植物生理学知识总结

2024-05-21

植物生理学知识总结(精选6篇)

植物生理学知识总结 第1篇

植物的光合作用受内外因素的影响,而衡量内外因素对光合作用影响程度的常用指标是光合速率(photosynthetic rate)。

一、光合速率及表示单位

光合速率通常是指单位时间、单位叶面积的CO2吸收量或O2的释放量,也可用单位时间、单位叶面积上的干物质积累量来表示。常用单位有:μmol CO2·m-2·s-1(以前用mg·dm-2·h-1表示,1μmol·m-2·s-1=1.58mg·dm-2·h-1)、μmol O2·dm-2·h-1 和mgDW(干重)·dm-2·h-1。CO2吸收量用红外线CO2气体分析仪测定,O2释放量用氧电极测氧装置测定,干物质积累量可用改良半叶法等方法测定(请参照植物生理实验指导书)。有的测定光合速率的方法都没有把呼吸作用(光、暗呼吸)以及呼吸释放的CO2被光合作用再固定等因素考虑在内,因而所测结果实际上是表观光合速率(apparent photosynthetic rate)或净光合速率(net photosynthetic rate,Pn),如把表观光合速率加上光、暗呼吸速率,便得到总光合速率(gross photosyntheticrate)或真光合速率(true photosynthetic rate)。

二、内部因素

(一)叶片的发育和结构

1.叶龄 新长出的嫩叶,光合速率很低。其主要原因有:(1)叶组织发育未健全,气孔尚未完全形成或开度小,细胞间隙小,叶肉细胞与外界气体交换速率低;(2)叶绿体小,片层结构不发达,光合色素含量低,捕光能力弱;(3)光合酶,尤其是Rubisco的含量与活性低。(4)幼叶的呼吸作用旺盛,因而使表观光合速率降低。但随着幼叶的成长,叶绿体的发育,叶绿素含量与Rubisco酶活性的增加,光合速率不断上升;当叶片长至面积和厚度最大时,光合速率通常也达到最大值,以后,随着叶片衰老,叶绿素含量与Rubisco酶活性下降,以及叶绿体内部结构的解体,光合速率下降。

依据光合速率随叶龄增长出现“低—高—低”的规律,可推测不同部位叶片在不同生育期的相对光合速率的大小。如处在营养生长期的禾谷类作物,其心叶的光合速率较低,倒3叶的光合速率往往最高;而在结实期,叶片的光合速率应自上而下地衰减。

2.叶的结构 叶的结构如叶厚度、栅栏组织与海绵组织的比例、叶绿体和类囊体的数目等都对光合速率有影响。叶的结构一方面受遗传因素控制,另一方面还受环境影响。

C4植物的叶片光合速率通常要大于C3植物,这与C4植物叶片具有花环结构等特性有关。许多植物的叶组织中有两种叶肉细胞,靠腹面的为栅栏组织细胞;靠背面的为海绵组织细胞。栅栏组织细胞细长,排列紧密,叶绿体密度大,叶绿素含量高,致使叶的腹面呈深绿色,且其中Chla/b比值高,光合活性也高,而海绵组织中情况则相反。生长在光照条件下的阳生植物(sun plant)叶栅栏组织要比阴生植物(shade plant)叶发达,叶绿体的光合特性好,因而阳生叶有较高的光合速率。

同一叶片,不同部位上测得的光合速率往往不一致。例如,禾本科作物叶尖的光合速率比叶的中下部低,这是因为叶尖部较薄,且易早衰的缘故。

(二)光合产物的输出

光合产物(蔗糖)从叶片中输出的速率会影响叶片的光合速率。例如,摘去花、果、顶芽等都会暂时阻碍光合产物输出,降低叶片特别是邻近叶的光合速率;反之,摘除其他叶片,只留一张叶片与所有花果,留下叶的光合速率会急剧增加,但易早衰。对苹果等果树枝条环割,由于光合产物不能外运,会使环割上方枝条上的叶片光合速率明显下降。光合产物积累到一定的水平后会影响光合速率的原因有:(1)反馈抑制。例如蔗糖的积累会反馈抑制合成蔗糖的磷酸蔗糖合成酶sucrose phosphate synthetase,SPS)的活性,使F6P增加。而F6P的积累,又反馈抑制果糖1,6-二磷酸酯酶活性,使细胞质以及叶绿体中磷酸丙糖含量增加,从而影响CO2的固定;(2)淀粉粒的影响。叶肉细胞中蔗糖的积累会促进叶绿体基质中淀粉的合成与淀粉粒的形成,过多的淀粉粒一方面会压迫与损伤类囊体,另一方面,由于淀粉粒对光有遮挡,从而直接阻碍光合膜对光的吸收。

三 外部因素

(一)光照

光是光合作用的动力,也是形成叶绿素、叶绿体以及正常叶片的必要条件,光还显著地调节光合酶的活性与气孔的开度,因此光直接制约着光合速率的高低。光照因素中有光强、光质与光照时间,这些对光合作用都有深刻的影响。

1.光强

(1)光强-光合曲线 图4-26是光强-光合速率关系的模式图。

图4-26 光强-光合曲线图解

图4-27 不同植物的光强光合曲线

暗中叶片不进行光合作用,只有呼吸作用释放CO2(图4-26中的OD为呼吸速率)。随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于CO2释放量,表观光合速率为零,这时的光强称为光补偿点(light compensation point)。在低光强区,光合速率随光强的增强而呈比例地增加(比例阶段,直线A);当超过一定光强,光合速率增加就会转慢(曲线B);当达到某一光强时,光合速率就不再增加,而呈现光饱和现象。开始达到光合速率最大值时的光强称为光饱和点(light saturation point),此点以后的阶段称饱和阶段(直线C)。比例阶段中主要是光强制约着光合速率,而饱和阶段中CO2扩散和固定速率是主要限制因素。用比例阶段的光强-光合曲线的斜率(表观光合速率/光强)可计算表观光合量子产额。

由图4-27,表4-5可见,不同植物的光强-光合曲线不同,光补偿点和光饱和点也有很大的差异。光补偿点高的植物一般光饱和点也高,草本植物的光补偿点与光饱和点通常要高于木本植物;阳生植物的光补偿点与光饱和点要高于阴生植物;C4植物的光饱和点要高于C3植物。光补偿点和光饱和点可以作为植物需光特性的主要指标,用来衡量需光量。光补偿点低的植物较耐阴,如大豆的光补偿点仅0.5klx,所以可与玉米间作,在玉米行中仍能正常生长。在光补偿点时,光合积累与呼吸消耗相抵消,如考虑到夜间的呼吸消耗,则光合产物还有亏空,因此从全天来看,植物所需的最低光强必须高于光补偿点。对群体来说,上层叶片接受到的光强往往会超过光饱和点,而中下层叶片的光强仍处在光饱和点以下,如水稻单株叶片光饱和点为40~50klx,而群体内则为60~80lx,因此改善中下层叶片光照,力求让中下层叶片接受更多的光照是高产的重要条件。

植物的光补偿点和光饱和点不是固定数值,它们会随外界条件的变化而变动,例如,当CO2浓度增高或温度降低时,光补偿点降低;而当CO2浓度提高时,光饱和点则会升高。在封闭的温室中,温度较高,CO2较少,这会使光补偿点提高而对光合积累不利。在这种情况下应适当降低室温,通风换气,或增施CO2才能保证光合作用的顺利进行。

在一般光强下,C4植物不出现光饱和现象,其原因是:①C4植物同化CO2消耗的同化力要比C3植物高 ②PEPC对CO2的亲和力高,以及具有“CO2泵”,所以空气中CO2浓度通常不成为C4植物光合作用的限制因素。

(2)强光伤害—光抑制 光能不足可成为光合作用的限制因素,光能过剩也会对光合作用产生不利的影响。当光合机构接受的光能超过它所能利用的量时,光会引起光合速率的降低,这个现象就叫光合作用的光抑制(photoinhibition of photosynthesis)。

晴天中午的光强常超过植物的光饱和点,很多C3植物,如水稻、小麦、棉花、大豆、毛竹、茶花等都会出现光抑制,轻者使植物光合速率暂时降低,重者叶片变黄,光合活性丧失。当强光与高温、低温、干旱等其他环境胁迫同时存在时,光抑制现象尤为严重。通常光饱和点低的阴生植物更易受到光抑制危害,若把人参苗移到露地栽培,在直射光下,叶片很快失绿,并出现红褐色灼伤斑,使参苗不能正常生长;大田作物由光抑制而降低的产量可达15%以上。因此光抑制产生的原因及其防御系统引起了人们的重视。

光抑制机理 一般认为光抑制主要发生在PSⅡ。按其发生的原初部位可分为受体侧光抑制和供体侧光抑制。受体侧光抑制常起始于还原

1型QA的积累。还原型QA的积累促使三线态P680(P680T)的形成,而P680T可以与氧作用(P680T +O2→P680 + 1O2)形成单线态氧(O2);供体侧光抑制起始于水氧化受阻。由于放氧复合体不能很快把电子传递给反应中心,从而延长了氧化型P680(P680+)的存在时间。P680+和1O2都是强氧化剂,如不及时消除,它们都可以氧化破坏附近的叶绿素和D1蛋白,从而使光合器官损伤,光合活性下降。

保护机理 植物有多种保护防御机理,用以避免或减少光抑制的破坏。如:(1)通过叶片运动,叶绿体运动或叶表面覆盖蜡质层、积累盐或着生毛等来减少对光的吸收;(2)通过增加光合电子传递和光合关键酶的含量及活化程度,提高光合能力等来增加对光能的利用;(3)加强非光合的耗能代谢过程,如光呼吸、Mehler反应等;(4)加强热耗散过程,如蒸腾作用;(5)增加活性氧的清除系统,如超氧物歧化酶(SOD)、谷胱甘肽还原酶等的量和活性;(6)加强PSⅡ的修复循环等。

光抑制引起的破坏与自身的修复过程是同时发生的,两个相反过程的相对速率决定光抑制程度和对光抑制的忍耐性。光合机构的修复需要弱光和合适的温度,以及维持适度的光合速率,并涉及到一些物质如D1等蛋白的合成。如果植物连续在强光和高温下生长,那么光抑制对光合器的损伤就难以修复了。

图4-28 不同光波下植物的光合速率

在作物生产上,保证作物生长良好,使叶片的光合速率维持较高的水平,加强对光能的利用,这是减轻光抑制的前提。同时采取各种措施,尽量避免强光下多种胁迫的同时发生,这对减轻或避免光抑制损失也是很重要的。另外,强光下在作物上方用塑料薄膜遮阳网或防虫网等遮光,能有效防止光抑制的发生,这在蔬菜花卉栽培中已普遍应用。

2.光质 在太阳幅射中,只有可见光部分才能被光合作用利用。用不同波长的可见光照射植物叶片,测定到的光合速率(按量子产额比较)不一样(图4-28)。在600~680nm红光区,光合速率有一大的峰值,在435nm左右的蓝光区又有一小的峰值。可见,光合作用的作用光谱与叶绿体色素的吸收光谱大体吻合。

在自然条件下,植物或多或少会受到不同波长的光线照射。例如,阴天不仅光强减弱,而且蓝光和绿光所占的比例增高。树木的叶片吸收红光和蓝光较多,故透过树冠的光线中绿光较多,由于绿光是光合作用的低效光,因而会使树冠下生长的本来就光照不足的植物利用光能的效率更低。“大树底下无丰草”就是这个道理。

水层同样改变光强和光质。水层越深,光照越弱,例如,20米深处的光强是水面光强的二十分之一,如水质不好,深处的光强会更弱。水层对光波中的红、橙部分吸收显著多于蓝、绿部分,深水层的光线中短波长的光相对较多。所以含有叶绿素、吸收红光较多的绿藻分布于海水的表层;而含有藻红蛋白、吸收绿、蓝光较多的红藻则分布在海水的深层,这是海藻对光适应的一种表现。

3.光照时间 对放置于暗中一段时间的材料(叶片或细胞)照光,起初光合速率很低或为负值,要光照一段时间后,光合速率才逐渐上升并趋与稳定。从照光开始至光合速率达到稳定水平的这段时间,称为“光合滞后期”(lag phase of photosynthesis)或称光合诱导期。一般整体叶片的光合滞后期约30~60min,而排除气孔影响的去表皮叶片,细胞、原生质体等光合组织的滞后期约10min。将植物从弱光下移至强光下,也有类似情况出现。另外,植物的光呼吸也有滞后现象。在光合的滞后期中光呼吸速率与光合速率会按比例上升(图4-29)。

产生滞后期的原因是光对酶活性的诱导以及光合碳循环中间产物的增生需要一个准备过程,而光诱导气孔开启所需时间则是叶片滞后期延长的主要因素。

由于照光时间的长短对植物叶片的光合速率影响很大,因此在测定光合速率时要让叶片充分预照光。

图4-30 叶片光合速率对细胞间隙 CO2浓度响应示意图

曲线上四个点对应浓度分别为CO2补偿点(C),空气浓度下细胞间隙的CO2浓度(n),与空气浓度相同的细胞间隙CO2浓度(350μl·L-1左右)和CO2饱和点(S)。Pm为最大光合速率;CE为比例阶段曲线斜率,代表羧化效率;OA光下叶片向无CO2气体中的释放速率,可代表光呼吸速率。

(二)CO2

1.CO2-光合曲线 CO2-光合曲线(图4-30)与光强光合曲线相似,有比例阶段与饱和阶段。光下CO2浓度为零时叶片只有光、暗呼吸,释放CO2。图中的OA部分为光下叶片向无CO2气体中的CO2释放速率(实质上是光呼吸、暗呼吸、光合三者的平衡值),通常用它来代表光呼吸速率。在比例阶段,光合速率随CO2浓度增高而增加,当光合速率与呼吸速率相等时,环境中的CO2浓度即为CO2补偿点(CO2 compensation point,图中C点);当达到某一浓度(S)时,光合速率便达最大值(PM),开始达到光合最大速率时的CO2浓度被称为CO2饱和点(CO2 saturation point)。在CO2-光合曲线的比例阶段,CO2浓度是光合作用的限制因素,直线的斜率(CE)受Rubisco活性及活化Rubisco量的限制,因而CE被称为羧化效率(carboxylation efficiency)。从CE的变化可以推测Rubisco的量和活性,CE大,即在较低的CO2浓度时就有较高的光合速率,也就是说Rubisco的羧化效率高。在饱和阶段,CO2已不是光合作用的限制因素,而CO2受体的量,即RuBP的再生速率则成为影响光合的因素。由于RuBP再生受ATP供应的影响,所以饱和阶段光合速率反映了光合电子传递和光合磷酸化活性,因而Pm被称为光合能力。

图4-31 C3植物与C4植物的CO2光合曲线比较

A.光合速率与外界CO2浓度; B.光合速率与细胞间隙CO2浓度(计算值);C4植物为Tidestromia oblogifolia; C3 植物为Larrea divaricata

比较C3植物与C4植物CO2-光合曲线(图4-31),可以看出:(1)C4植物的CO2补偿点低,在低CO2浓度下光合速率的增加比C3快,CO2的利用率高;(2)C2植物的CO2饱和点比C3植物低,在大气CO2浓度下就能达到饱和;而C3植物CO2饱和点不明显,光合速率在较高CO2浓度下还会随浓度上升而提高。C4植物CO2饱和点低的原因,可能与C4植物的气孔对CO2浓度敏感有关,即CO2浓度超过空气水平后,C4植物气孔开度就变小。另外,C4植物PEPC的Km低,对CO2亲和力高,有浓缩CO2机制,这些也是C4植物CO2饱和点低的原因。

在正常生理情况下,植物CO2补偿点相对稳定,例如小麦100个品种的CO2补偿点为52±2μl·L-1,大麦125个品种为55±2μl·L-1,玉米125个品种为1.3±1.2μl·L-1,猪毛菜(CAM植物)CO2补偿点不超过10μl·L-1。有人测定了数千株燕麦和5万株小麦的幼苗,尚未发现一株具有类似C4植物低CO2补偿点的幼苗。在温度上升、光强减弱、水分亏缺、氧浓度增加等条件下,CO2补偿点也随之上升。

2.CO2供给 CO2是光合作用的碳源,陆生植物所需的CO2主要从大气中获得。CO2从大气至叶肉细胞间隙为气相扩散,而从叶肉细胞间隙到叶绿体基质则为液相扩散,扩散的动力为.CO2浓度差。

图 4-32 不同 CO2浓度下温度对光合速率的影响

a.在饱和CO2浓度下;b.在大气.CO2浓度下(Berty and Bojorkman 1980)

空气中的.CO2浓度较低,约为350μl·L-1(0.035%),分压为3.5×10-5 MPa,而一般C3植物的.CO2饱和点为1 000~1 500μl·L-1 左右,是空气中的3~5倍。在不通风的温室、大棚和光合作用旺盛的作物冠层内的.CO2浓度可降至200μl·L-1左右。由于光合作用 对.CO2的消耗以及存在.CO2扩散阻力,因而叶绿体基质中的.CO2浓度很低,接近.CO2补偿点。因此,加强通风或设法增施.CO2能显著提高作物的光合速率,这对C3植物尤为明显。

(三)温度

光合过程中的暗反应是由酶所催化的化学反应,因而受温度影响。在强光、高.CO2浓度时温度对光合速率的影响要比弱光、低.CO2浓度时影响大(图4-32),这是由于在强光和高.CO2条件下,温度能成为光合作用的主要限制因素。

光合作用有一定的温度范围和三基点。光合作用的最低温度(冷限)和最高温度(热限)是指该温度下表观光合速率为零,而能使光合速率达到最高的温度被称为光合最适温度。光合作用的温度三基点因植物种类不同而有很大的差异(表4-6)。如耐低温的莴苣在5℃就能明显地测出光合速率,而喜温的黄瓜则要到20℃时才能测到;耐寒植物的光合作用冷限与细胞结冰温度相近;而起源于热带的植物,如玉米、高粱、橡胶树等在温度降至10~5℃时,光合作用已受到抑制。低温抑制光合的原因主要是低温时膜脂呈凝胶相,叶绿体超微结构受到破坏。此外,低温时酶促反应缓慢,气孔开闭失调,这些也是光合受抑的原因。

从表4-6可知,C4植物的热限较高,可达50~60℃,而C3植物较低,一般在40~50℃。乳熟期小麦遇到持续高温,尽管外表上仍呈绿色,但光合功能已严重受损。产生光合作用热限的原因:一是由于膜脂与酶蛋白的热变性,使光合器官损伤,叶绿体中的酶钝化;二是由于高温刺激了光暗呼吸,使表观光合速率迅速下降。

昼夜温差对光合净同化率有很大的影响。白天温度高,日光充足,有利于光合作用的进行;夜间温度较低,降低了呼吸消耗,因此,在一定温度范围内,昼夜温差大有利于光合积累。

在农业实践中要注意控制环境温度,避免高温与低温对光合作用的不利影响。玻璃温室与塑料大棚具有保温与增温效应,能提高光合生产力,这已被普遍应用于冬春季的蔬菜栽培。

(四)水分

水分对光合作用的影响有直接的也有间接的原因。直接的原因是水为光合作用的原料,没有水不能进行光合作用。但是用于光合作用的水不到蒸腾失水的1%,因此缺水影响光合作用主要是间接的原因。

水分亏缺会使光合速率下降。在水分轻度亏缺时,供水后尚能使光合能力恢复,倘若水分亏缺严重,供水后叶片水势虽可恢复至原来水平,但光合速率却难以恢复至原有程度(图4-33)。因而在水稻烤田,棉花、花生蹲苗时,要控制烤田或蹲苗程度,不能过头。

图4-33 向日葵在严重水分亏缺时以及在复水过程中 叶水势、光合速率、气孔阻力、蒸腾速率变化

水分亏缺降低光合的主要原因有:

(1)气孔导度下降 叶片光合速率与气孔导度呈正相关,当水分亏缺时,叶片中脱落酸量增加,从而引起气孔关闭,导度下降,进入叶片的.CO2减少。开始引起气孔导度和光合速率下降的叶片水势值,因植物种类不同有较大差异:水稻为-0.2~-0.3MPa;玉米为-0.3~-0.4MPa;而大豆和向日葵则在-0.6~-1.2MPa间。

(2)光合产物输出变慢 水分亏缺会使光合产物输出变慢,加之缺水时,叶片中淀粉水解加强,糖类积累,结果会引起光合速率下降。

(3)光合机构受损 缺水时叶绿体的电子传递速率降低且与光合磷酸化解偶联,影响同化力的形成。严重缺水还会使叶绿体变形,片层结构破坏,这些不仅使光合速率下降,而且使光合能力不能恢复。

(4)光合面积扩展受抑 在缺水条件下,生长受抑,叶面积扩展受到限制。有的叶面被盐结晶、被绒毛或蜡质覆盖,这样虽然减少了水分的消耗,减少光抑制,但同时也因对光的吸收减少而使得光合速率降低。

水分过多也会影响光合作用。土壤水分太多,通气不良妨碍根系活动,从而间接影响光合;雨水淋在叶片上,一方面遮挡气孔,影响气体交换,另一方面使叶肉细胞处于低渗状态,这些都会使光合速率降低。

(五)矿质营养

矿质营养在光合作用中的功能极为广泛,归纳起来有以下几方面:

1.叶绿体结构的组成成分 如N、P、S、Mg是叶绿体中构成叶绿素、蛋白质、核酸以及片层膜不可缺少的成分。

2.电子传递体的重要成分 如PC中含Cu,Fe-S中心、Cytb、Cytf和Fd中都含Fe,放氧复合体不可缺少Mn2+ 和Cl-。

3.磷酸基团的重要作用 构成同化力的ATP和NADPH,光合碳还原循环中所有的中间产物,合成淀粉的前体ADPG,以及合成蔗糖的前体UDPG,这些化合物中都含有磷酸基团。

4.活化或调节因子 如Rubisco,FBPase等酶的活化需要Mg2+ ;Fe、Cu、Mn、Zn参与叶绿素的合成;K+ 和Ca2+ 调节气孔开闭;K和P促进光合产物的转化与运输等。

肥料三要素中以N对光合影响最为显著。在一定范围内,叶的含N量、叶绿素含量、Rubisco含量分别与光合速率呈正相关。叶片中含N量的80%在叶绿体中,施N既能增加叶绿素含量,加速光反应,又能增加光合酶的含量与活性,加快暗反应。从N素营养好的叶片中提取出的Rubisco不仅量多,而且活性高。然而也有试验指出当Rubisco含量超过一定值后,酶量就不与光合速率成比例。

重金属铊、镉、镍和铅等都对光合作用有害,它们大都影响气孔功能。另外,镉对PSⅡ活性有抑制作用。

(六)光合速率的日变化

一天中,外界的光强、温度、土壤和大气的水分状况、空气中的.CO2浓度以及植物体的水分与光合中间产物含量、气孔开度等都在不断地变化,这些变化会使光合速率发生日变化,其中光强日变化对光合速率日变化的影响最大。在温暖、水分供应充足的条件下,光合速率变化随光强日变化呈单峰曲线,即日出后光合速率逐渐提高,中午前达到高峰,以后逐渐降低,日落后光合速率趋于负值(呼吸速率)。如果白天云量变化不定,则光合速率会随光强的变化而变化。

图4-34 水稻光合速率的日变化

A.光合速率(P)和气孔导度(C)平行变化; B.由A图数据绘制的光合速率与光强的关系,在相同光强下,上午光合速率要大于下午的光合速率

另外,光合速率也同气孔导度的变化相对应(图4-34A)。在相同光强时,通常下午的光合速率要低于上午的光合速率(图4-34B),这是由于经上午光合后,叶片中的光合产物有积累而发生反馈抑制的缘故。当光照强烈、气温过高时,光合速率日变化呈双峰曲线,大峰在上午,小峰在下午,中午前后,光合速率下降,呈现“午睡”现象(midday depression of photo-synthesis),且这种现象随土壤含水量的降低而加剧(图4-35)。引起光合“午睡”的主要因素是大气干旱和土壤干旱。在干热的中午,叶片蒸腾失水加剧,如此时土壤水分也亏缺,那么植株的失水大于吸水,就会引起萎蔫与气孔导度降低,进而使 CO2吸收减少。另外,中午及午后的强光、高温、低.CO2浓度等条件都会使光呼吸激增,光抑制产生,这些也都会使光合速率在中午或午后降低。

光合“午睡”是植物遇干旱时的普遍发生现象,也是植物对环境缺水的一种适应方式。但是“午睡”造成的损失可达光合生产的30%,甚至更多,所以在生产上应适时灌溉,或选用抗旱品种,增强光合能力,以缓和“午睡”程度。

图 4-35 桑叶光合速率随着土壤水分减少的日变化

A.光合日变化; B.土壤含水量 图中数字为降雨后的天数(Tazaki等,1980)

植物生理学知识总结 第2篇

植物的叶片是绿色的?秋天树叶黄色或红色?光所以植物的时片呈绿色。秋天树叶变黄是由于低温抑制了叶绿素的生物合成,已形成的叶绿素也被分解破坏,而类胡萝卜素比较稳定,所以叶片呈现黄色。至于红叶,是因为秋天降温,体内积累较多的糖分以适应寒冷,体内可溶性糖多了,就形成较多的花色素,叶子就呈红色。通常将光控制植物生长、发育和分化的过程成为光形态建成。一些微凉的能感受光的信息并把这些信的变化成为光受体。1光敏色素,感受红光和远红光2隐花色素或称为蓝光,紫外线-A受体,感受蓝光和近紫外线3紫外线-B受体感受较短波长的紫外线

植物生长相关性1地上部与地下部的相关性:相互矿物质有机质以及合成少量的有机物、细胞分裂素,根所需要的糖类维生素由地上部提供。相互制约,主要表现在对水分养分的争夺上,并从跟根冠比的变化中表现出来。2主根和侧枝:植物的主茎顶丫会抑制侧芽生长,主根对侧根生长也有抑制作用,表现出顶端优势。3营养生长和生殖生长是相互制约的相互协调:生殖器官的养料是由营养器官提供的,营养生长旺盛会消耗大量养分抑制生殖生长。4植物的极性与再生 光合作用机制:光合作用是能量转化和形成有机物的过程,在这个过程中首先是吸收光能并把光能转化为电能,进一步形成活跃的化学能,最后转变为稳定的化学能。大致分为三个步骤

1、原初反应:包括对光能的吸收,传递与转换过程。a吸收:聚光色素吸收光能被传递:色素分子之间沿着波长较长的方向传递c转化:光能转化成电能

2、电子传递和光合磷酸化是指光能转化成电能,电能转化成活跃的化学能此过程包括光系统SP1,SP2。3碳同化就是利用光反应中形成的同化力将CO2转化成糖类的过程包括C3C4CAM途径12为光反应3为暗反应。

光周期反应类型:短日植物:在昼夜周其中日照长度短于某一临界值时才能开花的植物,大豆 菊花 高亮 玉米2长日植物:在昼夜周其中日照长度长于某一临界值时才能开花的植物,小麦大麦黑麦燕麦3日中性植物指在任何日照强度下都会开花的植物,四季豆辣椒黄瓜4此外还有双重日长,长-短日,短-长日,中日性植物。春化与光周期在生产应用:1人工春花,加速成花,成熟,春小麦经过低温处理后,可以早熟5-10天避免不良气候的影响又有利与后季作物的生长 2指导引种,必须考虑到植物能否及时开花结实,如南方大都是短日引种,南种北移,开花期延迟,所以引种要早引熟种 3控制开花,光周期的人工控制可以促进或者延迟开花,菊花是短日植物经过短日处理可以从十月提前到六七月。

土壤溶液高浓度的危害:1渗透胁迫,土壤可溶性盐分过多使土壤水势降低,导致植物吸水困难造成生理干旱2质膜伤害高浓度NACL使膜结合NA/CA增加,膜结构破坏细胞内K、PO4外渗;细胞内氧活性增加,启动莫脂过氧化或莫脂脱脂作用,导致膜的完整性降低,选择透过性丧失3离子失调,某些离子排斥对其他离子的吸收4代谢紊乱:1光合作用下降2呼吸作用不稳3蛋白质合成受阻4有毒物质积累试述光敏色素与植物花诱导的关系?一般认为光或Pfr的绝对量,而是与Pfr/Pr的比值有关。对短日植物来说,在光期结束时,Pfr占优势、Pfr/Pr比值较高不利于开花,转入黑暗时,Pfr/Pr 比值降低,当Pr r/Pr比值降到低于临界值时,短日植物可以发生成花的反应,对长日植物来说,较长的光期结束时,Pfr/Pr 比值较高,这恰好是长日植物开花所必需的。但如果暗期过长,Pfr转变为Pr相对比较多,Pfr/Pr比值下降,长日植物不能成花。用红光中断暗期,Pfr水平提高,Pr水平下降,Pfr/Pr比值升高,短日植物开花受到抑制,长日植物开花受到促进。

植物的叶片是绿色的?秋天树叶黄色或红色?光所以植物的时片呈绿色。秋天树叶变黄是由于低温抑制了叶绿素的生物合成,已形成的叶绿素也被分解破坏,而类胡萝卜素比较稳定,所以叶片呈现黄色。至于红叶,是因为秋天降温,体内积累较多的糖分以适应寒冷,体内可溶性糖多了,就形成较多的花色素,叶子就呈红色。通常将光控制植物生长、发育和分化的过程成为光形态建成。一些微凉的能感受光的信息并把这些信的变化成为光受体。1光敏色素,感受红光和远红光2隐花色素或称为蓝光,紫外线-A受体,感受蓝光和近紫外线3紫外线-B受体感受较短波长的紫外线

植物生长相关性1地上部与地下部的相关性:相互矿物质有机质以及合成少量的有机物、细胞分裂素,根所需要的糖类维生素由地上部提供。相互制约,主要表现在对水分养分的争夺上,并从跟根冠比的变化中表现出来。2主根和侧枝:植物的主茎顶丫会抑制侧芽生长,主根对侧根生长也有抑制作用,表现出顶端优势。3营养生长和生殖生长是相互制约的相互协调:生殖器官的养料是由营养器官提供的,营养生长旺盛会消耗大量养分抑制生殖生长。4植物的极性与再生 光合作用机制:光合作用是能量转化和形成有机物的过程,在这个过程中首先是吸收光能并把光能转化为电能,进一步形成活跃的化学能,最后转变为稳定的化学能。大致分为三个步骤

1、原初反应:包括对光能的吸收,传递与转换过程。a吸收:聚光色素吸收光能被传递:色素分子之间沿着波长较长的方向传递c转化:光能转化成电能

2、电子传递和光合磷酸化是指光能转化成电能,电能转化成活跃的化学能此过程包括光系统SP1,SP2。3碳同化就是利用光反应中形成的同化力将CO2转化成糖类的过程包括C3C4CAM途径12为光反应3为暗反应。

光周期反应类型:短日植物:在昼夜周其中日照长度短于某一临界值时才能开花的植物,大豆 菊花 高亮 玉米2长日植物:在昼夜周其中日照长度长于某一临界值时才能开花的植物,小麦大麦黑麦燕麦3日中性植物指在任何日照强度下都会开花的植物,四季豆辣椒黄瓜4此外还有双重日长,长-短日,短-长日,中日性植物。春化与光周期在生产应用:1人工春花,加速成花,成熟,春小麦经过低温处理后,可以早熟5-10天避免不良气候的影响又有利与后季作物的生长 2指导引种,必须考虑到植物能否及时开花结实,如南方大都是短日引种,南种北移,开花期延迟,所以引种要早引熟种 3控制开花,光周期的人工控制可以促进或者延迟开花,菊花是短日植物经过短日处理可以从十月提前到六七月。

土壤溶液高浓度的危害:1渗透胁迫,土壤可溶性盐分过多使土壤水势降低,导致植物吸水困难造成生理干旱2质膜伤害高浓度NACL使膜结合NA/CA增加,膜结构破坏细胞内K、PO4外渗;细胞内氧活性增加,启动莫脂过氧化或莫脂脱脂作用,导致膜的完整性降低,选择透过性丧失3离子失调,某些离子排斥对其他离子的吸收4代谢紊乱:1光合作用下降2呼吸作用不稳3蛋白质合成受阻4有毒物质积累

试述光敏色素与植物花诱导的关系?一般认为光敏色素控制植物的开花并不决定于Pr或Pfr的绝对量,而是与Pfr/Pr的比值有关。对短日植物来说,在光期结束时,Pfr占优势、Pfr/Pr比值较高不利于开花,转入黑暗时,Pfr/Pr 比值降低,当Pr r/Pr比值降到低于临界值时,短日植物可以发生成花的反应,对长日植物来说,较长的光期结束时,Pfr/Pr 比值较高,这恰好是长日植物开花所必需的。但如果暗期过长,Pfr转变为Pr相对比较多,Pfr/Pr比值下降,长日植物不能成花。用红光中断暗期,Pfr水平提高,Pr水平下降,Pfr/Pr比值升高,短日植物开花受到抑制,长日植物开花受到促进。

植物的叶片是绿色的?秋天树叶黄色或红色?光合色素主要吸收红光和蓝紫光,对绿光吸收很少,所以植物的时片呈绿色。秋天树叶变黄是由于低温抑制了叶绿素的生物合成,已形成的叶绿素也被分解破坏,而类胡萝卜素比较稳定,所以叶片呈现黄色。至于红叶,是因为秋天降温,体内积累较多的糖分以适应寒冷,体内可溶性糖多了,就形成较多的花色素,叶子就呈红色。通常将光控制植物生长、发育和分化的过程成为光形态建成。的变化成为光受体。1光敏色素,感受红光和远红光2-A受体,感受蓝光和近紫外线3紫外线-B受体感受较短波长的紫外线

植物生长相关性1地上部与地下部的相关性:相互依赖,地下部分主要从土壤中吸收水分、矿物质有机质以及合成少量的有机物、细胞分裂素,根所需要的糖类维生素由地上部提供。相互制约,主要表现在对水分养分的争夺上,并从跟根冠比的变化中表现出来。2主根和侧枝:植物的主茎顶丫会抑制侧芽生长,主根对侧根生长也有抑制作用,表现出顶端优势。3营养生长和生殖生长是相互制约的相互协调:生殖器官的养料是由营养器官提供的,营养生长旺盛会消耗大量养分抑制生殖生长。4植物的极性与再生 光合作用机制:光合作用是能量转化和形成有机物化为电能,进一步形成活跃的化学能,最后转变为稳定的化学能。大致分为三个步骤

1、原初反应:包括对光能的吸收,传递与转换过程。a吸收:聚光色素吸收光能被传递:色素分子之间沿着波长较长的方向传递c转化:光能转化成电能

2、电子传递和光合磷酸化是指光能转化成电能,电能转化成活跃的化学能此过程包括光系统SP1,SP2。3碳同化就是利用光反应中形成的同化力将CO2转化成糖类的过程包括C3C4CAM途径12为光反应3为暗反应。

光周期反应类型:短日植物:在昼夜周其中日照长度短于某一临界值时才能开花的植物,大豆 菊花 高亮 玉米2长日植物:在昼夜周其中日照长度长于某一临界值时才能开花的植物,小麦大麦黑麦燕麦3日中性植物指在任何日照强度下都会开花的植物,四季豆辣椒黄瓜4此外还有双重日长,长-短日,短-长日,中日性植物。春化与光周期在生产应用:1人工春花,加速成花,经过春化处理的植物花诱导过程加速可提早开花成熟,春小麦经过低温处理后,可以早熟5-10天避免不良气候的影响又有利与后季作物的生长 2指导引种,必须考虑到植物能否及时开花结实,如南方大都是短日引种,南种北移,开花期延迟,所以引种要早引熟种 3控制开花,光周期的人工控制可以促进或者延迟开花,菊花是短日植物经过短日处理可以从十月提前到六七月。

土壤溶液高浓度的危害:1渗透胁迫,土壤可溶性导致植物吸水困难造成生理干旱2质膜伤害高浓度NACL使膜结合NA/CA增加,膜结构破坏细胞内K、PO4外渗;细胞内氧活性增加,启动莫脂过氧化或莫脂脱脂作用,导致膜的完整性降低,选择透过性丧失3离子失调,某些离子排斥对其他离子的吸收4代谢紊乱:1光合作用下降2呼吸作用不稳3蛋白质合成受阻4有毒物质积累

试述光敏色素与植物花诱导的关系?一般认为光或Pfr的绝对量,而是与Pfr/Pr的比值有关。对短日植物来说,在光期结束时,Pfr占优势、Pfr/Pr比值较高不利于开花,转入黑暗时,Pfr/Pr 比值降低,当Pr r/Pr比值降到低于临界值时,短日植物可以发生成花的反应,对长日植物来说,较长的光期结束时,Pfr/Pr 比值较高,这恰好是长日植物开花所必需的。但如果暗期过长,Pfr转变为Pr相对比较多,Pfr/Pr比值下降,长日植物不能成花。用红光中断暗期,Pfr水平提高,Pr水平下降,Pfr/Pr比值升高,短日植物开花受到抑制,长日植物开花受到促进。

植物的叶片是绿色的?秋天树叶黄色或红色?光所以植物的时片呈绿色。秋天树叶变黄是由于低温抑制了叶绿素的生物合成,已形成的叶绿素也被分解破坏,而类胡萝卜素比较稳定,所以叶片呈现黄色。至于红叶,是因为秋天降温,体内积累较多的糖分以适应寒冷,体内可溶性糖多了,就形成较多的花色素,叶子就呈红色。通常将光控制植物生长、发育和分化的过程成为光形态建成。号放大,使植物能够随外界光条件的改变作出相应的变化成为光受体。1光敏色素,感受红光和远红光2隐花色素或称为蓝光,紫外线-A受体,感受蓝光和近紫外线3紫外线-B受体感受较短波长的紫外线

植物生长相关性1地上部与地下部的相关性:相互矿物质有机质以及合成少量的有机物、细胞分裂素,根所需要的糖类维生素由地上部提供。相互制约,主要表现在对水分养分的争夺上,并从跟根冠比的变化中表现出来。2主根和侧枝:植物的主茎顶丫会抑制侧芽生长,主根对侧根生长也有抑制作用,表现出顶端优势。3营养生长和生殖生长是相互制约的相互协调:生殖器官的养料是由营养器官提供的,营养生长旺盛会消耗大量养分抑制生殖生长。4植物的极性与再生 光合作用机制:光合作用是能量转化和形成有机物的过程,在这个过程中首先是吸收光能并把光能转化为电能,进一步形成活跃的化学能,最后转变为稳定的化学能。大致分为三个步骤

1、原初反应:包括对光能的吸收,传递与转换过程。a吸收:聚光色素吸收光能被传递:色素分子之间沿着波长较长的方向传递c转化:光能转化成电能

2、电子传递和光合磷酸化是指光能转化成电能,电能转化成活跃的化学能此过程包括光系统SP1,SP2。3碳同化就是利用光反应中形成的同化力将CO2转化成糖类的过程包括C3C4CAM途径12为光反应3为暗反应。

光周期反应类型:短日植物:在昼夜周其中日照长,大豆 菊花 高亮 玉米2长日植物:在昼夜周其中日照长度长于某一临界值时才能开花的植物,小麦大麦黑麦燕麦3日中性植物指在任何日照强度下都会开花的植物,四季豆辣椒黄瓜4此外还有双重日长,长-短日,短-长日,中日性植物。春化与光周期在生产应用:1人工春花,加速成花,成熟,春小麦经过低温处理后,可以早熟5-10天避免不良气候的影响又有利与后季作物的生长 2指导引种,必须考虑到植物能否及时开花结实,如南方大都是短日引种,南种北移,开花期延迟,所以引种要早引熟种 3控制开花,光周期的人工控制可以促进或者延迟开花,菊花是短日植物经过短日处理可以从十月提前到六七月。

植物生理学知识总结 第3篇

多年来, 植物及植物生理学实践教学一直是植物及植物生理学教学薄弱环节。由于教材、教学环境和实验设备等多方面的原因, 大部分的实验项目仍以验证性实验为主, 实验教学内容和方法基本停留在20世纪90年代的水平。在实践教学改革中, 我们从培养学生的学习兴趣、能力出发, 探索学生实践能力增长的教学模式, 使学生掌握从事本专业实际工作的基本技能, 掌握综合应用现代技术、工艺和设备, 具备解决农业生产中实际问题的初步能力。探索实践教学模式, 对提高实践效果, 增强学生的实践能力和综合素质具有十分重要的意义。

一、植物及植物生理学实践教学需要解决的问题

随着科学技术突飞猛进的发展, 社会对创新型人才的需求日益增长, 原有的植物及植物生理实践教学模式不能很好地适应当前形势的发展, 须要对其创新模式进行研究。由于实践教学环节薄弱, 导致毕业生难以更好地服务社会。为了提高学生的实践能力, 我们不断地调整教学内容、改善教学方法、增加实验教学时间, 但仍然不能取得令人满意的教学效果。究其原因, 主要是由于传统的教学模式存在着一定的不足。单调的教学手段降低了学生主动学习的兴趣, 统一的教学内容和教学要求忽视了学生个体之间的差异。

实践教学只是在教学计划规定的时间内集中进行, 实验方式大多是由教师先讲授, 学生按照教师的布置或者指导书上的步骤, 按部就班完成实验操作。学生虽然也参与了实验教学活动, 但实质上是处于被动接受的状态, 他们学习的主动性、积极性受到一定的限制。在实践内容的调整上也不能及时地适应人才市场的需要和变化, 教学方法不是很灵活等。在这种模式下, 虽然也强调实践能力的培养, 但这种实践能力是被当做技能并以“知识”的形式加以传授, 从而导致学生缺乏创造能力。

二、学生实践能力增长的教学模式研究与探索

1. 适应学生个别差异, 合理安排实践时间, 优化资源配置

在实验教学过程中, 由于学生个体之间在学识、能力、兴趣方面的差异, 同样的实验内容和要求, 完成情况会出现较大的差异。为了适应这一差异, 满足不同个体的教学要求, 我们在实验教学时间之外, 另外安排时间, 使完成情况不理想的学生能够继续完成教学内容, 达到教学要求;同时使完成情况良好, 但又希望继续进行一些新的实验的学生, 能够进一步提高。

2. 优化实践教学结构体系, 增强学生的实践能力

在教学中, 我们将实践教学分为三个层次:分为基础性实验、综合性实验和研究创新性实验三部分。

基本实验技能层次, 理论教学与实践教学对接, 将理论教学和实践教学有机结合起来, 要求学生掌握实验的基本技能和方法, 学会正确操作实验仪器, 观察实验现象, 记录实验结果, 分析实验数据, 撰写实验报告。随堂实验、认知实习, 在灵活的实践中锻炼学生的主动性、积极性、创造性, 在提高学生动手能力的同时, 培养学生分析问题、解决问题的能力。综合设计能力层次, 在实验体系上, 将过去一直分散的、独立进行的每一个实验有机地串联起来, 从实验方案的设计、试剂配制、植物材料的培养、植物生理生化指标的测定、实验数据分析和实验报告的写作全部由学生独立完成。实行开放式的实验, 不统一限定全班的实验时间和实验内容, 以2~3人为一组, 由学生根据植物材料生长发育状况确定实验时间和内容, 学生间相互讨论相互教学, 在试剂和设备许可的情况下, 学生自主选择实验内容。实验报告为综合的论文, 学生的成绩按综合论文和动手考核评定。通过让学生完全自主的完成这些实验, 使学生的各项实验技术得到综合应用, 提高学生独立开展综合实验的能力。

创新能力层次, 是从事植物及植物生理学教学和研究中的探索性、创新性较强实验。以植物学实验室为主, 可以充分利用学校现有的实验条件, 培养学生的创新能力。

3. 多途径增强学生对实践教学的兴趣

在教学中, 根据植物及植物生理学变化和发展, 不断补充完善实践教学大纲;更新部分实习内容, 使学生经过在学校里的实践教学环节后能基本适应社会的需求;更新课程教学内容, 把握生产实践与科学研究的前沿, 对植物及植物生理学的教学内容及实验内容进行了大量的更新, 使教学内容新颖、先进;更新实验内容与实验观念, 采用灵活的教学方法。利用学生社团、不同的兴趣小组、各类竞赛等途径, 采用“启发式”教学, 改变原有过多的验证性实验, 增加综合性、设计性实验。即在实习过程中, 让学生自发设计、开发、生产产品, 使他们能够应用原理去发现问题, 从而完善和改正试验方案。譬如, 目前植物组织培养的实践教学就很好地锻炼了学生们的实验设计、动手操作能力, 深受学生喜欢, 这样也可以激发学生的兴趣和创造性。按照“教师指导, 学生分析, 亲自动手, 组织讨论”的原则, 实现理论“学而不死”, 应用“活而不乱”的目标。

4. 完善实践教学考核体系, 使其制度化、科学化、合理化、系统化

植物生理学教材 第4篇

关键词:植物生理学;信号转导;一氧化氮

在当代本科生教育中《植物生理学》一直是生物类学生非常重要的一门专业课,也是生物类考研考生大多会遇到的一门课程。多年来植物生理学教科书的不同版本相机推出,从2004年的潘瑞炽版到2009年的王忠,这些教材无论从深度和广度都不断提高。但是涉及到细胞信号转导这一节章中植物重要气体信号分子NO的信号转导机制很少提及。尽管国外植物生理学教科书已经及时更新了气体信号分子NO的信号转导机制的相关内容,但还缺少一个完整的信号通路模型,这不利于学生全面理解和掌握植物重要中信号分子的转导机制。能够让学生充分理解和掌握这一知识点,我建议在植物生理学教材中补充一下内容,其中包括一下两个方面。

一、气体信号分子NO对于植物生长的重要意义

NO广泛分布于植物器官的各个部位,具有多种生理功能(陈晋文等,1995),已经有大量的实验证明NO 参与了植物生长发育的各个方面,从这些研究中不难看出NO与很可能与其他植物生长物质有关系和互作。植物在缺水条件下脱落酸大量产生,NO可能是的下游信号参与抗干旱反应(Zhou,2003)。植物重要信号物质水杨酸,它的产生以及水杨酸生理作用的实现也和NO密切相关。有报道指出,水杨酸的生物合成由NO来诱导和调节,同时NO和水杨酸供体参与到了植物的抗氧化胁迫这一生理反应(Chen,2003;Klessing,2000)。最近的证据发现,在玉米根中生长素的分布受到NO的调控,实验证明NO调控生长素的分布,从而调高玉米侧根的数量。同时发现NO被清除后生长素的生理作用受到抑制,说明NO 在生长素的下游起作用,但是目前不敢确NO 参与了生长素的生物合成。总的来说NO对于植物生长有重要的意义。

二、气体信号分子NO信号转导途径

目前通过细胞生物学手段,已经在植物中检测到NO信号传递途径与动物类似。在动物实验中发现,NO的顺乌头酸,NO在胞内调节其活性,激活的顺乌头酸传话为mRNA 结合蛋白,是一种铁离子调节蛋白(IRP)。IRP的两种结合蛋白是铁蛋白mRNA和转铁蛋白受体mRNA上的铁响应单元,当它们结合后mRNA的翻翻译水平被抑制,同时稳定铁蛋白mRNA不被降解,最终提高了细胞内的铁素转运能力,但降铁素含量。在烟草植物中有研究发现,NO抑制了顺乌头酸酶的活性。在烟草中,顺乌头酸酶的基因已经被克隆,发现其蛋白氨基酸序列与人的相应基因的序列同源性达 61%(Navarre,2000)。在动物和植物中,环鸟苷酸(cGMP)都是一种重要的信号物质。在细胞内cGMP由鸟苷酸环化酶合成。植物细胞中发现,NO可以活化鸟苷酸环化酶,促使cGMP水平上升,同时cGMP最为NO的下游信号分子调节生理反应。目前已经证明,烟草中含有可以感知NO的鸟苷酸环化酶,同时发现NO对于PAL基因的调节是有催化苷酸环化酶来完成的(Durner,1998)。蛋白质的磷酸化修饰是一种重要的生物信号调节机制,包括磷酸化和去磷酸化。目前發现的蛋白激酶(MAPK)有20中,其中部分受到NO的调节或影响。NO通过调节这些激酶参与到植物与与环境胁迫、病原侵染、伤害激素、等所引起的信号传递过程。

以上有关NO的内容对应学生更好的了解和掌握信号分子NO非常重要,因此我建议在植物生理学教材中添加这部分内容。

参考文献

[1]潘瑞炽(2004). 植物生理学. 第5 版. 北京: 高等教育出版社

[2]王忠(2009). 植物生理学. 第2 版. 北京: 中国农业出版社

[3]张继澍(2006). 植物生理学. 第2 版. 北京: 高等教育出版社

[4]陈晋文,孙长凯,黄远桂(1996)NO合酶的若干研究进展. 生物物理与生物化学进展,23:293-297

[5]Chen KM (2003) Up-regulation of glutathione metabolism and changes in redox status involved in adaptation of reed (Phragmites communis) ecotypes to drought-prone and saline habitats. J Plant Physiol, 160:293-301

[6]Klessing DF, Druner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang SQ, Kachroo P, Trifa Y, Puntied D, Lam E, Silva H (2000) Nitric oxide and Salicylic acid signaling in plant defense. Proc Natl Acad Sci USA, 97:8849-8855

[7]Navarre DA (2000) Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol, 122:573-582

[8]Zhou R (2003) A new abscisci acid catqabolic pathway. Plant Physiol, 134:361-369

作者简介:李积胜(1983-),男,甘肃兰州人,博士,讲师,研究方向:植物生理学教学实验研究。

植物生理学知识总结 第5篇

1.ACC合酶:催化SAM裂解为5’-甲硫基-腺苷和ACC的酶,为乙烯合成的限速酶

2.矮壮素(CCC):抑制GAs合成,进而抑制细胞伸长的人工合成生长延缓剂 3.必须元素:在植物生活史中,起着不可替代的直接生理作用的不可缺少的元素

4.春化作用:低温诱导促使植物开花的作用

5.长日植物:在24h昼夜周期中,日照长度长于一定时间才能成花的植物。如延长光照或在暗期短期照光可促进或提早开花,相反如延长黑暗则推迟或不能开花

6.单性结实:有些植物的胚珠不经受精,子房仍能够继续发育成没有种子的果实

7.单盐毒害:植物生长在只含有一种金属元素的溶液中而发生受害的现象 8.代谢源与代谢库:制造并输出同化物的部位或器官(成熟叶);消耗或贮藏同化物的部位或器官(根、果实)

9.分化:从一种同质性的细胞类型转变成形态结构和功能与原来不同的异细胞类型的过程

10.光周期现象:昼夜的相对长度对植物生长发育的影响

11.光呼吸:植物和绿色细胞在光照下吸收氧气和放出二氧化碳的现象 12.光形态建成:光控制植物生长、发育和分化的过程

13.光周期诱导:植物只需在某一生育周期内得到足够日数的适合光周期,以后即便放置在不适宜的光周期条件下仍可开花

14.光和速率:光合强度,单位时间单位叶面积所吸收的CO2或释放的O2量,或单位时间单位也面积所积累的干物质量

15.光饱和点:在光照强度较低时,光和速率随光照强度增加;光强度进一步提高时,光和速率的增加逐渐减小,当超过一定光强时,光和速率不再增加,此时的光照强度为光饱和点

16.HSP:在高于植物正常生长温度刺激下诱导合成的新蛋白 17.呼吸越变:果实在成熟之前发生的呼吸突然升高的现象

18.呼吸速率(呼吸强度):单位鲜重、干重的植物组织在单位时间内所释放二氧化碳的量或吸收的氧气的量

19.活性氧:化学性质活泼,氧化能力很强的含氧物质的总称 20.呼吸商:植物组织在一定时间内,释放CO2与吸收O2的数量比

21.花熟状态:植物在能感受环境条件的刺激而诱导开花时所必须达到的生理状态

22.极性运输:IAA在胚芽鞘、幼茎和幼根中由形态学上端向形态学下端的运输方式

23.交叉适应:植物经过一种逆境的适当胁迫,提高了对另外一种逆境的适应性 24.集体效应:群体效应

25.净光合强度:即表现光合强度,指总光合强度减去被测部位同时进行的呼吸强度

26.抗氰呼吸:指某些植物的组织或器官在氰化物存在的情况下仍能进行呼吸。参与抗氰呼吸的末端氧化酶是交替氧化酶 27.抗逆性:植物对逆境的忍耐和抵抗能力

28.临界夜长:短日照植物开花所需的最短暗期长度或长日植物能够开花所需的最长暗期长度

29.离层:离区是指分布在叶柄、花柄、果柄等基部一段区域中经横向分裂而形成的几层细胞。离层是离区中发生脱落的部位 30.NAA:萘乙酸,人工合成生长素类物质

31.耐逆性:植物通过代谢的变化来阻止、降低或修复由逆境造成的伤害,维持正常的生理活动

32.逆境:对植物产生不利影响的环境 33.Photosynthesis(光合作用)

34.Programmed Cell Death(PCD)(细胞程序性死亡)35.Plants growth substance(植物生长物质)

36.P/O比:指在光合链中每消耗1分子氧所形成ATP的数量 37.Pfr:远红光吸收型光敏色素,具有生理活性 38.PQ穿梭:PQ为质体醌,是光合链中含量最多的电子递体,既可以传递电子也可以传递质子,具有亲脂性,能在类囊体膜内移动。他在传递电子时,也将质子从间质输入类囊体内腔,PQ在类囊体上的这种氧化还原反复变化称PQ穿梭

39.平衡石:细胞内感受重力的淀粉粒

40.群体效应:单位面积内,落在柱头上花粉的数量越多,花粉的萌发和花粉管生长越好

41.Respiratory rate(呼吸速率)42.ROS(活性氧)

43.R/T(根冠比):植物地下部分与地上部分干重或鲜重的比值,他能反映植物的生长状况以及环境条件对地上部与地下部生长的不同影响 44.Stress tolerance(耐逆性)45.水势:每偏摩尔体积水的化学势差

46.水孔蛋白:一类具有选择性、高效转运水分得膜通道蛋白

47.生理酸性盐:植物根系从溶液中有选择的吸收离子后使溶液酸度增加的盐类 48.渗透调节:指逆境胁迫下植物体内主动积累各种有机物和无极物质来提高细胞液浓度,降低渗透式,提高细胞保水能力,从而适应水分胁迫环境的现象 49.双光增益效应:植物叶绿体在同时吸收红光和远红光时的量子效率远远高于只用一种光照射,表明类囊体上存在两个不同的光系统 50.束缚水:指靠近胶粒而被其束缚不易自由流动的水分

51.三重反应:指乙烯对植物生长具有抑制茎的伸长、促进茎和根增粗、使茎横向生长的三方面效应

52.生长大周期:任何植物或器官其生长过程的总速率是由慢而快,在达到最快之后逐渐减慢,最后停止生长,这一生长现象的全过程即为生长大周期,以生长积累量对时间作图,得S型生长曲线

53.生理干旱:由于土壤溶液浓度太高造成土壤水势太低,低于植物组织的水势,植物不但不能吸水,反而失水,造成植物组织缺水的现象。

54.生长调节剂:凡是在低浓度下对植物的生长发育具有调节作用的外源有机化合物 55.脱春化:在植物春化过程结束前,将植物放到高温条件下生长,低温的效果会被减弱或消除

56.脱分化:原已分化的细胞是去原有的形态和机能,又回复到没有分化的无组织的细胞团或愈伤组织的过程

57.维持呼吸:呼吸作用产生的能量除部分用于维持活细胞的生存外,相当部分以热能形式散失

58.细胞程序性死亡:指在胚胎发育、细胞分化及许多病理过程中,细胞遵循其自身的程序,主动结束其生命的生理性死亡过程

59.细胞全能性:植物体的每一个活细胞携带有一套完整的基因组,具有发育成完整植株的潜力

60.小孔律:气孔分子通过多孔表面扩散的速度,不与小孔的面积成正比,而与小孔的周长成正比的现象

61.向性运动:外界对植物单向刺激所引起的定向生长运动

62.诱导酶(适应酶):植物体内本来不含有,但在特定条件诱导下生成的酶 63.荧光现象:叶绿素溶液在透射光下呈绿色,在反射光下呈红 64.氧化磷酸化

65.质外体:细胞原生质以外的部分,包括细胞壁、细胞间隙、木质部导管和管胞等

66.自由水:距离胶粒较远而可以自由流动的水分

67.植物生长物质:调节植物生长发育,包含植物激素和生长调节剂

68.植物激素:在植物体内合成、能从合成部位运往作用部位。对植物的生长发育具有显著调节作用的微量有机物。公认五大类AUXs ABA GA CTK Eth 69.组织培养:在离体无菌条件下,把植物的一小部分组织或器官甚至单个细胞接种于试管或三角瓶里的人工培养基上,使它们生长分化甚至重新形成完整植物的一种方法

植物病理学实习总结 第6篇

实习时间:一周实习地点:河南农业大学校区及三区,毛庄,森林公园及浮戏山

实习目的:学习实地认识各种植物病害并采集标本,学习制作标本的方法,学习用不同的培养基培养真菌和细菌,学习制作玻片并观察玻片来判断病原物是什么。

实习中认识的病害及病原物介绍:芍药白粉病

症状:在叶面产生白色、近圆形的白粉状霉斑,白斑

向四周蔓延,连接成边缘不整齐的大片白粉斑,其上布满白色至灰白色粉状物。叶上布满白粉状霉,即病菌的菌丝体、分生孢子梗及分生孢子。发病后期有时叶片上产生黑褐色小点,为病菌的有性世代闭囊壳。

2南瓜霜霉病

发病初期叶片背面出现水浸状黄色斑点,病斑逐渐

扩大后,受叶脉限制呈黄褐色不规则的多角形病斑。在潮湿条件下,病斑背面长有灰黑色霉层。发病重时,病

斑连成片,使叶片变黄干枯、易破碎,植株一片枯黄病原菌:真菌病害,病菌以在土壤或病株残体上的孢子囊及潜

伏在种子内的菌丝体越冬或越夏。以孢子囊随风雨进行传播,从寄主叶片表皮直接侵入,引起初次侵染,以后随气流和雨水

进行多次再侵染。番茄晚疫病

叶片染病多从叶尖、叶缘开始病叶出现水浸状暗绿色病斑,当向叶脉和茎蔓延后茎杆染病产生长条状暗褐色凹陷条斑。

病原物:致病疫霉菌,菌丝丝状,分隔番茄早疫病

主要危害叶片,在茎基部产生暗褐色病斑,稍凹陷有轮纹。多从植株下部叶片向上发展,初呈水浸状暗绿色病斑,扩大后呈圆形或不规则形的轮纹斑,边缘多具浅绿色或黄色的晕环,中部呈同心轮纹。

病原物:早疫病是由茄链格孢菌侵染所致,在真菌分类中,属于半知菌门链格孢属。

番茄早疫病和番茄晚疫病的区别:番茄早疫病在生长期都可以发病。侵害叶、茎、果实各个部位,以叶片和茎叶分枝处最易发病。病害一般多从下部叶片开始发生,逐渐向上扩展。叶片上最初可见到深褐色小斑点,扩大后呈圆形或近圆形,外围有黄色或黄绿色的晕环,病斑灰褐色,有深褐色的同心轮纹,有时多个病斑连在一起,形成大形不规则病斑。番茄晚疫病在番茄的整个生育期均可发生,幼苗、茎、叶、和果实均可受害,以叶和青果受害为重。幼苗染病,病斑由叶向叶脉和茎蔓延,使茎变细并呈黑褐色,植株萎蔫或倒伏;叶片受害多从叶尖、叶缘开始发病,初为暗绿色水浸状不规则病斑,扩大后转为褐色。烟草花叶病

叶脉两侧叶肉组织渐呈淡绿色。病毒在叶片组织内大量增殖,使部分叶肉细胞增大或增多,出现叶片薄厚不匀,颜色黄绿相间,呈花叶状。后花叶斑驳程度加大,并现大面积深褐色坏死斑,中下部老叶尤甚,发病重的叶片皱缩、畸形。

病原物:有病毒引起洋葱紫斑病

危害初期呈水浸状白色点斑,病斑扩大快,迅速形成宽1~3厘米、长2~4厘米纺锤形的凹陷斑,先为淡褐色,随后变为褐色至晴紫色,周围具有黄色晕圈。此后有的逐渐褪色并形成同心轮纹,湿度大时斑面上产生黑褐色煤粉状霉。

病原菌称为葱链格孢菌。梨锈病

叶片被害后叶片正面产生圆形小病斑,随着病斑的扩大,病斑中央产生蜜黄色微凸的小粒点(病菌性孢子器),潮湿时小粒点上溢出淡黄色黏液,之后病斑组织变肥厚,正面凹陷,背面隆起并长出几根至十几根灰白色或淡黄色的细管状物即锈孢子器,内有大量褐色锈孢子,成熟后从锈孢子器顶端开列散出。

病原物:病原属担子菌亚门胶柄锈属真菌。性孢子器葫芦形,埋生于表皮下;性孢子纺锤形,单胞无色。锈子器长简形,丛生于叶背面。锈孢子近圆形,橙黄色,表面有瘤状细胞。花生褐斑病

初为褪绿小点,后扩展成近圆形或不规则形小斑,病斑较黑斑病大而色浅,叶正面呈暗褐或茶褐色,背面呈褐或黄褐色,病斑周围有亮黄色晕圈。湿度大进病斑上可见灰褐色粉状霉层。

病原物:落花生尾孢,属半知菌亚门真菌。子座多散生于病斑正面,深褐色。分生孢子梗丛生或散生于子座上,黄褐色,病菌以子座、菌丝团或子囊腔在病残体上越冬。翌年条件适宜,产生分生孢子,借风雨传播进行初侵染和再浸染。菌丝直接伸入细胞间隙和细胞内吸取营养。茄子黄萎病

初期叶缘及叶脉间出现褪绿斑,病株初在晴天中午呈萎蔫状,早晚尚能恢复,经一段时间后不再恢复,叶缘上卷变褐脱落,病株逐渐枯死,病原物:茄子黄萎病病菌为半知菌门真菌的大丽轮枝菌,病菌分生孢子梗直立,细长,上有数层轮状排列的小梗,梗顶生椭圆形、单胞、无色的分生孢子。桃缩叶病

嫩叶刚伸出时就显现卷曲状,叶片逐渐开展,卷曲及皱缩的程度随之增加,致全叶呈波纹状凹凸,严重时叶片完全变形。

桃缩叶病的病原物为畸形外囊菌。黄瓜靶斑病

黄瓜靶斑病又称“黄点子病”,起初为黄色水浸状斑点,发病

中期病斑扩大为圆形或不规则形,易穿孔,叶正面病斑粗糙不平,病斑整体褐色,中央灰白色、半透明。后期病斑直径可达10~15毫米,病斑中央有一明显的眼状靶心。

病原物:由半知菌的棒孢菌引起的病害。南瓜角斑病

主要为害叶片。叶片上产生多角形或不规则形病斑,受叶脉限制。大小1~5毫米,初为浅褐色,后中间变灰白色,边缘明显,中心稍下凹,病斑周围不形成晕圈,后期病部正背长出很多小黑点。严重时病斑融合成片,致叶片早枯。

病原菌:真菌半知菌门瓜角斑壳针孢。

上一篇:陕西社区工作者公共基础:诺贝尔奖的相关知识下一篇:节水小学作文