be7113-df3a-4524-a9c3-4ba707524e72_3.htm

高等数学证明方法 第2篇

从正面证明命题真实性的证明方法叫做直接证法.凡是用演绎法证明命题真实性的都是直接证法.它是中学数学中常用的证明方法.综合法、分析法、分析综合法、比较法。

(1)综合法:从已知条件入手,运用已经学过的公理、定义、定理等进行一步步的推理,一直推到结论为止.这种思维方法叫综合法.这种方法是“由因导果”,即从已知到可知,从可知到未知的思维过程.

(2)分析法:从问题的结论入手,运用已经学过的公理、定义、定理,一步步寻觅使结论成立的条件,一直“追”到这个结论成立的条件就是已知条件为止.可见分析法是“执果求因”的思维过程,它与综合法的思维过程相反.分析法属于逻辑方法范畴,它的严谨体现在分析过程步步可逆。

分析法的步骤为未知需知已知。在操作中“要证”、“只要证”、“即要证”这些词语也是不可缺少的。分析法的书写形式一般为“因为......,为了证明......,只需证明......,即......,因此,只需证明......,因为......成立,所以‘......(结论)’成立”。(3)分析综合法:把分析法和综合法“联合”起来,从问题的两头向中间“靠拢”,从而发现问题的突破口.这种思维方法叫做分析综合法.对于比较复杂的题目,往往采用这种思维方法.在证明的过程中,往往分析法、综合法常常是不能分离的。分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系。分析的终点是综合的起点,综合的终点又成为进一步分析的起点。

(4)比较法 间接证明法

不是直接证明论题的真实性,而是通过证明论题的否定论题的不真实,或者证明它的等效命题成立,从而肯定论题真实性的证明方法,叫做间接证明法.反证法、同一法、归纳法(不完全归纳法、完全归纳法、数学归纳法)、类比法、换元法、放缩法、判别式法、函数法(1)反证法:反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。实施的具体步骤是:

第一步,反设:作出与求证结论相反的假设(即结论的否定成立);

第二步,归谬:从否定结论出发,逐层进行推理,得出与公理或前述的定理、定义或题设条件,或与临时假设等自相矛盾(即说明结论不能否定);

第三步,结论:根据排中律,说明反设不成立,从而肯定原命题成立。(2)同一法:两个互逆或互否的命题不一定是等效的,只有当一个命题的条件和结论都唯一存在,且它们所指的概念是同一概念时,该命题与其逆命题才等效,这个原理叫做同一原理.对符合同一原理的命题,当直接证明有困难时可以改证与它的等效的逆命题,这种证明方法叫做同一法.

1当命题的条件与结论所含事项都唯一存在时,先作出符合命题结论的所有图形;同一法的步骤:○2证明所作图形符合已知条件;3根据唯一性,4最后肯定○○确定所作图形或所作图形与已知图形重合;○原命题成立.

(3)不完全归纳法:从一个或几个(但不是全部)特殊情况作出一般性结论的归纳推理。不完全归纳法又叫做普通归纳法。

(4)完全归纳法:是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的.通常在事物包括的特殊情况数不多时,采用完全归纳法。

高等数学中不等式证明的方法 第3篇

一、单调函数法

当x属于某区间, 有f′ (x) ≥0, 则f (x) 单调上升;若f′ (x) ≤0, 则f (x) 单调下降。推广之, 若证f (x) ≤g (x) , 只须证f (a) =g (a) 及f′ (x) ≤g′ (x) 即可, x∈[a, b]。利用函数单调性来证明不等式时, 往往要引入适当的辅助函数将不等式问题转化成比较两个函数值的大小, 若要比较两个函数值大小, 只要将不等式两边的不等式相减或相除就可以得到所需的辅助函数;不能以f′ (x) <0而认为f (x) <0, 也就是说不要忘了端点值。

[例]证明:当x>1时, ex>ex

证明:令f (x) =ex-exf′ (x) =ex-e> (0x>) 1

当x>1时, f (x) 单增, 即当x>1时f (x) >f1 ()

所以, ex-ex>e-e⋅1=0ex>ex (x>) 1

二、函数的极值法

令f (x) 在区间[b, a]上连续, 则f (x) 在区间[b, a]存在最大值M和最小值m, 那么:m≤f (x) ≤M。通过变换, 把某些问题归纳为求函数的极值, 达到证明不等式的目的。

三、中值定理法

利用中值定理:f (x) 是在区间[a, b]上有定义的连续函数, 且可导, 则存在ξ, a<ξ

[例]证明:当0

证明令f (x) =lnx, x∈[b, a], 在[b, a]上使用拉格朗日中值定理,

[例]设f' (x) <, 0f () 0=0证明对任何的a>0, b>, 0有f (a+b)

(东北大学研究生入学试题)

分析:因为f (x) 可导, 又f () 0=0, 可以知道一定用拉格朗日中值定理

证明:由拉格朗日中值定理有

f (a+b) -f (b) =af' (ε2) , a<ε2

f' (x) <, 0因为f' (x) 单调递减, 所以f' (ε1) >f' (ε2) , f (a+b) -f (b)

所以对任何的a>0, b>, 0有f (a+b)

四、泰勒公式

[例]:证明:若函数f (x) 在[a, b]上存在二阶导数, 且f‘ (a) =f' (b) =0, 则在 (a, b) 内至少存在一点c使

五、凹凸性

有些不等式可以通过函数图像的凹凸性来证明, 利用函数的凹凸性也会给证明不等式带来一定的方便

[例]证明不等式

证明:取f (t) =et, t∈ (-∞, +∞) .f′ (t) =et, f′ (t) =et, 0t∈ (-∞, +∞)

因此函数f (t) =tlnt在 (0, +∞) 内图形是凹的, 故对任何x, y

综上可见, 不等式证明的方法是多种多样的, 并且方法灵活多样、技巧性强, 做具体问题时要善于观察和思考, 根据不等式证明中的题设与结论之间的关系以及自己擅长的方法和思维, 选择适当的证题方法。

摘要:不等式是高等数学主要研究的问题之一。可以说不等式的研究对高等数学的发展起到了一定的推动作用。以下通过实例介绍高等数学中不等式的常见证法。

关键词:高等数学,不等式证明

参考文献

[1]同济大学应用数学系:《高等数学》, 高等教育出版社。

[2]陈文灯、黄先开:《2005年考研数学复习指南》。

高等数学证明方法 第4篇

摘 要: 本文给出了一道高等数学竞赛题的多种证明方法,并对其做了进一步推广.

关键词: 罗尔定理 根的存在性定理 费尔马引理 导函数介值定理

一、预备知识

2016年江苏省普通高等学校第十三届高等数学竞赛专科组试题中有一道证明题,题目如下:

命题1设函数f(x)在区间[0,1]上二阶可导,f(0)=0,f(1)=0,且f(x)>0,f(x)<0,求证:存在ξ∈(0,1),使得f′′(ξ)=0.

我们将给出命题1的三种证明方法.在这些证明方法中,除了罗尔定理和根的存在性定理之外,还用到了下列定理:

引理1(Fermat)设f(x)在[a,b]上有定义,并且在点c∈(a,b)取得最值,f(x)在点c可导,则f′(c)=0.

引理2(导函数介质定理)若f(x)在区间[a,b]上可导,则对于f′(a)与f′(b)之间的任一数值μ,必有一点c∈(a,b),使得f′(c)=μ.

二、不同证明方法及分析

在这一部分我们给出了命题1的三种不同证明方法.第一种证明方法运用了最值定理、根的存在性定理和罗尔定理,证明方法清晰,思路比较自然.

证法一:因为f(x)在区间[0,1]上可导,所以f(x)在区间[0,1]上连续,由最值定理,设f(a)=f(x)>0,f(b)=f(x)<0,不妨设0

因为f(x)在区间[0,1]上可导,在区间[0.c]与[c,1]上应用罗尔定理可得,存在ξ∈(0,c),ξ∈(c,1),使得f′(ξ)=0, f′(ξ)=0.

因为f′(x)在区间[ξ,ξ]上可导,在区间[ξ,ξ]上应用罗尔定理可得,存在ξ∈(ξ,ξ)?奂(0,1),使得f″(ξ)=0.

证法二运用了Fermat引理,证明方法简洁.

证法二:设f(a)=f(x)>0,f(b)=f(x)<0,不妨设0

因为f(x)在区间[0,1]上可导,Fermat引理,可知f′(a)=f′(b)=0.因为f′(x)在区间[a,b]上可导,在区间[a,b]上应用罗尔定理可得,存在ξ∈(a,b)?奂(0,1),使得f″(ξ)=0.

方法一与方法二运用的知识都是高职高专高等数学知识体系范围内的.证法三需要用到导函数介质定理.此定理不在高职高专高等数学知识范围内,证明如下:

证法三:由最值定理,设f(a)=f(x)>0,f(b)=f(x)<0,不妨设0

由拉格朗日定理可知,存在一点ξ∈(0,a)使得f′(ξ)=>0.同理,存在一点ξ∈(a,c)使得f′(ξ)<0;存在一点ξ∈(c,b)使得f′(ξ)<0;存在一点ξ∈(b,1)使得f′(ξ)>0.

再次利用拉格朗日中值定理可知,存在一点ξ∈(ξ,ξ)使得f″(ξ)<0;存在一点ξ∈(ξ,ξ)使得f″(ξ)>0;最后,由导函数介质定理可知,存在ξ∈(ξ,ξ)?奂(0,1),使得f″(ξ)=0.

三、一些推广

在这一部分,我们对命题1做了一些简单的推广.

命题2:设函数f(x)在区间(a,b)上二阶可导,f(x)=f(x)=C,且f(x)>0,f(x)<0求证:存在ξ∈(0,1),使得f″(ξ)=0.

证明:令f(a)=f(b)=C,令g(x)=f(x)-C,则g(x)满足命题1中的条件,且gs″(x)=f″(x).

命题3:设函数f(x)在区间(a,b)上二阶可导,f(x)=A,f(x)=B,且f(x)>A,f(x)

证明:令f(a)=A,f(b)=B.不妨设0

参考文献:

[1]华东师范大学数学系.数学分析(上册)第三版[M].北京:高等教育出版社,2001.

[2]叶建兵.一道高等数学竞赛题的多种方法及推广[J].高师理科学刊,35(2):18-21.

[3]杨天明,等.高等数学[M].南京:南京大学出版社,2011.

数学证明题解题方法 第5篇

第二步:借助几何意义寻求证明思路。一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如2007年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如2005年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

考研数学高等数学复习方法 第6篇

考研不是数学竞赛,不会出现这类题目,因此完全没必要浪费时间。每年许多考生容易在看似不起眼的选择题和填空题上失很多分。其实选择与填空题在数学考卷中所占的比重很大,这些题目的解答往往会“一失足成千古恨”,稍不留神,一步做错就全军覆没。在现阶段一定要有针对性地进行复习,所做题目的难度不能太小,当然也不能过于偏,而且复习要形成系统的知识体系结构。将做过的题目进行总结。目前阶段不要过于钻研偏题怪题。复习中,遇到比较难的题目,自己独立解决确实能显着提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。要充分借助老师、同学的帮助,将题目弄通搞懂、下次自己会做即可,不要耽误太多时间。另外无论是大题还是小题,都要细心。不能说只要考场上认真,仔细地做题就不会有“会做但做错”的情况出现,应该平时做题就态度认真。

二、真正消化知识点 练就解题的内功

如何才能真正吸收消化这些知识以成为自己的知识呢?根据自己的总结或在权威考研辅导机构的帮助下,考生可以知道常规的题型和解题方法与技巧,考生要进行相当量的综合题型的练习。因为在复习过程中,不少考生会渐渐地有能力解答一些考研的基本题目,但如果给他一道较为综合的大题,就无从下手了。所以要做一定量的综合题。

离散数学证明方法有哪些 第7篇

离散数学中的概念和定理偏多,思维较抽象,证明强调技巧性但变化不多。我觉得这是一门很需要找“感觉”的数学科目。首先要强记所学内容的相关定义和定理,随后学习证明过程时必须结合定义和定理,即每推一步就弄清其根据的是什么定义或定理。用这种方法学习一段时间后对证明就有一定感觉了,再做证明题就会感觉顺手很多。

了解概念是必要的,如果概念没有了解清楚,就无法很好的了解各种定理了。初学者学习离散数学一定要对概念弄清楚是怎么来的,基于什么客观事实,所有的离散概念都源于实践,因此,如果脱离实践去单纯的了解离散中的概念会很难理解。《离散数学及其应用》是一本我个人觉得比较全面的书,但是建议还是配套一些国内的书籍看,比如现在普遍使用的曲婉玲老师的教材。这两本相互补充。教学中,我会采用曲婉玲老师的教材,难度适中,但是很多定理没有证明,就补充离散数学及其应用帮助理解。

探析不等式证明的高等数学方法 第8篇

一、高等数学方法在不等式证明中的实际应用

( 一) 利用函数的单调性解决不等式证明的问题

利用函数导数的单调性来证明不等式是一种较为常见的高等数学方法,这种方法运用起来简单而有效,其关键点就在对函数求导,需要注意的是在证明常数不等式的时候要将常数不等式转换为函数不等式再进行求导.

例1证明: 当x不等于0时,不等式ex> 1 + x成立

证明: 先将不等式ex> 1 + x转变为ex- 1 - x > 0,设等式左边为F( x) = ex- 1 - x,对F ( x ) 求导可得F'( x) = ex- 1,

当 x = 0 时,F( 0) = e0- 1 = 0,

当x > 0时,F'( x) > 0,故F( x) 为递增函数,即F( x) > F( 0) = 0,所以ex- 1 - x > 0成立,

当x < 0时,F'( x) < 0,故F( x) 为递减函数,即F( x) > F( 0) = 0,所以ex- 1 - x > 0成立,

所以,当x不等于0时,不等式ex> 1 + x成立.

(二)利用泰勒公式解决不等式证明的问题

从泰勒定理来看,利用泰勒公式来证明不等式成立的方法适用于不等式中存在函数F( x) 的二阶或二阶以上可导且x有界的情况,其关键点就在于展开函数时对未知数x的特殊值的选取,同样需要注意的是在证明常数不等式的时候要将常数不等式转换为函数不等式再进行证明.

例2设F( x) 在[0,1]上的二阶导数连续,F( 0) = F( 1) = 0,且当0 < x < 1时,| F″( x) | ≤A. 试证明: 当0 < x < 1时,| F″( x) | ≤A/2.

证明因为F( x) 在闭区间[0,1]上存在二阶连续导数,

所以,对F( x) 做一阶泰勒公式展开F( x) = F( x0) + F'( x0) ( x - x0) + F″( § ) ( x - x0)2/2!1式,其中x ≤ § ≤x0,

取特殊值x = 0,x0= x时,F ( 0 ) = F ( x) + F' ( x) ( 0 x) + F″( § ) ( 0 - x)2/2!2式,其中0≤ § ≤x≤1,

且0≤x≤1,2x2- 2x + 1≤1,所以| F″( x) | ≤A /2成立.

(三)利用微分中值定理解决不等式证明的问题

费马定理、柯西中值定理、罗尔定理和拉格朗日中值定理都属于微分中值定理,其中我们用得最多的是柯西中值定理和拉格朗日中值定理. 利用微分中值定理来解决不等式证明的方法适应于不等式在经过变形,其结构相似于微分中值公式的情况,其关键点在于辅助函数的构建.

证明设F( x) = ln( 1 + x) ,

二、结束语

高等数学证明方法 第9篇

关键词:考研;高等数学;复习

硕士研究生入学数学考试历年是考生们感到很棘手的问题,很多考生由于数学没考好而痛失深造的机会。尤其对于文科改考理工科或经济类学科的考生来说,数学这门课的难度可称为所有科目中最大的,也是最让人担心的。自从1997年数学考试大纲进行了一次较大的调整以来,考生们普遍反映试题越来越难了。数学几乎成了相当部分考生难以逾越的"关口"。而在考研数学中,高等数学所占的比例是最高的,每年都超过百分之五十,比线性代数和概率论两门课的比例都要大。但是数学相对英语来说,只要方法得当,提高非常快。所以只要掌握了正确的复习方法,就能事半功倍。下面的备考经验也许能给考生以启发。

1 必须重视基础,重视和加深对基本概念、基本定理和基本方法的复习和理解。

考生要重视对基本概念、基本定理和基本方法的复习,打好基础。数学是一门演绎的科学,首先要对概念深入理解,要不然做题时难免会答非所问,甚至是南辕北辙。其次,要把定理和公式牢牢记住,每一道题都是由基本的定义、定理和公式构成,它们的不同组合就形成了不同的问题,多层次的组合形成不同复杂程度的问题。所以这些定义、定理和公式是解题的基础,而熟练掌握和深刻理解这些内容就成为解题成功的关键。可以说,掌握了定理和公式就等于找到了解题的突破口和切入点。对近几年数学答卷的分析表明,考生失分的一个重要原因就是对基本概念、定理记不全、记不牢,理解不准确,基本解题方法掌握不好,为了熟练掌握,牢固记忆和理解所有的定义,定理,公式,一定要先把所有的公式,定理,定义记牢,然后再做大量的练习基础题。做这些基础题时如能达到一看便知其过程,这样就说明真正掌握了基础习题的内容。这些题看起来简单,但它们能帮助我们熟悉和掌握定义、定理、公式,所以考生不能因为这些题简单而不去看它,不去重视它。高数的基础应该着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等等内容。

基本训练要反复进行。学习数学,一定要多做题。提倡精练,即反复做一些典型的题,做到一题多样,一题多变,要训练自己的抽象思维能力。对一些基本定理的证明,基本公式的推导,以及一些基本练习题,要做到"熟能生巧"。通过基本训练巩固对基本概念、基本定理和基本方法的理解。

2 加强综合解题能力的训练,熟悉常见考题的类型和解题思路,力求在解题思路上有所突破。

考研试题与教科书上的习题的不同点在于,前者是在对基本概念、基本定理、基本方法充分理解的基础上的综合应用,有较大的灵活性,往往一个命题覆盖多个内容,涉及到概念、直观背景、推理和计算等多种角度。因此一定要力争在解题思路上有所突破,要在打好基础的同时做大量的综合性练习题,并对试题多分析多归纳多总结,力求对常见考题类型、特点、思路有一个系统的把握。许多考生在做完教科书上的习题后,往往对考研题难以适应,其突出感觉是没有思路,这正是考生考前准备应解决的突破口。考生要掌握住各种题型的解题方法和技巧。在做题时,不必每道题都要写出完整的解题步骤,类似的题一般只要看出思路,熟悉其运算过程就可以,这样可以节省时间,提高做题的效率。

在选择习题时,考生要注意,最好先不要做模拟题,应该把真题先做一遍。因为真题的错误率比较低,而且最接近实际的试题。有的模拟题出得刁钻古怪,没有可做性。如果先做模拟题,假如选的模拟题不好则白白浪费了时间,而且对自己的解题思路也有着负面影响。通过做真题,考生可以真切的体会到考研的重点,难点,重要的是掌握了各种常考的题型。在做完真题之后再做模拟题就会感觉自己的解题思路有了质的提高,对数学认识也有了新的变化。

考生在做题的同时还要注意各章节之间的内在联系,数学考试会出现一些应用到多个知识点的综合性试题和应用型试题。这类试题一般比较灵活,难度也要大一些。考生要注意对综合性的典型考题的分析,来提高自身解决综合性问题的能力。数学有其自身的规律,其表现的一个重要特征就是各知识点之间、各科目之间的联系非常密切,这种相互之间的联系给综合命题创造了条件,因而考生应进行综合性试题和应用题训练。通过这种训练,积累解题思路,同时将各个知识点有机的联系起来,将书本上的知识转化为自己的东西。对于那些具有很强的典型性、灵活性、啟发性和综合性的题,要特别注重解题思路和技巧的培养。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高解题的针对性,又能提高解题速度和正确率。

3 注意归纳总结

在大量做题的基础上,一定要注意对知识进行归纳总结,这样在考试的时候,才能举一反三。 就各课的特点来说,高等数学是考研数学的重中之重,所占分值较大,需要复习的内容也比较多。另外高等数学还有跨章节乃至跨科目的综合考查题,近几年出现的有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;所以要求我们要注重归纳总结。

此外,数学要考的另一部分是简单的分析综合能力和解应用题的能力。近几年,高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等等这些好多知识。当然它主要考的就是数学在几何中的应用,在力学中的应用,在物理中的吸引力、电力做功等等这些方面。数学要考的第四个方面就是运算的熟练程度,换句话说就是解题的速度。如果能够围绕着这几个方面进行有针对性地复习,取得高分就不会是难事了。

参考文献:

[1]同济大学数学系.高等数学[M].北京:高等教育出版社,2007,4.

[2]陈文灯,黄先开.考研数学复习指南[M].北京:北京理工大学出版社,2012,12.

离散数学证明题解题方法 第10篇

1、定义和定理多。

离散数学是建立在大量定义上面的逻辑推理学科。因而对概念的理解是我们学习这门学科的核心。在这些概念的基础上,特别要注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。

●证明等价关系:即要证明关系有自反、对称、传递的性质。

●证明偏序关系:即要证明关系有自反、反对称、传递的性质。(特殊关系的证明就列出来两种,要证明剩下的几种只需要结合定义来进行)。

●证明满射:函数f:XY,即要证明对于任意的yY,都有x

或者对于任意的f(x1)=f(x2),则有x1=x2。

●证明集合等势:即证明两个集合中存在双射。有三种情况:第一、证明两个具体的集合等势,用构造法,或者直接构造一个双射,或者构造两个集合相互间的入射;第二、已知某个集合的基数,如果为א,就设它和R之间存在双射f,然后通过f的性质推出另外的双射,因此等势;如果为א0,则设和N之间存在双射;第三、已知两个集合等势,然后再证明另外的两个集合等势,这时,先设已知的两个集合存在双射,然后根据剩下题设条件证明要证的两个集合存在双射。

●证明群:即要证明代数系统封闭、可结合、有幺元和逆元。(同样,这一部分能够作为证明题的概念更多,要结合定义把它们全部搞透彻)。

●证明子群:虽然子群的证明定理有两个,但如果考证明子群的话,通常是第二个定理,即设是群,S是G的非空子集,如果对于S中的任意元素a和b有a*b-

1是的子群。对于有限子群,则可考虑第一个定理。

●证明正规子群:若是一个子群,H是G的一个子集,即要证明对于任意的aG,有aH=Ha,或者对于任意的hH,有a-1 *h*aH。这是最常见的题目中所使用的方法。●证明格和子格:子格没有条件,因此和证明格一样,证明集合中任意两个元素的最大元和最小元都在集合中。

图论虽然方法性没有前几部分的强,但是也有一定的方法,如最长路径法、构造法等等 下面讲一下离散证明题的证明方法:

1、直接证明法

直接证明法是最常见的一种证明的方法,它通常用作证明某一类东西具有相同的性质,或者符合某一些性质必定是某一类东西。

直接证明法有两种思路,第一种是从已知的条件来推出结论,即看到条件的时候,并不知道它怎么可以推出结论,则可以先从已知条件按照定理推出一些中间的条件(这一步可能是没有目的的,要看看从已知的条件中能够推出些什么),接着,选择可以推出结论的那个条件继续往下推演;另外一种是从结论反推回条件,即看到结论的时候,首先要反推一下,看看S,则X,使得f(x)=y。●证明入射:函数f:XY,即要证明对于任意的x1、x2X,且x1≠x2,则f(x1)≠f(x2);

从哪些条件可以得出这个结论(这一步也可能是没有目的的,因为并不知道要用到哪个条件),以此类推一直到已知的条件。通常这两种思路是同时进行的。

2、反证法

反证法是证明那些“存在某一个例子或性质”,“不具有某一种的性质”,“仅存在唯一”等的题目。

它的方法是首先假设出所求命题的否命题,接着根据这个否命题和已知条件进行推演,直至推出与已知条件或定理相矛盾,则认为假设是不成立的,因此,命题得证。

3、构造法

证明“存在某一个例子或性质”的题目,我们可以用反证法,假设不存在这样的例子和性质,然后推出矛盾,也可以直接构造出这么一个例子就可以了。这就是构造法,通常这样的题目在图论中多见。值得注意的是,有一些题目其实也是本类型的题目,只不过比较隐蔽罢了,像证明两个集合等势,实际上就是证明“两个集合中存在一个双射”,我们即可以假设不存在,用反证法,也可以直接构造出这个双射。

4、数学归纳法

数学归纳法是证明与自然数有关的题目,而且这一类型的题目可以递推。作这一类型题目的时候,要注意一点就是所要归纳内容的选择。

学习离散数学的最大困难是它的抽象性和逻辑推理的严密性。在离散数学中,假设让你解一道题或证明一个命题,你应首先读懂题意,然后寻找解题或证明的思路和方法,当你相信已找到了解题或证明的思路和方法,你必须把它严格地写出来。一个写得很好的解题过程或证明是一系列的陈述,其中每一条陈述都是前面的陈述经过简单的推理而得到的。仔细地写解题过程或证明是很重要的,既能让读者理解它,又能保证解题过程或证明准确无误。一个好的解题过程或证明应该是条理清楚、论据充分、表述简洁的。针对这一要求,在讲课中老师会提供大量的典型例题供同学们参考和学习。

在学习离散数学中所遇到的这些困难,可以通过多学、多看、认真分析讲课中所给出的典型例题的解题过程,再加上多练,从而逐步得到解决。在此特别强调一点:深入地理解和掌握离散数学的基本概念、基本定理和结论,是学好离散数学的重要前提之一。所以,同学们要准确、全面、完整地记忆和理解所有这些基本定义和定理。

学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等

再快乐的单身汉迟早也会结婚,幸福不是永久的嘛!

爱就像坐旋转木马,虽然永远在你爱人的身后,但隔着永恒的距离。

高等数学学习方法 第11篇

如何学好高等数学。许多同学都是百展莫愁,高等数学是某些专业的重要课程。但对于如何通过考试,头痛不已。而高数及格率又是所有科目中及格率最低的科目之一,成为许多考生顺利完成专业课程的主要障碍,并取得较理想的成绩。

不要畏惧它会很容易接受这门课,数学是一门深奥而又有兴趣的课程。如果增加对这门课程的自信心。也会发觉其实这门课程并不难,这对于学好数学是一个非常必要的条件。

多做是基础,多想多做是学好数学的关键。多想是根本。多做是为了熟能生巧,为了真正应用,学好数学的前提条件。而多想充分发挥联想是学好数学的根本条件。学数学要知道举一反三,当老师讲到某一点或某一类型的问题时,思路就应拓展开来,不应仅仅局限于这一点或这一类型的问题,而应该把前面所学的知识点结合起来,想想如果你碰到这种题目你会怎么办?假如以后碰到这种类型的题目你又会怎么样?其实数学是个活学问也是个死学问。正所谓万变不离其宗。所有的题目都是所学过的公式和方法稍微转变一下过来的如果你能很好的把数学的题目合成几种类型,而每个类型你都有一种最好的解题方法,这对于通过考试是没问题的上课听懂了放学后就做不来了现在懂了以后又不会做了数学必须要做,许多同学都会出现这种情况。懂了不一定会做。对于数学的题目要学会分析,不要忽视每一个已知条件,发现一个已知条件要联想到相关的公式,而如何能充分的灵活的运用公式。这就是多做能产生的效果。

高等数学学习方法 第12篇

所谓把基本概念搞懂,我想是不是应该从以下几个方面来理解和把握。第一个是这个概念产生的实际背景是什么。然后,定义这个概念所运用到的数学思想和方法是什么。接下来这个概念的定义式,它的数学含义,几何意义和物理意义以及在这个概念上的拓展和延伸等等。对于每个概念我们都要尽可能的从这几个方面来理解把握。把概念学懂了,这是学懂数学的至关重要的一步。

二、基本理论搞透

这包含三个方面的内容。第一所谓理论性的内容,定理、性质、推论,你首先要清楚它的条件是什么,结论是什么,这是最起码的要求。然后这些定理、性质、条件它的性质和条件要搞清楚,比如说是充分必要的还是充分必要的。我结合的考题给大家说。07年数学二第7个选择题,同学可以回去对照题目看。它是考察二元函数在某一点处可微的一个充分条件。你在学习的时候,你刚开始学高等数学的时候,老师都讲,二元函数在某一点处可微的充分条件是一阶偏导连续。

再比如数学一三四考的第十道选择题,是写边缘概率密度是哪个。告诉你一个二维正态分布。我们在辅导的时候告诉同学,我还总结了一条文登语录,你见到了这个,你第一要想到二维正态分布的边缘分布是正态分布,第二个是边缘现象的任意组合仍然是正态分布,第三个是两个随机变量的不相关和独立是充分必要的,也就是等价的。在这样的情况下,你知道了这些就可以做出正确的选择,所以说基本的理论要搞透,首先搞清楚它的条件和结论,这个条件是充分必要的还是充分的,必须要搞清楚。

基本理论的第二个方面就是要尽可能的从几何和数值的角度来理解这些抽象的理论。反映到今年的考题上,比如说一二三四都用到的一个选择题,基本象限函数这道题,F3、F负2、F2哪个选项正确的问题,如果你的基本的理论搞清楚了,只需要算一个F2就可以了。

上一篇:作文题目小学三年下一篇:人教版三年级上册数学应用题