酚醛树脂复合材料

2024-07-22

酚醛树脂复合材料(精选6篇)

酚醛树脂复合材料 第1篇

酚醛树脂是最早工业化的合成树脂,已经有100年的历史。由于它原料易得,合成方便以及树脂固化后性能能满足很多使用要求,因此在模塑料、绝缘材料、涂料、木材粘接等方面得到广泛应用。近年来,随着人们对安全等要求的提高,具有阻燃、低烟、低毒等特性的酚醛树脂重新引起人们重视,尤其在飞机场、火车站、学校、医院等公共建筑设施及飞机的内部装饰材料等方面的应用越来越多[1]。

与不饱和聚酯树脂相比,酚醛树脂的反应活性低,固化反应放出缩合水,使得固化必须在高温高压条件下进行,长期以来一般只能先浸渍增强材料制作预浸料(布),然后用于模压工艺或缠绕工艺,严重限制了其在复合材料领域的应用。为了克服酚醛树脂固有的缺陷,进一步提高酚醛树脂的性能,满足高新技术发展的需要,人们对酚醛树脂进行了大量的研究,改进酚醛树腊的韧性、提高力学性能和耐热性能、改善工艺性能成为研究的重点。近年来国内相继开发出一系列新型酚醛树脂,如硼改性酚醛树脂、烯炔基改性酚醛树脂、氰酸酯化酚醛树脂和开环聚合型酚醛树脂等。可以用于smc/bmc、rtm、拉挤、喷射、手糊等复合材料成型工艺。本文结合作者的研究工作,介绍了酚醛树脂的改性研究进展及rtm、拉挤等酚醛复合材料成型工艺的研究应用情况。

1酚醛树脂的改性研究

1.1聚乙烯醇缩醛改性酚醛树脂

工业上应用得最多的是用聚乙烯醇缩醛改性酚醛树脂,它可提高树脂对玻璃纤维的粘结力,改善酚醛树脂的脆性,增加复合材料的力学强度,降低固化速率从而有利于降低成型压力。用作改性的酚醛树脂通常是用氨水或氧化镁作催化剂合成的苯酚甲醛树脂。用作改性的聚乙烯醇缩醛一般为缩丁醛和缩甲乙醛。使用时一般将其溶于酒精,作为树脂的溶剂。利用缩醛和酚醛羟甲基反应合成的树脂是1种优良的特种油墨载体树脂。

1.2聚酰胺改性酚醛树脂

经聚酰胺改性的酚醛树脂提高了酚醛树脂的冲击韧性和粘结性。用作改性的聚酰胺是一类羟甲基化聚酰胺,利用羟甲基或活泼氢在合成树脂过程中或在树脂固化过程中发生反应形成化学键而达到改性的目的。用该树脂制成的渔竿等薄壁管具有优良的力学性能。

1.3环氧改性酚醛树脂

用热固性酚醛树脂和双酚a型环氧树脂混合物制成的复合材料可以兼具2种树脂的优点,改善它们各自的缺点,从而达到改性的目的。这种混合物具有环氧树脂优良的粘结性,改进了酚醛树脂的脆性,同时具有酚醛树脂优良的耐热性,改进了环氧树脂耐热性较差的缺点。这种改性是通过酚醛树脂中的羟甲基与环氧树脂中的羟基及环氧基进行化学反应,以及酚醛树脂中的酚羟基与环氧树脂中的环氧基进行化学反应,最后交联成复杂的体型结构来达到目的,是1种应用最广的酚醛增韧方法。

1.4有机硅改性酚醛树脂

有机硅树脂具有优良的耐热性和耐潮性。可以通过使用有机硅单体与线性酚醛树脂中的酚羟基或羟甲基发生反应来改进酚醛树脂的耐热性和耐水性。

采用不同的有机硅单体或其混合单体与酚醛树脂改性,可得不同性能的改性酚醛树脂,具有广泛的选择性。

用有机硅改性酚醛树脂制备的复合材料可在200-260℃下工作应用相当长时间,并可作为瞬时耐高温材料,用作火箭、导弹等烧蚀材料。

1.5硼改性酚醛树脂

由于在酚醛树脂的分子结构中引入了无机的硼元素,使得硼改性酚醛树脂的耐热性、瞬时耐高温性、耐烧蚀性和力学性能比普通酚醛树脂好得多。它们多用于火箭、导弹和空间飞行器等空间技术领域作为优良的耐烧蚀材料。

最常见的是利用硼酸与苯酚反应,生成硼酸苯酯,再与多聚甲醛或甲醛水溶液反应,生成1个含硼的酚醛树脂。硼酚醛树脂固化物在900℃的残碳率达到70%,分解峰温度高达625℃。此外,硼酚醛分子结构中引进了柔性较大的-b-o-键,韧性和力学性能有所提高;固化产物中含硼的三向交联结构,使其耐烧蚀性能和耐中子辐射性能优于一般酚醛树脂。制得的碳布硼酚醛层压板的弯曲强度达到420

mpa,剪切强度高达39.7mpa;氧—乙炔质量烧蚀率仅0.0364

g/s,比碳/钡酚醛材料低20%[2]。利用甲醛水溶液法合成的双酚a型硼

酚醛树脂的耐水性有了进一步提高。上世纪70年代,北京玻钢院复合材料有限公司(北京251厂)同河北大学一道成功开发了硼酚醛树脂,但近几年才真正批量化生产,目前每年产量大约20t。

1.6橡胶改性酚醛树脂

采用共混方式将丁腈橡胶加到酚醛树脂中,是有效的增韧方法。橡胶加入量通常为树脂质量的2%~10%,冲击韧性可以提高100%以上。由于二者相溶性差,所以可以利用端羧基或端胺基丁腈橡胶与酚醛羟甲基反应,合成反应型橡胶改性酚醛树脂。该树脂可广泛用于航空航天等领域。

1.7炔基或烯丙基改性酚醛树脂

一般以线型酚醛为母体,在酚氧位或苯环上引入苯乙炔基、乙炔基、炔丙基等。其固化主要是通过不同官能团的聚合来实现,改变了传统酚醛缩合固化方式。乙炔基和炔丙基的聚合相对较容易,而苯乙炔基需要较高的固化温度。除了炔丙基酚醛树脂部分的扩链而有较高的分子质量外,这些聚合物的分子质量都较低。这些通过加成聚合固化的酚醛树脂与传统的热固性树脂相比有更好的热稳定性和更高的残碳率[3]。

中国科学院化学所进行了炔丙基化酚醛树脂的合成研究,所制备的该类树脂具有良好的工艺性,100℃的黏度不超过400

mpa?s;树脂可以在200-250℃进行热固化;热固化物耐热性比传统酚醛树脂有明显改进,dma表明树脂固化物具有高达370℃的玻璃化温度,tga则表明其初始热分解温度在400℃以上[4,5]。

利用双马来酰亚胺与烯丙基化线型酚醛树脂(bman)共聚可制备用于rtm成型的耐高温树脂。该树脂在100℃/8

h内的黏度400℃。

石英纤维/bman树脂复合材料也拥有较好的耐高温性能,可以在350℃下使用[6]。

1.8酚醛氰酸酯树脂

酚醛氰酸酯一般是指以线型酚醛树脂为骨架,酚羟基被氰酸酯官能团所替代而形成的酚醛树脂衍生物,在热和催化剂作用下发生三环化反应,生成含有三嗪环的高交联密度网络结构大分子。其固化反应为自固化体系,固化时无挥发性小分子产生、收缩率低。该种树脂兼备丁环氧树脂的加工工艺性能、双马来酰亚胺的高温性能和酚醛树脂的阻燃特性。同时该树脂还具有优良的介电性能,是制备高速数字及高频用印刷电路板及大功率电机绝缘配件的极佳材料,同时也是制造商高性能透波结构材料和航空航天用高性能结构复合材料最理想的基体材料[7]。

北京玻璃钢研究设计院联合西北工业大学等单位[8,9],采用改进的酚—溴化氰法合成了酚醛型氰酸酯单体树脂,并用红外、凝胶实验及热失重分析(tga)对其进行了结构和性能的表征。与传统的酚-溴化氰法相比,改进的酚-溴化氰法得到了性能稳定的合成产物,该产物在200℃时的凝胶时间为6.5min,在凝胶时无冒烟、发黑现象,固化树脂在800℃时氮气氛下的残碳率为63.6%。

637所、华东理工大学等单位也进行了该类型树脂的研究工作。

1.9苯恶嗪树脂

以酚类化合物、胺类化合物和甲醛为原料合成一类含杂环结构的中间体苯并恶嗪。在加热和/或催化剂的作用下,苯并恶嗪中间体可发生开环聚合,生成含氮且类似酚醛树脂的网状结构。通常我们将这种新型树脂称为开环聚合酚醛树脂。这种苯并恶嗪树脂在成型固化过程中没有小分子释放。开环聚合过程中无低分子物释放,改善了酚醛树脂的成型加工性,制品孔隙率低、性能大大提高。

1990年以来,四川大学[10,11]先后对苯并恶嗪的合成、性能、开环反应机理、反应动力学、固化过程中的体积变化、计算机分子模拟、复合材料制备、性能研究和应用等多方面进行了系统及广泛的研究。

1.10二甲苯改性酚醛树脂

二甲苯改性酚醛树脂是在酚醛树脂的分子结构中引入疏水性结构的二甲苯环,由此改性后的酚醛树脂的耐水性、耐碱性、耐热性及电绝缘性能得到改善。

1.11二苯醚甲醛树脂

二苯醚甲醛树脂是用二苯醚代替苯酚和甲醛缩聚而成的,二苯醚甲醛树脂的玻璃纤维增强复合材料具有优良的耐热性能,可用作h级绝缘材料,它还具有良好的耐辐射性能,吸湿性也很低。

1.12双马来酰亚胺改性酚醛树脂

在酚醛树脂中引入耐热性优良的双马来酰亚胺,因两者之间发生氢离子移位加成反应,所以对部分酚羟基具有隔离或封锁作用,使改性树脂的热分解温度显著提高,对于改善摩阻材料的耐高温性能有很大作用。

双马来酰亚胺改性酚醛树脂有突出的耐热性,热变形温度(hdt)为273℃,玻璃化温度(tg)为产量及使用量增长非常迅速。

国外之所以能够广泛采用酚醛玻璃钢的主要原因,一是该类产品在性能方面有其独特的优点;二是酚醛玻璃钢的制作及研究开发工作比较成熟,几乎涉及各种工艺方法。与之相比,我国在酚醛玻璃钢的制作及其应用方面,与国外存在着很大的差距,制作成型方法不多,仅限于模压、布带缠绕,及近期开发的手糊工艺等。rtm、拉挤等酚醛玻璃钢成型工艺方法,才刚刚起步,但表现出很强的发展势头。

2.1rtm成型工艺(resintransfermolding)

rtm成型工艺[12]基本原理是将玻璃纤维或其他增强材料铺放到闭模的模腔内,用压力(或真空辅助)将树脂胶液注入模腔,浸透增强材料,然后固化,脱模成型制品。rtm成型工艺是从湿法铺层和注塑工艺演变而来的1种新的复合材料成型工艺。rtm工艺通常使用增强材料形式有短切纤维毡、连续纤维毡、三维织物或特制的复合毡等,增强材料的种类有玻璃纤维、芳纶纤维、碳纤维等。采用不饱和聚酯树脂为基体的rtm成型工艺已经得到广泛应用,对树脂体系、增强材料铺覆、流变特性、模具设计制造、制品结构设计、专用设备等

方面都有系统深入研究。

而酚醛树脂用于rtm工艺在国内近几年才出现[13]。rtm生产工艺通常要求树脂注射温度下的黏度约为250-500

mpa?s,以使纤维能很快地浸透,并避免铺层或织物结构被破坏。树脂固化过程应没有或尽量减少小分子产生,以减少制品缺陷,提高各种性能。传统的酚醛树脂由于通过缩合固化,固化过程中有小分子放出,容易造成制品缺陷,所以不太适合rtm工艺成型。

目前国内对酚醛和其他高性能树脂rtm成型工艺的需求主要来自军用产品。但由于缺少专用的rtm酚醛树脂,只能利用传统的酚醛树脂进行注射,固化时仍采用加压方式,目前已经开发出许多制品,取得了较好的效果。rtm已经成为航空航天先进复合材料重要的成型工艺之一。三江集团的佘平江[14]等人,利用rtm成型工艺方法,使用氨酚醛树脂复合了高强玻璃纤维三维编织体,分别制作了拉伸强度试片、弯曲强度试片、氧乙炔烧蚀试片,试片的纤维体积含量为55%。性能测试结果为:拉伸强度为744mpa,拉伸模量为40.6gpa,断裂应变2.07%,弯曲强度为456.4mpa,弯曲模量31.8gpa,其力学性能接近于钢,烧蚀

性能大大好于模压和缠绕复合材料。冯志海[15]等人在这方面也作了深入研究,并应用于产品生产中。除传统的氨酚醛外,华东理工大学开发的高碳酚醛树脂[16]也是针对rtm工艺开发的改性氨酚醛树脂,其具有较高的碳含量,较宽的工艺操作平台。但仍采用传统的缩合固化方式,有小分子释放,需采用加压成型。

为适应特种用途的需求,开发rtm专用改性酚醛树脂成为研究热点。中科院化学所研究的烯丙基改性酚醛和双马共聚树脂、北京玻钢院开发的氰酸酯改性酚醛(酚三嗪)、四川大学研究的开环酚醛(苯并恶嗪)均为其代表。国内其他单位在上述品种的开发上也做了许多工作,取得了很好效果。但针对酚醛树脂体系的注射工艺、流变特性等方面的研究,还没有深入进行。

我院开发的氰酸酯改性酚醛[9]熔体黏度在100℃/2h内无变化,固含量>98%,固化温度220℃,室温储存期6个月,tg在350-400℃之间,冲击强度比普通酚醛提高了约1.5~3倍,非常适于rtm成型工艺。

2)酸催化酚醛拉挤模具的耐腐蚀问题

在酚醛拉挤成型工艺的工业化生产中,首先遇到的1个问题,是模具的耐酸腐蚀问题。在生产实践中,往往只需几个小时,镀铬表面层就会遭到酸性腐蚀,从工具钢的表面剥落下来。有人企图通过在酚醛树脂内加入合适的内脱模剂,以解决模具的耐腐蚀问题。但试验结果发现,使用内脱模剂后,铬层与工具钢模具仍然会剥离下来,仅仅是剥离的时间延长一些而已。丹麦的纤维管道a/s公司的专利技术,可在不损坏模具的情况下,生产出高质量的拉挤成型件。意大利tof玻璃公司和法国permali公司,也均采用这项专利生产酸催化酚醛玻璃钢拉挤件的制品。在欧洲,大多采用酸催化酚醛拉挤工艺,也有一些采用高温固化的酚醛拉挤工艺。

3)高温固化酚醛树脂的固化及高黏度问题

为避免酸催化酚醛树脂对模具的腐蚀问题,有人曾对高温固化酚醛树脂用于拉挤工艺做过试验。些酚醛树脂,在130-150℃温度下就能很快地固化。例如砂纸用的树脂层,在130℃温度下经过5~6min即可固化。因而拉挤成型工艺采用高温固化的酚醛树脂完全是有可能的。通常,高温固化酚醛树脂的黏度较高,约为4~6pa?s。若为改善制品表面质量,需加入填料,黏度还会增大,这将会对拉挤工艺带来不利的影响。这种情况,是拉挤成型工艺所不希望的。为此,有人企图寻找各种不同的单体,以改变酚醛的化学组分结构。其中较为成功的1个例子,就是使用间苯二酚,既加快了固化速度,又不至于增加酚醛树脂的黏度和脱水量。

bp化学公司和plenco公司采用间苯二酚催化技术,这种方法已被美国的一些公司所采用,例如creative拉挤公司[18]。酚醛树脂拉挤成型时,必须有足够长的模具,较高的成型温度,并且最好直接往模具内注入树脂,而不是往胶液槽体内注入树脂。美国indspec公司开发的拉挤用酚醛树脂2074a/2026b[l9,20],已经申请了专利,用其制作的玻璃钢产品,j.v.gauchfl等人研究了酚醛拉挤工艺参数对拉挤制品质量的影响。

把经过配制混合的树脂,在成型模的前端位置上,在压力的作用下注射入模。这是1种新的拉挤工艺形式,不但省去了树脂浸胶槽,而且增强材料入模前保持为干燥状态。这种工艺方法也称为“注射拉挤工艺”(ip)。这种注射拉挤工艺方法有以下2个优点:一是树脂组分配料较为准确,可利用计量泵连续计量,以避免手工混合带来的误差;二是树脂浸渍槽由开放形式变成了全封闭形式,大大降低了树脂溅散的可能性,从而改善了拉挤工艺的工作环境。

如上所述,酚醛拉挤工艺还存在着不少的技术问题,另外,酚醛拉挤制品还不十分完美。目前还在寻找1种可在模腔内加速固化过程,但对模具钢材不会产生腐蚀作用的催化剂。最理想的是在室温下活性很低(甚至无活性)的催化剂,这样就可以延长酚醛树脂在胶槽中的贮存时间。实际使用时,先把催化剂加入到胶槽内,而后在拉挤模的高温条件下经过水解或其他反应分解,产生出反应所需的自由酸。除此以外,经过试验,一些室温下不溶的,或者难溶的,但在拉挤模腔高温条件下,溶解度和活性都变得很强的弱碱,是非常适合用作为酚醛拉挤工艺的催化剂。

另外,有些生产厂商还经常对不锈钢模具的内表面,进行必要的硬度处理,以达到具有高光洁表面和耐磨损性的要求。

使用拉挤脱模剂,也可有效地减少酸性对拉挤模具的侵蚀作用。

我公司开发的采用间苯二酚的非酸固化拉挤专用酚醛体系已经通过了工艺试验。关于界面性能、固化制度、模具设计等方面的研究还在进行中。

2.3smc/bmc模压成型工艺

smc/bmc模压工艺是将一定量的smc/bmc模压料放人金属对模中,在一定温度和压力下成型制品的1种方法。最早开发的smc产品是up-smc(即不饱和聚酯片状模塑料),现在pf-smc(即酚醛片状模塑料)作为1种玻璃纤维增强材料已经被国外广泛应用于宇航、建筑和运输等领域。pf-smc的制备方法是将酚醛树脂糊在浸渍机上浸渍无序短切玻璃纤维(一般玻璃纤维长度为1.5~50mm,用量为酚醛树脂糊质量的20%~50%),用易剥离的聚乙烯薄膜为隔膜进行连续生产,其生产工艺与up-smc相同,生产出的pf-smc需要在30~70℃的恒温内经过24~100h的熟化处理。pf-smc固化物的力学性能与up-smc的相比,室温下大体相同,但是高温下,pf-smc固化物具有更优异的力学性能,它在150℃下热老化100h,其拉伸强度和弯曲强度不发生任何变化,在200℃时,弯曲强度的保持率为73%,弯曲模量的保持率为77%,而up-smc固化物的弯曲强度和弯曲模量的保持率却只有29%和43%[21,22]北京玻钢院复合材料有限公司[22]八五期间就成功开发了酚醛树脂smc整套工艺技术和制品,包括专用树脂、增稠体系、片材组分、模压工艺等。

2.4其他成型工艺

酚醛复合材料还有连续层压成型工艺、纤维缠绕成型工艺、预浸渍模压工艺、低压模压成型工艺、手糊成型工艺、喷涂成型工艺等成型方法。手糊工艺是国外最常用的酚醛玻璃钢生产工艺之一。通常采用酸固化型酚醛树脂,其催化剂用量约为5%~8%,黏度约为600-700mpa?s。加入催化剂,通常能降低树脂的黏度,固化时间约为10~30min,比聚酯树脂的还要短一些。实践证明,只要经过认真涂敷,可以制得尺寸比较大的酚醛玻璃钢制品。涂敷好的制品件,应在适当的温度下进行固化。由于短切原丝毡的某些偶联剂,不能溶于酚醛树脂,因此并不是所有适用于聚酯树脂的玻璃纤维,都能适用于酚醛树脂。手糊成型法生产的酚醛玻璃钢制件,尺寸可以很大,例如英吉利海峡隧道列车的司机室,每个达240kg。常熟在这方面的开发应用处于国内领先地位。

另外,国外喷涂酚醛树脂在汽车防热板方面的应用量也很大。许多生产厂商经常采用与手糊工艺相近的中等黏度酚醛树脂,但混合有较强的催化剂,以加快其成型速度,减少成型时间。在喷涂酚醛树脂时,必须对喷涂聚酯的机器稍加改进,且不能使用外部混合喷枪,并要求催化剂泵输送的催化剂体积,达到树脂体积的10%左右,其喷涂部件必须能够耐化学品的腐蚀。当前,jaguar公司所用的防热板,都是由scandura

sealtex公司,采用这种喷涂沉积工艺方法所制成。

3结语

近年来,随着对酚醛树脂需求的不断增加,在研发上的投入不断增大,新的树脂品种、新的成型工艺、新的合成技术不断出现,对于酚醛发泡、酚醛蜂窝、酚醛复合材料回收等的研究都取得了很大进展。我们有理由相信,酚醛树脂及其复合材料将在许多领域发挥其更大的作用,酚醛树脂这一古老的产品必将重新焕发青春。

酚醛树脂复合材料 第2篇

摘要:

树脂基复合材料具有良好的成型工艺性、高的比强度、高的比模量、低的密度、抗疲劳性、减震性、耐腐蚀性、良好的介电性能、较低的热导率等特点,广泛应用于各种武器装备,在军事工业中,对促进武器装备的轻量化、小型化和高性能化起到了至关重要的作用。由于与许多材料相比具有独特的性能,树脂基复合材料在航空航天、汽车、电子、电器、医药、建材等行业得到广泛的应用。目前,随着复合材料工业的迅速发展,树脂基复合材料正凭借它本身固有的轻质高强、成型方便、不易腐蚀、质感美观等优点,越来越受到人们的青睐。关键字:树脂基复合材料,材料性能,应用领域

一、前言

复合材料在国民经济发展中占有极其重要的地位,以至于人们把一个国家和地区的复合材料工业水平看成衡量其科技与经济实力的标志之一[1]。树脂基复合材料是以纤维为增强剂、以树脂为基体的复合材料,所用的纤维有碳纤维、芳纶纤维、超高模量聚乙烯纤维等,所采用的基体主要有环氧树脂、酚醛树脂、乙烯基酯树脂等有机材料。其中热固性树脂是以不饱和聚脂、环氧树脂、酚醛树脂等为主;热塑性树脂是指具有线型或分枝型结构的有机高分子化合物。

树脂基复合材料的特点:各向异性(短切纤维复合材料等显各向同性);不均质或结构组织质地的不连续性;呈粘弹性;纤维体积含量不同,材料的物理性能差异;影响质量因素多,材料性能多呈分散性。树脂基复合材料的优点如下:(1)密度小,约为钢的1/5,铝合金的1/2,且比强度和比模量高。这类材料既可制作结构件,又可用于功能件及结构功能件。(2)抗疲劳性好:一般情况下,金属材料的疲劳极限是其拉伸强度的20~50%,CF增强树脂基复合材料的疲劳极限是其拉伸强度的70~80%;(3)减震性好;(4)过载安全性好;(5)具有多种功能,如:耐烧蚀性好、有良好的耐摩擦性能、高度的电绝缘性能、优良的耐腐蚀性能、有特殊的光学、电学、磁学性能等;(6)成型工艺简单;(7)材料结构、性能具有可设计性。

以树脂基复合材料为代表的现代复合材料随着国民经济的发展,已广泛应用于各个领域。众所周知,树脂基复合材料首先应用于航空航天等国防工业领域[2-3],而后向民用飞机发展。随着社会的发展,树脂基复合材料在人类物质生活中的需求量越来越大,并逐渐成为主要应用领域,且研究投入越来越大。树脂基复合材料除在航空航天、国防科技领域应用外,其他行业领域的应用也十分广泛。

二、综述树脂基复合材料的应用

目前常用的树脂基复合材料有:热固性树脂、热塑性树脂,以及各种各样改性或共混基体。热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。随着复合材料工业的迅速发展,树脂基复合材料以其优越的性能和特点将应用于各个领域。以下将简介树脂基复合材料的应用。

2.1热固性树脂基复合材料的应用

复合材料的树脂基体,目前以热固性树脂为主。早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。60年代美国在F-

4、F-11等军用飞机上采用了硼纤维增强环氧树脂作方向舵、水平安定面、机翼后缘、舵门等。在导弹制造方面,50年代后期美国中程潜地导弹“北极星A-2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A-3”,使壳体重量较钢制壳体轻50%,从而使“北极星A-3”导弹的射程由2700千米

增加到4500千米。70年代后采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻[4-6]。碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到越来越广泛的应用。

例如树脂基复合材料在弹体上的应用[7]。弹体是用于构成导弹外形 连接和安装弹上各部分系统且能承受各种载荷的整体结构。采用树脂基复合材料做弹体的主要目的是为了最大限度的减轻导弹的结构质量、简化生产工艺、降低成本。进一步提高导弹战术性能更重要的是,采用树脂基复合材料技术有利于整体成形有复杂形状、光滑表面和气动外形流畅的弹体,可以形成金属壳体难飞航导弹,以达到的隐身性能。目前,国外巡航导弹在设计研制时,都特别重视大量采用树脂基复合材料结构。

2.2热塑性树脂基复合材料的应用

近年来,由于热塑性树脂基复合材料具有韧性好,疲劳强度高,耐湿热性好,预浸料可以长期存放,可以重复成形,环境污染少等优点,使其在航空航天、汽车、电器、电子、建材、医药等行业得到广泛的应用。随着PPO、PEEK、PPS、PSF等高性能热塑性树脂的开发得到快速发展,使得热塑性复合材料的应用更加广泛,其中在汽车行业中的应用最为突出[8]。当前,世界汽车材料技术发展的主要方向是轻量化和环保化。减轻汽车自重是降低汽车排放,提高燃烧效率的最有效措施之一,汽车的自重每减少10%,燃油消耗可降低6%~8%。为此,增加热塑性复合材料在汽车中的使用量,便成为降低整车成本及其自重,增加汽车有效载荷的关键。

由于热塑性树脂基复合材料具有比强度和比刚度高,断裂韧性、疲劳强度、耐热、耐腐蚀等性能好,以及可重复成型等优点,在飞机上也得到一定应用[9-10]。在航空工业中,树脂基复合材料用于制造飞机机翼、机身、鸭翼、平尾和发动机外涵道;在航天领域,树脂基复合材料不仅是方向舵、雷达、进气道的重要材料,而且可以制造固体火箭发动机燃烧室的绝热壳体,也可用作发动机喷管的烧蚀防热材料。近年来研制的新型氰酸树脂复合材料具有耐湿性强、微波介电性能佳、尺寸稳定性好等优点,广泛用于制作宇航结构件、飞机的主次承力结构件和雷达天线罩。美国F-22飞机热塑性复合材料使用量大于1%,其它民用飞机上热塑性复合材料的使用量则更多。

由于热塑性复合材料具有独特的优点,使其在军事领域中也得到广泛应用。主要有枪用材料、弹用材料、以及地面车辆、火炮、舰船等部分零部件用材料。另外,热塑性复合材料在其它领域的应用也十分广泛。在建筑行业,产品有管件阀门、管道、百叶窗等部件;在机械工业方面,产品有水泵叶轮、轴承、滚轮、电机风扇、发动机冷却风扇空气滤清器、音响零件等;在油田领域,近年来,热塑性复合材料在油田中应用也越来越广泛,其中用于扶正器的玻纤增强PA材料年消耗量近万吨[11-13]。另外,树脂基复合材料在电子、能源、生物医学、体育运动器材、船舶制造等领域也有广泛的应用。

三、展望

树脂基复合材料良好的发展和应用前景决定了人们将继续重视发展树脂基复合材料的研究与开发。树脂基体的发展趋势是继续提高耐热和耐湿热性,以满足战机导弹超声速巡航及未来用材需求,目标是在可成型大型复杂构件的前提下,基体的湿态耐热进一步提高。在开发高性能增强纤维,如纳米材料的同时,主要通过基体增韧,继续提高复合材料的抗冲击韧性。

树脂基复合材料的应用向着高性能化方向发展,旨在追求高的减重效率。重视制造技术研究、生产改造和综合配套。开发材料设计及制备过程的计算机模拟软件,对产品设计和成型工艺进行优化,提高产品的先进性、可靠性,并最大限度的降低成本[14]。制约复合材料扩大应用,特别是在民用领域应用的主要障碍仍是成本太高,因此降低成本是当务之急。复合材料的发展应以市场为导向,加大创新力度,加强基础性研究和应用性研究,努力降低

原材料成本,开拓新的应用领域;要通过产学研结合,立足自主开发,同时积极引进技术和资金,在科技攻关、项目建设、装置规模上要力求与国际接轨,以推动我国复合材料工业全面、快速、健康地发展。

随着飞行器向高空高速无人化智能化低成本化方向发展树脂基复合材料的地位会越来越重要。国外预计在下一代飞机上复合材料将扮演主角[15]。树脂基复合材料对于导弹、战机屏蔽或衰减雷达波或红外特征,提高自身生存和空防能力,具有至关重要的作用;在实现战机、导弹轻量化、快速反应能力、精确打击等方面起着巨大作用,其用量已成为战机 导弹先进性的一个重要标志。树脂基复合材料技术不断发展更新其应用领域不断扩展并在能源电子汽车建筑桥梁环境和船舶等领域扮演着越发重要的角色。高性能树脂基体及其改性是我门树脂行业的责任和义务,应该努力做好这方面的研发和产业化。

随着树脂基复合材料的性能进一步提高,使用经验进一步积累,低成本技术的发展,高效新结构的发展以及应用效能的提高,未来树脂基复合材料的应用领域将变得更加广泛。

四、参考文献

酚醛树脂复合材料 第3篇

制备石墨烯的方法有机械法、取向附生法、加热SiC法、氧化还原法、化学气相沉积法、电化学方法、有机合成法等等。石墨烯/聚合物复合材料的制备方法有乳液混合法、熔融共混法、溶液混合法、原位聚合法等。本研究采用氧化-还原法制备石墨烯, 然后采用熔融共混法制备其复合材料。利用X射线衍射 (XRD) 、扫描电镜 (SEM) 、交流阻抗等分别对石墨烯以及石墨烯/酚醛树脂复合材料进行形貌和结构表征及电学性能测试。

1 实验部分

1.1 氧化石墨 (GO) 的制备

在冰水浴条件下将2g天然鳞片石墨加到90mL浓H2SO4、10mL浓H3PO4组成的混合溶液中, 注意温度不要超过4℃, 在该条件下保持0.5h, 秤取12g KMnO4并且均匀的放进溶液中, 每5min加一小勺, 直到加完, 大概2h小时, 让石墨被充分氧化。然后将溶液转移到35℃水浴锅中搅拌30min, 升温至50℃, 进行中高温处理, 并且继续搅拌12h, 中高温反应12h后, 取出冷却到室温, 加入冰去离子水200mL, 继续搅拌30min, 量取3mL质量分数为30%的H2O2缓慢滴加入到溶液中, 一滴一滴的加入。此时可以看到在冒出大量气泡的同时溶液颜色由黑色变为亮黄色, 加入H2O2完毕后, 再让其反应30min, 之后, 取出溶液, 倒入1个大烧杯中, 加入去离子水稀释混合物冷却至室温, 然后对混合溶液用去离子水不断洗涤, 离心, 离心到上层溶液呈中性, 并且取上层清夜, 加入BaCl2检测是否还有SO42-。最后倒出上层溶液, 取沉淀, 倒入烧杯中, 烘干备用。

1.2 石墨烯 (RGO) 的制备

称取一定量的氧化石墨配制成为0.1% (wt, 质量分数) 的溶液, 150 W超声1h。将氧化石墨剥离成氧化石墨烯, 离心分离超声后的溶液, 得到均匀分散的氧化石墨烯分散液, 溶液呈淡黄色。氧化石墨烯还原成为石墨烯的具体操作为:取100mL氧化石墨烯分散液添加到三口烧瓶中, 并且装置好搅拌器, 回流冷凝管。添加0.1mL (大概2滴) 质量分数为80%的水合肼溶液, 放置在水浴锅中95℃并且搅拌回流下反应6h, 就得到最后产品 (澄清的溶液上, 漂浮着大量絮状的黑色物质, 黑色物质则为石墨烯) 。将溶液倒入烧杯中, 用去离子水洗涤2次, 除去溶液中的水合肼。然后将溶液放入真空干燥箱中, 开始80℃烘干, 烘干6h后, 转为60℃真空干燥箱烘干24h, 取出研磨, 放置好以备用。

1.3 石墨烯/酚醛树脂复合材料的制备

取一定量的酚醛树脂, 加入一定量的乙醇, 使其溶解, 加入一定量的石墨烯, 在室温条件下下磁力搅拌30min, 超声30min, 得到均匀分散的混合溶液, 然后将其置于50℃真空干燥中干燥, 最后用研钵将干燥物粉碎成细粉, 细粉就是石墨烯/酚醛树脂复合材料。

2 结果与讨论

2.1 石墨烯及其石墨烯/酚醛树脂复合材料的结构和形貌

2.1.1 氧化石墨烯和石墨烯的XRD分析

图1为氧化石墨烯和石墨烯的XRD图。从氧化石墨烯曲线可以看出, 曲线上还有1个很小的 (002) 峰, 说明石墨晶片层空间排列发生了变化, 结晶程度变差, 由原来较大的体状变成了剥离后较薄的片层结构。同时也说明其大部分已经转化成氧化石墨烯, 只是还有一小部分没有转变。而在θ=10.8°左右有1条高强度的衍射峰, 这说明石墨的晶型被破坏, 生成了新的晶体结构。这是由于加入强氧化剂后, 氧与碳原子的多种键合作用, 使得石墨片层与层之间, 以及层边缘等位置引入了C=O, C—OH、—COOH等官能团和其他缺陷, 最终使得层与层间的距离增大。从石墨烯曲线可以看出, (002) 层间距的衍射峰右移至25°左右, 这与石墨的衍射峰位置相近, 但衍射峰变宽, 强度减弱。这说明经过水合肼还原的氧化石墨烯仍有部分含氧官能团残存于碳层中, 使石墨烯层间距离增大。同时, 也说明经还原后的氧化石墨烯, 石墨片层尺寸更加缩小, 晶体结构的完整性下降, 并且无序度增加。

2.1.2 石墨烯的SEM分析

图2为采用改性Hummers法制备得出的石墨烯SEM表面图像, 图2 (a) 是合成的石墨烯的低倍SEM图, 从图中可以看到合成的石墨烯的大致形态, 层状结构分明, 片层之间互相分离, 有一定的分散性, 单层厚度比较均匀, 说明, 石墨烯片层剥离程度良好。图2 (b) 是石墨烯的高倍SEM图, 从图中可以看到, 石墨烯是薄薄的一层, 边缘较为柔软, 同时有一些褶皱, 褶皱处是多层石墨烯叠加而致, 总体表明薄膜石墨烯是由非常薄的半透明的石墨层组成。

2.1.3 石墨烯/酚醛树脂复合材料SEM分析

图3所示为由熔融共混法制备出石墨烯/酚醛树脂复合材料的SEM表面图像, 其中图A是复合材料的整体形貌, 图3 (b) 是片层的石墨烯包覆着酚醛树脂形貌。石墨烯的添加量影响与石墨烯对酚醛树脂的包覆程度, 并最终影响影响复合材料的导电性能。

2.2 石墨烯/热塑性酚醛树脂复合材料的电学性能研究

2.2.1 不同比例石墨烯/酚醛树脂复合材料交流阻抗

从图4知道, 添加1.0%石墨烯的复合材料阻抗为360Ω, 添加1.5%石墨烯的复合材料阻抗为230Ω, 添加2.0%石墨烯的复合材料阻抗为140Ω, 相对于空白的酚醛树脂阻抗超过3500Ω来说, 添加了石墨烯后阻抗是明显的减少。

2.2.2 石墨、氧化石墨烯、石墨烯与酚醛树脂复合材料交流阻抗对比

由图5可知, 2.0%氧化石墨烯/酚醛树脂复合材料的阻抗>2.0%石墨/酚醛树脂复合材料的阻抗>2.0%石墨烯/酚醛树脂复合材料的阻抗。说明在同等条件下, 添加石墨烯后的复合材料比添加石墨或者氧化石墨烯后的复合材料阻抗要小。添加了氧化石墨烯的复合材料阻抗相对来说比较大, 这是因为氧化石墨烯本身不导电。

3 结论

(1) 使用改进的Hummers方法制得的氧化石墨在水中经过超声分散并剥离后可形成稳定分散的悬浮液。用水合肼还原制得的石墨烯中含有单层的石墨烯。

(2) 未添加石墨烯的酚醛树脂阻抗超过3500Ω, 添加了2%的石墨烯后, 复合材料的阻抗变为140Ω, 阻抗减少了约25倍, 表明石墨烯/酚醛树脂复合材料的导电性较未添加石墨烯的酚醛树脂的导电性大大地增强了。

摘要:以石墨为原料, 采用改进Hummers方法制备氧化石墨, 在水中经超声分散得到氧化石墨烯分散液, 经80%水合肼还原得到石墨烯。又以苯酚和甲醛为原料, 草酸和盐酸作催化剂, 制备热塑性酚醛树脂。得到的石墨烯与酚醛树脂由熔融共混法制备其复合材料。利用X射线衍射 (XRD) 、扫描电镜 (SEM) 、交流阻抗等分别对石墨烯以及石墨烯/酚醛树脂复合材料进行形貌和结构表征及电学性能测试。研究结果表明:采用改进Hummers方法制备的石墨烯有良好的片层状形貌, 石墨烯均匀包覆着酚醛树脂, 石墨烯/酚醛树脂复合材料有良好的导电性能。当石墨烯的添加量为2.0%时, 复合材料的阻抗为140Ω, 比未添加时阻抗减少25倍。

关键词:石墨烯,石墨烯/酚醛树脂复合材料,电学性能

参考文献

[1]Novoselov K S, Geim A K, Morozov, et al.[J].Science, 2004, 306 (4669) :666-669.

[2]宋峰, 于音.什么是石墨烯[J].大学物理, 2011, 30 (1) :7-12.

[3]周冠蔚, 何雨石, 等.石墨烯及其复合材料在锂离子电池中的应用[J].化学进展, 2012, 24 (3) :235-245.

[4]Zhang Haobin, Zheng Wenge, Yan Qing, et al.[J].Polymer, 2010, 51 (6) :1191-1196.

[5]Liang Jiajie, Xu Yanfei, Wang Yan, et al.[J].Nano Research, 2009, 2 (7) :343-348.

[6]Wang H L, Hao Q L, Wang X, et al.[J].Electrochemistry Communications, 2009, 11 (4) :1158-1161.

[7]朱永茂, 殷荣忠, 潘晓天等.[J].热固性树脂, 2012, 27 (2) :54-59.

[8]房辉, 李玲, 范焕新.[J].电子元件与材料, 2011, 30 (8) :45-47.

[9]赵华, 贺辛亥, 王宽喜, 等.[J].科技信息 (Science&Technology Information) , 2009, 21 (2) :48-49.

[10]杨荔, 刘洪波, 张东升, 等.[J].复合科学报, 2011, 28 (7) :70-76.

[11]阴强, 李爱菊, 等.[J].现代化工, 2007, 27 (1) :220-225.

酚醛树脂复合材料 第4篇

摘要:通过对黄麻纤维热处理、碱处理、硅烷偶联剂处理和异氰酸酯处理进行表面改性,并对改性黄麻纤维布进行热压工艺处理,最后采用VARTM成型工艺制备黄麻纤维增强环氧树脂复合材料,并对其性能进行了系统研究.通过扫描电镜(SEM)分析表明,热处理和碱处理的黄麻纤维增强环氧树脂复合材料的界面粘结未得到明显改善,而通过硅烷偶联剂和异氰酸酯处理的黄麻纤维增强环氧树脂复合材料的界面粘结性能得到了显著的提高.将硅烷偶联剂和异氰酸酯处理的黄麻纤维布通过热压处理不仅可以增加复合材料中黄麻纤维体积含量,而且可以提高复合材料的综合性能,复合材料力学性能研究表明,经硅烷偶联剂处理后的黄麻纤维增强复合材料拉伸强度、模量和弯曲强度分别提高了18.6%,71.4%和50.2%.经异氰酸酯处理的黄麻纤维增强复合材料的拉伸强度、模量和弯曲强度分别提高了16.3%,34.0%和50.3%.

关键词:黄麻纤维;复合材料;热压工艺;硅烷偶联剂;异氰酸酯

中图分类号:TQ327.8文献标识码:APreparation of Jute Fibers Reinforced Epoxy

Resin Composites by VARTM

LI Wei,HUANG Hongyun, WU Yongqing

(College of Materials Science and Engineering, Hunan Univ,Changsha,Hunan410082,China)Abstract: In this research, the jute fibers were first treated with heating, alkali, silane coupling agent and isocyanate respectively, then the jute fibers fabrics were treated with hot pressing process, and finally, the jute fiber reinforced epoxy resin composites were fabricated with VARTM molding process. Scanning Electron Microscopy (SEM) analysis shows that the interface bonding of jute fibers treated with heating and alkali reinforced epoxy resin composites has not been improved, but the interface bonding of composites has been significantly improved with the jute fibers treated with silane coupling agent and isocyanate. The hotpressing process can not only increase the jute fibers volume content in the composites but also improve the performance of composites by the jute fibers treated in advance with silane coupling agent and isocyanate. The mechanical properties of the composites show that tensile strength, modulus and flexural strength of the jute fiber treated with the silane coupling agent reinforced composite increase by 18.6%, 71.4% and 50.2%, respectively, and the tensile strength, modulus and flexural strength of the jute fiber treated with the isocyanate reinforced composite increase by 16.3%, 34.0% and 50.3%, respectively.

Key words:jute fiber;composites;hot pressing process;silane coupling agent;isocyanate

麻纤维是一种天然植物纤维,具有价格低廉、可生物降解、优良的力学性能等优点.相比于合成纤维,天然麻纤维具有更好的吸能效果,能制造出高性能的复合材料,可广泛地应用于汽车制造工业[1-2].

麻纤维种类较多,常见的麻纤维有苎麻[3]、黄麻、亚麻等.黄麻是最廉价的天然纤维之一,黄麻纤维纤维素质量分数约为57%~60%,单纤细度为15~18 μm,单纤长度为1.5~5 mm,因为单纤维短且长度参差不齐,故无法单纤维纺纱.黄麻纤维具有不规则的多边形混合截面,吸湿性和透湿性较苎麻要高2%~4.5%.其生物分解性好,初始弹性模量高,不起球,抗菌能力优异,生产成本低,因此具有很好的市场应用前景.

树脂基复合材料有关 第5篇

班级:材硕114 学号:030110604 姓名:周坚

摘要:本文简要回顾了高性能复合材料的发展历史。其中简要的介绍了复合材料的一个发展的历史,从古代开始一直介绍到近代。随后重点介绍了聚合物基复合材料。重点是对高性能树脂基的复合材料的基体进行了介绍,主要是环氧树脂基体、聚酰亚胺基体和双马来酰胺基体的复合材料进行了介绍。

关键词:高性能复合材料、环氧树脂基体、聚酰亚胺基体、双马来酰胺基体

1、前言

材料、能源、信息是现代科学技术的三大支柱。随着材料科学的发展,各种性能优良的新材料不断地的出现,并广泛的应用到各个领域。然而,科学急速的进步是对材料的性能也提出了更高的要求,如减轻重量、提高强度、降低成本等。这些都是需要在原有传统材料上进行改进。复合材料是现代科学技术发展涌现出的具有极大生命力的材料,它由两种或两种以上性质不用的材料组合而成,通过各种工艺手段组合而成。复合材料的各个组成材料在性能上期协同作用,得到单一材料所没有的优越的综合性能,它已成当代一种新型的工程材料[1]。

复合材料并不是人类发明的一种新材料,在自然界中,有许多天然复合材料,如竹、木、椰壳、甲壳、皮肤等。以竹为例,它是具有许多直径不同的管状纤维分散于基体中多形成的材料,纤维的直径与排列密度由表皮到内层是不同的,表皮纤维的直径小而排列紧密,以利于增加它的弯能力,但内层的纤维粗而排列疏可以改善它的韧性,所以这种复合结构很合理,打扫最优的强韧组合。

人类在6000万年前就知道用稻草和泥巴混合垒墙,这是早期人工制备的复

合材料,这种泥土混麦秸、稻草制土坯砌墙盖房子的方法目前在有些贫穷的农村仍然沿用着,但这种复合材料毕竟是最原始的和古老的,是传统的复合材料。现在建筑行业已发展到用钢丝或钢筋强化混凝土复合材料盖高楼大厦,用玻璃纤维增强水泥制造外墙体。新开发的聚合物混凝土材料克服了水泥混凝土所存在的脆性大、易开裂及耐腐蚀性差的缺点。5000年前,中东地区出现过用芦苇增强沥青造船。1942年玻璃纤维增强树脂基复合材料的出现,使造船业前进了一大步,现在造船业采用玻璃钢制造船体,尤其赛艇等变速艇等,不仅减轻了船艇的质量,而且可防止微生物的吸附。越王勾践是古老金属基复合材料的代表,它是金属包层复合材料制品,不仅光亮锋利,且韧性和耐腐蚀性优异。埋藏在潮湿环境中几千年,出土时依然寒光夺目、锋利无比。

随着新型增强体的不断出现和技术的不断进步,出现了新进复合材料,先

进复合材料是比原有通用复合材料具有更高性能的复合材料,包括各种高性能增

强剂和耐高温性好的热固性和热塑性树脂基体所构成的高性能复合材料、金属基复合材料、陶瓷基复合材料、碳/碳复合材料。先进复合材料的比强度高、比模量大、热膨胀系数小,而且它还有耐化学腐蚀、耐热冲击和耐烧蚀等特点,用它作为结构材料可以提高宇宙飞船、人造卫星和导弹等的有效载荷、增加航程或射程乃至改善这些装备本身的固有技术性能。21世纪我们面临的是复合材料迅猛发展和更广泛应用的时代。

2、聚合物基复合材料的发展历史

聚合物基复合材料是目前结构复合材料中发展最早、研究最多、应用最广、规模最大的一类。现代复合材料以1942年玻璃钢的出现为标志[2],1946年出现玻璃纤维增强尼龙,以后相继出现其他的玻璃钢品种。然而,玻璃纤维的模量低,无法满足航空、宇航等领域对材料的要求,因而,人们挣努力寻找新的模量纤维。1964年,硼纤维研制成功,其模量达400GPa,强度达3.45GPa。硼纤维增强塑料(BFRP)立即被用于军用飞机的次承力构件,如F-14的水平稳定舵。垂尾等。但由于硼纤维价格价格昂贵、工艺性差,其应用规模受到限制,随着碳纤维的出现和发展,硼纤维的成产和使用逐渐减少,1965年,碳纤维在美国一诞生,就显示出强大的生命力。1966年,碳纤维的拉伸强度和模量还分别只有1100MPa和140GPa,其比强度和比模量还不如硼纤维和铍纤维。而到1970年,碳纤维的拉伸强度和模量就分别达到2.76GPa和345GPa。从而碳纤维增强纤维得到迅速发展和广泛的应用。碳纤维及其复合材料性能不断提高。

1972年,美国杜邦公司又研制了高强、高模的有机纤维-聚芳酰胺纤维 [3](Kevlar),其强度和模量分别达到3.4GPa和130GPa,使PMC的发展和应用更为迅速。美国空军材料研究室(AFML)和国家航空航天局(NASA)的定义,以碳纤维、硼纤维、Kevlar纤维、氧化铝纤维、碳化硅纤维等增强的聚合物复合材料为先进复合材料,比模量大于40GPa/(g/cm3),因而,从60年代中期到80年代初,是先进复合材料的日益成熟和发展阶段。作为结构材料,ACM在许多领域或得应用。同时,金属基复合材料也在这一时期发展起来,如硼纤维、碳化硅纤维增强的铝基、镁基复合材料。80年代后,聚合物基复合材料的工艺、理论逐渐完善。ACM在航空航天、船舶、汽车、建筑、文体用品等各个领域都得到全面应用。同时,先进热塑性复合材料(ACTP)以1982年英国ICI公司推出的APC-2为标志 [4],向传统的热固性树脂基复合材料提出强烈的挑战。同时,金属基、陶瓷基复 合材料的研究和应用也有较大发展。

3、高性能复合材料用的树脂基体

基体树脂的主要功能是传递增强材料所承受的负荷,使之分布均匀并保护增强材料免受损伤和环境中湿气、氧气和化学物质的侵蚀。而复合材的耐热性、剪切和压缩强度、横向拉伸强度、蠕变性和流动性等也取决于基体树脂。因此,通常希望选用耐温性、强度和模量高、韧性和耐湿性好、与增强材料有良好的粘附性或浸润性而又易于加工的树脂。由于热固性树脂的交联网状结构,使它具有优异的耐温性和机械强度,而且当它作复合材料基体时,开始时以未交联固化的低分子量和低粘度的状态出现,便于成型加工,因此多年来用它做高性能复合材料的基体树脂一直占绝对优势,代表的品种有耐热的环氧树脂,聚酰亚胺及双马来酰亚胺树脂。3.1环氧树脂基高性能复合材料

3.1.1、环氧树脂的性能和基体树脂的作用

作为高性能复合材料基体树脂可以是热固性的,也可以是热塑性的,迄今为止,用量最多,应用面最广的要算是环氧树脂,这是因为它具备以下几个特点:(1)在化学结构方面,除有活性环氧外,还有羟基和醚基,致使粘结力强。(2)在固化方面面,其固化收缩率小(<2%),无挥发物逸放,孔隙率低;固化后生成三维网络结构,不溶不熔,化学稳定性高,耐蚀性强

(3)在力学性能方面,环氧树脂有较高的强度和模量,并有较长的伸长。这些优异性能是制取高性能复合材料的前提之一。

(4)在物性方面,它那热耐冷,可用在-50—180℃之间;热膨胀率系数在Tg以下是为39×10-6/℃,以上时为100×10-6/℃;热导率约为500×10-6Kal/cm·s·℃;在室温下的防潮防渗性好,绝缘性高。

(5)工艺性好,适应性强。环氧树脂不仅本身品种多,可以按比例相互掺混以调节其粘度和性能,而且可以在数十种固化剂中选择组合,以满足不同操作工序和不同用途的要求。同时,还可以选配稀释剂、改性剂和增韧剂等。此外,其贮存时间长,稳定性高,适应性强。

基体树脂的作用:

(1)赋予高性能复合材料的成型性和整体性

(2)提供连续的基体相,以使增强纤维均匀分布期中。换言之,基体必须把增

强纤维均匀地分开成为分散相,以使其在受到反抗性或弯曲等外来作用是,不会失去增强作用。

(3)当复合材料承受抗拉负荷时,基体能使其均匀地分布,并通过界面剪切有 效地载荷传递给增强纤维,充分发挥高强度和高模量的特性。3.1.2、环氧树脂的种类

(1)标准环氧树脂 双酚A型环氧树脂亦称标准环氧树脂,属于DGEBA,它

是通用的树脂[5]。国外的牌号很多。其特点是分子量低,粘度低。主要缺点是耐性差。(2)环氧酚醛树脂 其特点是活性环氧基在两个以上,交联密度大,耐热性比

较高,例如Dow公司的DEN-438,汽巴的EPN1138和ECN1299;国内主要有F-46。后者是目前用于FRP的主要基体树脂,主要缺点是由一定的脆性。

(3)酯环环氧树脂 美国UCC公司开发了多种牌号的这类树脂,它具有很好的 综合和平衡的力学性能,并且有优良的加工型、耐候性。

(4)多官能度环氧树脂 这种类型树脂的环氧基在3个以上,环氧当量高,交 联密度大,耐热性得到显著提高,主要缺点是具有一定的脆性,仍需要改性研究。3.1.3、高性能复合材料用环氧树脂基体的发展。

FRP的成型方法很多,主要有叠层加压、拉挤和缠绕等。为适应各种成型方 法工艺条件的要求,相应地开发各种专用型环氧树脂,有使用价值

(1)拉挤成型法 用于拉挤成型的基体树脂不仅要求粘度低,而且希望固

化快。一般环氧树脂,需胶化、玻璃化和最后固化为三维网络结构。因此,需发展快速固化环氧树脂。壳牌公司发展了两种适用于拉挤成型的环氧树脂体系,Epon9102/Epon固化剂CA9150和9302/CA9350。9102和9302都属于双酚A/环氧氯丙烷系环氧树脂,而固化剂CA9350为液态杂环胺。这两种新型环氧环氧树脂体系既保留了环氧树脂的耐热性和化学性,又具有类似聚酯的快速胶化速,满足课拉挤工艺条件的要求。(2)缠绕成型 缠绕成型对所用树脂体系有三点要求:①粘度低;②成型

时固化温度低;③贮存时间长,特别是对缠绕大型构件。一般环氧树脂的粘度较高,需加入反应性的稀释剂来调节,固化剂也需加入低粘度的酸酐,但是,加入稀释剂会导致耐热性下降,加入酸酐又会增加吸湿性,致使性能下降。

(3)无维布 无维布市重要的中间产品,各大碳纤维生产厂都有产品销售。为了制取高性能无维布,各公司发展了许多专用环氧树脂。由于商业保密,详情较少透露只有商品牌号和零散资料报道。

3.2、聚酰亚胺基高性能复合材料 3.2.1、聚酰亚胺的发展历史 六十年代以来,杜邦公司在开发PI方面对了大量工作[6]。1962年开发了成型材料Vespel;1965年有耐热薄膜Kapton;1968年汤普森拉英伍尔德里奇公司采用加成法制成聚酰亚胺P13N;1972年开发了NB-150;1973年法国的

Rhone-Ponlene公司开发了双马来酐亚胺系的PI;1975年第二代NB-150B2问世,迄今为止,Kapton薄膜在耐热薄膜方面仍多占鳌头,而NB-150和NB-150B2则是高性能复合材料的基体材料。对于聚酰亚胺,在开发的过程中主要围绕其成型上做了大量工作。影响成型主要的三个因素:①极为有害的缩合水;②使用高沸点溶剂;③预聚物的熔点高。加成固化A型的开发,克服了确定①;现场聚合型PMR的研制成功,克服了缺点②;热熔型LARC-160的问世,克服了缺点③。这就是使PI出具实用化的条件。3.2.2、用作高性能复合材料基体的聚酰亚胺

1976年,在NASA制定的“高性能空间运输系统复合材料”的研究大纲里,要开发耐热316℃的高性能复合材料。经过兰利和合同单位的共同努力,从14种PI中评选出4中作为高性能复合材料的基体,即NB-150B2、PMR-

15、LARC-160和Thermid6000;从5中PI粘结剂中筛选出3种,即FM-

34、LARC-

13、和RTV560-SQX;从5中碳纤维中筛选出2种,即Celion和AS4(HTS)[7]。(1)NB-150B2 NB-150B2杜邦生产的热塑性PI。NB-150B2用的是苯胺混合

物,其刚性比NB-150A2所有的二胺基二苯醚强,因此NB-150B2的Tg(350-371℃)比NB-150A2(280-300℃)高。如果采用其他胺类,Tg可调节在229-365℃之间。因为苯环之间引入—O—、—S—、—CH2—等,使主链的柔性增加,刚性下降,致使Tg降低。换言之,在PI的主链中,六元苯环和五元亚胺杂环都是热稳定性高的刚性环,Tg主要受芳族二胺结构的影响。这是分子设计的依据。

(2)PMR-15 刘易斯研究中心研制出得PMR-15都属于现场聚合的A型PI。

所谓现场聚合成型是指三元体系的脂肪醇溶液,在室温下不反应,在加热条件下才形成低聚物,最后在高温高压条件下加成固化为交联结构。

(3)LARC-160 LARC-160是兰利研究中心开发的热熔型PI。它是PMR-15 的改进型,主要区别采用了多价液状胺的低聚物。其特点是在室温下为单体溶液,浸渍性好,成型性能得到显著改善。它的强度为10Kg/mm2,模量为3.5×102Kg/mm2,比重约为1.40g/cm2。

(4)Thermid6000 Thermid6000的端基是具有三键的乙炔基,在加成固化中

进行三聚环化,形成环状结构,使其具有优异的耐热性。它的分子量小于2000。当加热到220℃时,因固化而放热,最终热处理温度是371℃,使用温度为350℃。在固化成型过程中没有挥发物释放,制品空隙率低,质量高。主要缺点是成型性欠佳和价高。3.2.3、聚酰亚胺及其复合材料的应用 各种航天航空飞行器和导弹武器,由于飞行条件的不同。飞行时间有很大的差异。GrF/PI准备用于轨道飞行器的垂直尾翼,升降副翼和后机身襟翼等。这主要时利用它的耐热性和减重效果。例如,大型试验件后机身襟翼的尺寸为6.4×2.1cm,其总重量比铝合金件轻160Kg,减重27%[8]。此外,它还用于:

①高性能军用飞机YF-12,飞行速度在3马赫以上。NASA的兰利研究中心用HTSI/ PMR-15制成了该飞机的翼板,比钛合金件减重51%。凯芙拉纤维增强聚酰亚胺复合材料的耐高温性能也比较好,可用来制造DC-9型运输机的整流罩,可降低机身阻力和节省燃油。

②航空导弹的弹头也采用了GrF/PI复合材料。

③GrF/PI可用来制造卫星的结构件,减重17-30%。如制造耐激光和耐高温的结构件。3.3双马来酰亚胺基复合材料 3.3.1双马来酰胺基复合材料的发展

高性能复合材料广泛的使用环氧树脂作为基体,主要是因为其成型工艺好。环氧树脂存在的主要缺点是耐湿热性差,如广泛使用的5208环氧体系在干态下可耐到177℃。而湿态只能耐到121℃;其次是用作主受力结构件还略显脆性,5208环氧基体的断裂延伸率为1.7%,但目前一出现断裂延伸率大于2%的碳纤维,人们对于双马来酰胺的兴趣在于[9],经过改性的双马来酰胺基体的耐湿热性与韧性均优于5208体系,同时具有类似环氧树脂的良好加工性能,能满足热压罐成型。

马来均聚物本身脆性大,用来制备复合材料的工艺性差。需使用高沸点的极性溶剂,制备的预浸料僵硬,无结性,铺覆性不好,成型温度高。因此,今年来围绕着提高韧性以及工艺性能对双马树脂进行改性研究。

人们早就在40年代就合成出双马树脂基体,到了70年代,为了解决环氧树脂的耐湿热性差的问题,才开始将双马树脂用作高性能复合材料基体,目前已商品化的双马树脂预浸料牌号有10余钟,作为高性能复合材料的基体,国内一些单位也有研究,为了进一步推动双马树脂的发展与应用,特别对高性能复合材料用双马基体进行总结[10]。3.3.2双马来酰胺树脂的改性 内扩链法增韧

双马来酰胺树脂未改性的BMI因2端的马来酰亚胺(MI)间链节短,导致分子链刚性大,固化物交联密度高。为使固化物具有柔韧性,人们设法将MI间的2R2链延长,并增大链的自旋性和柔韧性, 减少单位体积中反应基团的数目,降低交联密度, 从而达到改性目的。朱玉珑等研究发现,醚键的引入有望改善下一步所制备耐高温绝缘材料的冲击韧性。Jiang Bi biao等[11]研制了较普通BMI固化温度低的含氨酯基团的新型双马来酰亚胺低聚体,用其增韧后的BMI树脂溶解性和贮存稳定性良好, 玻璃布复合材料具有良好的力学性能和耐腐蚀性能。Haoyu Tang[12]等制备了含1,3,42氧二氮唑的耐高温BMI, 树脂的玻璃化温度高(Tg>350e),热稳定性良好, 在空气中初始分解温度大于460e,其玻璃布复合材料在高温(400e)下仍具有较高的弯曲模量(>1.6GPa)。橡胶共混增韧改性

在BMI树脂中添加少量带活性端基的橡胶有利于大大提高体系的抗冲击性能。目前普遍接受的增韧机理是银纹剪切带理论。即橡胶颗粒充作应力集中中心从而诱发了大量的银纹和剪切带,这一过程要消耗大量能量,因而能显著提高材料的冲击强度,达到增韧目的。用液体橡胶增韧BMI树脂可以使BMI韧性大幅度提高,目前应用较多的是端羧基丁腈橡胶。此方法同时也会降低耐热性,因此这类橡胶增韧的BMI树脂多用作韧性塑料和胶粘剂基体,用作先进复合材料基体的则很少, 且其价格较贵, 应尽可能地降低成本以利推广。胺类扩链增韧改性

BMI分子结构的C=C双键由于受到2个邻位羰基的吸电子作用而成为贫电子键,即一个亲电子的共轭体系,易与氨基等亲核基团发生Michael加成反应,芳香族二胺改性的BMI体系具有良好的耐热性和力学性能,但仍然存在工艺性欠佳、韧性不足、粘接性差等问题。为此在体系中引入环氧树脂,使其与芳香族二胺改性的BMI体系反应,形成交联网络结构,环氧树脂还能克服由仲胺基(-NH-)引起的热稳定性降低的缺点。王洪波等[13]通过BMI与二元胺、环氧树脂反应制备了改性BMI。研究表明,二元胺增韧后的BMI和环氧树脂能交联固化, 并且固化温度越高, 固化程度越完全,交联密度越大;改性BMI的热分解温度降低,柔韧性增加,有利于BMI在电器绝缘材料和胶粘剂等领域的应用。高性能热塑性树脂增韧改性

利用某些高性能热塑性树脂耐热性较好的特点, 可在一定程度上克服用橡胶增韧BMI后耐热性降低较多的缺点,因此通过与热塑性树脂共混增韧BMI的研究受到了重视。其改性途径主要有两种形式。

一种是热塑性树脂作为第二相增韧。该树脂的刚性与基体树脂接近,有较强的韧性和较高的断裂伸长率,当第二相的体积分数适当,就可以发生裂纹钉锚增韧作用,即在材料受力的情况下,第二相可诱发基体树脂产生银纹,同时由于本身的热塑性形变能有效地抑制裂纹扩展, 吸收较多能量, 起到增韧作用。另一种是用热塑性树脂连续贯穿于BMI树脂网络,形成半互穿网络聚合物(S-IPN),进行增韧改性。体系中的热塑性树脂与BMI相互贯穿,两相之间分散性良好,相界面大,能够很好地发挥协同效应。因此树脂兼备BMI的工艺性和热塑性树脂的韧性 3.3.3双马来酰胺基体的发展趋势 BMI增韧改性朝着保持热性能不变而使韧性提高的方向发展,这些增韧改性方法并非孤立,在实际应用中应根据目的和用途同时应用几种方法增韧改性。我国在这方面的研究与国外相比差距还是比较大。应进一步加强基础理论研究,开拓新的改性方法[14]。今后我国对BMI的开发,应从一下几个方面进行:①采用先进的增韧技术,对BMI进行改性,如原位增韧技术,通过化学反应过程控制分子交联状态下的不均匀性,以形成有利于塑性变形的非均匀性,从而得到增韧BMI;②加强新型增韧剂研究,尤其是开发耐热强韧型热塑性树脂;③进一步深入研究BMI的改性化学,改善其工艺性。开发适用于RTM的粘度低、固化时间短的BMI极其无溶剂热熔型BMI,以实现复合材料制品的工业化生产;④加强实用性BMI单体研究,有选择地合成和生产多种BMI。保持较大规模的高新技术用新材料产业。

4、结语

环氧树脂复合材料的应用 第6篇

环氧树脂是先进复合材料中应用最广泛的树脂体系,它可适用于多种成型工艺,可配制成不同配方,可调节粘度范围大;以便适应于不同的生产工艺。它的贮存寿命长,固化时不释出挥发物,固化收缩率低,固化后的制品具有极佳的尺寸稳定性、良好的耐热、耐湿性能和高的绝缘性,因此,目前环氧树脂统治着高性能复合材料的市场。

(一)环氧树脂复合材料在航空工业中应用

40年代初,电子工业的需要,寻找一种适宜的材料,做防护军用飞行器的雷达天线,特别是防护战斗机及轰炸机上的雷达天线。采用雷达罩是用来防护气候对精密电子仪器的影响。玻璃钢具有优良的透雷达波性能,足够的机械强度和简便的成型工艺,使它成为理想的雷达罩材料。这是历史上第一次采用玻璃钢制造雷达罩,同时又大大地促进了玻璃钢材料的研究。

60年代玻璃钢技术在直升机领域的应用有所突破,如西德M.B.B.公司研制玻璃钢旋翼桨叶,逐步取代金属铝蒙皮/铝蜂窝夹层结构的金属桨叶。但由于玻璃钢的模量低,不能制造高强度的飞机结构件。

70年代初,随着硼纤维、碳纤维、芳纶纤维等相继出现,这些高级增强纤维的比刚度、比强度、耐疲劳性能等优于金属材料,由它们来增强环氧树脂组成的复合材料,已在飞机的主结构件(主受力件)上得到应用。近10多年来,考虑到这些高级增强纤维的价格都比较高,为了更合理的用材,大力开发混杂复合材料(Hybrid Composites)的研究。以复合材料在飞机发动机中的应用为代表。美国两家喷气发动机制造厂:通用电器—飞机发动机事业集团公司(GE—AEBG)和普惠公司,以及其它一些二次承包公司,都在用高性能复合材料取代金属制造飞机发动机零部件。如发动机舱系统的许多部紧推力反向器、风扇罩、风扇出风道导流片等都用复合材料制造。如发动机进口气罩的外壳是由美国聚合物公司的碳纤维环氧树脂预混料(E707A)叠铺而成,它具有耐177℃高温的热氧化稳定性科壳表面光滑如镜面,有利于形成层流。又如FW 4 0O0型发动机有8 0个149℃的高温空气喷口导流片也是用碳纤维环氧预浸料制造的。在316℃这一极限温度以下的环境中,复合材料不仅性能优于金属,而且经济效益高。据波音公司估算,喷气客机重量每减轻一磅,是飞机在整个使用期限内可节省 100 0美元。据法布莱特公司估算,美国第年约有100万磅复合材料用于制造喷气飞机发动机零件,销售额高达5000万美元。目前环氧树脂的连续使用温度最高约在280℃以下,近来DOW化学公司的一种多功能团环氧树脂Tactlx742,用二氨基二苯砜固化剂;制成的制品玻璃化温度Tg>310℃,可用于制造喷气发动机零件。

(二)环氧树脂复合材料在航天工业中的应用

宇航技术对结构材料高比模量、高比强度的要求,特别严格,使先进复合材料成为宇航技术必需的材料。作为结构材料的基作树脂基本上都采用环氧树脂。其主要的应用范围如下:

1、固体火箭发动机壳体 在50年代末,采用纤维缠绕成型的玻璃钢壳体取代钢壳,使结构减轻50%一60%。后来,“三叉戟1”、M X的三级发动机壳体全部采用芳纶/环氧树脂体系,重量又比玻璃钢的同尺寸壳体减轻50%。在阿里安运载火箭许多结构件均用碳纤维/环氧树脂制造。

2.战略导弹上的应用 美国已采用JFRP作弹头结构壳体、仪器舱、级间段等50多个分系统部件。据洛克希德导弹与宇航公司称用碳纤维/环氧树脂制造的机构取代铝结构,可使结构减轻40%。

3、卫星和宇航器上的结构应用 卫星结构的轻型化对卫星功能及运载火箭的要求至关重要,所以对卫星结构的重量要求很严。国际通讯卫星VA中心推力筒用碳纤维复合材料取代铝后减重23kg(约占3O%),可使有效载荷舱增加 450条电话线路,仅此一项盈利就接近卫星的发射费用。美、欧卫星结构重量不到总重的10%,其原因就是广泛使用了先进复合材料。

4.航天飞机上的应用 美国航天飞机上使用的结构复合材料总重约2吨,采用先进复合材料后减重410kg,而且明显减少了飞行过程中因复杂的温度环境引起的变形。航天飞机进入轨道后,用机械手投放和回收卫星,机械手上臂、前臂是用超高模量石墨纤维GY-70增强环氧制成的。总之,复合材料已成为宇航工业中不可缺少的关键材料。

(三)环氧复合材料在民用工业中的应用

凡是对机械强度要求高的增强塑料制品基本上采用环氧树脂作为基体。

1、玻璃钢的压力容 器和管道我国西安、北京、重庆、自贡已生产汽车用压缩天然气(CNG)瓶,北京已成为现在使用CNG公交车最多的城市。国内已经有4家企业生产环氧玻璃钢高压管。

60年代国内钢瓶十分紧张,采用纤维缠绕成型制造玻璃钢气瓶相当活跃,曾制定过部颁标准FC194-74,90R年修改后制定ZBQ23004一90。玻璃纤维增强塑料压力容器,以环氧树脂和616酚醛树脂体系为基体,40立升气瓶使用压力为 12MPa,使用寿命5年以上。上海材料研究所和临安玻璃钢厂合作,也采用纤维缠绕成型工艺,而使用环氧树脂一二甲基咪唑体系,其性能不亚于环氧一酚醛树脂体系。用此配方制成水研用的压力容器。

2、玻璃钢电机护环、套环等 护环套装于发电机转子两端,保护转子线圈的端部,防止在高速旋转时,受离心力作用它是发电机受力最大的部件之一,对强度和模量要求比较高,采用轻质高强的复合材料可以取代无镍反磁合金钢。

60年代末国内先后生产1.25W千瓦和2.5万千瓦两种发电机护环。后者由北京重型电机厂、杭州玻璃钢化工设备厂和上海材料研究所等单位合作,选用高强度(S)玻璃纤维和高模量(M)玻璃纤维进行缠绕,用62O7(脂环族)环氧树脂一酸酐体系树脂配方和AFG-90环氧树脂(缩水甘油胺型)——HK-021酸酐体系作为基体,使用多年情况良好。玻璃钢套环 3 0 00千瓦以下的在杭州玻璃钢化工设备厂生产,已在北京重型电机厂安装出厂30年,属于定型产品。此外,发电机定子线圈端都支撑环,装在定子线圈的鼻端,承受最大载荷是发电机发生短路的瞬间,亦采用玻璃钢制造,称为玻璃钢绑环。这种绑环安装在10万千瓦的气轮发电机上,已使用20余年。在国内最大的60万千瓦发电机用的玻璃钢锥壳(其作用类似于支撑环)也是用了10多年。玻璃钢绝缘子,有待于进一步开发研究。绝缘子的作用是把带电线路或带电零部件之间隔开,既要求绝缘又要求高强度,电绝缘何耐腐(室外用),采用玻璃钢很适用。国外在露天的22万伏输电杆上的绝缘于已采用环氧树脂玻璃钢成批生产。

3、防腐蚀制品 通常不饱和聚酯树脂玻璃钢的力学性能在45℃以上强度就会明显下降,同时不饱和聚酯树脂耐碱性较差。如果在防腐蚀制品中要求强度高,耐温性好等则建议选用环氧玻璃钢。如上海市上钢二厂,在生产硫酸铁过程中,反应槽需要连续在120℃使用,选用环氧玻璃钢取得了很满意的效果。这种耐高温的反应槽是由临安玻璃钢厂制造的。

4、玻璃钢模具

(1)玻璃钢铸造模具 用玻璃钢制成的铸造模具,比木模、铝模的效果好的多,使用寿命长,通常在万次以上,价格也比较便宜。

(2)玻璃钢制品模具 采用喷射成型、树脂传递模塑(RTM)成型所需的制品模具,通常都用不饱和聚酯玻璃钢模具。笔者建议采用环氧树脂玻璃钢模具更好,具有模具强度高、使用寿命长、尺寸稳定性好等优点。

5、风力发电机叶片 我国做到长23m,国外已经超过50m。

6、碳纤维补强建筑结构

上一篇:八年级物理教学总结_八年级物理教师总结下一篇:致广大员工的一封信