应力混凝土箱梁裂缝成因分析及处治

2024-07-27

应力混凝土箱梁裂缝成因分析及处治(精选8篇)

应力混凝土箱梁裂缝成因分析及处治 第1篇

应力混凝土箱梁裂缝成因分析及处治

发布日期:2007-6-1 点击次数: 13444 预应力混凝土箱梁裂缝成因分析及处治

在陕西榆靖高速公路桥梁施工中,20米预应力混凝土箱梁在预制过程中,在跨中中横隔板左右出现不同程度的裂缝。经施工单位、监理、业主、设计单位和有关专家现场分析处理,得到了很好的控制,取得了满意的结果。

裂缝情况及分析

裂逢是混凝土结构普遍会遇到的现象,一类是由外荷载引起的裂缝,也称结构性裂缝或受力裂缝,表示结构承载力可能不足或存在严重问题,在结构设计时对设计荷载进行全面考虑可以防止;另一类裂缝是由变形引起的,也称非结构性裂缝,指变形得不到满足,在构件内部产生自应力,当该自应力超过混凝土允许应力时,引起混凝土开裂。在两类裂缝中,变形裂缝约占80%。引起该类裂缝的原因主要有:

(1)混凝土浇注后处于塑性阶段,由于混凝土骨料沉落及混凝土表面水分蒸发而产生裂缝。

(2)混凝土凝固过程中因收缩而产生裂缝。

(3)由于温度变化产生的裂缝,结构随着温度变化产生热胀冷缩变形,这种温度变化受到约束时,在混凝土内部产生应力,当此应力超过混凝土抗裂强度,混凝土便开裂,即产生温度裂缝。

(4)施工不当产生裂缝。

从裂缝情况看,裂缝分布部位、裂缝方向、出现时间具有一定的规律性。裂缝都分布在跨中中横板处,只有腹板开裂,且两面对称,时间一般为拆模后两天左右。因为我们施工方案合理,施工工艺符合质量控制要求,混凝土配合比、坍落度满足质量要求,但因现场的施工温度高达25℃左右,所以裂缝的主要原因是因温度应力引起的。

温度应力包括内约束应力和外约束应力。内约束应力是指结构内部某一构件单元,在非线性温差作用下纤维间温度不同,引起的应变不同而受到约束引起的应力;外约束应力是指结构内部各构件因温度不同产生变形受到约束或结构外部超静定约束,无法实现自由变形引起的应力。

防止裂缝产生及外治措施

1、由混凝土质量引起的非结构裂缝,可以通过以下措施防止:控制及改善水灰比,减少砂率,增加骨料用量,严格控制坍落度,混凝土凝固时间不宜过短,下料不宜过快,高温季节注意采取缓凝措施,避免水份剧烈蒸发,混凝土振捣密实;改善现场混凝土的施工工艺,同时注意混凝土的施工防雨、养护及保温工作;结构内部布置防裂钢筋,以提高混凝土的抗裂性能;一旦裂缝出现,可以用环氧树脂配固化剂、丙酮以1∶0.5∶ 0.25的比例配合进行修补,将裂缝周围5厘米内的混凝土用钢刷刷毛吹净,用酒精清洗后,再用丙酮擦洗一次,再涂环氧树脂,贴玻璃布,之后再涂一层环氧树脂。玻璃布要求经5%浓度的纯碱水煮沸脱脂,用清水冲洗干净并烘干。这种封闭处理,能保证日后运营过程中梁体内钢筋不受大气腐蚀,提高结构的使用寿命。

2、由温度应力引起的非结构裂缝,鉴于现行《公路钢筋混凝土及预应力混凝土桥涵设计规范》对温度荷载引起的横向温度应力考虑偏小,设计时应予以重视,可以通过配置足够的温度应力钢筋、增加结构的安全储备等措施来防止裂缝的产生(施工过程中我们变更了设计,在腹板加了一倍的纵向钢筋);同时在施工时,应尽量选择温度低的时间浇注混凝土(利用早、晚进行施工)。热天浇注混凝土时,应降低水温拌制,选用水化热小和收缩小的水泥灰比,合理使用减水剂,加强振捣以减少水化热,提高混凝土的密实性和抗拉强度,并注意混凝土湿润,同时可以在腹板留通气拆模,达到张拉强度时及时张拉压浆。

3、我们在施工中对20米预应力混凝土箱梁裂缝的控制方案和已出现裂缝的处理办法是:

——裂缝的控制方案:

A:在腹板处两面对称增加通长纵向应力钢筋,根数为原设计的一倍。

B:控制好混凝土的浇注时间和浇注时的温度,安排在早、晚或温度低的时候进行混凝土浇注。

C:及时养护,并用塑料布进行覆盖,经常保持混凝土湿润。

D:在腹板处每隔5米留一个通气孔,可以保证混凝土箱梁在拆模后通风散热,保持体内外温度基本一致。

E:及时拆模、及时张拉。当混凝土达到拆模强度时就及时拆模;当混凝土强 度达到设计张拉强度时就及时张拉压桨。

——裂缝的处治措施:

用环氧树脂配固化剂、丙酮以1∶0.5∶0.25的配合比进行修补。将裂缝周围5 厘米内的混凝土用钢刷刷干净,用酒精清洗后,再用丙酮擦洗一次,再涂环氧树脂,贴玻璃布,之后再涂一层环氧树脂。玻璃布要求经5%浓度的纯碱水煮沸脱脂,用清水冲洗干净并烘干。这种封闭处理,能保证日后运营过程中梁体内的钢筋不受大气腐蚀,提高结构的使用寿命。

通过以上的控制方案和防处治措施,在以后的箱梁预制过程中再没有出现裂缝,并通过对裂缝的处治也不影响梁体的正常使用。

结论 预应力混凝土箱形结构产生裂缝很常见,但可避免或减少,关键是在设计时,认真验算,合理布置构造钢筋或预应力筋,对易出现裂缝的部位,通过施工过程的严格控制,尽可能地避免开裂或减少裂缝的数量,减少裂缝的长度和宽度,通过对裂缝的妥善处理,控制裂缝的发展,使裂缝不至于对结构产生危害,保证结构的正常使用。因此,对于裂缝的问题,设计者和施工人员都应予以重视。

应力混凝土箱梁裂缝成因分析及处治 第2篇

[ 提要 ] 本文根据在预制20米预应力混凝土箱梁过程中发现的问题,从混凝土物理、化学及力学等角度分析,并通过施工工艺的严格控制,总结查找使预应力箱梁产生裂纹、裂缝的原因,并在实际施工中得到了很好的运用,因裂纹、裂缝影响混凝土箱梁质量外观的问题得到了很好的解决。

[关键词] 预应力箱梁 物理 化学 力学 分析 裂缝 施工工艺

一.引言

在预制20米预应力混凝土箱梁的过程中,发现预应力箱梁顶板上经常出现裂纹,端隔板、跨中中横隔板左右也有不同程度的裂缝,对箱梁外观质量产生了一定的负面影响。

为了争创优质工程,避免在以后的工程施工过程中出现危害较大的裂缝,我项目专门成立了预应力箱梁技术难题攻克小组,尽可能对混凝土箱梁裂缝的种类和产生的原因作较全面的分析、总结,以便从施工找出控制混凝土裂缝的可行办法,达到防患于未然的作用。

二、裂缝成因分析与处治

混凝土在施工过程中出现裂纹、裂缝,从根本上可分为以下几种类型:

(1)荷载裂缝:

混凝土在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,可分为直接应力裂缝、次应力裂缝两种。

a、直接应力裂缝是指外荷载引起的直接应力产生的裂缝。裂缝

产生的原因有:

○1设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不足;构造处理不当;设计图纸交代不清等。

○2 施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。

○3 使用阶段,超出设计载荷的重型车辆过桥;受车辆、船舶的接触、撞击;发生大风、大雪、地震、爆炸等。

分析:箱梁裂缝的产生是不是在使用阶段产生的,但受施工人员素质,责任心,及实际操作过程不规范等因素影响,不排除因次应力产生裂缝。

采取措施:进一步规范施工程序,严格按照施工流程进行施工,杜绝不规范施工操作,控制钢筋安装尺寸误差,对施工人员进行责任,安全,素质教育。

b、次应力裂缝是指由外荷载引起的次生应力产生裂缝。裂缝产生的原因有:

○1在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。例

如两铰拱桥拱脚设计时常采用布置“X”形钢筋、同时削减该处断面尺寸的办法设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝而导致钢筋锈蚀。

○2桥梁结构中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。在长跨预应力连续梁中,经常在跨内根据截面内力需要截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。

分析:箱梁裂缝的产生是不是在使用阶段产生的,施工过程中,没有在箱梁上施加荷载,且设计采用的是较成熟的理论,故排除了次应力产生的裂缝。

(2)温度变化引起的裂缝

混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。温度裂缝区别其它裂缝最主要特征是将随温度变化而扩张或合拢。引起温度变化主要因素有:

○1年温差。一年中四季温度不断变化,但变化相对缓慢,对桥梁结构的影响主要是导致桥梁构件的纵向位移,一般可通过伸缩缝、支座位移或设置柔性墩等构造措施相协调,只有结构的位移受到限制时

才会引起温度裂缝。我国年温差一般以一月和七月月平均温度的作为变化幅度。

分析:因预应力箱梁的裂缝是在短期内,产生的局部小裂缝,故予以排除

○2日照。有一定面积的混凝土构件受太阳曝晒后,温度明显高于其它部位,温度梯度呈非线形分布。由于受到自身约束作用,导致局部拉应力较大,出现裂缝。日照和下述骤然降温是导致结构温度裂缝的最常见原因。

分析:这里昼夜气温变化相对较大,受天气及气温影响,中午温度上升,故不排除使之产生裂缝的原因。

采取措施:混凝土施工后严格按规范进行覆盖洒水养护,中午加覆盖物,并增加洒水养护次数,以保持混凝土湿润为准。

○3另外骤然降温、水化热、蒸汽养护或冬季施工时施工措施不当。也易使混凝土构件产生裂缝。

分析:施工过程中,没有骤然降温的情况发生,且混凝土最大厚度为25cm,不属于大体积混凝土构件,没进入冬季施工,排除其可能性。

(3)收缩引起的裂缝

在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因。

○1塑性收缩。

发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。塑性收缩所产生量级很大,可达1%左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。

分析及采取措施:为减小混凝土塑性收缩,施工时控制水灰比,避免过长时间的搅拌,下料控制速度,不宜太快,振捣密实,竖向变截面处宜分层浇筑。

○2缩水收缩(干缩)。

混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是缩水收缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。

混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。

研究表明,影响混凝土收缩裂缝的主要因素有:

a、水泥品种、标号及用量。矿渣水泥、快硬水泥、低热水泥混

凝土收缩性较高,普通水泥、火山灰水泥、矾土水泥混凝土收缩性较低。另外水泥标号越低、单位体积用量越大、磨细度越大,则混凝土收缩越大,且发生收缩时间越长。例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。

b、骨料品种。骨料中石英、石灰岩、白云岩、花岗岩、长石等吸水率较小、收缩性较低;而砂岩、板岩、角闪岩等吸水率较大、收缩性较高。另外骨料粒径大收缩小,含水量大收缩越大。

c、水灰比。用水量越大,水灰比越高,混凝土收缩越大。d、外掺剂。外掺剂保水性越好,则混凝土收缩越小。e、养护方法。良好的养护可加速混凝土的水化反应,获得较高的混凝土强度。养护时保持湿度越高、气温越低、养护时间越长,则混凝土收缩越小。蒸汽养护方式比自然养护方式混凝土收缩要小。

f、外界环境。大气中湿度小、空气干燥、温度高、风速大,则混凝土水分蒸发快,混凝土收缩越快。

g、振捣方式及时间。机械振捣方式比手工捣固方式混凝土收缩性要小。振捣时间应根据机械性能决定,一般以5~15s/次为宜。时间太短,振捣不密实,形成混凝土强度不足或不均匀;时间太长,造成分层,粗骨料沉入底层,细骨料留在上层,强度不均匀,上层易发生收缩裂缝。

h、对于温度和收缩引起的裂缝,增配构造钢筋可明显提高混凝土的抗裂性。

根据以上研究及理论进行分析:本箱梁预制采用的水泥、骨料等

均符合设计及规范要求,故排除材料引起的裂纹的影响。

采取措施:施工过程混凝土严格按配合比搅拌,根据机械性能控制振捣时间,防止出现因振捣时间短,振捣不密实,混凝土强度不足或不均匀的现象,防止出现因振捣时间太长,造成分层,粗骨料沉入底层,细骨料留在上层,强度不均匀,上层易发生收缩裂缝的现象。

(4)钢筋锈蚀引起的裂缝

由于混凝土质量较差或保护层厚度不足,混凝土保护层受二氧化碳侵蚀炭化至钢筋表面,使钢筋周围混凝土碱度降低,或由于氯化物介入,钢筋周围氯离子含量较高,均可引起钢筋表面氧化膜破坏,钢筋中铁离子与侵入到混凝土中的氧气和水分发生锈蚀反应,其锈蚀物氢氧化铁体积比原来增长约2~4倍,从而对周围混凝土产生膨胀应力,导致保护层混凝土开裂、剥离,沿钢筋纵向产生裂缝,并有锈迹渗到混凝土表面。由于锈蚀,使得钢筋有效断面面积减小,钢筋与混凝土握裹力削弱,结构承载力下降,并将诱发其它形式的裂缝,加剧钢筋锈蚀,导致结构破坏。

分析研究:根据箱梁顶板出现的裂缝情况,箱梁顶板有的裂缝和顶板钢筋走向一致,故,顶板裂缝的产生可能与顶板钢筋有很大的关系。

采取措施:防止钢筋锈蚀,对于锈蚀的钢筋要严格按照规范要求除去,采用足够的保护层厚度;施工时应控制混凝土的水灰比,加强振捣,保证混凝土的密实性,防止氧气侵入。保护层亦不能太厚,否则构件有效高度减小,受力时将加大裂缝宽度。

三、施工工艺的对产生裂缝的影响

施工工艺质量是引起裂缝的一个重要原因。其成因主要包括以下几个方面:

(1)混凝土保护层过厚,或乱踩已绑扎的上层钢筋,使承受负弯矩的受力筋保护层加厚,导致构件的有效高度减小,形成与受力钢筋垂直方向的裂缝。

(2)混凝土振捣不密实、不均匀,出现蜂窝、麻面、空洞,导致钢筋锈蚀或其它荷载裂缝的起源点。

(3)混凝土浇筑过快,混凝土流动性较低,在硬化前因混凝土沉实不足,硬化后沉实过大,容易在浇筑数小时后发生裂缝,既塑性收缩裂缝。

(4)混凝土搅拌、运输时间过长,使水分蒸发过多,引起混凝土塌落度过低,使得在混凝土体积上出现不规则的收缩裂缝。

(5)混凝土初期养护时急剧干燥,使得混凝土与大气接触的表面上出现不规则的收缩裂缝。

(6)增加水和水泥用量,或因其它原因加大了水灰比,导致混凝土凝结硬化时收缩量增加,使得混凝土体积上出现不规则裂缝。

(7)混凝土分层或分段浇筑时,接头部位处理不好,易在新旧混凝土和施工缝之间出现裂缝。如混凝土分层浇筑时,后浇混凝土因停电、下雨等原因未能在前浇混凝土初凝前浇筑,引起层面之间的水平裂缝;采用分段现浇时,先浇混凝土接触面凿毛、清洗不好,新旧混凝土之间粘结力小,或后浇混凝土养护不到位,导致混凝土收缩而引

起裂缝。

(8)混凝土早期受冻,使构件表面出现裂纹,或局部剥落,或脱模后出现空鼓现象。

(9)施工时模板刚度不足,在浇筑混凝土时,由于侧向压力的作用使得模板变形,产生与模板变形一致的裂缝。

(10)施工时拆模过早,混凝土强度不足,使得构件在自重或施工荷载作用下产生裂缝。

(11)施工前对支架压实不足或支架刚度不足,浇筑混凝土后支架不均匀下沉,导致混凝土出现裂缝。

(12)装配式结构,在构件运输、堆放时,支承垫木不在一条垂直线上,或悬臂过长,或运输过程中剧烈颠撞;吊装时吊点位置不当,侧向刚度较小的构件,侧向无可靠的加固措施等,均可能产生裂缝。

(13)钢筋加工与安装顺序不正确,对产生的后果认识不足。(14)施工质量控制差。任意套用混凝土配合比,水、砂石、水泥材料计量不准,结果造成混凝土强度不足和其他性能(和易性、密实度)下降,导致结构开裂。

3、综合以上各种原因,我预应力箱梁技术小组逐一排查,发现在施工过程中还存在以下问题:(1)(2)混凝土配合比,水、砂石、水泥材料计量不准。混凝土坍落度控制不准确,有时根据施工经验判断混凝土坍落度不准确。(3)

搅拌混凝土过程中,有时混凝土坍落度过大时,加入水泥

浆重新搅拌,增大了水泥用量,导致混凝土凝结硬化时收缩量增加。(4)发现端隔板出现裂缝处钢筋布局不太合理。

结语

在混凝土施工过程中,混凝土的裂缝是工程施工中常见的问题,关键是在于设计时的合理以及施工过程的严格控制,尽可能地避免开裂或减少裂缝的数量,减少裂缝的长度和宽度,通过对裂缝的妥善处理,控制裂缝的发展,使裂缝不至于对结构产生危害,保证结构的正常使用。预应力混凝土箱形结构产生裂缝裂纹很常见,但由于梁是桥梁结构中一个较重要的构件,因其特殊的受力结构及重要性,施工中要尽量避免或减少,以保障桥梁的正常运营。

应力混凝土箱梁裂缝成因分析及处治 第3篇

1 裂缝类型

(1) 梁顶面表层不规则裂缝或裂纹:梁顶面存在干燥时肉眼不可见, 浇水或下雨湿润时可见的不规则龟裂裂纹;深度未透过外层钢筋仅在钢筋保护层内, 且宽度较小仅肉眼可见的裂缝。

(2) 梁顶面横向贯通或深层裂缝:梁顶面横向贯通或长度达到梁横断面一半以上的裂缝, 深度已透过上层主筋甚至顶板深度范围内沿裂缝长度方向部分或全部贯通。

(3) 腹板或底板沿梁长度方向的纵向裂缝。

(4) 梁端腹板竖向裂缝。

(5) 梁端锚具处、梁底支座处不规则裂缝。

2 裂缝产生原因分析

由于施工管理不善, 混凝土配合比不合理、地基基础、支架、模板安拆、混凝土拌和、浇注、养生、张拉、注浆等施工工艺不合理或具体施工操作不规范, 都不同程度地造成预应力现浇混凝土箱梁梁体出现受力或非受力裂缝。

2.1 地基基础

地基基础承载力不足, 未按要求进行处理, 加载后不均匀沉降, 致使已浇筑混凝土梁体产生受力裂缝;越冬或春融期架设的支架, 由于混凝土等基础未设置在冻层以下或未采取保温防冻措施, 致使在此期间施工或已成型未拆支架的箱梁受冻融影响产生受力裂缝。

2.2 支架、模板

支架、模板设计方案未经过验算或计算错误、现场施工方案与经批准的设计方案严重不符, 承载能力远低于设计方案, 混凝土一经浇注加载, 极易造成箱梁裂缝出现甚至发生坍塌安全事故;支架、模板安装完成后未按要求进行预压处理, 未能消除杆件、接头等非弹性变形, 致使浇注混凝土后, 由于杆件等不均匀变形使梁体产生裂缝;模板刚度差或支立不牢固易造成跑模或胀模, 个别时伴随着裂缝产生;混凝土强度不足拆模、拆支架过早、拆支架顺序不合理或违规大力别撬造成梁体产生裂缝, 通常在拆除内模时容易造成顶板局部或张拉锚头混凝土开裂。

一般地基基础和支架等因素造成的梁体裂缝大多与梁轴线接近垂直方向, 存在于顶板、腹板、底板等部位, 多属于受力裂缝, 影响使用或结构安全。

2.3 混凝土配合比、拌和

混凝土配合比设计存在失误, 粗集料粒径过大或原材料进场控制不严造成粒径超标, 同时由于纵向波纹管与腹板侧壁两侧钢筋间距偏小, 导致形成卡料式沿波纹管方向的非连续裂缝;由于混凝土中水泥用量过大或局部混凝土拌和不均粗骨料偏少, 细集料或粉料过多, 混凝土成型后水化热过大造成混凝土表面出现收缩裂纹, 严重时形成透过表面构造钢筋的裂缝。

2.4 混凝土浇注

由于未考虑刚性墩与临时支架弹性压缩不一致性, 混凝土施工中未合理调整浇注顺序造成在墩柱、临时门架立柱或刚性支墩等两侧出现沿横断面方向的受力裂缝, 影响使用;在支座、锚垫板等处由于结构钢筋加密、振捣不精细形成离析式裂缝, 危及支座后期正常使用或钢绞线张拉安全。

2.5 混凝土养生

箱梁顶板混凝土浇注后收浆抹面不及时、覆盖养生未跟上, 在顶板混凝土表面形成不规则的非受力裂缝, 一般腹板、底板、箱体内混凝土表面很少出现这类裂缝;在较寒冷季节施工或混凝土采用加热养生措施, 箱体内、外温差过大或温度升降过快, 由于温度应力过大造成梁体出现受力裂缝。

2.6 张拉、注浆

由于抢工期等因素, 混凝土未到养生期、强度未达到设计要求时张拉, 另外张拉工艺不符合要求, 张拉力控制不准存在超设计要求张力情况, 这些都易造成沿波纹管或与梁轴线呈接近45°角方向出现受力裂缝;注浆料配合比设计不合理, 水灰比大、泌水率大, 未采用真空注浆设备, 波纹管中注浆不饱满、自由水不能完全吸收, 北方因冬季冻胀影响造成沿波纹管方向出现受力裂缝。

3 裂缝防治措施

3.1 地基基础

地基基础必须进行承载力检测, 承载力不足, 应采取碾压、换填、水泥搅拌桩、水泥混凝土桩基等措施加固地基基础, 以达到施工方案设计要求的承载能力。支架和拱架搭设之前, 应按《钢管满堂支架预压技术规程》要求, 预压地基合格并形成记录。当支架搭设涉及越冬时, 地基处理深度要符合防冻要求;另外, 在支架周围应有良好的排水措施, 防止地基基础因水浸泡等影响承载力下降, 致使支架不均匀沉降。

3.2 支架、模板

(1) 支架、模板的强度、刚度、稳定性验算必须符合规定要求, 必须形成专项施工方案, 按程序履行报批手续后, 方可进行现场施工。

(2) 支架立柱必须落在有足够承载力的地基上, 立柱底端必须放置垫板或混凝土垫块。

(3) 支架应有简便可行的落架拆模措施;各种支架和模板安装后, 应按技术规程要求采取预压方法消除拼装间隙和地基沉降等非弹性变形, 预压合格并形成记录。

(4) 安装支架时, 应根据梁体和支架的弹性、非弹性变形设置预拱度。

(5) 支架、拱架安装完毕, 经检验合格后方可安装模板。

(6) 浇注混凝土和砌筑前, 应对模板、支架或拱架进行检查和验收, 合格后方可施工。

(7) 浇注混凝土时应设专人巡视防止模板顶杆、螺栓等松落造成的跑模、涨模等情况发生。

(8) 模板、支架和拱架拆除应符合下列规定:

(1) 非承重侧模应在混凝土强度能保证结构棱角不损坏时方可拆除, 混凝土强度宜为2.5MPa及以上。

(2) 芯模和预留孔道内模应在混凝土抗压强度能保证结构表面不发生塌陷和裂缝时方可拔出。

(3) 钢筋混凝土结构的承重模板、支架, 应在混凝土强度能承受其自重荷载及其他可能的叠加荷载时方可拆除。

(4) 模板、支架和拱架拆除应遵循先支后拆、后支先拆的原则。支架和拱架应按几个循环卸落, 卸落量宜由小渐大。每一循环中, 在横向应同时卸落、在纵向应对称均衡卸落。简支梁、连续梁结构的模板应从跨中向支座方向依次循环卸落;悬臂梁结构的模板宜从悬臂端开始顺序卸落。

3.3 混凝土配合比、拌和

(1) 保证混凝土配合比设计质量, 控制水泥用量, 并建议采用4.75~9.5mm、9.5~19mm规格两档粗集料;拌和站材料进场时严格控制粗集料规格, 尤其9.5~19mm档粗集料严禁大料超标;钢筋绑扎、波纹管定位中严格按设计要求进行, 要求不缩尺、不偏位, 确保波纹管与相邻钢筋净距满足混凝土浇注施工中下料通过要求。

(2) 拌和设备定期校准保证计量准确, 严格按配合比设计拌和施工, 拌和时间足够, 保证混凝土拌和的均匀性, 浇注现场严格把关, 不符合质量要求的混凝土不得投入使用。

3.4 混凝土浇注

(1) 在施工专项方案中即明确混凝土现场浇注顺序和施工组织方案, 对于悬臂段应从悬臂端开始浇注混凝土至固定端, 对于简支梁或连续梁应该从墩柱、临时门架立柱或刚性支墩等最近的两相邻柱之间的跨中开始向两侧进行混凝土浇注, 由于分段浇注, 要考虑作业面作业人员增加及相互干扰的问题, 另外浇注设备、混凝土供应量需要较大增加, 相邻两个节段浇注合理安排施工节奏, 要确保在混凝土初凝前完成振捣成型等工作, 保证混凝土连接质量。

(2) 在箱梁混凝土配合比中应对支座、锚垫板等处进行专项配合比设计, 采用同级别混凝土, 但要减小粗集料最大粒径, 以保证支座、锚垫板等结构钢筋加密处混凝土的通过率, 防止混凝土离析和卡料现象出现;混凝土浇注过程中, 严格进行分层下料, 控制分层厚度, 振捣时采用直径较小振捣棒操作, 确保该处混凝土振捣密实。

3.5 混凝土养生

混凝土施工要选择避开大风、温度较高时段, 气温较低时, 按照《公路桥涵施工技术规范》要求采取覆盖、加热等措施保证混凝土养生温度。

施工现场必须提前准备养生设备、覆盖材料等, 箱梁顶板混凝土浇注后要及时收浆抹面, 建议采用二次收浆抹面工艺, 覆盖养生土工布等, 洒水快速跟进, 并定期补洒保证混凝土表面湿润, 确保在顶板混凝土表面不出现裂缝。

箱梁箱体内、外温差不得超过规范要求, 尤其采用加热养生措施时, 要保证加热设施适用、加热点布置合理、加热均匀、内外温差不超限, 升降温度速度控制有效不超过规范要求, 拆除模板或保温设施时要采取措施保证混凝土表面温度与环境温度差符合规范要求, 使混凝土缓慢冷却。

3.6 张拉、注浆

(1) 首先建设项目要保证合理的总工期, 严格控制各阶段施工进度, 避免为抢工期, 混凝土未到养生期、强度未达到设计要求时即张拉事件发生。

(2) 严格按照张拉工艺要求施工, 采用张拉力、伸长值双控控制张拉质量, 不允许存在超设计要求张力情况;张拉千斤顶与计量表配套使用, 配套校验, 依据相关规范的规定, 张拉满6个月或者张拉次数达到200次的千斤顶, 必须重新进行标定方能够继续投入使用。

(3) 注浆浆液符合《公路桥涵施工技术规范》要求, 采用专用压浆料或专用压浆剂配制的浆液, 在配合比设计中尤其注重流动度、泌水率等指标控制, 实际施工中严格按照配合比拌制浆液。

(4) 注浆施工必须要求真空辅助压浆工艺, 真空泵能到达0.10MPa的负压力, 保证注浆密实饱满;压浆过程中及压浆后48h内, 箱梁混凝土的温度及环境温度不得低于5℃, 必要时采取措施防止浆液受冻;压浆后应通过检查孔检查压浆的密实情况, 是否含有自由水, 如有自由水、不密实情况, 必须将自由水排除, 及时进行补压浆处理。

摘要:对预应力现浇混凝土箱梁裂缝产生原因进行分析, 提出相应的防治措施, 为提高该结构的施工质量提供参考。

应力混凝土箱梁裂缝成因分析及处治 第4篇

【关键词】预应力箱梁;非结构性;裂缝;处治

Analysis and Treatment of Non - structural Cracks in Prestressed Concrete Box Girder

Zheng Xiang-dong

(Xinxiang Municipal Highway Administration BureauXinxiangHenan453000)

【Abstract】In this paper, the causes of non - structural cracks and the treatment of prestressed concrete bridges are expounded.

【Key words】Prestressed box girder;Nonstructural;Crack

1. 前言

近年来,我国交通工程中桥梁规模、数量在不断地增加,有些桥梁在施工中却过早地发生损坏,对桥梁的耐久性造成一定的影响,本文结合工程实际研究混凝土桥梁病害发生的原因和处治措施,为今后桥梁的结构设计和施工提供有益借鉴对防止病害的发生、提高桥梁的使用寿命有着重要的意义。

2. 工程基本情况

2.1技术标准。

桥梁位于省干线公路,桥梁荷载等级为公路-Ⅱ级。桥宽净-8+2*05米护栏。

该桥采用3跨30m的预应力混凝土箱梁,桥梁斜度70°,全长95m,为中型桥。下部结构型式为桩柱式基础。上部结构为后张法预应力砼组合箱梁,预制箱梁共9片,全部为30m后张法预制箱梁,箱梁采用先简支后连续结构。

2.2材料及施工。

预应力混凝土箱梁C50级、钢绞线强度1860MPa,混凝土坍落度7-9cm,水泥孟电PO.52.5,骨料粒径5-20mm,掺减水剂、引气剂、预应力混凝土箱梁采用后张法施工,混凝土箱梁预制时间2011年3月-6月。桥梁2012年7月安装完工后经检查发现桥梁腹、底板普遍存在裂缝,并提请检测。

3. 检测过程及结论:

3.1检测方法。

按照《超声法检测混凝土缺陷技术规程》(CECS21:2000)要求,对委托方指定箱梁的裂缝深度使用非金属超声波检测仪进行检测,裂缝宽度用裂缝观测仪直接读取,裂缝所处位置用钢卷尺进行测量。

3.2检测依据。

《超声法检测混凝土缺陷技术规程》 (CECS21:2000)。

3.3检测仪器(见表1)。

序号仪器名称仪器型号仪器编号

1裂缝观测仪SW-LW-1014101205

2非金属声波检测仪NM-4A4101201

3几何测量卷尺温州50米4101116

3.4检测时间及检测环境。

2012年6月5日,天气晴朗,温度16℃,适合检测。

3.5检测结果。

(1)公路桥, 桥梁腹、底板普遍存在横向裂缝,中跨中梁右端存在滴水现象。

(2)预应力混凝土箱梁,桥梁腹板裂缝,裂缝宽度0.12~0.26mm,深度29~17.2cm,长度160~250cm;桥梁底板板裂缝,裂缝宽度0.04~0.26mm,深度19~180mm,长度160~340cm;

4. 初步分析及原因

裂缝是由变形引起的为非结构性裂缝,指变形得不到满足,在构件内部产生自应力,当该自应力超过混凝土允许应力时,引起混凝土开裂。引起该类裂缝的原因主要有:

4.1混凝土浇筑后处于塑性阶段,混凝土分层浇注过快,混凝土骨料沉落硬化前沉实不足,硬化前后沉实过大,下沉受钢筋阻挡,沿钢筋方向裂缝.

4.2混凝土凝固过程中因收缩而产生裂缝。

4.3由于温度变化产生的裂缝。结构随着温度的变化受到约束时,在混凝土内部产生应力,当此应力超过混凝土抗裂强度,混凝土便开裂,即产生温度裂缝。

4.4混凝土是一种脆性材料,抗拉强度较低,混凝土浇注后若没有采取有效的措施,降低混凝土内外部温差或采取养护措施不当,使混凝土产生温度收缩裂缝;养护不周,时干时湿,表面干缩变形也会导致裂缝的发生,因此施工中要最大限度的降低温差和减少收缩。

5. 处理方案

因裂缝宽度0.04~0.26mm,深度较深,采用丙烯酸酯类或低粘度环氧树脂浆液灌注。

5.1技术规范依据。

(1)中国交通部.(JTG H11-2004)公路桥涵养护技术规范。

(2)中国工程建设标准化协会.(CECS 25:90)混凝土结构加固技术规范。

(3)中国交通部(JTG/T J22-2008)公路桥梁加固设计规范。

5.2工艺要点。

5.2.1材料主要技术性能:

(1)极强的渗透力,黏度低,能注入0.1mm宽的微裂缝。

(2)不含挥发性溶剂,硬化时收缩小。

(3)结构灌缝粘接强度高,韧性及抗冲击性好。

(4)独特的高性能聚合物增韧改性技术,耐冲击、抗疲劳,特别适合于桥梁、码头等动荷载加固。

(5)抗老化性及耐介质(酸、碱及水等)性好。

(6)固化温度范围广,环境温度-5℃以上可很好固化。

(7)配胶比例较宽,便于现场操作。

(8)可操作时间长,使用方便。

5.2.2适用条件。

(1)广泛应用于混凝土桥梁、房屋、水利、路面等工程中裂缝注胶修补,混凝土非活动细小裂缝(缝宽0.1~2mm)补强注胶修补。

(2)混凝土内部蜂窝、疏松等缺陷的补强注胶修补。

(3)施工环境干燥、通风,粘贴面洁净、干燥、无油污。

(4)固化环境温度不低于-15℃。

(5)技术性能要求:

丙烯酸酯裂缝修补胶技术性能符合国家标准《混凝土结构加固设计规范》(GB 50367-2006)和交通部行业标准《公路桥梁加固设计规范》(JTG/T J22-2008)要求。

5.2.3使用方法与施工要点。

5.2.3.1裂缝调查。

全面查清裂缝的性质(裂缝的长度、宽度、深度、走向、贯穿及漏水情况),以便确定处理方案。

5.2.3.2裂缝处理。

(1)对较小的混凝土构件裂缝,用钢丝刷等工具清除混凝土裂缝表面的灰尘、浮渣及松散层等污物,刷去浮灰;用酒精或丙酮沿着裂缝两侧2~3cm范围擦拭干净。

(2)对稍大的混凝土构件中较深的裂缝,为达到有效封缝,可沿裂缝凿“V”形槽。

(3)对体积较大的混凝土构件或较深的裂缝,可沿裂缝采取钻孔灌浆,以使浆液进入裂缝有更广的通路。

5.2.3.3设置灌浆嘴。

(1)在裂缝的交错处、裂缝较宽处及裂缝端部等位置必须设置灌浆嘴。灌浆嘴的间距可根据裂缝大小、走向及结构形式而定,一般灌浆嘴间距为30~50cm。在一条裂缝上必须设置有进浆口、排气口或出浆口。灌浆嘴可先采用裂缝封闭胶粘贴在预定位置,也可在封缝时一同粘贴。

(2)应特别注意防止堵塞灌浆嘴。

5.2.3.4封缝。

封缝质量的好坏直接影响灌浆效果与质量,应特别予以重视。裂缝的封闭可使用裂缝封闭胶,按推荐配胶比例称取并调配出裂缝封闭胶,用油灰刀沿裂缝往复涂刮后均匀涂抹一层厚约1~2mm、宽不小于30mm的胶泥,注意防止小气泡或密封不严。

5.2.3.5封缝检验。

一般情况下,采用裂缝封闭胶封缝12小时后即可进行试漏检验,以检查裂缝的密封效果及贯通情况,以确保注胶效果。

5.2.3.6配制灌浆胶液。

(1)根据估计的灌胶量,按推荐配胶比例准确称量胶液、专用稀释剂、专用固化剂和专用促进剂待用;

先将固化剂投入装有稀释剂的容器内,搅拌均匀使其充分溶解其中;

(2)再将溶解好的稀释剂与固化剂的混合液倒入胶液中,充分搅拌;

(3)最后将促进剂滴加到混合胶液中,边滴加边搅拌,使其充分混合均匀;

(4)从滴加促进剂并混合搅拌开始,注胶的操作应在胶液适用期内完成(25℃时约为90分钟)。

5.2.3.7灌浆。

(1)注胶操作应使用专用的注胶器具。

(2)注胶前,应用压缩空气将孔缝吹净,达到无水干燥状态。

根据裂缝区域大小,可采用单孔灌浆或分区群孔灌浆。在一条裂缝上的灌浆可由浅到深,由下而上,由一端到另一端。灌浆压力常采用0.2MPa,在保证灌浆顺畅的情况下,应采用较低的灌浆压力和一定的稳压灌浆时间,可获得更好的灌浆效果。当最后一个出浆口出胶且出胶速率保持稳定后,再保持压注10分钟左右即可停止灌浆。

拆除管路,注意防止流胶。

5.2.3.8胶液固化。

丙烯酸酯裂缝修补胶可在-15℃以上的环境中固化,固化时间视环境温度而定。一般情况(25℃)下固化12小时即可。

5.2.3.9灌浆效果检验。

灌浆结束后应检验灌浆效果及质量,凡有不密实等不合格情况,应进行补注。

5.2.3.10混凝土修补与色差处理:

混凝土修补后的效果,尽量保持混凝土原貌,混凝土表面无明显修补痕迹。

5.2.3.11处理效果检查。

主要通过目检、锤击、拉拔检测进行表面检查;内部通过打检查孔取芯、压水、无损检测等手段进行检查,达到质量标准后方可验收。

5.2.4使用过程中的注意事项:

(1)施工中必须保持工作面干燥,潮湿的施工面不可使用。

(2)使用过程中应避免固化剂与促进剂直接接触。

(3)取胶和取料的器具应分开,不能混用。包装开封后注意密封。

(4)搅拌应充分、均匀,否则将影响材料性能。

(5)本产品施工人员应采取必要的安全防护措施(如配戴口罩、手套、护目镜、安全帽等。

6. 结论

混凝土桥梁的病害处理措施应是针对结构裂缝或毛细孔道的处理,聚合物修补是一种既具有高分子材料的粘接性,又具有无机材料耐久性的新型混凝土修补材料;抗压强度高,固化迅速,粘接性能好; 有很好的保水性能和抗裂性、高耐碱性、耐紫外线;操作简便,,健康环保。使施工步骤变得简单、方便、缩短了工期,提高原结构的密实度和防水抗渗性能。

参考文献

[1]中国交通部.(JTG H11-2004)公路桥涵养护技术规范.

[2]中国工程建设标准化协会.CECS 25:90)混凝土结构加固技术规范.

[3]中国交通部(JTG/T J22-2008)公路桥梁加固设计规范.

探析预应力混凝土箱梁裂缝成因 第5篇

更新时间 2010-2-7 10:45:32 打印此文 点击数

摘要:随着混凝土箱梁结构在桥梁设计中的不断推广和应用,该桥型在施工和使用过程中已出现了许多裂缝,本文通过阅读大量的文献和资料,总结了混凝土箱梁裂缝产生的原因。

关键词:预应力;混凝土箱梁;裂缝

1使用混凝土箱梁的优点

在已建成的大跨度预应力混凝土梁桥中,当跨度超过40m后,横截面大多采用箱形截面。其主要优点是:

①箱形截面是一种闭口薄壁截面,其抗扭刚度大,截面效率指标较T形截面高,结构在施工和使用过程中都具有良好的稳定性。②顶板和底板面积较大,能有效地承担正负弯矩,并能满足配筋的需要,适应具有正负弯矩的结构,也更适应于主要承受负弯矩的悬臂梁、T形刚构等桥型。③适应现代化施工方法的要求。④承重结构和传力结构相结合,使各部件共同受力,截面效率高并适合预应力混凝土结构的空间布束,因此具有较好的经济性。⑤对于宽桥,由于抗扭刚度大,内力分布比较均匀,跨中无需设置横隔板就能获得满意的荷载横向分布。⑥适合于修建曲线桥,并具有较大的适应性。⑦能很好适应布置管线等设施。在设计上,箱形截面可极大地发挥预应力地效用。可提供很大地混凝土面积用于预应力束地通过,更关键地是可提供较大地截面高度,使预应力束有较大的力臂。因此,桥梁设计师可发挥箱梁和预应力地特点,顶底板纵向钢束采用平弯和竖弯相结合的空间曲线,集中锚固在腹板顶部的承托中(或锚固在腹板中),底板钢束尽可能靠近腹板加厚板(齿板)并在其上锚固。2预应力连续箱梁裂缝的产因

预应力连续箱梁的裂缝类型主要有:边跨斜裂缝,边跨水平裂缝,中跨斜裂缝,中跨水平裂缝,边跨的水平裂缝、斜裂缝同时发生,中跨的水平裂缝、斜裂缝同时发生,底板、顶板纵向裂缝,底板、顶板横向裂缝、箱梁横隔板的放射性裂缝,预应力锚固部位齿板附近裂缝。

预应力混凝土连续箱梁裂缝从成因角度可分为:由荷载效应(如弯矩、剪力、扭矩及拉力等)引起的裂缝、由外加变形或约束引起的裂缝,主要包括“基岩效应”、地基不均匀沉降、混凝土收缩、外界温度的变化等、钢筋锈蚀裂缝、预加力次效应引起的裂缝、建材原因引起的裂缝。

根据裂缝产生部位的不同我们可将其分为:翼缘板横向裂缝和腹板斜裂缝两种。①翼缘板横向裂缝一般发生在箱梁受纵向弯矩较大处的受拉翼缘板处,横向裂缝一般均发生在跨中底板翼缘。对于连续箱梁,横向裂缝还发生在支座负弯矩处的顶板翼缘,并且大部分出现在距支点1/3跨径范围以内,越靠近支点裂缝越严重,对于该类型裂缝,主要有以下原因引起,首先,设计时翼缘板有效分布宽度考虑不足,薄壁箱梁翼缘板有效分布宽度问题实际上就是剪力滞问题,由于理论计算剪力滞效应较为繁琐,不适于工程应用,各国普遍采用有效分布宽度的概念。由于剪力滞效应的考虑不足或计算值安全储备较低,在一些特殊荷载工况下容易发生应力过度集中,腹板处翼缘应力波峰超过允许值,因而首先在该处发生横向裂缝。在多年反复荷载的作用下,裂缝横向发展,向翼缘板中部扩展,以至于形成横向通缝。对于薄壁箱梁桥的翼缘板横向裂缝,病害原因多归于此。其次,混凝土徐变引起横向裂缝,在长期荷载作用下,受混凝土徐变影响,箱梁在运营6年~7年后跨中均有不同程度的下挠现象。较大的形变引起箱梁应力重分布,给结构带来附加被动应力。由于结构所受到的外荷载不变,各截面应力增加是由附加弯矩不断变化引起的,附加弯矩随时间不断增加,直到混凝土徐变停滞为止。同时,预应力松弛也会引起横向裂缝,对于预应力混凝土结构,箱梁内部预应力对结构应力状态有较大的影响,随着桥梁运营时间的增长,预应力钢束发生松弛效应,并且越来越明显。在现代施工中一般采用低松弛钢绞线材料,并且规范张拉工艺,但在具体操作中难免会出现与规范不相吻合的情况,力筋长期持荷加之混凝土收缩徐变影响,预应力损失也是相当严重的。同时,选用钢筋不合理也会引起横向裂缝,对于普通钢筋混凝土箱梁,钢筋与混凝土的粘结力对结构的整体刚度和裂缝的扩展有较大的影响。我们应该选用表面不光滑、化学吸附作用和握裹力都较强的预应力钢筋。

②腹板斜裂缝一般发生在支点至1/4跨之间。对于预应力和非预应力箱梁,在施工阶段以及在运营阶段,腹板经常出现斜裂缝,斜裂缝同样有多种因素引起,有设计计算、设计构造配筋、施工工艺、气候条件、日常维护、荷载工况等。部分因素在导致翼缘板出现横向裂缝的同时也是腹板斜裂缝的主要原因,首先,预应力损失过大导致腹板主拉应力过大,由于纵向预应力损失的存在,部分预应力损失超过设计计算值导致截面抗弯承载力严重下降,从而产生翼缘板横向裂缝。对于预应力混凝土薄壁箱梁结构,预应力损失也是腹板斜裂缝的主要病害原因,预应力损失量估计不足或者在实际张拉过程中操作不当引起应力损失量加大等情况经常发生,导致力筋的有效预应力达不到设计要求,从而腹板因主拉应力超过容许值而发生开裂。竖向预应力钢筋较短,张拉后少量的回缩即可产生较大的预应力损失,分批张拉产生的弹性压缩可以使预应力损失达11%,如果有超张拉情况,其损失率更大。悬臂对称施工时,挂篮一般后锚于竖向预应力螺纹钢上,在施工荷载的作用下,预应力损失也比较大。其次,温度梯度过大会导致腹板剪切应力过大,从而产生腹板斜裂缝。在阳光充足的地区,太阳直射桥面,因而桥面板温度急剧升高,靠近水面的底板温度较低,两者形成温度梯度。对于目前普遍采用的大跨度、变截面箱梁,随着截面高度变化幅度的增加及箱梁长度和支撑约束的增加,温度梯度应力沿梁长方向变化较快,对于气温变化较为强烈的地区,由于顶板翼缘受外界温度影响较大,随外界气温变化波动较为明显,导致腹板拉压应力交替频繁,在应力幅度变化较大的区域也容易出现斜裂缝。同时,腹板抗剪强度设计值不足也会造成腹板斜裂缝的出现。设计薄壁箱梁的首要目的是减轻结构自重,降低材料使用量,所以其腹板与翼缘板设计厚度较薄。箱梁腹板面积与抗剪承载力有密切的关系,而薄壁箱梁腹板面积与普通箱梁相比是小得多得,在无预应力作用情况下,腹板依靠提高腹板的箍筋配筋率和弯起钢筋得数量来提高其抗剪能力。但是在腹板厚度有限的条件下,其提高值亦是有限的。所以,薄壁箱梁腹板抗剪能力相对于普通混凝土箱梁较小,斜裂缝容易发生。3结语

预应力箱梁在正常使用极限状态下不应该出现梁体裂缝,但是已建预应力混凝土箱梁桥上的开裂情况却非常普遍,因此我对预应力混凝土箱梁桥典型裂缝成因进行了系统总结,望能为混凝土箱梁的设计和施工起到一定的参考价值。

参考文献:

应力混凝土箱梁裂缝成因分析及处治 第6篇

在已建成的大跨度预应力混凝土梁桥中,当跨度超过40m后,横截面大多采用箱形截面。其主要优点是:

①箱形截面是一种闭口薄壁截面,其抗扭刚度大,截面效率指标较T形截面高,结构在施工和使用过程中都具有良好的稳定性。②顶板和底板面积较大,能有效地承担正负弯矩,并能满足配筋的需要,适应具有正负弯矩的结构,也更适应于主要承受负弯矩的悬臂梁、T形刚构等桥型。③适应现代化施工方法的要求。④承重结构和传力结构相结合,使各部件共同受力,截面效率高并适合预应力混凝土结构的空间布束,因此具有较好的经济性。⑤对于宽桥,由于抗扭刚度大,内力分布比较均匀,跨中无需设置横隔板就能获得满意的荷载横向分布。⑥适合于修建曲线桥,并具有较大的适应性。⑦能很好适应布置管线等设施。在设计上,箱形截面可极大地发挥预应力地效用。可提供很大地混凝土面积用于预应力束地通过,更关键地是可提供较大地截面高度,使预应力束有较大的力臂。因此,桥梁设计师可发挥箱梁和预应力地特点,顶底板纵向钢束采用平弯和竖弯相结合的空间曲线,集中锚固在腹板顶部的承托中(或锚固在腹板中),底板钢束尽可能靠近腹板加厚板(齿板)并在其上锚固。

2预应力连续箱梁裂缝的产因

预应力连续箱梁的裂缝类型主要有:边跨斜裂缝,边跨水平裂缝,中跨斜裂缝,中跨水平裂缝,边跨的水平裂缝、斜裂缝同时发生,中跨的水平裂缝、斜裂缝同时发生,底板、顶板纵向裂缝,底板、顶板横向裂缝、箱梁横隔板的放射性裂缝,预应力锚固部位齿板附近裂缝。

预应力混凝土连续箱梁裂缝从成因角度可分为:由荷载效应(如弯矩、剪力、扭矩及拉力等)引起的裂缝、由外加变形或约束引起的裂缝,主要包括“基岩效应”、地基不均匀沉降、混凝土收缩、外界温度的变化等、钢筋锈蚀裂缝、预加力次效应引起的裂缝、建材原因引起的裂缝。

根据裂缝产生部位的不同我们可将其分为:翼缘板横向裂缝和腹板斜裂缝两种。

①翼缘板横向裂缝一般发生在箱梁受纵向弯矩较大处的受拉翼缘板处,横向裂缝一般均发生在跨中底板翼缘。对于连续箱梁,横向裂缝还发生在支座负弯矩处的顶板翼缘,并且大部分出现在距支点1/3跨径范围以内,越靠近支点裂缝越严重,对于该类型裂缝,主要有以下原因引起,首先,设计时翼缘板有效分布宽度考虑不足,薄壁箱梁翼缘板有效分布宽度问题实际上就是剪力滞问题,由于理论计算剪力滞效应较为繁琐,不适于工程应用,各国普遍采用有效分布宽度的概念。由于剪力滞效应的考虑不足或计算值安全储备较低,在一些特殊荷载工况下容易发生应力过度集中,腹板处翼缘应力波峰超过允许值,因而首先在该处发生横向裂缝。在多年反复荷载的作用下,裂缝横向发展,向翼缘板中部扩展,以至于形成横向通缝。对于薄壁箱梁桥的翼缘板横向裂缝,病害原因多归于此。其次,混凝土徐变引起横向裂缝,在长期荷载作用下,受混凝土徐变影响,箱梁在运营6年~7年后跨中均有不同程度的下挠现象。较大的形变引起箱梁应力重分布,给结构带来附加被动应力。由于结构所受到的`外荷载不变,各截面应力增加是由附加弯矩不断变化引起的,附加弯矩随时间不断增加,直到混凝土徐变停滞为止。

同时,预应力松弛也会引起横向裂缝,对于预应力混凝土结构,箱梁内部预应力对结构应力状态有较大的影响,随着桥梁运营时间的增长,预应力钢束发生松弛效应,并且越来越明显。在现代施工中一般采用低松弛钢绞线材料,并且规范张拉工艺,但在具体操作中难免会出现与规范不相吻合的情况,力筋长期持荷加之混凝土收缩徐变影响,预应力损失也是相当严重的。同时,选用钢筋不合理也会引起横向裂缝,对于普通钢筋混凝土箱梁,钢筋与混凝土的粘结力对结构的整体刚度和裂缝的扩展有较大的影响。我们应该选用表面不光滑、化学吸附作用和握裹力都较强的预应力钢筋。

②腹板斜裂缝一般发生在支点至1/4跨之间。对于预应力和非预应力箱梁,在施工阶段以及在运营阶段,腹板经常出现斜裂缝,斜裂缝同样有多种因素引起,有设计计算、设计构造配筋、施工工艺、气候条件、日常维护、荷载工况等。部分因素在导致翼缘板出现横向裂缝的同时也是腹板斜裂缝的主要原因,首先,预应力损失过大导致腹板主拉应力过大,由于纵向预应力损失的存在,部分预应力损失超过设计计算值导致截面抗弯承载力严重下降,从而产生翼缘板横向裂缝。对于预应力混凝土薄壁箱梁结构,预应力损失也是腹板斜裂缝的主要病害原因,预应力损失量估计不足或者在实际张拉过程中操作不当引起应力损失量加大等情况经常发生,导致力筋的有效预应力达不到设计要求,从而腹板因主拉应力超过容许值而发生开裂。竖向预应力钢筋较短,张拉后少量的回缩即可产生较大的预应力损失,分批张拉产生的弹性压缩可以使预应力损失达11%,如果有超张拉情况,其损失率更大。悬臂对称施工时,挂篮一般后锚于竖向预应力螺纹钢上,在施工荷载的作用下,预应力损失也比较大。其次,温度梯度过大会导致腹板剪切应力过大,从而产生腹板斜裂缝。在阳光充足的地区,太阳直射桥面,因而桥面板温度急剧升高,靠近水面的底板温度较低,两者形成温度梯度。对于目前普遍采用的大跨度、变截面箱梁,随着截面高度变化幅度的增加及箱梁长度和支撑约束的增加,温度梯度应力沿梁长方向变化较快,对于气温变化较为强烈的地区,由于顶板翼缘受外界温度影响较大,随外界气温变化波动较为明显,导致腹板拉压应力交替频繁,在应力幅度变化较大的区域也容易出现斜裂缝。同时,腹板抗剪强度设计值不足也会造成腹板斜裂缝的出现。设计薄壁箱梁的首要目的是减轻结构自重,降低材料使用量,所以其腹板与翼缘板设计厚度较薄。箱梁腹板面积与抗剪承载力有密切的关系,而薄壁箱梁腹板面积与普通箱梁相比是小得多得,在无预应力作用情况下,腹板依靠提高腹板的箍筋配筋率和弯起钢筋得数量来提高其抗剪能力。但是在腹板厚度有限的条件下,其提高值亦是有限的。所以,薄壁箱梁腹板抗剪能力相对于普通混凝土箱梁较小,斜裂缝容易发生。

3结语

预应力箱梁在正常使用极限状态下不应该出现梁体裂缝,但是已建预应力混凝土箱梁桥上的开裂情况却非常普遍,因此我对预应力混凝土箱梁桥典型裂缝成因进行了系统总结,望能为混凝土箱梁的设计和施工起到一定的参考价值。

参考文献:

[1]范立础,顾邦安.桥梁工程(上册)[M].北京:人民交通出版社,.

[2]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,.

[3]杨文化.预应力混凝土连续箱梁桥腹板抗裂性研究[D].长沙:湖南大学,.

[4]陈性凯.广州华南大桥箱梁裂缝的初步分析[J].中国市政工程,,(3):27-29.

[5]李少波.混凝土桥梁上部结构裂缝综述[J].铁道勘测与设计,,(1):6-10.

应力混凝土箱梁裂缝成因分析及处治 第7篇

专业分类:路桥隧道

浏览数:393 在桥梁施工中,连续箱梁是大跨度混凝土桥梁常用的一种形式,这种梁式结构在质量上存在的最大问题就是裂缝频繁出现,混凝土裂缝是影响结构耐久性最关键的因素。由于混凝土裂缝的存在和发展通常会使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性及抗渗能力,影响箱梁的外观,降低箱梁使用寿命。本文就某工程高标号连续箱梁非结构裂缝产生的原因进行分析和总结,以期为类似工程提供参考。一.工程简介

本工程某特大桥主桥结构布跨型式为(60+100+60)m三跨预应力混凝土变截面连续箱梁,主墩为27#、28#墩,分左右双幅,单幅箱梁采用单箱单室截面,纵、横、竖三向预应力体系,为全预应力构件。桥宽16.25米,根部梁高5.8米,跨中及端部梁高2.5米,箱梁0号块长度为4米,腹板厚度为0.9米,腹板厚度9号块以前为0.7米,12号块以后为0.5米,10~11号块由0.7米直线变公至0.5米。该工程采用商品混凝土,混凝土标号为C55,地泵泵送施工。

箱梁采取挂篮悬臂浇筑施工,各单“T”箱梁除悬臂箱梁外,分为13对梁段,箱梁纵向分段长度为8×3+5×4米,箱梁两个“T”同时对称悬臂浇筑。二.裂缝形成

该桥在施工至28#墩右幅4#块小桩号时,在拆除模板后第3天发现腹板内侧出现斜向不规则裂缝,随后立刻停止对该桥的施工,分析原因并派专人跟踪观测此裂缝,发现裂缝稳定无发展。然后实施了纵向预应力张拉,张拉后裂缝亦无变化,由此判断此裂缝为局部浅层不规则发纹,于是进行正常施工。在之后的施工过程中,27#墩3#块大桩号左侧、27#墩4#块大桩号右侧、28#墩右侧5#块大桩号左右侧、28#墩5#块小桩号右侧、28#墩6#块大桩号右侧、28#墩6#块小桩号右侧等均在模板脱落后3天左右又出现类似裂缝,随组织专家进行现场分析。经对裂缝的宽度和深度进行无损检测,裂缝没有贯穿,深度最大约为150px,裂缝宽度为0.15mm-0.45mm。裂缝有一定的规律性,一是出现在拆除内模后出现(不排除拆模前已产生,很细微没有被发现);二是位置都在腹板且斜向外侧,基本在波纹管位置附近,且在跨度方向均匀分布,在腹板两侧基本对称分布;三是在张拉纵向预应力之后裂缝无进一步发展。

三.腹板裂缝成因分析

从裂缝产生原因来分,裂缝主要包括结构裂缝和非结构裂缝。从检测结果来看,以上裂缝均在拆模之后出现,在此期间结构无任何受力,因此可以判断这些裂缝为非结构裂缝,从而排除是由于结构受力而产生的裂纹。这个阶段可能导致结构发生变形的因素有:挂篮变形、温度、砼浇筑顺序、商品混凝土、养生、内模拆模早、结构配筋、环境等。当这些因素导致的变形受到外界约束或不协调变形时,结构内部就会产生拉应力,当拉应力超过抗拉强度后便会产生裂缝。

具体针对本桥,该桥采用商品混凝土,从开始浇筑到产生裂缝,由于许多因素是交织在一起的,很难明确区分某条裂缝具体是由哪种因素引起的,可能导致结构内部出现拉应力的变形主要有以下五种情况:商品混凝土质量、施工温差大、内模拆模过早、梁体养生不到位、腹板波纹管位置布筋不足。1.商品混凝土质量

混凝土浇捣过程中,特别是夏季高温、空气相对湿度较小时,由于混凝土表面水分急剧蒸发,形成很大的混凝土内外湿度梯度,混凝土表面在很大的拉应力下被拉裂,特别是混凝土截面薄弱处极易普遍出现裂缝.商品混凝土施工时对环境湿度的要求要比传统现场搅拌混凝土高的多,养护时间也要大大提前。影响商品混凝土干缩的因素主要有:(1)水泥用量太高会加剧收缩.(2)砂、石材料中含泥量增大也会加剧收缩.(3)坍落度大的混凝土产生干缩的可能性较大.(4)掺加缓凝型外加剂由于延缓了混凝土的凝结时间,因而会增大干缩的可能性.2、施工温差大

通过查看施工日志,混凝土节块浇筑完成时间均为晚上,经历了夜晚、中午等一天中温度最高和最低峰时,早晚温差大,水泥水化和环境温度变化的共同作用使砼内外部产生温差,砼内部不受或者少受环境温度变化影响,表面受环境温度变化影响则产生裂缝。影响温度裂缝的因素有:(1)水泥品种和混凝土掺合料 由于粉煤灰、矿粉在水泥中水化速度较慢,与硅酸盐水泥和普通硅酸盐水泥相比,粉煤灰水泥、矿渣水泥、火山灰水泥均有比较低的水化热,混凝土温峰出现的时间摧迟,所以用这些品种的水泥所配制的混凝土,产生温度裂缝的倾向比用硅酸盐水泥或普通硅酸盐水泥所配制的混凝土的低.与不掺掺合料的混凝土相比,掺合了粉煤灰等活性掺合料的混凝土的温升开裂程度也能够降低。

(2)混凝土结构体的体积

混凝土结构体体积越大,一般其表面系数越小则散失出去的热量的比例越小,相应地混凝土内部温度越高。(3)环境温度

评价混凝土发生温度开裂可能性大小的主要指标是考察混凝土的内外温度差,环境温度越低,混凝土内外温差越大,发生温度开裂的危险性也越大。

3、内模拆模早

由于本工程施工工期紧,为加快施工进度,拆模时间基本都是浇筑完混凝土第二天,此时混凝土水化热所产生的热量处于峰值状态,拆除模板后,混凝土表面的温度急剧下降,从而导致内外温差较大产生拉应力而导致混凝土开裂。

4、梁体养生不到位

混凝土养生包括湿度和温度两个方面。养生不仅仅只考虑浇水,而不考虑混凝土温度变化,是一种传统认识上的误区。在箱梁拆除模板后,由于混凝土表面与内部的湿度和温度均不同,板的临空面水分散发快、混凝土收缩发展快,而在混凝土内部水分散发慢、混凝土收缩发展慢,从而导致混凝土内部出现拉应力。内部后期湿度一般能稳定在一定范围内,而外部湿度变化明显,内外存在明显的湿度差,从而导致混凝土内外收缩出现明显差异。

5、腹板波纹管位置布筋不足 对桥上所有裂缝进行统计分析,发现裂缝具有一定规律性,基本都是沿着腹板波纹管位置走向,从而判断可能是混凝土受温度及其他原因产生拉应力时,波纹管位置截面尺寸相对较小,最为薄弱较易拉裂,可通过波纹管附近局部加强有效控制。

四、裂缝控制措施

1.材料选择和混凝土配合比设计方面

(1)根据结构的要求选择合适的混凝土强度等级及水泥品种、等级,尽量避免采用早强高的水泥。

(2)选用级配优良的砂、石原材料,含泥量应符合规范要求。

(3)积极采用掺合料和混凝土外加剂。掺合料和外加剂目标已作为混凝土的第五、六大组份,可以明显地起到降低水泥用量、降低水化热、改善混凝土的工作性能和降低混凝土成本的作用。

(4)正确掌握好混凝土补偿收缩技术的运用方法。对膨胀剂应充发考虑到不同品种、不同掺量所起到的不同膨胀效果。应通过大量的试验确定膨胀剂的最佳掺量。(5)配合比设计人员应深入施工现场,依据施工现场的浇捣工艺、操作水平、构件截面等情况,合理选择好混凝土的设计坍落度,针对现场的砂、石原材料质量情况及时调整施工配合比,协助现场搞好构件的养护工作。2.现场操作方面

(1)浇捣工作:浇捣时,振捣捧要快插慢拔,根据不同的混凝土坍落度正确掌握振捣时间,避免过振或漏振,应提倡采用二次振捣、二次抹面技术,以排除泌水、混凝土内部的水分和气泡。

(2)混凝土养护:在混凝土裂缝的防治工作中,对新浇混凝土的早期养护工作尤为重要,以保证混凝土在早期尽可能少产生收缩,主要是控制好构件的湿润养护。对于大体积混凝土,有条件时宜采用蓄水或流水养护,养护时间为14~28天。

(3)混凝土的降温和保温工作:对于大体积混凝土,施工时应充分考虑水泥水化热问题。采取必要的降温措施(埋设散热孔、通水排热等),避免水化热高峰的集中出现、降低峰值。浇捣成型后,适当控制拆模时间,应采取必要的蓄水保温措施,表面覆盖薄膜、湿麻袋等进行养护,以防止由于混凝土内外温差过大而引起的温度裂缝。(4)避免在雨中或大风中浇灌混凝土。

(5)夏季应注意混凝土的浇捣温度,采用低温人模、低温养护,必要时经试验可采用冰块,以降低混凝土原材料的温度。

(6)对腹板波纹管位置用钢筋进行局部加强。

五、结语

应力混凝土箱梁裂缝成因分析及处治 第8篇

1 全面了解桥梁状况

1)仔细研究该桥的设计图纸和竣工图纸,对该桥的结构形式、跨径划分、断面尺寸和形状以及预应力筋和构造钢筋的布置情况有个初步的了解,对该桥设计的合理性进行一个初步的判断。

2)使用裂缝观测仪卷尺等工具全面检查该桥的裂缝分布位置、长度、宽度及走向。如有条件,还需进入箱梁内部检查箱梁顶板、底板、腹板以及锚固齿板处的裂缝情况。初步判断裂缝的性质,并根据初步判断的结果,对桥梁局部进行详细的检查并进行验证。

3)如有必要,还需利用一些检测手段检测混凝土的碳化深度、混凝土强度、混凝土结构的缺陷和损伤以及混凝土中钢筋状态等指标。比如:超声波检测混凝土强度,裂缝深度的检测以及电位法测钢筋锈蚀等。对于有可能是由箱梁内外温差引起的裂缝,还应该检测箱梁内外的温差变化。

4)根据建桥的年代了解当时的施工工艺及方法,向当时参加建设的人员询问施工情况,推测可能是由于施工原因引起的问题。

5)了解交通量和车辆的荷载情况,必要时进行交通量观测。了解当地的气候情况以及空气、雨水、冰雪等对桥梁的影响。北方还应考虑融雪剂对桥梁结构的影响。

6)如果需要并且可以暂时中断交通的情况下,可以做桥梁的动静载试验,直接得到该桥实际的一些关键性数据。比如关键截面的应力、应变和挠度。做动静载的另外一个好处就是在桥梁加固后可以再做一次动静载试验,与前一次的试验结果相比较,验证加固的效果。

2 结构复算

结构复算的目的是为了验证当初设计的合理性。预应力混凝土箱梁桥因其受力的空间性,仅使用平面分析法和一般的空间分析计算无法充分考虑翘曲、横向弯曲、畸变所引起的二次应力,而在对二次应力分布特征不明了的情况下进行配筋设计很可能导致混凝土箱梁桥的开裂。但采用空间分析法计算比较复杂,近年来出现的一些空间分析法计算的软件可以大大提高计算的效率和可能性。根据专家的建议,并且实践证明,在整体上采用平面分析法,重要部位采用空间分析法计算是一个经济有效的途径。

对受力裂缝成因的判断建立计算模型,不同的计算软件依据的原理不同,计算的侧重点也不同,因此有时计算的结果不能给出裂缝成因一个合理的解释,这就需要用另一种理论的计算软件去复核。

在结构复算中,应着眼于以下几方面:

1)纵向预应力索配置是否得当,尤其是直筋式配索的预应力混凝土连续梁或连续刚构。纵向预应力束弯起布置或锚头布置是否合理,不合理的布置常常引起竖向预应力不足或出现锚后拉力区从而出现裂缝。

2)是否配置了足够数量的构造钢筋,配置足够的构造钢筋可以加强腹板的抗剪力,也可加强桥梁预应力受压区的抗压能力,还可以有效防止因混凝土收缩和温差引起的裂缝。

3)因箱梁结构承受外荷载时引起的次生应力在混凝土的极限强度以内,尤其是对于宽度较大的箱梁桥。

4)由于温差所引起的温度应力是否超过了混凝土的抗拉强度,这主要表现在一些大跨径的桥梁中,温度应力有可能和荷载产生的应力相当。

5)箱梁的尺寸设计是否合理,主要表现在顶板、底板以及腹板的厚度、横隔板的布置、梁体本身的自重以及桥跨的布置等。在设计中,原则上应尽量减少桥梁自重,但减少了顶板、底板,尤其是腹板的厚度,有可能会因抗力不足或施工控制不当而引起保护层不足。

6)还应验算在施工阶段因施工方法不当有可能产生的裂缝。比如悬臂法施工过程和满堂支架现浇体系转换之间措施不当导致混凝土受拉超过极限、张拉顺序不正确而引起的预应力损失及混凝土开裂。

7)箱梁桥现有的损伤对结构的影响,比如预应力束脱锚,受压区混凝土脱落引起的预应力损失,结构老化的影响,钢筋锈蚀和混凝土风化引起的有效截面折减。

3结论及处理措施

根据现场调查的情况和验算得出的数据对裂缝产生的原因给出解释,并提出相应的处理措施,至此对桥梁目前的受力状况很明了,提出的相应处理措施也必然是有效的。

得到的结论应是综合判断的结果,理论的计算结果要和实际出现的情况相吻合。如果背离,就应考虑计算的方法和选择的模型是否存在问题,或者到实地进行针对性的勘查验证。

预应力混凝土箱梁桥是一个复杂的受力体系,每一种病害都有可能是由多种因素决定的,所以进行裂缝成因分析时应该进行全面的调查,采用更多、更有效的专业知识,逐步积累足够丰富的经验,选择合适的计算方法,才能正确诊断桥梁存在的问题,采取相应的加固措施。

摘要:结合预应力混凝土箱梁桥在工程中的广泛应用,提出了分析预应力混凝土箱梁桥裂缝成因的步骤,包括全面了解桥梁状况、结构复算、得出结论及提出处理措施三个步骤,以积累预应力混凝土箱梁桥裂缝分析经验,从而正确诊断桥梁存在的问题,采取适当的加固措施。

关键词:预应力混凝土,箱梁桥,裂缝,成因

参考文献

上一篇:18年宝宝取名字好听的名字下一篇:同桌冤家读书心得体会300字