高二上物理原子核知识点总结

2024-09-08

高二上物理原子核知识点总结(精选10篇)

高二上物理原子核知识点总结 第1篇

高二物理原子和原子核知识点总结

一、原子结构知识点:

1、电子的发现和汤姆生的原子模型:

(1)电子的发现:

1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。

电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。

(2)汤姆生的原子模型:

1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

2、α粒子散射实验和原子核结构模型

(1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成 ①装置:

② 现象:

a.绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b.有少数α粒子发生较大角度的偏转

c.有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。

(2)原子的核式结构模型:

由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

原子核半径小于10-14m,原子轨道半径约10-10m。

3、玻尔的原子模型

(1)原子核式结构模型与经典电磁理论的矛盾(两方面)

a.电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。

b.电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。

(2)玻尔理论

上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:

①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。

②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即 hv=E2-E1

③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道半径跟电了动量mv的乘积等于h/2π的整数倍,即

n为正整数,称量数数

(3)玻尔的氢子模型:

①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。)

氢原子中电子在第几条可能轨道上运动时,氢原子的能量En,和电子轨道半径rn分别为:

其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。即:E1=-13.6ev, r1=0.53×10-10m(以电子距原子核无穷远时电势能为零计算)

②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。

其中n=1的定态称为基态。n=2以上的定态,称为激发态。

二、原子核知识点

1、天然放射现象

(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。

放射性:物质能发射出上述射线的性质称放射性

放射性元素:具有放射性的元素称放射性元素

天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象

天然放射现象:表明原子核存在精细结构,是可以再分的

(2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹:

2、原子核的衰变:

(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒

γ射线是伴随α、β衰变放射出来的高频光子流

在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子

(2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。

一放射性元素,测得质量为m,半衰期为T,经时间t后,剩余未衰变的放射性元素的质量为m

3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。

(1)质子的发现:1919年,卢瑟福用α粒子轰击氦原子核发现了质子。

(2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。

4、原子核的组成和放射性同位素

(1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子

在原子核中:

质子数等于电荷数

核子数等于质量数

中子数等于质量数减电荷数

(2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。

正电子的发现:用α粒子轰击铝时,发生核反应。

发生+β衰变,放出正电子

三、核能知识点:

1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。

2、质能方程:爱因斯坦提出物体的质量和能量的关系:

E=mc²——质能方程

3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的反就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。

吸收或放出的能量,与质量变化的关系为:

为了计算方便以后在计算核能时我们用以下两种方法

方法一:若已知条件中以千克作单位给出,用以下公式计算

公式中单位:

方法二:若已知条件中以作单位给出,用以下公式计算

公式中单位:

4、释放核能的途径——裂变和聚变

(1)裂变反应:

①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。

②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。

链式反应的条件:

③裂变时平均每个核子放能约1Mev能量

1kg全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量

(2)聚变反应:①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。

②平均每个核子放出3Mev的能量 ③聚变反应的条件;几百万摄氏度的高温

高二上物理原子核知识点总结 第2篇

●内容

一个热力学系统的内能U增量等于外界向它传递的热量Q与外界对它做功A的和。(如果一个系统与环境孤立,那么它的内能将不会发生变化。)

●符号规律

热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△E=-W+Q时,通常有如下规定:

①外界对系统做功,A>0,即W为正值。

②系统对外界做功,A<0,即W为负值。

③系统从外界吸收热量,Q>0,即Q为正值

④系统从外界放出热量,Q<0,即Q为负值

⑤系统内能增加,△U>0,即△U为正值

⑥系统内能减少,△U<0,即△U为负值

●理解

从三方面理解

1.如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时系统内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=A

2.如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时系统内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q

3.在做功和热传递同时存在的过程中,系统内能的变化,则要由做功和所传递的热量共同决定。在这种情况下,系统内能的增量△U就等于从外界吸收的热量Q和外界对系统做功A之和。即△U=A+Q

●能量守恒定律

能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,在转移和转化的过程中,能量的总量不变。

●能量的多样性

物体运动具有机械能、分子运动具有内能、电荷具有电能、原子核内部的运动具有原子能等等,可见,在自然界中不同的能量形式与不同的运动形式相对应。

●不同形式的能量转化

“摩擦生热”是通过克服摩擦力做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能。这些实例说明了不同形式的能量之间可以相互转化,且这一转化过程是通过做功来完成的。

●能量守恒的意义

1.能的转化与守恒是分析解决问题的一个极为重要的方法,它比机械能守恒定律更普遍。例如物体在空中下落受到阻力时,物体的机械能不守恒,但包括内能在内的总能量守恒。

2.能量守恒定律是19世纪自然科学中三大发现之一,也庄重宣告了第一类永动机幻想的彻底破灭。

物理中的数学知识全搜索(上) 第3篇

一、集合知识在高中物理中的主要应用

1 力的范围

例1 把一个120 N 的力分解为两个分力,下列分解可能的是()

A 50 N 60 N

B 70 N 60 N 

C 70 N 120 N

D 130 N 120 N 

解析 力的合成是分解的逆运算,把两个分力合成,然后看这个被分解的力是否属于这个全闭区间,如果属于就是正确选项,否则就是错误的,据此可知 BCD 正确.

点评 合力的范围蕴涵着简单的集合思想.

2 影的形成

影是光的直线传播最好的表现.当光源不再是点光源,而是线光源或者是面光源的时候,就会在光阑后面形成不同的影区,影子的交集就是本影,本影的补集就是半影,据此人们发明了无影灯,在手术室有着重要的应用,所谓无影灯就是消除了本影的面光源.日食和月食中的全食和偏食也是集合思想的体现.

二、一次函数知识在高中物理中的主要应用

1 路端电压与干路电流的关系

路端电压与干路电流的关系是U=ε-Ir,路端电压与干路电流是一次函数关系,直线的斜率等于电源的内阻r= tan θ,如图1所示.

2 光电子的最大初动能

光电子的最大初动能的表达式是12mv2 m =hν-W,对于一种确定的金属,它的溢出功W是一个定值,光电子的最大初动能12mv2 m 与入射光的频率是一次函数关系,无论如何,直线的斜率总是普朗克常量h= tan θ.如图2所示.

三、抛物线知识在高中物理中的主要应用

1 st图像

匀变速直线运动的位移公式是s=v0t+12at2,物体的位移与时间是一元二次函数关系,图像是过原点的抛物线,如图3所示.

2 平抛运动的轨迹方程

平抛运动的曲线是抛物线,其轨迹方程是抛物线形式:y=g2v20x2.这是水平位移x=v0t和竖直位移y=12gt2相互联立,消去中间参数时间t后得到的.如图4所示.

例2 排球场总长18 m ,网高2 m ,运动员在3 m 线正上空击球(方向垂直于底线),如图5所示.假设球做平抛运动,问在什么高度处击球,无论速度为多大,球总要出界或触网?解析 我们知道除时间以外,其他量均与初速度有关,那么符合题意的只有一种可能,就是对方底线和球网上边缘在同一条抛物线上.

根据轨迹方程y=g2v20x2,得h-2h=32122,解得h=213 m .

在这个高度,速度大一点必然出界,小一点必然触网.

点评

轨迹方程是一个鲜为人所注意却很实用的结论.

四、数列知识在高中物理中的主要应用

1 等差数列

(1) 匀变速直线运动,在连续相等的时间(t)内的位移构成等差数列,即:

sⅡ-sⅠ=sⅢ-sⅡ=…=at2,公差就是at2.

(2) 匀变速直线运动的速度构成等差数列,中点时刻的速度是始末速度的等差中项vt2=v0+vt2.这就是平均速度也等于速度平均的道理.

例3 在测定小车做匀加速直线运动的实验中,选出了如图6所示的一条纸带,图中标出了5个计数点,量得s1=30 mm ,s4=48 mm ,试求:

(1) 小车的加速度.

(2) 计数点0与1之间的平均速度.

(3) 计数点0处的瞬时速度.

(4) 计数点1处的瞬时速度.

解析 (1) 根据数列的通项公式,得s4=s1+(4-1)at2,则小车的加速度a=0.6 m/s 2.

(2) 由于t=0.1 s ,根据平均速度的定义,v1=s1t=0.3 m/s .

(3) 由于v1=vt2,再根据速度公式vt2=v0+a×t2,得v0=0.27 m/s .

(4) vt2是v0和v1的等差中项,即vt2=v0+v12,则v1=0.33 m/s .

点评 认清匀变速直线运动的数学规律,就能驾轻就熟,顺利地解决问题.

2 等比数列

原子核的衰变,就是一个典型的等比数列,它的公比是12,根据数列的通项公式可得半衰期公式m余=m原12tτ,其中m余就是质量为m原的原子核经历时间t以后衰变(半衰期为τ)所剩下的质量.

例4 一小瓶含有某种放射性同位素的溶液,它每分钟衰变6000次,将它注射到一个病人的血液中,经过15 h ,从病人身上取出10 cm 3的血样,测得每分钟衰变2次.已知这种同位素半衰期为5 h .试根据上述数据,计算人体血液的总体积.

解析 设放射性同位素原有质量为m0,15 h 后剩余质量为m,人体血液的总体积为V cm 3,由每分钟衰变次数与其质量成正比可得mm0=0.2V6000.再由半衰期公式得m=m012tτ,其中tτ=155=3,联立以上几式可解得V=3750 cm 3.

点评

这是一个放射性同位素在医学方面的应用,是一个典型的 STS 问题.

五、不等式知识在高中物理中的主要应用

1 平方平均数不小于算术平均数

令位移中点的速度为vs2,两次使用一个有用的推论,v2s2-v20=2as,v2t-v2s2=2as,两式相等得,vs2=v20+v2t2.不难发现位移中点处的速度是初速度和末速度的平方平均数.并且根据平方平均数不小于算术平均数的不等式关系,可以进一步知道做匀变速直线运动的物体,不论是匀加速直线运动,还是匀减速直线运动,总有位移中点处的速度大于中点时刻的速度:v20+v2t2≥v0+vt2=vt2.

2 放缩法的应用

所谓放缩法就是把原来的数值有目的地进行放大或者缩小,它是一种很常用的数学方法,具体地说,就是恰当地使用不等式从而解决问题的方法.

例5 将一个质量为m的物体放在粗糙桌面上,现给物体施加一个水平恒力F,此时物体的加速度为a,如果将力增大到2F,则物体加速度为()

A a

B 2a

C 大于2a

D 小于2a

解析 设物体所受滑动摩擦力为f,根据牛顿第二定律,F-f=ma,2F-f=ma ′ ,再把第二式用放缩法缩小,2F-f>2F-2f=2ma,所以a ′ >2a.

点评 学习物理就要实事求是,而不能主观臆断.

3 算术平均数不小于几何平均数

这个不等式是a+b2≥ab,当且仅当a=b时取等号.换句话说,“和”一定,“积”有最大值;“积”一定,“和”有最小值.

例6 如图7所示,电路的最大电阻是多少?

解析 电阻R0被滑片分作两部分,设下半部分阻值为Rx,则该电路的等效电阻为RAB=Rx×[R+(R0-Rx)]Rx+[R+(R0-Rx)]=Rx×[R+(R0-Rx)]R+R0,分子上的“和”是一个定值R+R0,那么其“积”必有最大值.

当Rx=R+(R0-Rx),即Rx=R+R02时,R(AB) max =R+R022R+R0=R+R04.

点评 本题得到的是一个很重要的结论,即在“串并”式电路中,当两并联支路的电阻相等时,总电阻最大,最大阻值等于R+R04.

光学和原子物理知识点总结解析 第4篇

一、光的反射定律:

1、内容:反射光线、入射光线、法线在同一平面内,反射光线与入射光线在法线两侧,反射角等于入射角。

围绕入射点将平面镜偏转a 角度,法线也偏转a 角度,反射光线偏转2a 角度。镜面反射与漫反射都遵守光的反射定律。

2、平面镜成像规律:物体在平面镜中成虚像,像与物体大小相等,像与 物体到镜面的距离相等,像和物体的连线与镜面垂直。(对称)

二、光的折射定律, 折射率

1、内容:折射光线、入射光线、法线在同一平面内,折射光线、入射光线在法线两侧,入射角的正弦值与折射角的正弦值成正比。

2、折射率(n):光从真空射入介质中时,入射角正弦值与折射角的正弦值之比。光在真空中的速度与光在介质中速度之比。

sin i c =n = v

3、任何介质的折射率n 都大于1。(空气近似等于1)sin

r 折射率表明了介质的折光本领,也表示对光传播的阻碍本领。注意: 在反射、折射现象中,光路是可逆的;在几何光学中作出光路图是解题关键;

三、全反射,临界角

1、光疏介质:折射率较小的介质。光密介质:折射率较大的介质。光疏介质与光密介质是相对的。

2、定义:光由光密介质射向光疏介质时,折射光线全部消失,只剩反射光线的现象。全反射光线不是折射光线。

3、C 光从介质中进入真空或空气中时发生全反射的临界角C :

4、光导纤维 光导纤维是光的全反射的实际应用

四、棱镜:横截面是三角形或梯形。

1、三棱镜能使射向侧面的光线向底面偏折,相同条件下,n 越大,光线偏折越多。并将白色光分解为:红、橙、黄、绿、蓝、靛、紫七色光。(光的色散

棱镜对红光的折射率小,介质中的红光光速大; 棱镜对蓝光的折射率大,介质中的蓝光光速小。(1三棱镜折射规律:出射光线向底边偏折

(2白光通过三棱镜发生色散规律:紫光靠近底边偏得最很

{光的色散,可见光中红光折射率小,n:折射率,c:真空中的光速,v:介质中的光速,}

2、全反射棱镜:横截面是等腰直角三角形(临界角C=42度)。如右图。

3、作用:

三棱镜:向底边偏折光线,色散。平行玻璃砖:平移光线 全反射棱镜、平面镜,改变光路方向,不改变聚散性质。波动光学

一、、光的干涉现象,双缝干涉,薄膜干涉

1、光的干涉:频率相同的两列波叠加后,某些区域振动加强,某些区域振动减弱,加强区与减弱区相互隔开。

λ

加强条件:路程差为半波长的偶数倍—— ∆s =2n ⋅ 2 λ

减弱条件:路程差为半波长的奇数倍—— ∆s =(2n +1 ⋅ ①双缝干涉:

{ 路程差(光程差 ;λ:光的波长;λ/2:光的半波长;} 双缝干涉的条纹间距与波长的关系 ∆x = L λ d

∆x 是相邻两条明条纹或暗条纹间距,d 是两条狭缝间的距离;L :双缝与屏间的距离}

②薄膜干涉:是由膜的前表面和后表面反射的两列光波叠加形成。在厚度为2d =(2n +1 λ 2 的地方会出现暗条纹;在厚度2d =n λ的地方会出现明条纹 增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d =λ/4 利用薄膜干涉法检查平面的平整程度。

③光的颜色由光的频率决定, 光的频率由光源决定, 与介质无关, 光的传播速度与介质有关。

光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫(助记:紫光的频率大,波长小。

二、光的衍射

1、光的衍射:波绕过障碍物继续向前传播。

2、明显衍射条件:障碍物、缝或孔的尺寸与波长相近或比波长小。d ≤λ 如单缝衍射、圆孔衍射、泊松亮斑(圆屏衍射)

(注意条纹特点)

薄膜干涉:光照射薄膜上被前后两面反射形成相干光。薄膜不均匀时出现明暗条纹,薄膜劈(楔)形时形成明暗相间的线形等距条纹。

光的直线性是光波动的一个近似。

三、光的电磁说:(电磁场,电磁波,电磁波的周期、频率、波长和波速)

1、①麦克斯韦电磁理论:变化的电场产生磁场,变化的磁场产生电场;

均匀变化的电场产生稳定磁场,均匀变化的磁场产生稳定电场;

周期性变化的电场产生周期性变化的磁场,周期性变化的磁场产生周期性变化的电场; ② 周期性变化的电场或周期性变化的磁场由发生区域由近及远的传播形成电磁波

2、电磁场:变化的电场和磁场总是相互联系的,形成一个不可分离的统一的场,这就是电磁场。电场和磁场只是这个统一的电磁场的两种具体表现。变化的磁场产生电场,变化的电场产生磁场。振荡电场产生同频率的振荡磁场;振荡磁场产生同频率的振荡电场。

3、电磁波:电磁波是一种横波。变化的电场和磁场从产生的区域由近及远地向周围空间传播开去,就形成了电磁波。(c =3.0⨯108m/s)

4、电磁波的周期、频率和波速: v =

λ T , v =λf

5、电磁波的应用:广播、电视、雷达、无线通信等都是电磁波的具体应用。

6、光波是电磁波的某一部分。

7、光波在真空中的传播速度:c=3×108m/s,是横波。

8、公式:v=λ/T=λf = c/n(光进入另一介质时,频率、周期不变,波长、波速改变。)

可见光的波长范围:370nm —750nm 频率范围:8×1014Hz —4×1014Hz

9、光的本质是一种电磁波(麦克斯韦)。电磁波谱(按波长λ从大到小排列:无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。

四、偏振:

1、横波:振动方向与波的传播方向相垂直的波。纵波:振动方向与波的传播方向相平行的波。

2、偏振:只在某一方向上振动向前传播的波。只有横波才有偏振现象。

3、自然光:沿着各个方向振动且强度相同的光波。偏振光:沿着单个方向振动向前传播的光波。

4、自然光经偏振片起偏后形成偏振光。光的偏振现象说明光波是一种横波。光的本性(波粒二象性)、近代物理知识

一、能量量子化,光电效应,光子,爱因斯坦光电效应方程

1、光子说(爱因斯坦 :在空间传播的光也不是连续的,而是一分一分的,每一份叫做一个光量子,简称光子,光子的能量E 跟光的频率ν成正比 即E =h ν {h:普朗克常量=6.63×10-34J.s,ν:光的频率}

2k =h ν-W {W 逸出功:电子脱离某种金属所做功的最小值;E k 表示动能最大的光电子所具有的动能}

W =h ν0(ν0为极限频率,不同的金属极限频率不同

3、光电效应:在光的照射下物体发射电子的现象,叫做光电效应,发射出来的电子叫做光电子。如果入射光的频率比极限频率低,那么无论光多么强,照

射时间多么长,都不会发生光电效应。入射光的频率比极限频率高,即使光不强,也会发生光电效应。光电效应有瞬时性。

4、记忆光电效应的4条规律:

1)光电效应的发生几乎是瞬时的,时间不超过109s.2)任何金属都有一个能产生光电效应的最低照射光 频率,叫做极限频率。只有当入射光的频率大于金属的极限频率,才能发生光电效应。3)光电子的最大初动能随入射光频率的增大而增大,而与入射光强度无关。4)饱和光电流强度与入射光的强度成正比.

得出结论:光电效应的发生与否, 与光的强弱无关, 与照射时间 的长短无关, 与光的频率、金属材料的种类有关。

5、光电效应中各相关物理量间的关系

二、光的波粒二象性,光波是概率波

1、最初两种学说:微粒说(牛顿、波动说(惠更斯 都是错误的

2、光是电磁波,光是横波,光具有粒子性,光波是概率波——光具有波粒二象性 光的波粒二象性:光是一种波,同时也是一种粒子,光具有波粒二象性。光是一种波光子在空间各点出现的可能性的大小(概率),可以用波动规律来描述。物理学中把光波叫做概率波。

E =hv E =mc 2 h p = λ

三、粒子的波粒二象性,物质波

1、物质波:任何一个运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与它对应,波长λ=

h(p 是物体运动的动量,h 是普朗克常量)。人们把这种波叫做物质波,p 也叫德布罗意波。

2、实物粒子也具有波动性

物质波也叫德布罗意波,如电子束穿过铝箔后的衍射图样

四、不确定关系 同时确定

本关系说明,在微观物理学中,位置和动量不能

五、激光的特性及应用 ①相干性好 如光电通信就是激光和光导纤维相结合的产物;全息照相 ②平行度好 如精确测距 ③ 亮度高 如激光武器、切割、焊接 复习光学 的重要规律 单色光的双缝干涉实验

红 紫 f 红

紫 紫

三棱镜色散实验 n红

红 v紫 偏转角 折射率 介质中光速 临界角 频率 C紫 波长 条纹间距 光子能量 小 红光 红光 大 紫光 紫光 紫光 红光 紫光 红光 红光 紫光 红光 紫光 紫光 红光 紫光 红光

原子物理

一、原子结构 科学进程——原子结构的建立和修正 金属片-0.85eV-1.51eV 影子 n=4 n=3 n=2-3.4eV n=1-13.6eV 荧光

1、卢瑟福:α 粒子散射实验 ①实验装置由几部分组成 ②实验的结果:α 粒子散射 ③卢瑟福对实验结果的解释:核式结构模型 ④核式结构的不足:认为原子寿命的极短 – 认为原子发射的光谱应该是连续的 ⑤卢瑟福用α 粒子轰击金箔进行α 粒子散射实验的贡献:估算出原子核直径约为型

;由此建立原子核式结构

2、玻尔的原子模

基①电子轨道量子化 2 ②原子能量量子化

态、激发态、定态?原子能量指什么?能级?能级图?电离? ③跃迁: E 初 末 ④玻尔理论的局限性 13.6eV

高二物理知识点总结 第5篇

高二物理知识点总结1

一、起电方法的实验探究

1.物体有了吸引轻小物体的性质,就说物体带了电或有了电荷。

2.两种电荷

自然界中的电荷有2种,即正电荷和负电荷。如:丝绸摩擦过的玻璃棒所带的电荷是正电荷;用干燥的毛皮摩擦过的硬橡胶棒所带的电荷是负电荷。同种电荷相斥,异种电荷相吸。

相互吸引的一定是带异种电荷的物体吗?不一定,除了带异种电荷的物体相互吸引之外,带电体有吸引轻小物体的性质,这里的“轻小物体”可能不带电。

3.起电的方法

使物体起电的方法有三种:摩擦起电、接触起电、感应起电

(1)摩擦起电:两种不同的物体原子核束缚电子的能力并不相同.两种物体相互摩擦时,束缚电子能力强的物体就会得到电子而带负电,束缚电子能力弱的物体会失去电子而带正电.(正负电荷的分开与转移)

(2)接触起电:带电物体由于缺少(或多余)电子,当带电体与不带电的物体接触时,就会使不带电的物体上失去电子(或得到电子),从而使不带电的物体由于缺少(或多余)电子而带正电(负电).(电荷从物体的一部分转移到另一部分)

(3)感应起电:当带电体靠近导体时,导体内的自由电子会向靠近或远离带电体的方向移动.(电荷从一个物体转移到另一个物体)

三种起电的方式不同,但实质都是发生电子的转移,使多余电子的物体(部分)带负电,使缺少电子的物体(部分)带正电.在电子转移的过程中,电荷的总量保持不变。

二、电荷守恒定律

1.电荷量:电荷的多少。在国际单位制中,它的单位是库仑,符号是C。

2.元电荷:电子和质子所带电荷的绝对值1.6×10-19C,所有带电体的电荷量等于e或e的整数倍。(元电荷就是带电荷量足够小的带电体吗?提示:不是,元电荷是一个抽象的概念,不是指的某一个带电体,它是指电荷的电荷量.另外任何带电体所带电荷量是1.6×10-19C的整数倍。)

3.比荷:粒子的电荷量与粒子质量的比值。

4.电荷守恒定律

表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。

表述2:在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。

例:有两个完全相同的带电绝缘金属小球A、B,分别带电荷量为QA=6.4×10-9C,QB=-3.2×10-9C,让两个绝缘小球接触,在接触过程中,电子如何转移并转移了多少?

高二物理知识点总结2

1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3.电阻、电阻定律:R=ρL/S{ρ:电阻(Ω/m),L:导体的长度(m),S:导体横截面积(m2)}

4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R

8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)

电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+

电流关系I总=I1=I2=I3I并=I1+I2+I3+

电压关系U总=U1+U2+U3+U总=U1=U2=U3

功率分配P总=P1+P2+P3+P总=P1+P2+P3+

10.欧姆表测电阻

(1)电路组成(2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得

Ig=E/(r+Rg+Ro)

接入被测电阻Rx后通过电表的电流为

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11.伏安法测电阻

电流表内接法:电压表示数:U=UR+UA

电流表外接法:电流表示数:I=IR+IV

Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真;

Rx的测量值=U/I=UR/(IR+IV)=RVRx(RV+R)

选用电路条件Rx>RA[或Rx>(RARV)1/2]

选用电路条件Rx

12.滑动变阻器在电路中的限流接法与分压接法

限流接法:电压调节范围小,电路简单,功耗小

便于调节电压的选择条件Rp>Rx

电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件Rp

注:

(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;

(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

(5)当外电路电阻等于电源电阻时,电源输出功率,此时的输出功率为E2/(2r);

(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

高二物理知识点总结3

一、电场

1、电场:电荷的周围存在着电场,带电体间的相互作用是通过周围的电场发生的。

2、电场基本性质:对放入其中的电荷有力的作用。

3、电场力:电场对放入其中的电荷有作用力,这种力叫电场力

电荷间的静电力就是一个电荷受到另一个电荷激发电场的作用力。

二、电场的描述

1、电场强度:

(1)定义:把电场中某一点的电荷受到的电场力F跟它的电荷量q的比值,定义为该点的电场强度,简称场强,用E表示。

(2)定义式:

F——电场力国际单位:牛(N)

q——电荷量国际单位:库(C)

E——电场强度国际单位:牛/库(N/C)

(3)方向:规定为正电荷在该点受电场力的方向。

(4)点电荷的电场强度:

(5)物理意义:某点的场强为1N/C,它表示1C的点电荷在此处会受到1N的电场力。

(6)匀强电场:各点场强的大小和方向都相同。

2、电场线:

(1)意义:如果在电场中画出一些曲线,使曲线上每一点的切线方向,都跟该点的场强方向一致,这样的曲线就叫做电场线。

(2)特点:

电场线不是电场里实际存在的线,而是为形象地描述电场而假想的线,因此电场线是一种理想化模型。

电场线始于正电荷,止于负电荷,在正电荷形成的电场中,电场线起于正电荷,延伸到无穷远处;在负电荷形成的电场中,电场线起于无穷远处,止于负电荷。电场线不闭合,不相交,也不是带电粒子的运动轨迹。

在同一电场里,电场线越密的地方,场强越大;电场线越稀的地方,场强越小。

高二物理知识点总结4

一、磁场:

1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用;

2、磁铁、电流都能能产生磁场;

3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;

4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;

二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;

1、磁感线是人们为了描述磁场而人为假设的线;

2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;

3、磁感线是封闭曲线;

三、安培定则:

1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;

2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;

3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;

四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);

五、磁感应强度:磁感应强度是描述磁场强弱的物理量。

1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)

3、磁感应强度的国际单位:特斯拉T,1T=1N/A。m

六、安培力:磁场对电流的作用力;1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。

高二物理知识点总结 第6篇

冲量与动量(物体的受力与动量的变化)

1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同} 3.冲量:I=Ft {I:冲量(N•s),F:恒力(N),t:力的作用时间(s),方向由F决定}

4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式} 5.动量守恒定律:p前总=p后总或p=p´也可以是m1v1+m2v2=m1v1´+m2v2´ 6.弹性碰撞:Δp=0;ΔEK=0 {即系统的动量和动能均守恒}

7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能} 8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}

9.物体m1以v1初速度与静止的物体m2发生弹性正碰: v1´=(m1-m2)v1/(m1+m2)v2´=2m1v1/(m1+m2)

10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)。

11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失。

第八章 电场 一、三种产生电荷的方式:

1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体;

2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;

4、电荷的基本性质:能吸引轻小物体;

二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。

三、元电荷:一个电子所带的电荷叫元电荷,用e表示。

1、e=1.6×10-19c;

2、一个质子所带电荷亦等于元电荷;

3、任何带电物体所带电荷都是元电荷的整数倍;

四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0×109N.m2/kg2)

2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)

3、库仑力不是万有引力;

五、电场:电场是使点电荷之间产生静电力的一种物质。

1、只要有电荷存在,在电荷周围就一定存在电场;

2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;

3、电场、磁场、重力场都是一种物质

六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;

1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;

2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)

3、该公式适用于一切电场;

4、点电荷的电场强度公式:E=kQ/r2

七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;

八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。

1、电场线不是客观存在的线;

2、电场线的形状:电场线起于正电荷终于负电荷;G:用锯木屑观测电场线.DAT(1)只有一个正电荷:电场线起于正电荷终于无穷远;(2)只有一个负电荷:起于无穷远,终于负电荷;(3)既有正电荷又有负电荷:起于正电荷终于负电荷;

3、电场线的作用:

1、表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);

2、表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;

4、电场线的特点:

1、电场线不是封闭曲线;

2、同一电场中的电场线不向交;

九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;

1、匀强电场的电场线是一簇等间距的平行线;

2、平行板电容器间的电是匀强电场;场

十、电势差:电荷在电场中由一点移到另一点时,电场力所作的功WAB与电荷量q的比值叫电势差,又名电压。

1、定义式:UAB=WAB/q;

2、电场力作的功与路径无关;

3、电势差又命电压,国际单位是伏特;

十一、电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功;

1、电势具有相对性,和零势面的选择有关;

2、电势是标量,单位是伏特V;

3、电势差和电势间的关系:UAB= φA-φB;

4、电势沿电场线的方向降低; 时,电场力要作功,则两点电势差不为零,就不是等势面;

4、相同电荷在同一等势面的任意位置,电势能相同;原因:电荷从一点移到另一点时,电场力不作功,所以电势能不变;

5、电场线总是由电势高的地方指向电势低的地方;

6、等势面的画法:相临等势面间的距离相等;

十二、电场强度和电势差间的关系:在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。

1、数学表达式:U=Ed;

2、该公式的使适用条件是,仅仅适用于匀强电场;

3、d是两等势面间的垂直距离;

十三、电容器:储存电荷(电场能)的装置。

1、结构:由两个彼此绝缘的金属导体组成;

2、最常见的电容器:平行板电容器;

十四、电容:电容器所带电荷量Q与两电容器量极板间电势差U的比值;用“C”来表示。

1、定义式:C=Q/U;

2、电容是表示电容器储存电荷本领强弱的物理量;

3、国际单位:法拉 简称:法,用F表示

4、电容器的电容是电容器的属性,与Q、U无关;

十五、平行板电容器的决定式:C=εs/4πkd;(其中d为两极板间的垂直距离,又称板间距;k是静电力常数,k=9.0×10 9N.m2/c2;ε是电介质的介电常数,空气的介电常数最小;s表示两极板间的正对面积;)

1、电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压;

2、当电容器未与电路相连通时电容器两板所带电荷量不变;

十六、带电粒子的加速:

1、条件:带电粒子运动方向和场强方向垂直,忽略重力;

2、原理:动能定理:电场力做的功等于动能的变化:W=Uq=1/2mvt2-1/2mv02;

3、推论:当初速度为零时,Uq=1/2mvt2;

4、使带电粒子速度变大的电场又名加速电场;

九章 恒定电流

一、电流:电荷的定向移动行成电流。

1、产生电流的条件:(1)自由电荷;(2)电场;

2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向;

注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极;

3、电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;(1)数学表达式:I=Q/t;(2)电流的国际单位:安培A(3)常用单位:毫安mA、微安uA;(4)1A=103mA=106uA

二、欧姆定律:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比;

1、定义式:I=U/R;

2、推论:R=U/I;

3、电阻的国际单位时欧姆,用Ω表示; 1kΩ=103Ω,1MΩ=106Ω;

4、伏安特性曲线:

三、闭合电路:由电源、导线、用电器、电键组成;

1、电动势:电源的电动势等于电源没接入电路时两极间的电压;用E表示;

2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压;

3、内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻;

4、电源的电动势等于内、外电压之和; E=U内+U外;U外=RI;E=(R+r)I

四、闭合电路的欧姆定律:闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比;

1、数学表达式:I=E/(R+r)

2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义;

3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路;

五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小; 六:导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导;

第十章 磁场

一、磁场:

1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用;

2、磁铁、电流都能能产生磁场;

3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;

4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;

二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;

1、磁感线是人们为了描述磁场而人为假设的线;

2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;

3、磁感线是封闭曲线;

三、安培定则:

1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;

2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;

3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;

四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);

五、磁感应强度:磁感应强度是描述磁场强弱的物理量。

1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL

2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)

3、磁感应强度的国际单位:特斯拉 T,1T=1N/A。m

六、安培力:磁场对电流的作用力;

1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。

2、定义式F=BIL(适用于匀强电场、导线很短时)

3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。

七、磁铁和电流都可产生磁场;

八、磁场对电流有力的作用;

九、电流和电流之间亦有力的作用;(1)同向电流产生引力;(2)异向电流产生斥力;

十、分子电流假说:所有磁场都是由电流产生的;

十一、磁性材料:能够被强烈磁化的物质叫磁性材料:(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器、(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁;

十二、磁场对运动电荷的作用力,叫做洛伦兹力

1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;

(1)洛仑兹力F一定和B、V决定的平面垂直。(2)洛仑兹力只改变速度的方向而不改变其大小(3)洛伦兹力永远不做功。

2、洛伦兹力的大小(1)当v平行于B时:F=0(2)当v垂直于B时:F=qvB

一、质点的运动(1)------直线运动 1)匀变速直线运动

1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}

9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。注:

(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式;(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。2)自由落体运动

1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。(3)竖直上抛运动

1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g(从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动、万有引力 1)平抛运动

1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。2)匀速圆周运动

1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。3)万有引力

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11N•m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量} 5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径} 注:(1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

物理知识在白炽灯泡上的11问 第7篇

答:白炽灯泡主要由灯丝、玻璃壳体、灯头等几部分组成。灯泡中的金属材料都是导体,而玻璃壳体,灯头的塑料部分是绝缘体。

问题2:白炽灯泡是根据什么原理制成的?

答:白炽灯泡是根据电流的热效应原理制成的。灯泡接上额定电压后,电流通过灯丝而被加热到白炽状态(2 000℃以上),因而发热发光。白炽灯工作时,将电能转化为内能和光能。

问题3:灯丝由什么材料制成?

答:灯丝是由电阻率大、熔点高的金属钨制成的。

问题4:选用钨作为灯丝,技术上需克服什么问题?

答:钨是一种金属元素,易氧化,且温度越高,氧化越快,为防止钨在高温下的氧化,灯泡都抽成真空。另外,钨还能产生升华和凝华现象。60W以上的灯泡充入氮、氩等惰性气体,可阻碍其在高温下的升华。

问题5:灯丝的“热”是怎样向外传递的?

答:热传递的方式有传导、对流、辐射。白炽灯的灯丝产生的热是通过辐射的方式向外传递的。为提高灯丝的温度,增大灯丝的热辐射量,提高发光效率,白炽灯的额定功率越大,灯丝绕成的螺旋也就越粗。

问题6:用久了的灯泡为什么会发黑变暗?

答:在技术上虽已采取了阻碍钨在高温下升华的措施,但事实上钨还能在高温下升华,由固态直接变为气态。热的钨蒸气遇冷后又凝华为固态晶体附在灯的内表面上,所以灯泡会发黑变暗。另外,升华和凝华的结果使得灯丝变细,由公式R=ρ l/S 可分析得到,灯丝电阻变大,而灯两端的电压不变,P=U2/R ,所以灯的功率变小,亮度变暗。

问题7:为什么灯泡总是在开灯的瞬间容易损坏?

答:导体的电阻与导体的材料、横截面积、长度和温度有关。一般金属电阻都随温度的升高而增大,灯丝钨也同样如此。开灯的瞬间,灯丝温度低,电阻小,功率大,所以灯丝易出现过热而熔断。工作一段时间后,灯丝温度升高,阻值随温度的升高而增大,灯的电流和功率接近额定值,因而不容易损坏。一只“220V、40W”的白炽灯由公式R=U2/P计算得到的热态电阻是1 210Ω,而不工作的冷态电阻实测值约为100Ω。

问题8:断丝的灯泡再搭上,为什么比原来亮,且更容易损坏?

答:断丝的灯泡再搭上,灯丝的长度减小,电阻变小。工作电压不变,因而工作电流、功率都增大,亮度比原来亮。由于此时灯的实际功率大于额定功率,因而灯丝过热更易熔断。

问题9:为什么白炽灯的外表面都是球形的曲面?

答:真空元件都有一个抗大气压强的问题。白炽灯的里面是真空,灯丝的热和光要透过玻璃向外辐射,玻璃不能很厚,因此,薄的凸形的玻璃曲面可以大大增强抵抗大气压的能力。

问题10:根据灯丝的长短和粗细,如何比较额定电压相同而额定功率不同的两只白炽灯泡?

答:照明电路中的白炽灯,额定电压都相同,根据公式P=U2/R和R=ρ l/S这两个公式可知道,灯丝粗长度短,灯丝电阻小,额定功率大。

问题11:白炽灯和日光灯都是常用的照明灯,主要有什么区别?

答:白炽灯属于热辐射光源,在电流通过钨丝发热发光的过程中,只有一小部分电能转变为光能,大部分的电能转化为内能。因此,白炽灯又称为“热灯”,这种灯的特点是发光效率低、寿命短,但制造简单、价格低,使用方便。

高二物理知识点总结 第8篇

①动量是矢量,动能是标量。

②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。

比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。所以动量和动能是从不同侧面反映和描述机械运动的物理量。

动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。这些区别在使用中一定要注意。

●碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。

以物体间碰撞形式区分,可以分为“对心碰撞”(正碰),而物体碰前速度沿它们质心的连线;“非对心碰撞”——中学阶段不研究。

以物体碰撞前后两物体总动能是否变化区分,可以分为:“弹性碰撞”。碰撞前后物体系总动能守恒;“非弹性碰撞”,完全非弹性碰撞是非弹性碰撞的特例,这种碰撞,物体在相碰后粘合在一起,动能损失最大。

高二物理知识点总结 第9篇

1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:

(1)均匀变化的磁场产生稳定电场

(2)非均匀变化的磁场产生变化电场

2、电磁场理论的核心之二:变化的电场产生磁场麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场◎理解:

(1)均匀变化的电场产生稳定磁场

(2)非均匀变化的电场产生变化磁场

3、麦克斯韦电磁场理论的理解:

恒定的电场不产生磁场

均匀变化的电场在周围空间产生恒定的磁场

振荡磁场产生同频率的振荡电场

4、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是相互联系着的,形成不可分割的统一体,这就是电磁场。

5、电磁波:电磁场由发生区域向远处的传播就是电磁波。

6、电磁波的特点:

(1)电磁波是横波,电场强度E和磁感应强度B按正弦规律变化,二者相互垂直,均与波的传播方向垂直。

(2)电磁波可以在真空中传播,速度和光速相同、v=λf

(3)电磁波具有波的特性

高二物理知识点总结 第10篇

1、了解常见的静电现象。

2、静电的产生

(1)摩擦起电:用丝绸摩擦的玻璃棒带正电,用毛皮摩擦的橡皮棒带负电。

(2)接触起电:

(3)感应起电:

3、同种 电荷相斥,异种电荷相吸。

二、物质的电性及电荷守恒定律

1、物质的原子结构:物质是由分子,原子组成,原子由带正电的原子核以及环绕原子核运动的带负电的电子组成的。而原子核又是由质子和中子组成的。质子带正电、中子不带电。在一般情况下,物体内部的原子中电子的数目等于质子的数目,整个物体不带电,呈电中性。

2、电荷守恒定律:任何孤立系统的电荷总数保持不变。在一个系统的内部,电荷可以从一个物体传到另一个物体。但是,在这个过程中系统的总的电荷时不改变的。

3、用物质的原子结构和电荷守恒定律分析静电现象

(1)分析摩擦起电

(2)分析接触起电

(3)分析感应起电

4、物体带电的本质:电荷发生转移的过程,电荷并没有产生或消失。

例题分析:

1、下列说法正确的是( A )

A.摩擦起电和静电感应都是使物体的正负电荷分开,而总电荷量并未变化

B.用毛皮摩擦过的硬橡胶棒带负电,是摩擦过程中硬橡胶棒上的正电荷转移到了毛皮上

C.用丝绸摩擦过的玻璃棒带正电荷是摩擦过程中玻璃棒得到了正电荷

D.物体不带电,表明物体中没有电荷

2、如图8-5所示,把一个不带电的枕型导体靠近带正电的小球,由于静电感应,在a,b端分别出现负、正电荷,则以下说法正确的是:( C )

A.闭合K1,有电子从枕型导体流向地

B.闭合K2,有电子从枕型导体流向地

C.闭合K1,有电子从地流向枕型导体

上一篇:考博英语写作下一篇:生活中的雨过天晴作文