高中生物必修二孟德尔知识点

2024-07-25

高中生物必修二孟德尔知识点(精选10篇)

高中生物必修二孟德尔知识点 第1篇

孟德尔定律由奥地利帝国遗传学家格里哥·孟德尔在1865年发表并催生了遗传学诞生的著名定律。下面小编给大家分享一些高中生物必修二孟德尔知识,希望能够帮助大家,欢迎阅读!

高中生物必修二孟德尔知识1

1.交配类:

1)杂交:基因型不同的个体间相互交配的过程

2)自交:植物体中自花授粉和雌雄异花的同株授粉。自交是获得纯合子的有效方法。

3)测交:就是让杂种F1与隐性纯合子相交,来测F1的基因型

2.性状类:

1)性状:生物体的形态结构特征和生理特性的总称

2)相对性状:同种生物同一性状的不同表现类型

3)显性性状:具有相对性状的两个纯种亲本杂交,F1表现出来的那个亲本的性状

4)隐性性状:具有相对性状的两个纯种亲本杂交,F1未表现出来的那个亲本的性状

5)性状分离:杂种后代中,同时出现显性性状和隐性性状的现象

3.基因类

1)显性基因:控制显性性状的基因

2)隐性基因:控制隐性性状的基因

3)等位基因:位于一对同源染色体的相同位置上,控制相对性状的基因。

4.个体类

1)表现型:生物个体所表现出来的性状

2)基因型:与表现型有关的基因组成3)表现型=基因型(内因)+环境条件(外因)

4)纯合子:基因型相同的个体。例如:AA aa

5)杂合子:基因型不同的个体。例如:Aa

高中生物必修二孟德尔知识2

自由交配与自交的区别

自由交配是各个体间均有交配的机会,又称随机交配;而自交仅限于相同基因型相互交配。

纯合子(显性纯合子)与杂合子的判断

1.自交法:如果后代出现性状分离,则此个体为杂合子;若后代中不出现性状分离,则此个体为纯合子。例如:Aa×Aa→AA、Aa(显性性状)、aa(隐性性状)

AA×AA→AA(显性性状)

2.测交法:如果后代既有显性性状出现,又有隐性性状出现,则被鉴定的个体为杂合子;若后代只有显性性状,则被鉴定的个体为纯合子。

例如:Aa×aa→Aa(显性性状)、aa(隐性性状)AA×aa→Aa(显性性状)

鉴定某生物个体是纯合子还是杂合子,当被测个体为动物时,常采用测交法;当被测个体为植物时,测交法、自交法均可以,但是对于自花传粉的植物自交法较简便。例如:豌豆、小麦、水稻。

杂合子Aa连续自交,第n代的比例分析

分离定律

1.实质:在杂合子的细胞中,位于一对同源染色体上的等位基因具有一定的独立性;在减数分裂形成配子的过程中,等位基因也随着同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代。

2.适用范围:一对相对性状的遗传;细胞核内染色体上的基因;进行有性生殖的真核生物。

3.分离定律的解题思路如下(设等位基因为A、a)

判显隐→搭架子→定基因→求概率

(1)判显隐(判断相对性状中的显隐性)

①具有相对性状的纯合体亲本杂交,子一代杂合体显现的亲本的性状为显性性状。

②据“杂合体自交后代出现性状分离”。新出现的性状为隐性性状。

③在未知显/隐性关系的情况下,任何亲子代表现型相同的杂交都无法判断显/隐性。

用以下方法判断出的都为隐性性状

①“无中生有”即双亲都没有而子代表现出的性状;

②“有中生无”即双亲具有相对性状,而全部子代都没有表现出来的性状;

③一代个体中约占1/4的性状。

注意:②、③使用时一定要有足够多的子代个体为前提下使用。

(2)搭架子(写出相应个体可能的基因型)

①显性表现型则基因型为A(不确定先空着,是谓“搭架子”)

②隐性表现型则基因型为aa(已确定)

③显性纯合子则基因型为AA(已确定)

(3)定基因(判断个体的基因型)

①隐性纯合突破法

根据分离定律,亲本的一对基因一定分别传给不同的子代;子代的一对基因也一定分别来自两位双亲。所以若子代只要有隐性表现,则亲本一定至少含有一个a。

②表现比法

A、由亲代推断子代的基因型与表现型

b.代推断亲代的基因型与表现型

(4)求概率

①概率计算中的加法原理和乘法原理

②计算方法:用分离比直接计算;用配子的概率计算;棋盘法。

高中生物必修二孟德尔知识3

自由组合定律

1.实质:两对(或两对以上)等位基因分别位于两对(或两对以上)同源染色体上;位于非同源染色体上的非等位基因的分离或组合是互不干扰的;F1减数分裂形成配子时,同源染色体上的等位基因分离,非同源染色体上的非等位基因自由组合。

2.两对相对性状的杂交实验中,F2产生9种基因型,4种表现型。

①双显性性状(Y R)的个体占9/16,单显性性状的个体(Y rr,)yyR)各占3/16,双隐性性状(yyrr)的个体占1/16。

②纯合子(1/16YYRR+1/16YYrr+1/16yyRR+1/16yyrr)共占4/16,杂合子占

1—4/16=12/16,其中双杂合子个体(YyRr)占4/16,单杂合子个体(YyRR、YYRr、Yyrr、yyRr)各占2/16,共占8/16

③F2中亲本类型(Y R + yyrr)占10/16,重组类型(Y rr+ yyR)占6/16。

注意:具有两对相对性状的纯合亲本杂交,F1基因型相同,但计算F2中重组类型所占后代比列的时候,有两种情况:若父本或母本均是“双显”或“双隐”的纯合子,所得F2的表现型中重组类型(3/16Yrr+ 3/16yyR)占6/16;若父本和母本为“一显一隐”和“一隐一现”的纯合子,则F2中重组类型所占后代比列为(9/16Y R +1/16yyrr)占10/16。

3.应用分离定律解决自由组合问题

将自有组合问题转化为若干个分离定律问题,即利用分解组合法解自由组合定律的题,既可以化繁为简,又不易出错,它主要可用于解决以下几个方面的问题:

已知亲代的基因型,求子代基因型、表现型的种类及其比例

例1 设家兔的短毛(A)对长毛(a)、毛直(B)对毛弯(b)、黑色(C)对白色(c)均为显性,基因型为AaBbCc和aaBbCC两兔杂交,后代表现型为种,类型分别是,比例为;后代基因型为 种,类型分别是,比例为;

解析 此题用分解组合法来解的步骤:

第一步:分解并分析每对等位基因(相对性状)的遗传情况

Aa×aa→有2种表现型(短,长),比例为1:1;2种基因型(Aa,aa),比例为1:1

Bb×Bb→有2种表现型(直,弯),比例为3:1;3种基因型(BB,Bb,bb),比例为1:2:1

Cc×CC→有1种表现型(黑);2种基因型(CC,Cc),比例为1:1

第二步:组合AaBbCc和aaBbCC两兔杂交后代中:

表现型种类为:2×2×1=4(种),类型是:短直黑:短弯黑:长直黑:长弯黑,比例为:(1:1)(3:1)=3:1:3:1

基因型种类为:2×3×2=12(种),类型是:(Aa+aa)(BB+Bb+bb)(CC+Cc)展开后即得,比例为:(1:1)(1:2:1)(1:1),按乘法分配率展开。

已知亲代的基因型,求亲代产生的配子种类或概率

例2 基因型为 AaBbCC的个体进行减数分裂时可产生类型的配子,它们分别是_____________,产生基因组成为AbC的配子的几率为______。

解析 设此题遵循基因的自由组合规律,且三对基因分别位于不同对同源染色体上

1)分解:Aa→1/2A,1/2a;Bb→1/2B,1/2b;CC→1C

2)组合:基因型为AaBbCC的个体产生的配子有:2×2×1=4种;

配子类型有:(A+a)×(B+b)×C=ABC+AbC+aBC+abC;

产生基因组成为AbC的配子的概率为:1/2A×1/2b×1C=1/4AbC

已知亲代的基因型,求某特定个体出现的概率

例3设家兔的短毛(A)对长毛(a)、毛直(B)对毛弯(b)、黑色(C)对白色(c)均为显性,基因型为AaBbCc和AaBbCc两兔杂交,后代中表现型为短直白的个体所占的比例为,基因型为AaBbCC的个体所占的比例为____________。

解析 1)分解:Aa×Aa→3/4A(短),1/2Aa;Bb×Bb→3/4B(直),1/2Bb;

Cc×Cc→1/4c(白),1/4CC;

2)组合:后代中表现型为短直白的个体所占的比例为:3/4×3/4×1/4=9/64

后代中基因型为AaBbCC的个体所占的比例为=1/2×1/2×1/4=1/16

已知亲代的表现型和子代的表现型比例,推测亲代的基因型

例4番茄红果(Y)对黄果(y)为显性,二室(M)对多室(m)为显性。一株红果二室番茄与一株红果多室番茄杂交后,F1有3/8红果二室,3/8红果多室,1/8黄果二室,1/8黄果多室。则两个亲本的基因型是。

解析 根据题中所给的后代表现型的种类及其比例关系,可知此题遵循基因的自由组合规律;

1)分解:

F1中红果:黄果=(3/8+3/8):(1/8+1/8)=3:1→推知亲本的基因型为Yy×Yy

二室:多室=(3/8+1/8):(3/8+1/8)=1:1→亲本的基因型为Mm×mm

2)组合:

根据亲本的表现型把以上结论组合起来,即得亲本的基因型分别为YyMm×Yy mm

已知子代的表现型比例,推测亲代的基因型

在遵循自由组合定律的遗传学题中,若子代表现型的比例为9:3:3:1,可以看作为(3:1)(3:1),则亲本的基因型中每对相对性状为杂合子自交;若子代表现型的比例为3:3:1:1,可以看作为(3:1)(1:1),则亲本的基因型中一对相对性状为杂合子与隐性纯合子杂交,另一对相对性状为显性纯合子与隐性纯合子杂交。

例5 已知鸡冠性状由常染色体上的两对独立遗传的等位基因D、d和R、r决定,有四种类型:胡桃冠(D R)、豌豆冠(D rr)、玫瑰冠(ddR)和单冠(ddrr)。两亲本杂交,子代鸡冠有四种形状,比例为3:3:1:1,且玫瑰冠鸡占3/8,则亲本的基因型是。

解析 1)分解:由子代鸡冠有四种形状,比例为3:3:1:1,可推知单冠(ddrr)占1/8,由玫瑰冠鸡(ddR)占3/8,可推知子代中D:dd=(3+1):(3+1)=1:1→推知亲本的基因型为Dd×dd;则子代中另一对基因R :rr=3:1→推知亲本的基因型为Rr×Rr。

2)组合:根据子代鸡冠形状的比例及分解结果可组合得出亲本基因型为:DdRr×dd Rr。

高中生物必修二孟德尔知识点

高中生物必修二孟德尔知识点 第2篇

高中必修二生物知识1

第1、2节 孟德尔的豌豆杂交实验

一、相对性状

性状:生物体所表现出来的的形态特征、生理生化特征或行为方式等。

相对性状:同一种生物的同一种性状的不同表现类型。

1、显性性状与隐性性状

显性性状:具有相对性状的两个亲本杂交,F1表现出来的性状。

隐性性状:具有相对性状的两个亲本杂交,F1没有表现出来的性状。

【附】性状分离:在杂种后代中出现不同于亲本性状的现象。

2、显性基因与隐性基因

显性基因:控制显性性状的基因。

隐性基因:控制隐性性状的基因。

【附】基因:控制性状的遗传因子(DNA分子上有遗传效应的片段)

等位基因:决定1对相对性状的两个基因(位于一对同源染色体上的相同位置上)。

3、纯合子与杂合子

纯合子:由相同基因的配子结合成的合子发育成的个体(能稳定地遗传,不发生性状分离)

显性纯合子(如AA的个体)

隐性纯合子(如aa的个体)

杂合子:由不同基因的配子结合成的合子发育成的个体(不能稳定地遗传,后代会发生性状分离)

4、表现型与基因型

表现型:指生物个体实际表现出来的性状。

基因型:与表现型有关的基因组成。

关系:基因型+环境 → 表现型

5、杂交与自交

杂交:基因型不同的生物体间相互交配的过程。

自交:基因型相同的生物体间相互交配的过程。(指植物体中自花传粉和雌雄异花植物的同株受粉)

【附】测交:让F1与隐性纯合子杂交(可用来测定F1的基因型,属于杂交)。

二、孟德尔实验成功的原因:

(1)正确选用实验材料:①豌豆是严格自花传粉植物(闭花授粉),自然状态下一般是纯种;②具有易于区分的性状

(2)由一对相对性状到多对相对性状的研究(从简单到复杂)

(3)对实验结果进行统计学分析

(4)严谨的科学设计实验程序:假说—演绎法,即观察分析—提出假说—演绎推理—实验验证。

三、孟德尔豌豆杂交实验

一对相对性状的杂交

高中必修二生物知识2

减数分裂和受精作用

一、减数分裂的概念

减数分裂:进行有性生殖的生物形成生殖细胞过程中所特有的细胞分裂方式。在减数分裂过程中,染色体只复制一次,而细胞连续分裂两次,新产生的生殖细胞中的染色体数目比体细胞减少一半。

【注】体细胞主要通过有丝分裂产生,有丝分裂过程中,染色体复制一次,细胞分裂一次,新产生的细胞中的染色体数目与体细胞相同。

二、减数分裂的过程

1、有性生殖细胞的形成部位:动物的精巢、卵巢;植物的花药、胚珠

2、精子和卵细胞的形成三、精子与卵细胞的形成过程的比较

四、注意:

(1)同源染色体:①形态、大小基本相同;②一条来自父方,一条来自母方。

(2)精原细胞和卵原细胞的染色体数目与体细胞相同。因此,它们属于体细胞,通过有丝分裂的方式增殖,但它们又可以进行减数分裂形成生殖细胞。

(3)减数分裂过程中染色体数目减半发生在减数第一次分裂,原因是同源染色体分离并进入不同的子细胞。所以减数第二次分裂过程中无同源染色体。

(4)减数分裂过程中染色体和DNA的变化规律

(5)减数分裂形成子细胞种类:

假设某生物的体细胞中含n对同源染色体,则:它的精(卵)原细胞进行减数分裂可形成2n种精子(卵细胞);它的1个精原细胞进行减数分裂形成2种精子。它的1个卵原细胞进行减数分裂形成1种卵细胞。

五、受精作用的特点和意义

特点:受精作用是精子和卵细胞相互识别、融合成为受精卵的过程。精子的头部进入卵细胞,尾部留在外面,不久精子的细胞核就和卵细胞的细胞核融合,使受精卵中染色体的数目又恢复到体细胞的数目,其中有一半来自精子,另一半来自卵细胞。

意义:减数分裂和受精作用对于维持生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异具有重要的作用。

六、减数分裂与有丝分裂图像辨析步骤:

1、细胞质是否均等分裂:不均等分裂——减数分裂中的卵细胞的形成2、细胞中染色体数目:

若为奇数——减数第二次分裂(次级精母细胞、次级卵母细胞、减数第二次分裂后期,看一极);

若为偶数——有丝分裂、减数第一次分裂。

3、细胞中染色体的行为:

有同源染色体——有丝分裂、减数第一次分裂;

联会、四分体现象、同源染色体的分离——减数第一次分裂;

无同源染色体——减数第二次分裂。

4、姐妹染色单体的分离:

一极无同源染色体——减数第二次分裂后期;

一极有同源染色体——有丝分裂后期。

【注】若细胞质为不均等分裂,则为卵原细胞的减Ⅰ或减Ⅱ的后期。

高中必修二生物知识3

伴性遗传

一、概念:遗传控制基因位于性染色体上,因而总是与性别相关联。

二、XY型性别决定方式:

1、染色体组成(n对):

雄性:n-1对常染色体 + XY

雌性:n-1对常染色体 + X-X2、性比:一般 1 : 13、常见生物:全部哺乳动物、大多雌雄异体的植物,多数昆虫、一些鱼类和两栖类。

三、三种伴性遗传的特点:

(1)伴X隐性遗传的特点:

① 男 > 女

② 隔代遗传(交叉遗传)

③ 母病子必病,女病父必病

(2)伴X显性遗传的特点:

① 女>男

② 连续发病

③ 父病女必病,子病母必病

(3)伴Y遗传的特点:

①男病女不病

②父→子→孙

【附】常见遗传病类型(要记住):

伴X隐:色盲、血友病

伴X显:抗维生素D佝偻病

常隐:先天性聋哑、白化病

常显:多(并)指

高中必修二生物知识4

DNA是主要的遗传物质

1、DNA是遗传物质的证据

(1)肺炎双球菌的转化实验过程和结论

(2)噬菌体侵染细菌实验的过程和结论

2、DNA是主要的遗传物质

(1)某些病毒的遗传物质是RNA

(2)绝大多数生物的遗传物质是DNA

第2节 DNA 分子的结构

1、DNA的组成元素:C、H、O、N、P2、DNA的基本单位:脱氧核糖核苷酸(4种)

3、DNA的结构:

①由两条、反向平行的脱氧核苷酸链盘旋成双螺旋结构。

②外侧:脱氧核糖和磷酸交替连接构成基本骨架。

内侧:由氢键相连的碱基对组成。

③碱基配对有一定规律:A = T;G ≡ C。(碱基互补配对原则)

4、特点:

①稳定性:DNA分子中脱氧核糖与磷酸交替排列的顺序稳定不变

②多样性:DNA分子中碱基对的排列顺序多种多样(主要的)、碱基的数目和碱基的比例不同

③特异性:DNA分子中每个DNA都有自己特定的碱基对排列顺序

5、计算

第3节 DNA的复制

一、实验证据——半保留复制

1、材料:大肠杆菌

2、方法:同位素示踪法

二、DNA的复制

1、场所:细胞核

2、时间:细胞分裂间期。(即有丝分裂的间期和减数第一次分裂的间期)

3、基本条件:

① 模板:开始解旋的DNA分子的两条单链(即亲代DNA的两条链);

② 原料:是游离在细胞中的4种脱氧核苷酸;

③ 能量:由ATP提供;

④ 酶:DNA解旋酶、DNA聚合酶等。

4、过程:①解旋;②合成子链;③形成子代DNA5、特点:①边解旋边复制;②半保留复制

6、原则:碱基互补配对原则

7、精确复制的原因:

①独特的双螺旋结构为复制提供了精确的模板;

②碱基互补配对原则保证复制能够准确进行。

8、意义:将遗传信息从亲代传给子代,从而保持遗传信息的连续性

简记:一所、二期、三步、四条件

高中必修二生物知识5

基因指导蛋白质的合成一、RNA的结构:

1、组成元素:C、H、O、N、P2、基本单位:核糖核苷酸(4种)

3、结构:一般为单链

二、基因:是具有遗传效应的DNA片段,主要在染色体上。

三、基因控制蛋白质合成:

1、转录:

(1)概念:在细胞核中,以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。

【注】叶绿体、线粒体也有转录

(2)过程:

①解旋

②配对

③连接

④释放

(3)模板:DNA的一条链(模板链)

原料:4种核糖核苷酸

能量:ATP

酶:解旋酶、RNA聚合酶等

(4)原则:碱基互补配对原则(A—U、T—A、G—C、C—G)

(5)产物:信使RNA(mRNA)、核糖体RNA(rRNA)、转运RNA(tRNA)

2、翻译:

(1)概念:游离在细胞质中的各种氨基酸,以mRNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。

【注】叶绿体、线粒体也有翻译

(2)模板:mRNA

原料:氨基酸(20种)

能量:ATP

酶:多种酶

搬运工具:tRNA

装配机器:核糖体

(4)原则:碱基互补配对原则

(5)产物:多肽链

3、与基因表达有关的计算:

基因中碱基数:mRNA分子中碱基数:氨基酸数 = 6:3:14、密码子

①概念:mRNA上3个相邻的碱基决定1个氨基酸。每3个这样的碱基又称为1个密码子

②特点:专一性、简并性、通用性

③起始密码:AUG、GUG(64个)

终止密码:UAA、UAG、UGA

【注】决定氨基酸的密码子有61个,终止密码不编码氨基酸。

第2节 基因对性状的控制

一、中心法则及其发展

1、提出者:克里克

2、内容:遗传信息可以从DNA流向DNA,即DNA的自我复制;也可以从DNA流向RNA,进而流向蛋白质,即遗传信息的转录和翻译。但是,遗传信息不能从蛋白质流向蛋白质,也不能从蛋白质流向DNA或RNA。

遗传信息从RNA流向 RNA 以及从RNA流向 DNA 两条途径,是中心法则的补充。

二、基因控制性状的方式:

(1)间接控制:通过控制酶的合成来控制代谢过程,进而控制生物的性状;如白化病等。

(2)直接控制:通过控制蛋白质结构直接控制生物的性状。如囊性纤维病、镰刀型细胞贫血等。

【注】生物体性状的多基因因素:基因与基因;基因与基因产物;与环境之间多种因素存在复杂的相互作用,共同地精细的调控生物体的性状。

高中生物必修二孟德尔知识点 第3篇

一、细胞全能性这个知识点, 三本教材中呈现的方式不同

必修1教材呈现的是细胞全能性的概念。第119页通过图片6-11, 介绍美国科学家斯图尔德取胡萝卜韧皮部的一些细胞放入含有植物激素、无机盐和糖类等物质的培养基中培养, 结果这些细胞旺盛地分裂和生长, 形成一个细胞团块, 继而分化出根、茎、叶, 移栽到花盆后, 长成了一株新的植株, 之后给出细胞全能性的概念。必修2教材呈现的是细胞全能性的实例。第87~88页在单倍体育种中只简单讲了育种工作者常常采用花药 (花粉) 离体培养的方法来获得单倍体植株这个实例, 没有提出细胞的全能性这个名词, 但编者要求学生能够理解到这是细胞全能性的一种特殊表现实例。选修3教材呈现的是做细胞全能性实验。第34~35页通过对实验原理、实验目的、方法步骤等进行了详细介绍, 相比必修1、2教材中多了脱分化、愈伤组织, 再分化、胚状体或丛芽以及基因的选择性表达等新的信息, 并通过胡萝卜的组织培养实验来获得这一技术, 达到运用植物细胞全能性的特点, 以提升能力。

二、细胞全能性这个知识点, 三本教材的编写意图不同

必修1教材直接给出了细胞全能性的概念, 必修2教材则通过单倍体育种中花药离体培养实例, 让学生理解细胞全能性的概念;选修3教材却没有规律性的结论和表述, 它通过科技探索之路、细胞工程的发展历程、细胞工程的技术介绍, 提出问题, 然后把大量时间和空间留给学生, 让学生自己动手做实验, 了解前沿生物科学知识。必修1、2教材注意知识的有序重现, 要求学生阅读、识记、理解教材内容, 层次要求比较低, 对于初学者非常适合, 符合学生的心理认知规律;选修3教材具有开放性, 对学生能力的培养明显比必修1、2高了一个层次。实际上三本教材对同一个知识点的体现是识记—理解—应用三个认知层次要求。

三、细胞全能性这个知识点, 三本教材教学处理方式应不同

1. 教学中有意让学生了解不同教材的编写意图

要从必修1中简单传授细胞全能性到必修2中, 通过实例理解细胞全能性概念, 再到选修3运用细胞全能性知识、动手做实验, 达到培养能力的目的。让学生知道基础性的模块教学与深化性的专题拓展是人教版现行教材编写的特点。

2. 教学中有意将必修教材与选修教材结合使用

在讲授必修1第119页克隆羊多利是将乳腺细胞的核移植到去核的卵细胞中培养成的时, 为了满足学生对克隆羊的好奇心, 可向学生提问:多利羊长得像谁?多利羊是否健康?在必修1中没有详细说明问题, 老师可以简单地给学生在学习必修1这个知识点中做拓展性介绍, 用一个体现这个知识点的实例进行分析, 能够更好地帮助学生掌握该知识点并提高运用能力, 在选修3的教学中教师只要起组织作用。在必修教材的教学中有选择性的将选修教材中的一些小活动和实例提前引入到教学中, 使学生系统地构建知识网络。

3. 教学中有意在不同教材中采用不同教学方法

教师要加强基础知识识记的教学, 培养学生的阅读分析能力。必修部分知识是以模块形式呈现的, 从宏观到微观, 很符合学生心理对于生命系统的认知层次。必修教材的知识是基础, 常采用讲授法、演示法等来组织教学。选修教材能体现生物学素养和知识综合运用能力, 它以专题形式呈现的, 特别是选修3《现代生物科技专题》中细胞全能性知识点是必修1、2知识点的深化拓展。

此外, 现行高中生物教材中前后相同的内容还有几处, 这些内容在此不一一分析, 但都有其不同要求, 不是简单的重复, 这就要求教师准确把握教材编写意图, 按照新课程的要求, 采取不同的方法和手段来组织教学, 从而达到新课程改革的最终目的。

摘要:人教版高中生物教材中必修与选修3相同知识点, 不是简单的重复, 更不能相互代替。本文通过细胞全能性这个知识点的教学思考, 从中了解到教材蕴含了编者的编写意图以及教材深刻的思想内涵, 充分体现了高中生物新课程的理念。

关键词:教材,相同知识点,教法,思考

参考文献

[1]教育部.普通高中生物课程标准 (实验稿) .[M].北京:人民教育出版社, 2007

高中生物必修二孟德尔知识点 第4篇

关键词:“孟德尔遗传定律”;生物遗传学;分离定律;自由组合定律

中图分类号:G633.9

1.高中生物遗传学的学习情况简介

遗传学是高中生物的重点学习内容之一,同时也是同学们学习掌握情况最不佳的学习内容之一,而且根据对多年的高考生物试卷的调查与分析,发现遗传学的生物题也是同学们得分率最低的题型之一。遗传学的学习之所以会出现这种尴尬的局面主要有以下两个方面的原因:首先,同学们对遗传学的学习态度不正确,由于遗传学类型的生物题对我们综合能力要求较高,需要我们有一定的分析能力和理解能力,所以很多同学在刚刚学习遗传学时感到十分吃力,从而出现害怕遗传学的学习态度,这种害怕型的学习态度只会阻碍同学们对遗传学的学习进度;除了同学们对遗传学的学习态度不端正之外,影响同学们学习遗传学的另一个原因就是同学们对于遗传学的学习兴趣不高,在我国大部分的高中学校,生物老师的教学模式和教学理念都过于陈旧,很多生物教学课堂的大部分时间都是老师在讲,学生只能被动地接受老师所讲的知识点,课堂上留给同学们自由讨论和独立思考的时间并不多,课堂教学气氛过于沉闷,因此导致很多同学对于遗传学的学习兴趣不高,缺乏对遗传学知识的探索欲望[2]。

2.“孟德尔遗传定律”的主要内容

“孟德尔遗传定律”主要由两个定律组合而成,第一个定律是分离定律,即一对等位基因在杂合状态中保持相对的独立性,而在形成配子时,又按照原样分离到不同配子中去的现象,例如某一个黑色头发的人的控制头发颜色的基因组为Aa,这个基因组在分离时会形成两个配子,一个配子为A,另一个配子为a,不会出现一个配子是Aa,另一个配子是空白的这种现象。分离定律是自由组合定律成立的铺垫条件之一,帮助人们迈入了遗传学世界的大门。第二个定律是自由组合定律,即当具有两对或者更多对相对性状的亲本进行杂交时,一对染色体上的等位基因与另一对染色体上的等位基因的分离和组合是彼此间互不干扰的,各自独立地分配到配子中去。自由组合定律进一步揭示了自然界中遗传与变异现象的本质,同时利用自由组合定律,可以准确地预测子一代或者子二代乃至更以后的子代的表现性状,自由组合定律的提出大大丰富了遗传学的研究内容,推动了很多遗传学技术的发展[3]。

3.“孟德尔遗传定律”在高中生物遗传学中的运用

“孟德尔遗传定律”在高中生物遗传学中的应用较多,尤其是自由组合定律,百分之九十的遗传学题都会涉及到自由组合定律,分离定律主要是考察同学们对遗传学概念及一些专有名词的理解程度,主要的考察题型为选择题货车判断题。自由组合定律在高中生物遗传学中运用得较多,其在高中生物遗传学中主要以三大类型的题目出现:①两对相对性状均在常染色体上,这是典型的考察自由组合定律的题目,针对这种类型的题目,首先要整理清楚题目中所给的信息,然后可以将题中的信息转化为树状图,帮助分析和理解问题,最后运用自由组合定律将每一种配子的情况进行组合,得出最后结果;②两对相对性状在性染色体上,众所周知,无论男性还是女性都是由22对常染色体和一对性染色体所组成的,控制相对性状的基因位于性染色體上的情况要比位于常染色体上的情况稍微复杂一些,需要同学们将控制性别的基因和控制相对性状的基因联合考虑起来;③控制两种相对性状的两组基因一组位于常染色体上,一组位于性染色体上,这种类型的题目是第一种情况和第二种情况的综合运用,但是只要同学们保持清醒的思维,充分理解自由组合定律的实质,一定可以将这种类型的遗传题处理正确。在高中生物遗传学的学习中,无论在分离定律还是自由组合定律,首先要求同学们要充分理解这两大定律的实质含义和运用范围,然后要求同学们理解清楚题中所给出的信息和隐藏的信息,最后解出答案。

4.结语

综上所述,虽然要充分掌握“孟德尔遗传定律”对同学们的能力要求较高,但是只要学生树立正确的学习态度及在平时做好课前预习工作和课后复习工作,同时在课堂上保持高度的注意力,同学们就一定可以学好遗传学的知识。提高遗传学的课堂教学成果不仅仅需要老师的努力,而且也需要我们自身的努力。只有在两者的共同努力下,我们的高中生物教学课堂才能越来越好。

[参考文献]

[1] 黄亦达.孟德尔杂交实验在高中生物课堂上的启示[J].学园,2016(07)

[2] 邹瑜.从达尔文到孟德尔:遗传学说的提出与反驳[J].生物学教学,2016(06)

高中生物必修二知识点 第5篇

(1)优生的措施:禁止近亲结婚、进行遗传咨询、提倡适龄生育、产前诊断.

(2)禁止近亲结婚的原因:近亲结婚的夫妇从共同祖先那里继承同一种致病基因的机会大大增加,所生子女患隐性遗传病的概率大大增加.

记忆点:

高中生物必修二知识点 第6篇

①细胞质遗传的特点:母系遗传(原因:受精卵中的细胞质几乎全部来自母细胞);后代没有一定的分离比(原因:生殖细胞在减数分裂时,细胞质中的遗传物质随机地、不均等地分配到子细胞中去).

②细胞质遗传的物质基础:在细胞质内存在着DNA分子,这些DNA分子主要位于线粒体和叶绿体中,可以控制一些性状.

记忆点:

1.卵细胞中含有大量的细胞质,而精子中只含有极少量的细胞质,这就是说受精卵中的细胞质几乎全部来自卵细胞,这样,受细胞质内遗传物质控制的性状实际上是由卵细胞传给子代,因此子代总表现出母本的性状.

2.细胞质遗传的主要特点是:母系遗传;后代不出现一定的分离比.细胞质遗传特点形成的原因:受精卵中的细胞质几乎全部来自卵细胞;减数分裂时,细胞质中的遗传物质随机地、不均等地分配到卵细胞中.细胞质遗传的物质基础是:叶绿体、线粒体等细胞质结构中的DNA.

高中生物必修二知识点 第7篇

(各种膜所含蛋白质、脂质的比例与膜的功能有关,功能越复杂的细胞膜,蛋白质的种类和数量越多)

2.细胞膜的功能:①将细胞与外界环境隔开(以保障细胞内部环境的相对稳定);

②控制物质进出细胞(物质能否通过细胞膜,并不是取决于分子的大小,而是根据细胞生命活动的需要);③进行细胞间的信息交流。

3.细胞间信息交流的方式多种多样,常见的3种方式:①细胞分泌的化学物质如激素,随血液运输到达全身各处,与靶细胞的细胞膜表面的受体结合,将信息传递给靶细胞;②相邻两个细胞的细胞膜接触,信息从一个细胞传递给另一个细胞(如精子和卵细胞之间的识别和结合);③相邻两个细胞之间形成通道,携带信息的物质通过通道进入另一个细胞(如高等绿色植物细胞之间通过胞间连丝相互连接,也有信息交流的作用)

4.细胞间的信息交流,大多与细胞膜的结构和功能有关。

5.制备纯净的细胞膜常用的材料:应选用人和哺乳动物成熟的红细胞,原因是:因为人和其他哺乳动物成熟的红细胞中没有细胞核和众多的细胞器;制备的方法:将选取的材料放入清水中,由于细胞内的浓度大于外界溶液浓度,细胞将吸水涨破,再用离心的方法获得纯净的细胞膜。

6.癌细胞的恶性增殖和转移与癌细胞膜成分的改变有关。

细胞癌变的指标之一是细胞膜成分发生改变,产生甲胎蛋白(AFP)、癌胚抗原(CEA)等物质超过正常值

7.植物细胞壁的主要成分:纤维素和果胶;功能:对植物细胞有支持和保护的作用。

8.细胞质包括细胞器和细胞质基质。

细胞质基质的成分:水、无机盐、脂质、糖类、氨基酸和核苷酸等,还有很多酶。

功能:细胞质基质是活细胞进行新陈代谢的主要场所,细胞质基质为新陈代谢的进行提供所需要的物质和一定的环境条件,如提供ATP、核苷酸、氨基酸等。

9.分离各种细胞器的方法:差速离心法。

10.线粒体内膜向内折叠形成“嵴”,增大细胞内膜面积;在线粒体的内膜、基质中含有与有氧呼吸有关的酶,分别是有氧呼吸第三、二阶段的场所,生物体95%的能量来自线粒体,又叫“动力车间”。

11.叶绿体只存在于植物的绿色细胞中。扁平的椭球形或球形,双层膜结构。含少量的DNA、RNA。在类囊体薄膜(基粒)上有色素和与光合作用光反应有关的酶,是光反应场所;在基质中含有与光合作用暗反应有关的酶,是暗反应场所。由圆饼状的囊状结构堆叠而成基粒,增大膜面积。

12.线粒体和叶绿体的相同点:①具有双层膜结构②都含少量的DNA和RNA,具有遗传的相对独立性

③都能产生ATP,都属于能量转换器。

13.内质网:在结构上内连核膜,外连细胞膜;功能:①增大细胞内的膜面积②是细胞内蛋白质合成和加工,以及脂质合成的车间(内质网是蛋白质空间结构形成的场所)

14.核糖体:无膜结构,是合成蛋白质的场所。

附着在内质网上的核糖体合成的是胞外蛋白(即分泌蛋白如消化酶、胰岛素、生长激素、抗体等);游离的核糖体合成的是胞内蛋白(如呼吸氧化酶、血红蛋白等)。

15.高尔基体:主要是对来自内质网的蛋白质进行加工,分类,包装,运输。(动植物细胞共有的细胞器,但功能不同:植物:与细胞壁的形成有关;动物:与细胞分泌物的形成有关)

16.中心体:存在于动物和某些低等植物(如衣藻、团藻等)中。

无膜结构,由垂直的两个中心粒及周围物质组成,与细胞的有丝分裂有关。

17.液泡:单层膜,成熟的植物有中央大液泡。功能:贮藏(营养、色素等)、保持细胞形态

18.溶酶体:消化车间,内含许多水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒病菌。

19.与分泌蛋白合成有关的细胞器有:核糖体、内质网、高尔基体、线粒体;

与分泌蛋白合成有关的膜性细胞器有:内质网、高尔基体、线粒体;

与分泌蛋白的合成和分泌有关的结构有:核糖体、内质网、高尔基体、线粒体、细胞膜

植物细胞特有的结构:细胞壁、叶绿体、液泡(植物根尖分生区细胞不含有的细胞器:叶绿体、大液泡)

判断低等植物细胞的依据:既有细胞壁、叶绿体或液泡,又有中心体

具双层膜的结构:线粒体、叶绿体、核膜(具双层膜的细胞器:线粒体、叶绿体)

单层膜的细胞器:内质网、高尔基体、液泡、溶酶体

无膜结构(不含磷脂分子)的细胞器:中心体、核糖体

产生ATP的结构:叶绿体、线粒体、细胞质基质(产生ATP的细胞器:叶绿体、线粒体)

植物根尖(分生区)细胞产生ATP的场所:线粒体、细胞质基质

产生水的细胞器:线粒体、叶绿体、核糖体(有水参与反应的细胞器:线粒体、叶绿体等)

含有核酸的细胞器:线粒体、叶绿体、核糖体(核糖体中只有RNA,且含RNA最多)

与主动运输有关的细胞器:核糖体(合成载体)、线粒体(产生能量)

与细胞分裂有关的细胞器:核糖体、中心体、高尔基体、线粒体

能发生碱基互补配对的结构:线粒体、叶绿体、核糖体、(细胞核)

含有色素的细胞器:叶绿体、液泡、(有色体中只含类胡萝卜素)储藏细胞营养物质的细胞器:液泡

与细胞壁的形成有关的细胞器:高尔基体;可合成糖类的细胞器:叶绿体、高尔基体

在光镜下可见的细胞结构:细胞壁、细胞膜、叶绿体、线粒体、液泡、细胞板、染色体

(核糖体的结构太小,光镜下看不见)

20.细胞功能的差异,主要是由细胞器的种类和数量决定的。

21.蛋白质合成场所是核糖体;蛋白质空间结构的形成场所是内质网;成熟蛋白质的形成场所是高尔基体。

22.分泌蛋白合成和运输的途径:核糖体—→内质网—→高尔基体—→细胞膜

23.生物膜的转化中心是内质网。

可直接转化的膜:内质网膜和核膜、内质网膜和细胞膜、内质网膜和线粒体膜;

可间接转化的膜(以囊泡形式转化的膜):内质网膜和高尔基体膜、高尔基体膜和细胞膜。

24.生物膜系统的组成:细胞膜、核膜、细胞器膜等共同构成(也包括分泌蛋白形成过程中的囊泡)

25.生物膜在组成成分和结构相似,在结构和功能上紧密联系。

26.生物膜系统的功能:①细胞膜不仅使细胞具有一个相对稳定的内部环境,同时在细胞与外部环境进行物质运输、能量转换和信息传递的过程中起着决定性作用②广阔的膜面积为多种酶提供了大量的附着位点③细胞内的生物膜把各种细胞器分隔开,使得细胞内能同时进行多种反应,而不会互相干扰,保证了细胞生命活动高效、有序地进行。

27.研究生物膜的意义:①在工业上,模拟生物膜进行海水淡化、污水处理②在医学上,用人工合成的膜材料代替病变器官(如用于治疗尿毒症的透析型人工肾,当病人的血液流经人工肾时,血液透析膜能把病人血液中的代谢废物透析掉,让干净的血液返回病人体内)③在农业上,研究生物膜寻找改善农作物品质的新途径。(运用的原理都是细胞膜的选择透过性)

28.将海水稀释用于无土栽培的设想变为现实的重要意义:节约淡水资源(或利用海水资源);如用这种稀释的海水栽培植物,应考虑的主要问题有:①稀释的比例②稀释后所含离子的种类和数量是否满足蔬菜生长的需要。

29.健那绿染液是专一性染线粒体的活细胞染料,可使活细胞中的线粒体呈现蓝绿色,而细胞质接近无色。

30.细胞核的结构:包括核膜(双层膜)、核仁(与某种RNA的合成以及核糖体的形成有关)、染色质。

(细胞核是细胞结构中最重要的部分)细胞核功能:是遗传信息库,是细胞代谢和遗传的控制中心

31.核孔的作用:实现核质之间频繁的物质交换和信息交流(通过核孔进入细胞质的物质:mRNA;通过核孔进入细胞核的物质:DNA聚合酶、解旋酶等。通过核孔进行物质交换时经过的膜结构为0层

而葡萄糖和氨基酸等物质进出细胞核必须通过核膜,运输方式是主动运输,需经过2层膜)

32.染色体的主要成分:DNA和蛋白质;染色质是容易被碱性染料(龙胆紫溶液、醋酸洋红液、甲基绿等)染成深色的物质。染色体与染色质的关系是同样的物质在细胞不同时期的两种存在状态。

33.除了高等植物成熟的筛管细胞和哺乳动物成熟的红细胞等极少数细胞外,真核细胞都有细胞核。

高中生物必修二孟德尔知识点 第8篇

关键词:孟德尔杂交实验,遗传学

一、孟德尔成功的原因分析

从孟德尔的植物杂交实验的开始到他最后取得的重大科研成果, 我们看到的是一个不被名利驱使, 一心专注于科研、专注于自己所爱好的领域的科学家形象, 从最初的兴趣到坚持不懈的努力、持之以恒的态度, 到最后成果被人们的认可, 这些使得我们明白“不忘初心, 方得始终”, 更给我们的教学带来了极大的启示, 在高中生物教学实验中, 更应以激发学生的创造力、挖掘学生潜能为重, 以科学有效的课堂教学模式培养学生的综合素质。

1. 选材的分析

实验中, 孟德尔的选材是豌豆, 我们都知道, 豌豆是严格的闭花授粉, 在自然状态下, 它的后代均为纯种;其次, 豌豆的相对性状比较明显, 观察其后代非常方便, 如子叶的颜色黄色和绿色、高茎和矮茎等;还有豌豆的一次繁殖能够产生很多后代, 因而能够得到大量的数据进行分析, 避免实验结果的偶然性。

2. 研究方法分析

孟德尔在做豌豆杂交实验时, 并没有一次性地对豌豆的所有相对性状进行分析, 最开始时, 他只研究豌豆的高茎和矮茎这一对性状, 研究清楚后, 在此基础上才对豌豆的其他相对性状进行分析, 这种研究由简到繁, 由单因素到多因素, 方便于实验结果的得出。

3. 合理巧妙的数理统计

在实验中, 孟德尔详细记录了豌豆的不同后代表现出的性状, 并用科学的数理统计的方法对记录的实验结果进行分析, 这使得F2代中看似无序的性状表现呈现出了一定的规律——性状分离比, 他把数学统计方法引入生物学的研究, 是超越前人的创新, 孟德尔也因此发现了基因分离定律, 为他之后做出合理的假设奠定了基础。

4. 成功运用“假说—演绎法”

孟德尔在获得F2的性状分离比后, 大胆地提出了“性状由遗传因子决定”的一系列假说, 他提出的解释实验现象的假设是“控制生物性状的成对的遗传因子, 在形成配子时会彼此分离, 并分别进入不同的配子中, 之后再随配子遗传给后代”, 并且他合理地设计了实验程序来验证此假说, 他以高茎纯种豌豆和矮茎纯种豌豆作为亲本, 分别设计了纯合亲本杂交、F1的自交、F1的测交三组实验, 按照假说—演绎的科学方法“分析现象—作出假设—检验假说—得出结论”, 最后得出了遗传定律。

二、孟德尔的成功带给我们的启示

从孟德尔发现遗传规律的过程中, 我们不难发现, 一项科学研究成果的得出, 不仅需要研究者坚持不懈、持之以恒的精神, 还要善于借鉴前人的经验, 精心选择实验材料, 认真记录每一步的实验结果, 更需要科学的研究方法 (如假说演绎法、统计分析法) 。他的成功值得我们每一个学生借鉴学习。

1. 兴趣是良好的导师

孟德尔出生在一个平凡的农民家里, 父母都是园艺家, 在父亲的直接熏陶和影响下, 他自幼就爱好园艺。中学毕业后, 虽考入大学, 但却因家境贫寒而中途辍学, 为了生存, 他步入了一所修道院当修道士, 相隔几年之后, 他又利用四个学期的时间系统学习了植物学、动物学、物理学和化学等课程。而正是因为这份兴趣, 使得他即使中途辍学, 也能够坚持学习。

那么“兴趣”究竟应该从何谈起呢?怎么来看我们对一门学科是否有兴趣呢?在现如今, 学生们会将不了解与没有兴趣混为一谈, 其实, 在我看来, 当我们对一门学科没有深入了解时, 就没有资格说自己对这门学科没有兴趣。很多时候, 我们会因为不会唱歌而说我不喜欢唱歌, 因为不会打篮球而说自己不喜欢篮球, 在日常生活中, 我们也会发现, 凡是组织大家去KTV唱歌的人一般都比较会唱, 凡是经常约人一起打篮球的人一般也比较擅长于篮球, 所以说我们对于生物学科的学习是否有兴趣, 也应该建立在对这门学科了解的基础上, 那么在教学过程中, 我们不妨带领学生从遗传学的角度去深入了解生物学的奇妙, 通过深入的了解, 来提高学生对生物学的兴趣, 培养学生主动学习的热情。

2. 坚持不懈的努力

孟德尔在修道院任职期间, 利于业余时间进行植物杂交实验, 从选材、种植、分析子代性状表现到进行科学的假说推理、验证推理等, 经过整整8年的不懈努力, 终于在1866年发表了《植物杂交实验》的论文, 提出了遗传单位是遗传因子 (现代遗传学称为基因) 的论点, 并揭示出遗传学的两个基本规律——基因分离定律和基因自由组合定律, 为遗传学的诞生和发展奠定了坚实的基础。从他的成功我们得知, 任何一项科研成功的发明都需要坚持不懈的努力以及持之以恒的态度, 做任何事都需要静下心、沉下身, 做科研更是如此。

因此, 从这个角度来说, 在教学中, 培养学生坚持不懈, 持之以恒的精神尤为重要, 作为教师, 我们需要改变传统的灌输式教育, 从学生本身的综合素质出发, 培养出具有自主学习能力而不是只有接受能力的学生。

3. 不忘初心, 方得始终

孟德尔的发现虽是遗传学上的重大发现, 他的《植物杂交实验》论文虽已发表, 但令人遗憾的是, 对于他所处的时代来说, 他那不同于前人的创造性见解显得太过超前。那时, 人们认为两个亲本杂交后, 双亲的遗传物质会在子代体内发生混合, 使子代表现出介于双亲之间的性状, 这种观点也称作融合遗传。以至于他的科学论文在长达35年的时间里没有得到生物界的注意与认可。对于此, 想必孟德尔本身也在意料之中, 因为他的植物杂交实验也只是源于他最初对园艺的那份喜爱, 但正如俗语所说“是金子总会发光”, 在1900年时, 他的发现被欧洲三位不同国籍的植物学家在各自的杂交实验中分别予以证实, 他的发现从此得到重视与公认, 遗传学的研究从此很快发展起来, 而孟德尔也被成为“现代遗传学之父”。

由此可见, 培养学生的创造力是极为重要的, 在教学过程中, 作为教师, 应该为学生创建一个积极主动参与的教学环境, 最大限度地挖掘学生的“潜能”, 从学生的角度出发, 探索科学有效的课堂教学新模式。

参考文献

高中生物必修二知识 第9篇

答:增加水中的氧气,防止根进行无氧呼吸造成根的腐烂。

(2)培养根尖时,应选用老洋葱还是新洋葱?为什么?

答:应选用旧洋葱,因为新洋葱尚在休眠,不易生根。

(3)为何每条根只能用根尖?取根尖的最佳时间是何时?为何?

答:因为根尖分生区的细胞能进行有丝分裂;上午10时到下午2时;因为此时细胞分裂活跃。

(4)解离和压片的目的分别是什么?压片时为何要再加一块载玻片?

答:解离是为了使细胞相互分离开来,压片是为了使细胞相互分散开来;再加一块载玻片是为了受力均匀,防止盖玻片被压破。

(5)若所观察的组织细胞大多是破碎而不完整的,其原因是什么?

答:压片时用力过大。

(6)解离过程中盐酸的作用是什么?丙酮可代替吗?

答:分解和溶解细胞间质;不能,而硝酸可代替。

(7)为何要漂洗?

答:洗去盐酸便于染色。

(8)细胞中染色最深的结构是什么?

答:染色最深的结构是染色质或染色体。

(9)若所观察的细胞各部分全是紫色,其原因是什么?

答:染液浓度过大或染色时间过长。

(10)为何要找分生区?分生区的特点是什么?能用高倍物镜找分生区吗?为什么?

答:因为在根尖只有分生区的细胞能够进行细胞分裂;分生区的特点是:细胞呈正方形,排列紧密,有的细胞处于分裂状态;不能用高倍镜找分生区,因为高倍镜所观察的实际范围很小,难以发现分生区。

(11)分生区细胞中,什么时期的细胞最多?为什么?

答:间期;因为在细胞周期中,间期时间最长。

(12)所观察的细胞能从中期变化到后期吗?为什么?

答:不能,因为所观察的细胞都是停留在某一时期的死细胞。

(13)观察洋葱表皮细胞能否看到染色体?为什么?

答:不能,因为洋葱表皮细胞一般不分裂。

(14)若观察时不能看到染色体,其原因是什么?

高中生物必修二知识点总结 第10篇

一、遗传的基本规律

(1)基因的分离定律

①豌豆做材料的优点:

(1)豌豆能够严格进行自花授粉,而且是闭花授粉,自然条件下能保持纯种.(2)品种之间具有易区分的性状.②人工杂交试验过程:去雄(留下雌蕊)→套袋(防干扰)→人工传粉

③一对相对性状的遗传现象:具有一对相对性状的纯合亲本杂交,后代表现为一种表现型,F1代自交,F2代中出现性状分离,分离比为3:1.④基因分离定律的实质:在杂合子的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性,生物体在进行减数分裂时,等位基因会随同源染色体的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代.(2)基因的自由组合定律

①两对等位基因控制的两对相对性状的遗传现象:具有两对相对性状的纯合子亲本杂交后,产生的F1自交,后代出现四种表现型,比例为9:3:3:1.四种表现型中各有一种纯合子,分别在子二代占1/16,共占4/16;双显性个体比例占9/16;双隐性个体比例占1/16;单杂合子占2/16×4=8/16;双杂合子占4/16;亲本类型比例各占9/

16、1/16;重组类型比例各占3/

16、3/16

②基因的自由组合定律的实质:位于非同源染色体上的非等位基因的分离或组合是互不干扰的.在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合.③运用基因的自由组合定律的原理培育新品种的方法:优良性状分别在不同的品种中,先进行杂交,从中选择出符合需要的,再进行连续自交即可获得纯合的优良品种.记忆点:

1.基因分离定律:具有一对相对性状的两个生物纯本杂交时,子一代只表现出显性性状;子二代出现了性状分离现象,并且显性性状与隐性性状的数量比接近于3:1.2.基因分离定律的实质是:在杂合子的细胞中,位于一对同源染色体,具有一定的独立性,生物体在进行减数分裂形成配子时,等位基因会随着的分开而分离,分别进入到两个配子中,独立地随配子遗传给后代.3.基因型是性状表现的内存因素,而表现型则是基因型的表现形式.表现型=基因型+环境条件.4.基因自由组合定律的实质是:位于非同源染色体上的非等位基因的分离或组合是互不干扰的.在进行减数分裂形成配子的过程中,同源染色体上的等位基因彼此分离,同时非同源染色体上的非等位基因自由组合.在基因的自由组合定律的范围内,有n对等位基因的个体产生的配子最多可能有2n种.二、细胞增殖

(1)细胞周期:指连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止.(2)有丝分裂:

分裂间期的最大特点:完成DNA分子的复制和有关蛋白质的合成

分裂期染色体的主要变化为:前期出现;中期清晰、排列;后期分裂;末期消失.特别注意后期由于着丝点分裂,染色体数目暂时加倍.动植物细胞有丝分裂的差异:a.前期纺锤体形成方式不同;b.末期细胞质分裂方式不同.(3)减数分裂:

对象:有性生殖的生物

时期:原始生殖细胞形成成熟的生殖细胞

特点:染色体只复制一次,细胞连续分裂两次

结果:新产生的生殖细胞中染色体数比原始生殖细胞减少一半.精子和卵细胞形成过程中染色体的主要变化:减数第一次分裂间期染色体复制,前期同源染色体联会形成四分体(非姐妹染色体单体之间常出现交叉互换),中期同源染色体排列在赤道板上,后期同源染色体分离同时非同源染色体自由组合;减数第二次分裂前期染色体散乱地分布于细胞中,中期染色体的着丝点排列在赤道板上,后期染色体的着丝点分裂染色体单体分离.有丝分裂和减数分裂的图形的鉴别:(以二倍体生物为例)

1.细胞中没有同源染色体„„减数第二次分裂

2.有同源染色体联会、形成四分体、排列于赤道板或相互分离„„减数第一次分裂

3.同源染色体没有上述特殊行为„„有丝分裂

记忆点:

1.减数分裂的结果是,新产生的生殖细胞中的染色体数目比原始的生殖细胞的减少了一半.2.减数分裂过程中联会的同源染色体彼此分开,说明染色体具一定的独立性;同源的两个染色体移向哪一极是随机的,则不同对的染色体(非同源染色体)间可进行自由组合.3.减数分裂过程中染色体数目的减半发生在减数第一次分裂中.4.一个精原细胞经过减数分裂,形成四个精细胞,精细胞再经过复杂的变化形成精子.5.一个卵原细胞经过减数分裂,只形成一个卵细胞.6.对于进行有性生殖的生物来说,减数分裂和受精作用对于维持每种生物前后代体细胞中染色体数目的恒定,对于生物的遗传和变异,都是十分重要的三、性别决定与伴性遗传

(1)XY 型的性别决定方式:雌性体内具有一对同型的性染色体(XX),雄性体内具有一对异型的性染色体(XY).减数分裂形成精子时,产生了含有X染色体的精子和含有Y染色体的精子.雌性只产生了一种含X染色体的卵细胞.受精作用发生时,X精子和Y精子与卵细胞结合的机会均等,所以后代中出生雄性和雌性的机会均等,比例为1:1.(2)伴X隐性遗传的特点(如色盲、血友病、果蝇眼色、女娄菜叶形等遗传)

①男性患者多于女性患者

②属于交叉遗传(隔代遗传)即外公→女儿→外孙

③女性患者,其父亲和儿子都是患者;男性患病,其母、女至少为携带者

(3)X染色体上隐性遗传(如抗VD佝偻病、钟摆型眼球震颤)

①女性患者多于男性患者.②具有世代连续现象.③男性患者,其母亲和女儿一定是患者.(4)Y染色体上遗传(如外耳道多毛症)

致病基因为父传子、子传孙、具有世代连续性,也称限雄遗传.(5)伴性遗传与基因的分离定律之间的关系:伴性遗传的基因在性染色体上,性染色体也是一对同源染色体,伴性遗传从本质上说符合基因的分离定律.记忆点:

1.生物体细胞中的染色体可以分为两类:常染色体和性染色体.生物的性别决定方式主要有两种:一种是XY型,另一种是ZW型.2.伴性遗传的特点:

(1)伴X染色体隐性遗传的特点:男性患者多于女性患者;具有隔代遗传现象(由于致病基因在X染色体上,一般是男性通过女儿传给外孙);女性患者的父亲和儿子一定是患者,反之,男性患者一定是其母亲传给致病基因.(2)伴X染色体显性遗传的特点:女性患者多于男性患者,大多具有世代连续性即代代都有患者,男性患者的母亲和女儿一定是患者.(3)伴Y染色体遗传的特点:患者全部为男性;致病基因父传子,子传孙(限雄遗传).四、基因的本质

(1)DNA是主要的遗传物质

①生物的遗传物质:在整个生物界中绝大多数生物是以DNA作为遗传物质的.有DNA的生物(细胞结构的生物和DNA病毒),DNA就是遗传物质;只有少数病毒(如艾滋病毒、SARS病毒、禽流感病毒等)没有DNA,只有RNA,RNA才是遗传物质.②证明DNA是遗传物质的实验设计思想:设法把DNA和蛋白质分开,单独地、直接地去观察DNA的作用.(2)DNA分子的结构和复制

①DNA分子的结构

a.基本组成单位:脱氧核苷酸(由磷酸、脱氧核糖和碱基组成).b.脱氧核苷酸长链:由脱氧核苷酸按一定的顺序聚合而成 c.平面结构:

d.空间结构:规则的双螺旋结构.e.结构特点:多样性、特异性和稳定性.②DNA的复制

a.时间:有丝分裂间期或减数第一次分裂间期

b.特点:边解旋边复制;半保留复制.c.条件:模板(DNA分子的两条链)、原料(四种游离的脱氧核苷酸)、酶(解旋酶,DNA聚合酶,DNA连接酶等),能量(ATP)

d.结果:通过复制产生了与模板DNA一样的DNA分子.e.意义:通过复制将遗传信息传递给后代,保持了遗传信息的连续性.(3)基因的结构及表达

①基因的概念:基因是具有遗传效应的DNA分子片段,基因在染色体上呈线性排列.②基因控制蛋白质合成的过程:

转录:以DNA的一条链为模板通过碱基互补配对原则形成信使RNA的过程.翻译:在核糖体中以信使RNA为模板,以转运RNA为运载工具合成具有一定氨基酸排列顺序的蛋白质分子

记忆点:

1.DNA是使R型细菌产生稳定的遗传变化的物质,而噬菌体的各种性状也是通过DNA传递给后代的,这两个实验证明了DNA 是遗传物质.2.一切生物的遗传物质都是核酸.细胞内既含DNA又含RNA和只含DNA的生物遗传物质是DNA,少数病毒的遗传物质是RNA.由于绝大多数的生物的遗传物质是DNA,所以DNA是主要的遗传物质.3.碱基对排列顺序的千变万化,构成了DNA分子的多样性,而碱基对的特定的排列顺序,又构成了每一个DNA分子的特异性.这从分子水平说明了生物体具有多样性和特异性的原因.4.遗传信息的传递是通过DNA分子的复制来完成的.基因的表达是通过DNA控制蛋白质的合成来实现的.5.DNA分子独特的双螺旋结构为复制提供了精确的模板;通过碱基互补配对,保证了复制能够准确地进行.在两条互补链中的比例互为倒数关系.在整个DNA分子中,嘌呤碱基之和=嘧啶碱基之和.整个DNA分子中, 与分子内每一条链上的该比例相同.6.子代与亲代在性状上相似,是由于子代获得了亲代复制的一份DNA的缘故.7.基因是有遗传效应的DNA片段,基因在染色体上呈直线排列,染色体是基因的载体.8.由于不同基因的脱氧核苷酸的排列顺序(碱基顺序)不同,因此,不同的基因含有不同的遗传信息.(即:基因的脱氧核苷酸的排列顺序就代表遗传信息).9.DNA 分子的脱氧核苷酸的排列顺序决定了信使RNA中核糖核苷酸的排列顺序,信使RNA中核糖核苷酸的排列顺序又决定了氨基酸的排列顺序,氨基酸的排列顺序最终决定了蛋白质的结构和功能的特异性,从而使生物体表现出各种遗传特性.基因控制蛋白质的合成时:基因的碱基数:mRNA上的碱基数:氨基酸数=6:3:1.氨基酸的密码子是信使RNA上三个相邻的碱基,不是转运RNA上的碱基.转录和翻译过程中严格遵循碱基互补配对原则.注意:配对时,在 RNA上A对应的是U.10.生物的一切遗传性状都是受基因控制的.一些基因是通过控制酶的合成来控制代谢过程;基因控制性状的另一种情况,是通过控制蛋白质分子的结构来直接影响性状.五、生物的变异

(1)基因突变

①基因突变的概念:由于DNA分子中发生碱基对的增添、缺失或改变,而引起的基因结构的改变.②基因突变的特点: a.基因突变在生物界中普遍存在 b.基因突变是随机发生的 c.基因突变的频率是很低的 d.大多数基因突变对生物体是有害的 e.基因突变是不定向的 ③基因突变的意义:生物变异的根本来源,为生物进化提供了最初的原材料.④基因突变的类型:自然突变、诱发突变

⑤人工诱变在育种中的应用:通过人工诱变可以提高变异的频率,可以大幅度地改良生物的性状.(2)染色体变异

①染色体结构的变异:缺失、增添、倒位、易位.如:猫叫综合征.②染色体数目的变异:包括细胞内的个别染色体增加或减少和以染色体组的形式成倍地增加减少.③染色体组特点:a、一个染色体组中不含同源染色体 b、一个染色体组中所含的染色体形态、大小和功能各不相同 c、一个染色体组中含有控制生物性状的一整套基因

④二倍体或多倍体:由受精卵发育成的个体,体细胞中含几个染色体组就是几倍体;由未受精的生殖细胞(精子或卵细胞)发育成的个体均为单倍体(可能有1个或多个染色体组).⑤人工诱导多倍体的方法:用秋水仙素处理萌发的种子和幼苗.原理:当秋水仙素作用于正在分裂的细胞时,能够抑制细胞分裂前期纺锤体形成,导致染色体不分离,从而引起细胞内染色体数目加倍.⑥多倍体植株特征:茎杆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物质的含量都有所增加.⑦单倍体植株特征:植株长得弱小而且高度不育.单倍体植株获得方法:花药离休培养.单倍体育种的意义:明显缩短育种年限(只需二年).记忆点:

1.染色体组是细胞中的一组非同源染色体,它们在形态和功能上各不相同,但是携带者控制一种生物生长发育、遗传和变异的全部信息,这样的一组染色体叫染色体组.2.可遗传变异是遗传物质发生了改变,包括基因突变、基因重组和染色体变异.基因突变最大的特点是产生新的基因.它是染色体的某个位点上的基因的改变.基因突变既普遍存在,又是随机发生的,且突变率低,大多对生物体有害,突变不定向.基因突变是生物变异的根本来源,为生物进化提供了最初的原材料.基因重组是生物体原有基因的重新组合,并没产生新基因,只是通过杂交等使本不在同一个体中的基因重组合进入一个个体.通过有性生殖过程实现的基因重组,为生物变异提供了极其丰富的来源.这是形成生物多样性的重要原因之一,对于生物进化具有十分重要的意义.上述二种变异用显微镜是看不到的,而染色体变异就是染色体的结构和数目发生改变,显微镜可以明显看到.这是与前二者的最重要差别.其变化涉及到染色体的改变.如结构改变,个别数目及整倍改变,其中整倍改变在实际生活中具有重要意义,从而引伸出一系列概念和类型,如:染色体组、二倍体、多倍体、单倍体及多倍体育种等.六、人类遗传病与优生

(1)优生的措施:禁止近亲结婚、进行遗传咨询、提倡适龄生育、产前诊断.(2)禁止近亲结婚的原因:近亲结婚的夫妇从共同祖先那里继承同一种致病基因的机会大大增加,所生子女患隐性遗传病的概率大大增加.记忆点:

1.多指、并指、软骨发育不全是单基因的常染色体显性遗传病;抗维生素D佝偻病是单基因的X染色体显性遗传病;白化病、苯丙酮尿症、先天性聋哑是单基因的常染色体隐性遗传病;进行性肌营养不良、红绿色盲、血友病是单基因的X染色体隐性遗传病;唇裂、无脑儿、原发性高血压、青少年型糖尿病等属于对基因遗传病;另外染色体遗传病中常染色体病有21三体综合症、猫叫综合症等;性染色体病有性腺发育不良等.七、细胞质遗传

①细胞质遗传的特点:母系遗传(原因:受精卵中的细胞质几乎全部来自母细胞);后代没有一定的分离比(原因:生殖细胞在减数分裂时,细胞质中的遗传物质随机地、不均等地分配到子细胞中去).②细胞质遗传的物质基础:在细胞质内存在着DNA分子,这些DNA分子主要位于线粒体和叶绿体中,可以控制一些性状.记忆点:

1.卵细胞中含有大量的细胞质,而精子中只含有极少量的细胞质,这就是说受精卵中的细胞质几乎全部来自卵细胞,这样,受细胞质内遗传物质控制的性状实际上是由卵细胞传给子代,因此子代总表现出母本的性状.2.细胞质遗传的主要特点是:母系遗传;后代不出现一定的分离比.细胞质遗传特点形成的原因:受精卵中的细胞质几乎全部来自卵细胞;减数分裂时,细胞质中的遗传物质随机地、不均等地分配到卵细胞中.细胞质遗传的物质基础是:叶绿体、线粒体等细胞质结构中的DNA.3.细胞核遗传和细胞质遗传各自都有相对的独立性.这是因为,尽管在细胞质中找不到染色体一样的结构,但质基因和核基因一样,可以自我复制,可以通过转录和翻译控制蛋白质的合成,也就是说,都具有稳定性、连续性、变异性和独立性.但细胞核遗传和细胞质遗传又相互影响,很多情况是核质互作的结果.八、基因工程简介

(1)基因工程的概念

标准概念:在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组细胞在受体细胞内表达,产生出人类所需要的基因产物.通俗概念:按照人们的意愿,把一种生物的个别基因复制出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状.(2)基因操作的工具

A.基因的剪刀——限制性内切酶(简称限制酶).①分布:主要在微生物中.②作用特点:特异性,即识别特定核苷酸序列,切割特定切点.③结果:产生黏性未端(碱基互补配对).B.基因的针线——DNA连接酶.①连接的部位:磷酸二酯键,不是氢键.②结果:两个相同的黏性未端的连接.C.基困的运输工具——运载体

①作用:将外源基因送入受体细胞.②具备的条件:a、能在宿主细胞内复制并稳定地保存.b、具有多个限制酶切点.c、有某些标记基因.③种类:质粒、噬菌体和动植物病毒.④质粒的特点:质粒是基因工程中最常用的运载体.(3)基因操作的基本步骤

A.提取目的基因

目的基因概念:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等.提取途径:

B.目的基因与运载体结合

用同一种限制酶分别切割目的基因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒)

C.将目的基因导入受体细胞

常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞

D.目的基因检测与表达

检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒.表达:受体细胞表现出特定性状,说明目的基因完成了表达过程.如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等.(4)基因工程的成果和发展前景 A.基因工程与医药卫生B.基因工程与农牧业、食品工业

C.基因工程与环境保护

记忆点:

1.作为运载体必须具备的特点是:能够在宿主细胞中复制并稳定地保存;具有多个限制酶切点,以便与外源基因连接;具有某些标记基因,便于进行筛选.质粒是基因工程最常用的运载体,它存在于许多细菌以及酵母菌等生物中,是能够自主复制的很小的环状DNA分子.2.基因工程的一般步骤包括:①提取目的基因②目的基因与运载体结合③将目的基因导入受体细胞④目的基因的检测和表达.3.重组DNA分子进入受体细胞后,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达过程.4.区别和理解常用的运载体和常用的受体细胞,目前常用的运载体有:质粒、噬菌体、动植物病毒等,目前常用的受体细胞有大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌和动植物细胞等.5.基因诊断是用放射性同位素、荧光分子等标记的DNA分子做探针,利用DNA分子杂交原理,鉴定被检测标本的遗传信息,达到检测疾病的目的.6.基因治疗是把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的.九、生物的进化

(1)自然选择学说内容是:过度繁殖、生存斗争、遗传变异、适者生存.(2)物种:指分布在一定的自然区域,具有一定的形态结构和生理功能,而且在自然状态下能够相互交配和繁殖,并能产生出可育后代的一群个体.种群:是指生活在同一地点的同种生物的一群个体.种群的基因库:一个种群的全部个体所含有的全部基因.(3)现代生物进化理论的基本观点:种群是生物进化的基本单位,生物进化的实质在于种群基因频率的改变.突变和基因重组、自然选择及隔离是物种形成过程的三个基本环节,通过它们的综合作用,种群产生分化,最终导致新物种的形成.(4)突变和基因重组产生生物进化的原材料,自然选择使种群的基因频率定向改变并决定生物进化的方向,隔离是新物种形成的必要条件(生殖隔离的形成标志着新物种的形成).现代生物进化理论的基础:自然选择学说.记忆点:

上一篇:浅谈如何增强班级凝聚力下一篇:综合管理部工作职责