预应力混凝土建筑结构论文

2024-07-02

预应力混凝土建筑结构论文(精选11篇)

预应力混凝土建筑结构论文 第1篇

摘要对预应力混凝土结构火灾的研究现状进行了综述与分析,探讨了预应力混凝土结构火灾研究中存在的主要问题。建议进一步研究应从预应力材料的高温蠕变性能入手,采用非线性有限元进行整体结构分析,逐步建立结构火灾的可靠度方法,并指出结构火灾的计算机仿真分析是一种重要的试验方法。

关键词预应力混凝土火灾可靠度仿真分析

据公安部消防局统计,2005年全国共发生火灾235941起,死亡2496人,伤残2506人,直接财产损失13.6亿元。近年来,预应力混凝土结构已由早期的简单构件发展为现今复杂的空间整体受力结构,以其大跨度、大空间、良好的结构整体性能以及有竞争力的综合经济效益,正逐步成为现代建筑结构形式的发展趋势,由于预应力混凝土结构的抗火性能劣于普通钢筋混凝土结构,因此开展预应力混凝土结构的火灾反应和抗火性能研究是非常有意义的。

1预应力混凝土结构火灾研究的现状

国外学者对结构抗火性能的研究开展较早,始于20个世纪初,并成立了许多抗火研究组织,比较有名的有美国建筑火灾研究实验室、美国消防协会、美国的波特兰水泥协会、美国预应力混凝土协会、英国的BRE(BuildingResearchEstablishment)。这些组织对建筑结构的抗火性能进行了系统的研究,主要体现在对建筑材料高温下的力学性能;结构、构件火灾下的升温过程及温度场的确定;火灾条件下结构和构件的极限承载能力及耐火性能方面的研究,并编订了相应的建筑规范及行业规则。

国外预应力混凝土构件抗火性能的研究稍晚于钢筋混凝土结构,主要工作始于20世纪70年代初期。尽管早期Ashton等人的试验研究认为预应力混凝土在火的作用下存在许多问题,但其后一些学者的试验和研究表明预应力混凝土构件在火的作用下仍具有较好的工作性能。

有关文献介绍了美国进行的18个后张预应力混凝土板和梁的耐火试验。在这些试验构件中,预应力筋分为有粘结和无粘结两种。在耐火试验中,实测了时间与预应力筋温度关系,典型的时间-温度曲线如图1所示。在图中还可以看出不同保护层厚度与耐火时间的关系。

Gustaferro等人在预应力混凝土抗火方面做了不少试验研究,他们对有粘结预应力混凝土梁、预应力混凝土简支板、预应力混凝土连续梁、板等结构或构件在不同情况下的抗火性能进行了试验研究,并对预应力混凝土结构的抗火性能提出了合理的计算方法。他们通过对后张预应力混凝土梁和板的抗火试验,得出在1,2,3,4小时的抗火等级下的保护层厚度和构件最小尺寸的建议值。Ashton等人与Gustaferro同期也进行了一系列相应的预应力梁抗火试验研究,包括不同比例试件的耐火极限试验的对比,试验结果表明预应力混凝土能满足结构的不同耐火等级,其耐火性能主要取决于其预应力筋在火灾中所达到的温度,因此预应力筋的保护层厚度和梁的截面形式对预应力混凝土结构的耐火性能具有明显的影响,结构在火灾下的承载力随混凝土的保护层厚度增加和荷载减少而提高,并且轻骨料预应力混凝土板的抗火性能好于普通预应力混凝土板。Joseph等进行了后张无粘结预应力混凝土板的试验研究,试验着重研究了预应力钢筋保护层厚度对构件抗火性能的影响同时研究了荷载和端部约束情况的影响、辅助钢筋的作用等问题。Abrams等人对不同骨料和喷有隔离层的预应力混凝土构件的抗火性能进行了试验研究,Krishnamoorthy等人通过徐变和温度对预应力混凝土框架性能的试验研究得出了试验结果,其中包括不均匀温度对结构变形性能的影响及内应力和弯矩随时间的变化。

国外根据预应力混凝土梁、板等方面的试验研究结果,已对预应力混凝土在火灾作用下的承载力及极限耐火时间有了较全面的了解。他们认为温度是影响预应力混凝土结构蠕变性能的主要因素,要建立合理的分析方法必须考虑混凝土温度蠕变特性,弹性理论已不适用,蠕变率的分析方法被认为是预测整个加载阶段结构特性较满意的方法。他们的试验研究为预应力混凝土抗火设计提供了直接依据。

国内抗火研究组织从20世纪80年代后期起着手进行钢筋混凝土结构的抗火性能研究,但国内关于预应力混凝土抗火方面的试验研究尚处于起步阶段,缺乏足够的试验数据。国内规范中涉及预应力混凝土的抗火内容主要是参考国外经验确定的,如《无粘结预应力混凝土结构技术规程》防火部分第三章第3.2.1条规定用保护层厚度来满足不同耐火等级要求,它对不同耐火极限下无粘结预应力混凝土保护层厚度的确定,主要取自美国《后张预应力混凝土手册》。同济大学对5榀相同尺寸的单层无粘结预应力混凝土框架、3榀有粘结预应力框架和预应力钢丝进行了火灾试验,得出了一些有用的结论,主要有以下几个方面:①在高温作用下,预应力钢丝的强度、弹性模量、延伸率均表现出与常温下不同的性能。强度和弹性模量随温度升高而下降,延伸率则随温度的升高而增大;②对于预应力混凝土结构,火灾升温速率和温度越高,其抗火性能越差;在同一升温条件下,预应力混凝土结构承受的荷载越大,其抗火性能越不利;③对于预应力框架结构,与普通混凝土结构框架试验结果不同,荷载大小对抗火性能的影响可能要比温度的影响明显。预应力度大的结构受温度影响大,抗火性能差。预应力筋的有效应力大的结构,其抗火性能比有效应力小的结构差。无粘结预应力混凝土结构的抗火性能比有粘结预应力混凝土结构的抗火性能差。火灾后预应力混凝土结构的刚度明显减小,但仍存在一定的承载力,并反映出较好的恢复性能。

2存在的问题

尽管国内在钢筋混凝土结构抗火方面的研究工作已经取得长足进步,但在预应力混凝土结构火灾性能方面的研究才刚刚起步。诚然,预应力混凝土结构的抗火性能与一般钢筋混凝土结构在许多方面有相似性,但由于预应力混凝土结构自身的特性,这方面的研究还存在着许多问题,主要表现为以下方面:一是到目前为止各国学者所进行的试验及研究,基本上是以预应力混凝土简支构件在标准火灾下极限耐火时间为研究对象,主要考虑了截面内部温度分布及升温对预应力钢筋强度的影响等因素;二是以往试验主要研究预应力混凝土构件的耐火性能,由于结构的相互作用,因此受火构件的热变形将对其他构件产生影响,并存在较大的内力重分布,目前尚无专门研究,一般的解决办法是直接引用普通钢筋混凝土连续梁等火灾的有关结果,而这些结果是否能直接使用于预应力混凝土结构尚缺乏试验验证;三是以往的分析方法仅以热传导作为判断依据,无法对结构响应和损伤如位移、开裂、屈服等进行有效的判断,特别是材料的高温蠕变对结构火灾响应的显著影响缺少一定的研究;四是与普通混凝土相比,预应力混凝土具有许多特殊性,而以往的试验研究较少涉及。

3今后应开展的工作

(1)预应力材料高温性能研究。采用高强预应力钢丝和钢绞线是目前高效预应力混凝土的一个主要特征,因此预应力钢丝和钢绞线在高温下的蠕变性能是预应力混凝土结构抗火性能研究的基本内容。必须要通过材料试验研究高强钢丝和钢绞线在高温下的强度、变形、弹性模量的变化规律,特别是钢丝和钢绞线的高温蠕变性能对预应力混凝土结构的有效预应力的影响。此外要重视材料高温(火灾)性能数据库的建立。由于混凝土和钢材本身化学成分的差异,在温度影响下材料热工、力学性能有较大的离散性,如何对目前国内外进行的高温材料试验结果进行总结,并建立可供计算机程序调用的材料高温(火灾)性能数据库是火灾材料研究的一个重点。

(2)高温下预应力整体结构的非线性有限元分析。拟用传热学的基本原理,得到差分-有限元瞬态非线性温度场计算基本方程和各类常用边界条件,由此计算预应力混凝土结构温度场分布,并根据热弹塑性基本理论建立预应力混凝土火灾反应的非线性有限元分析基本方程。方程可用于分析预应力混凝土结构火灾下的变形、内力变化及预应力筋的应力随时间变化的过程,确定预应力结构火灾反应的一些基本特征。

(3)结构火灾的计算机仿真试验分析。一方面预应力混凝土结构火灾试验是最直接反应预应力混凝土结构抗火性能的手段,但预应力混凝土结构通常都应用于各类大跨度、大空间结构,由于试验条件限制,无法进行足尺模型试验,采用缩小比例的模型能基本反映火灾全过程的反应规律,但仍然有一定的差距。另一方面,由于受试验条件、试验经费的限制,也无法进行大量的模型试验。在进行模型试验的同时,要研究如何采用计算机仿真试验以避免上述限制。通过大量仿真试验,了解不同形式预应力混凝土结构的抗火能力,并提出改善预应力混凝土结构抗火能力的方法。笔者通过对有粘结预应力框架火灾位移的计算机仿真分析,可以得出如图2所示的有粘结预应力框架火灾下位移的实测值和计算机仿真分析结果的比较。由图2可见,计算所得的位移变化规律与实测相符,但仿真分析得到的结构位移较实测要大,误差最大时为40%。产生误差的主要原因可能由于试件混凝土含水率偏高,造成计算温度场高于实际温度分布,而结构的温度变形及材料性质与温度密切相关,从而产生结构计算误差。并且温度越高,材料的物理、力学性能离散性越大,另一方面,材料的高温蠕变的相关资料较少,这些也会造成一定的误差。总之仿真分析时的参数取值是否准确将影响分析结果,合理的参数取值依赖于可靠的实验结果。

(4)结构火灾反应的可靠度分析。由于火灾发生的可能性、火灾的持续时间和峰值强度、发生火灾时结构承受的荷载等因素并不确定,材料在高温下性能更趋于离散,上述因素均会影响结构的耐火性能。在无粘结预应力结构中,还存在锚固失效的可能性,以及结构局部失效可能产生的整体失效等,因此如何在设计中对这些因素进行综合考虑,以确定其耐火安全度是结构火灾的一个重要研究内容。结构火灾下的可靠度分析也是对现有遭受过火灾的建筑物进行评估的一个重要方面。

(5)结构抗火设计计算机模块的研制。目前对特定结构进行火灾全过程非线性有限元分析在理论上是可行的,但不免繁复的运算过程。因此有必要编制具有工程准确度的、概念清晰且简易实用的结构抗火设计计算机程序,并实现和现有通用结构设计软件进行接口是结构抗火试验研究工程化的一个关键。

参考文献

1AshtonLA.Thefire-resistanceofprestressedconcretefloors[J].CivilEngineeringandRublicworksReview,1951(46)

2GustaferroAH.Fireresistantofpost-tensionedstructures[J].TheJournalofthePCI,1973(18)

3华毅杰.预应力混凝土结构火灾反应及抗火性能研究[M].上海:同济大学出版社,2000

预应力混凝土建筑结构论文 第2篇

摘要:在迈入21世纪之后我国国民经济水平得到提高,桥梁事业也得到创新发展,各种桥梁施工裂缝处理技术取得良好的进展。预应力混凝土连续箱梁桥裂缝问题成为了桥梁施工中最为主要的问题。如果出现裂缝那么则会对构件外观美观程度有所影响,并且也会对整个桥梁工程的结构稳定性以及使用寿命产生影响。

关键词:预应力;混凝土连续箱梁;腹板;裂缝

预应力混凝土连续箱梁桥因为具备抗弯抗扭刚度大以及行车平顺舒适的特点,在我国工程界受到欢迎。现如今,在社会经济的快速发展下,高速公路以及城市道路成为了工程建设的主要内容。预应力混凝土连续箱梁桥作为主要的桥型之一,逐渐备受关注。但是,在伴随着质量意识的不断提升下,预应力混凝土连续箱梁桥会呈现出不同程度的裂缝,不仅会对桥梁的美观产生影响,并且也会影响整个桥梁的稳定性与安全性。所以,积极探索预应力混凝土连续箱梁桥具有十分重要的现实意义。

1、工程概述

南华路匝道在中心桩号AK0+444.000处与韶关大道斜交,新建南华路匝道桥上跨韶关大道。匝道桥总长379.38m,跨径组合为:(3×30)+(3×35)+(3×30)+(3×30)m。

其上部结构:

(1)采用预应力混凝土连续箱梁,横断面为单箱双室斜腹板断面。

(2)箱梁顶底板平行,由箱梁整体扭转形成桥面横坡。

(3)预应力混凝土箱梁采用C50混凝土,预应力钢束采用φs15.20钢绞线。

(4)支座采用GPZ系列盆式橡胶支座。

(5)混凝土箱梁桥面采用10cm厚沥青混凝土铺装。

(6)内外侧护栏均为防撞护栏,防撞等级A级。

下部结构:桥墩采用独柱桥墩,钻孔灌注桩基础;桥台采用薄壁式桥台,钻孔灌注桩基础。墩柱采用C40混凝土;桥台采用C30混凝土。桩基础包括嵌岩桩和摩擦桩两种类型,采用冲击钻成孔。桥墩桩径1.5m,桥台桩径1.0m;均采用C30水下混凝土。

现浇箱梁采用支架法整体施工。支架采用满堂式碗扣支架。底模和内模采用高强度覆膜竹胶板,外侧模采用钢模。第一联施工:先浇筑底板,后浇筑腹板跟面板,两次浇筑时间间隔约20天,拆模后发现中腹板跟边腹板均出现多道竖向裂缝,裂缝间距2~3m一道,缝宽0.1~0.2mm左右。第二联施工:先浇筑底板跟腹板,后浇筑面板,两次浇筑时间间隔约10天,拆模后一切符合要求。

2、预应力混凝土连续箱梁桥裂缝原因

2.1设计方面存在的原因

2.1.1设计结构不合理。桥梁所处的位置因素是影响桥梁结构型式的关键所在,在桥梁设计方案选择的时候,需要采取预应力混凝土连续箱梁,但是如果箱梁横截面形式或者顶底板厚度等参数确定不合理,那么则会出现不同程度的裂缝。

2.1.2结构计算模型不合理。现阶段有关预应力混凝土连续箱梁桥的设计主要采取平面杆系单元进行,但是由从结构整体受力性能分析,如果想要满足设计需求,需要选择构成空间薄壁,但是平面杆系法无法对箱梁的各种力学性能进行考虑,从而导致计算结构与实际受力状态会存在非常大的差异。在结构计算的时候会有所不同,会造成结构开裂现象。

2.2施工方面存在的原因

2.2.1施工材料性质不高。在施工过程中由于所采用的混凝土标号偏低,并且钢筋处于劣质,或者强度比设计值要低,那么则会引起预应力混凝土结构出现裂缝。

2.2.2施工质量控制不高。第一是由于箱梁的顶板、底板以及腹板内的钢筋设计间距比较小,或者在配置混凝土的时候骨料比较大,混凝土难以捣实,导致钢筋与混凝土之间的握裹力得到降低,在受拉区会形成裂缝。第二是在采取满堂支架浇筑箱梁的时候,因为支架基础强度不够,所以会引发支架出现非弹性变形,支架下沉,后箱梁会产生不规则的裂缝。同时因为裂缝还处于桥梁运营阶段,所以会继续朝着抗拉区继续发展。第三是现浇预应力箱梁的支架以及模板拆除的比较早,导致箱梁在非常大的瞬时荷载作用下形成施工裂缝现象。第四,在分层或者一次性浇筑过程之中,因为混凝土的水化热以及收缩会在结构表面、厚薄交界面处引发表面拉应力,当超过抗拉强度之后,结构便会开裂。第五是预应力混凝土箱梁桥在施工的时候为了加快施工工期,会在混凝土中添加早强剂,这种方式虽然会在表面让混凝土强度达到设计标号,但是由于混凝土的收缩以及徐变量得到增大,从而会超过设计的计算值,进而引发裂缝现象。

3、预应力混凝土连续箱梁桥裂缝防治措施

3.1加强设计阶段的预防

在整个设计阶段需要严格按照相关的规章制度以及标准,保证理论计算模型与实际结构相符合,并且荷载取值要保证准确性,尤其是对温度、收缩、徐变以及不均匀沉降等参数的取值需要符合实际。从整体角度分析,预应力筋与普通钢筋的配置需要科学、合理,并且局部构造要处理得当,避免在断面处产生应力集中,除此之外,在配备钢筋的时候需要对施工的可行性进行考虑与分析,将应该注意的内容利用施工图纸交代清楚。

3.2加强施工阶段的预防

施工单位需要严格按照施工图进行施工,保证临时支架符合设计要求,并且桥梁上的荷载不允许超过规定要求。混凝土的振捣需要保证密实与均匀,防止过振或漏振,避免出现蜂窝以及空洞的出现。混凝土浇筑过程之中还要将混凝土的分层浇筑顺序进行优化,如南华路匝道桥第一联施工,由于施工工序不合理及两次浇筑时间间隔过长,先后两次浇筑的混凝土产生的收缩徐变相差过大,在结构薄弱处产生收缩裂缝。值得注意的.一点是混凝土需要加强养护,临时支架和模板不能过早拆除,保证混凝土强度达到设计要求方可拆模。一次性浇筑的大体积混凝土则需要将水化热的散热问题处理好,保证混凝土强度应该达到允许值,只有如此,才能保证混凝土不会因为强度不足而出现开裂现象。

4、结语

从整体角度分析,预应力混凝土连续箱梁桥属于当前比较成熟的桥梁,但是从全局出发,在实际工程之中会存在各种类型的裂缝。预应力混凝土连续箱梁桥裂缝是一个比较复杂的问题,涉及到了设计、施工等诸多因素,如果其中的任意一个环节出现疏忽,那么均会导致裂缝现象,严重的会发生钢筋锈蚀,对桥梁的寿命有所影响。本篇文章从具体工程出发,对预应力混凝土连续桥梁出现裂缝的原因进行分析,并简单提出解决措施,以此提高桥梁工程的有序发展。

参考文献

[1]曾庆响,韩大建.预应力混凝土箱梁桥的裂缝防治研究现状[J].工程力学,(S1):184-188.

[2]耿会勇.预应力连续箱梁施工过程中腹板斜向裂缝产生原因及防治[J].铁道建筑技术,(04):24-27.

[3]张守峰.大跨预应力混凝土箱梁腹板裂缝的分析及预防措施研究[J].公路交通科技(应用技术版),2011(05):190-192.

[4]娄亮,潘竺兰,赵长军.预应力混凝土连续箱梁裂缝成因分析及加固措施[J].公路,2011(08):49-52.

预应力混凝土建筑结构论文 第3篇

钢筋混凝土结构是目前建筑的主要结构形式, 普通钢筋混凝土结构自重大, 抗拉性能较差, 使得地基及基础在处理及设计过程中受到上部结构荷载影响较大, 且混凝土与钢筋共同作用时, 在构件受拉区往往由于混凝土本身抗拉强度低的问题限制了钢筋性能的充分发挥。目前虽已有采用轻质高强的混凝土和高强钢筋, 但未从根本上解决混凝土容易开裂的问题。预应力混凝土通过对混凝土预先施加应力, 使其在工作过程中受拉区的应力大幅度减小甚至消失, 能够充分发挥钢筋和混凝土各自的特性, 提高钢筋混凝土构件的刚度、抗裂性和耐久性, 可有效地利用高强度钢筋和高强度等级的混凝土, 且在同等条件下具有自重轻、构件截面小、省材料的特点。因此, 预应力混凝土结构是目前最有前途的结构形式。

二、预应力混凝土的概念

混凝土结构在受力过程中受拉区早期容易出现裂缝, 为了克服其抗拉强度低的缺点, 在构件使用之前, 预先在混凝土受拉区施加一个预压力, 通过张拉钢筋, 浇筑混凝土, 待钢筋与混凝土之间具有足够粘结力时放张钢筋, 利用钢筋回弹力使该部位混凝土预先受压。构件在未使用的情况下, 其内部已经储存有预压力, 当构件工作过程中受到外荷载作用发生变形局部受拉时, 这部分拉力须先抵消混凝土内存在的预压力, 随着荷载及形变的增大, 构件施加预压力部分逐渐从受压状态过渡到不受力, 再到受拉, 大大延缓甚至阻止了混凝土裂缝的出现, 从根本上改变了混凝土的受力性能, 通过配置高强钢筋及高强度等级的混凝土, 能大幅度提高混凝土构件的承载力及抵抗变形的能力, 这种形式的混凝土就称为预应力混凝土。

三、预应力混凝土的结构受力特性

现以先张法施工的轴心受拉预应力混凝土为例, 简要叙述其结构受力特性。

1、先张法施工

张拉预应力筋并固定在台座上→浇注混凝土构件→待混凝土强度达设计要求的70%以上时放张预应力筋→预应力筋回缩对混凝土施加预压力。

2、预应力损失值

3、先张法构件各阶段的受力分析

(1) 施工阶段

(2) 加载阶段

四、轴心受拉预应力混凝土构件的设计要点

1、使用阶段的承载力验算

2、施工阶段的承载力验算

放松 (或张拉并锚固) 预应力筋时:

先张法:cc (28) pc I (28) (conA0lI) Ap

3、抗裂度和裂缝宽度验算

(1) 抗裂度验算。

其中:σck——荷载标准组合下抗裂验算边缘的混凝土法向应力;

σpc——扣除全部预应力损失后在抗裂验算边缘混凝土的预压应力。

(2) 裂缝宽度验算。

对在使用阶段允许出现裂缝的预应力混凝土轴心受拉构件应进行裂缝宽度的验算,

五、结语

随着建筑业的飞速发展, 各种建筑及结构形式层出不穷, 结构受力情况愈发复杂, 构件设计要求也越来越高, 为了适应新形势下土木业的发展, 预应力混凝土技术也在不断进步与完善, 现已扩大应用到砖, 石, 木、型钢等各种结构材料中, 且突破了混凝土不能受拉、容易开裂的约束。经过研究表明预应力结构在地震区也是能够应用的, 其在地震的水平及竖向荷载作用下会发生屈服, 从而产生塑性铰, 吸收部分地震能量使结构避免损坏, 抗震性能优于普通混凝土结构。为满足建筑材料更高标准的要求需不断提高我国预应力技术水平, 加快新技术、新工艺的开发与研究, 使预应力混凝土能够广泛应用到各类建筑工程及桥梁工程中, 充分发挥其优越性能。

参考文献

[1]向欣.混凝土工程中常见裂缝的分析与修补方法.西部探矿工程, 2005.3.

预应力混凝土建筑结构论文 第4篇

【关键词】预应力技术;工艺流程;施工要点;注意事项

0.前言

预应力混凝土结构除用于楼盖外,有时还用来解决大跨度、大空间部位柱网转换时的转换梁、转换桁架,以及复杂柱网情况下的转换板。与传统的钢筋混凝土结构相比,预应力结构形式改善了结构构件在各种使用条件下的工作性能,提高了结构刚度,减小了结构变形,可减小或消除裂缝,提高抗裂性,延长使用寿命,具有耐高压,耐腐蚀,抗疲劳等优点,因而应用广泛。

1.工程概况

某工程大楼屋面层局部大跨度梁采用粘结预应力混凝土梁结构,共有15榀预应力梁,其中三层有3榀预应力梁。预应力梁最大跨度为22m,梁最大截面为600mm×1300mm,本工程预应力钢筋全部采用Ⅱ级松弛Φj15.2钢绞线,预应力钢铰线抗拉强度标准值fptk=1860MPa张拉控制应力1302MPa,单根预应力钢筋张拉控制应力端采用夹片锚具,固定一律采用I类锚具,其中张拉端采用夹片锚具,固定端采用挤压锚具。本工程预应力混凝土强度等级均为C40。

2.施工工艺流程

本工程楼层预应力粱模板安装及钢筋绑扎阶段的施工顺序为:安装梁模板,预应力梁边侧模先不装(以便穿插预应力筋及设置张拉端),绑扎普通钢筋及穿预应力筋;安装张拉端锚垫板及间接钢筋,封梁边模板。现浇有粘结预应力混凝土工程的施工,是在普通钢筋混凝土施工工序中穿插施工的。

3.预应力施工要点

3.1预应力筋下料、制作固定端锚具

预应力筋切割成工程所需长度。下料完毕后即制作固定端锚具,加工好后运到工地现场。钢绞线的下料长度等于绞线在结构内的长度、张拉端预留长度及下料误差三者之和。下好料的成品钢绞线不能有死弯及磨伤;下好料的钢绞线应按长度分类堆放;预应力筋下料完毕,及时检查其规格尺寸和数量。

3.2预应力曲线放线

预应力筋(波纹管)在梁中按设计要求的曲线布置,曲线形状由反弯点及最低点、最高点等几个特征点控制,通常在梁非预应力钢筋(箍筋)上画出预应力筋详细的放线图,每间隔1.0-1.5m左右设一个控制点。放线应由专人负责,并及时进行复核检查。

3.3固定架的焊接

预应力筋在各控制点处由固定架支承,普通钢筋绑扎成型后,以波纹管管底标高,按设计要求的預应力曲线矢高在控制点处箍筋上划线,将支架焊接在梁箍筋上,间距1000mm。为防止在浇筑混凝土时变位,固定架必须有足够的支承力,直径不小于10mm,为保证固定架位置的准确,宜由焊工及放线人员一起进行焊接固定架。

3.4波纹管安设

普通钢筋绑扎成型及固定支架焊好后,就可进行辅管,辅管时先将固定端锚垫板安装就位,从张拉端处逐步套入波纹管。波纹管的连接采用同一形大一号的管,长400mm,每边旋人150mm,对接后用胶带密封。波纹管与固定端钢绞线连接用棉丝封堵,再用胶带密封。整段波纹管在梁内应顺直,不得有明显弯折,水平允许偏差10mm。

3.5预应力筋穿束

梁普通钢筋绑扎完毕并焊接完固定架后,先铺放波纹管,然后将预应力筋穿入管内,全部铺完后将波纹管绑扎在固定架上。预应力筋穿束采用人工单根穿束。穿束端采用胶布或其他软布包缠好,以减少穿束过程中预应力筋对波纹管造成破损现象的发生,预应力筋穿束过程中及完毕后,应对波纹管破损情况进行检查,如有破损应立即用防水胶带包缠。

3.6预应力筋就位固定及留排气泌水孔

预应力筋的垂直位置由固定架控制,预应力筋的水平位置应保持顺直。在就位固定后,泌水孔应设置在波纹管最高点及两端部。先在波纹管上方开一直径20mm的圆孔,用带嘴的塑料压板和海棉覆盖,并用铁丝固定在波纹管上,接头周边用胶带封严,以防漏浆,塑料压板嘴上直径25mm的塑料管,向外延伸至梁面以上500mm,兼作泌水孔。

3.7放置螺旋筋

在预应力张拉端部按设计要求放置加强螺旋筋,以承担预应力局部压力。

3.8锚垫板的安装与固定

从波纹管端套入锚垫板,并将其稳固焊在柱筋上,固定端锚具必须伸入锚固构件厚度的一半以上。张拉端与固定端垫板均须与预应力筋保持垂直。本工程张拉端垫板缩入构件内固定,垫板前用泡沫塑料填充成孔。

3.9混凝土浇筑及注意事项

预应力筋穿束完毕后,检查和调整敷设的各种管线的位置、规格和数量,检查和修补破损的波纹管,进行隐蔽验收,合格后方可浇筑混凝土。在混凝土浇筑过程中,应特别注意振动棒不要直接接触波纹管。张拉端及梁柱节点等重点部位宜采用小直径振动棒振捣密实,以免出现蜂窝,造成张拉时发生事故。混凝土浇筑时要注意预留同条件养护混凝土试件,以便张拉时以其强度检测值作为预应力筋后张拉的依据。在浇完混凝土后要及时清理干净锚垫板面上的混凝土,以确保锚具能顺利地安装。

3.10预应力孔道灌浆

(1)在预应力筋穿束过程中,重点保护好波纹管不受破坏,柱钢绞线采用单根穿束方案,穿束前先将钢绞线端部用黑胶布包紧,然后把单根钢绞线从波纹管一端穿至另一端。穿束时,注意不能硬顶,以防波纹管被顶破,而应将钢绞线往复轻抽、推、转,同时检查波纹管是否平顺,否则及时将其扶平顺。在固定端波纹管口处,用钢丝球和回丝封闭,以免漏浆。

(2)孔道灌浆时,根据施工现场的气温情况,将水泥浆自拌制到压入孔道的延续时间一般控制在30~45min。并保证水泥浆在使用前和压注过程中连续搅拌以及压注水泥浆的压力,以确保连续工作,同时采用SQ45-3型活塞式压浆机压注水泥浆,最大压力1.0MPa,从最低点的压浆孔压入,由最高点的排气孔排气和泌水,压浆应缓慢、均匀地进行,不得中断,并应将所有最高点的排气孔依次放开和关闭,使孔道内排气通畅。压浆在达到柱顶部孔道顶端饱满后出浆,并达到排气孔排出与规定稠度相同的水泥浆为止。为保证管道中充满灰浆,关闭出浆口后,还应保持不小于0.5MPa的一个稳压期,该稳压期不宜少于2min。

3.11端部预应力筋的切除及封锚

预应力筋张拉完毕灌浆完成后,待预应力孔道内浆体达到一定强度后采用砂轮切割机或乙炔焰切断端部多余的预应力筋,严禁使用电弧。当用氧乙炔焰切割时,火焰不得接触锚具,切割过程中还应用水冷却锚具,切割后预应力筋的外露长度不应小于30mm,然后用同等级强度的膨胀细石混凝土封闭端部,实施永久性防护措施,以防止水分及其他有害介质侵人。

4.施工注意事项

4.1预应力施工完成后,禁止在楼板、梁底、梁支座面随意钻孔,安装支吊架要事先预埋钢板处理,板面必须开洞,应报设计单位同意之后,制定严格完善的施工措施方可实施。

4.2张拉锚固区域禁止随意凿打混凝土,防止出现混凝土凿松后造成锚具意外脱飞,造成事故。

4.3严格控制房屋的使用功能,不得随意超载堆放物品,确保结构及施工安全。

5.结语

综上所述,预应力混凝土结构与普通钢筋混凝土结构相比,可有效减小柱截面尺寸,从而达到减少模板、钢筋和混凝土用量,降低工程造价的目的。同时,预应力施工的埋管、穿筋可与普通钢筋铺设同时进行,张拉、灌浆不占主工期,不会增加施工工期,值得同行借鉴。■

【参考文献】

[1]杨一兴.后张法无粘结预应力混凝土结构施工技术的研究[J].天津职业院校联合学报,2009,(05).

预应力混凝土箱梁施工管理论文 第5篇

预制场地的选择宜靠近施工工地就近布设,交通方便,利于建筑材料的运输和成品梁板的吊装。太佳高速公路(吕梁段)第八合同段共有桥梁3座,预制梁板数量为364片,主要设计为20m预应力箱梁132片、30m预应力箱梁232片,箱梁为后张法施工。该预制场主要选择在1号桥与2号桥之间的挖方段路基上,占地约10 000 m2,存梁区设在梁场前方的路基段内,施工道路利用S104省道及路基便道。梁场用水,在梁场右侧的河沟内打井,安装高扬程抽水机将水抽至梁场左侧的山上,新修建一座蓄水池,电力前期由2台150 kW发电机供电,后期由架设的电力统一专线接入梁场。施工技术

后张法预应力箱梁施工顺序:台座制作→制安钢筋、预应力孔道、模板→绑扎顶板钢筋→浇筑混凝土→养护、拆模→预应力筋制安、张拉→封锚、孔道压浆→养护。

2.1混凝土施工

混凝土采用混凝土罐车由拌合站运至制梁区再经龙门吊吊运人模,按水平分层浇注,由梁端向跨中的顺序,共分4层浇注,先从底板浇注腹板位置,再分2层浇注腹板,最后浇注面板。混凝土的振捣,腹板捣固以附着式振动器(高频振动器)为主,插入式振动棒为辅,面板可用平板振动器。附着式振动器两边对称振动,并严格控制振动时间(一般为1.5 min),只能在灌注部位振动,不得空振模板,波纹管位置以上部位采用插入式振动棒捣固,步点均匀,振动棒不得触及波纹管,以免波纹管被振破漏浆,影响张拉。混凝土捣固程度以现场观察其表面气泡已停止排出,混凝土不再下沉并在表面出现水泥砂浆为宜。

养护,拆模后即时洒水养生,使混凝土表面保持绝对湿润,避免时干时湿,针对工地不同气候变化采用不同的养护措施,低温季节浇筑完混凝土后立即用塑料薄膜包起来,保持梁体温度和表面湿度,高温季节,经常浇水,顶板用土工布遮盖起来,减少水分蒸发。

2.2预应力施工

2.2.1预应力筋下料及制作

预应力筋下料长度既要满足使用要求,又要防止下料过长造成浪费。预应力筋下料长度的计算,应考虑预应力筋的品种、锚具形式、弹性回缩率、张拉伸长值、构件孔道长度、张拉设备与施工方法等因素,由于预制梁采用两端张拉,故每根钢绞线的长度按下式确定:

L=L0+2(L1+L2+L3+L4+L5)

式中:L0:构件的孔道长度;

L1:工作锚厚度;

L2:千斤顶长度;

L3:工具锚厚度;

L4:限位板长度

L5:长度富余量(一般取100 mm);

孔道成形的质量,对孔道磨损的影响较大,应严格把关,因此要求孔道的尺寸与位置应正确,孔道应平顺。接头不漏浆,端部预埋钢板应垂直于孔道中心线等。

预应力筋的孔道可采用钢管抽芯,胶管抽芯和预埋管等方法成形,该梁场采用预埋金属波纹管成孔工艺。接头采用外径大2 mm同类波纹管套接,并用胶带缠绕、密封好,以免水泥浆进入管内,沿梁长方向1 m设一道井字形钢筋架以利于固定波纹管。

2.2.2预应力筋的张拉

2.2.2.1张拉程序

0→10%(rK(初应力值作延伸量的标记)→100%σK(持荷2min,测延伸量)一锚固。

箱梁张拉分为正弯矩区(架梁前)及负弯矩区(架梁后)两种。在随梁同条件养生混凝土试件达到85%设计强度后进行预应力施工,预应力筋用锚具进场时应按《混凝土结构工程施工及验收规范》GB50204—92和《预应力筋用锚具、夹具和连接器应用技术规程》JGJ185—92组批验收,合格后方准使用。各束张拉力及伸长值按规范要求分别计算,以张拉力和伸长值双控。预应力筋张拉伸长值的量测,应在建立初应力之后进行。其实际伸长值AL应等于:

△L=△L1+△L2-A-B-C

式中:△L1:从初应力至最大张拉力之间的实测伸长值,包括

多级张拉,两端张拉的总伸长值;

△L2:初应力以下的推算伸长值;

A:张拉过程中锚具楔紧引起的预应力筋内缩值;

B:千斤顶体内预应力筋的张拉伸长值(若理论伸长值已计人,则不减);

C:构件的弹性压缩值。

关于推算伸长值△L2,可根据弹性范围内张拉力与伸长值成正比的关系计算,也可用初应力——2倍初应力的可测伸长值代替。

△L与理论值的差值不得大于6%,否则必须暂停张拉,分析、查找原因后并采取有效措施予以调整后,方可继续张拉。

2.2.2.2压浆施工

孔道压浆是为了保护预应力钢筋不锈蚀,并使预应力筋与构件混凝土有效的黏结,从而既能减轻梁端锚具的负荷,又能提高梁的承载能力、抗裂性能和耐久性。

(1)准备工作:用棉花和水泥浆堵塞锚具周围的钢丝间隙,并用空气泵检查通气情况。

(2)水泥浆的制备:孔道注浆所用的水泥浆,须用P.O52.5R普通硅酸盐水泥拌制,水泥浆标号不得低于构件混凝土标号的80%(28天龄期时)。M40水泥浆配合比及外加剂,水泥浆应有足够的流动性,稠度控制在14 s-18 s之间,水灰比应在0.4~0.45。泌水率宜控制在2%最大不得超过3%。每次拌量以30min~45min的使用为宜,水泥浆在使用和压注过程中应经常搅动。

(3)压浆程序和操作方法。预应力张拉后,宜在48 h内完成孔道压浆,经过铁丝筛的水泥浆用灰泵从一端向另一端压浆,压浆工作要在一次作业中连续完成,当另一端出浓浆,稠度达到规定值为止,关闭出口阀门继续压浆,压力应最少升至0.5 MPa,保压2min。

2.2.2.3封端

压浆完毕后,即可进行封端。封端注意事项:①采用与梁体同标号的砼;②封端前,压浆残留渣滓应清理干净,与梁体的接触面应凿毛;③封端的几何尺寸应符合设计要求。预制梁常见工程病害及原因分析

在混凝土浇筑完成拆模后,梁板顶面、翼板下部出现不规则的裂缝。凿开混凝土裂缝发现,裂缝深度在0mm~5mm之间,初

步判定为收缩裂缝或温度裂缝。不影响梁板的正常使用,但考虑预应力钢绞线张拉后,梁板顶面拉力增大,有使裂缝增长的可能,为此组织工程技术人员对裂缝产生的原因进行分析并提出相应的改进措施。

3.1裂缝产生的原因分析

3.1.1原材料因素

水泥采用P.0525R,经检验符合规范要求,水泥用量:486kg/m3,高强混凝土因采用高标号水泥且用量大。这样在混凝土生成过程中由于水泥水化而引起的体积收缩即自缩就大于普通混凝土,出现收缩裂缝的机率也大于普通混凝土。高水泥用量的混凝土硬化过程中,水化放热量大,升温梯度大,温度收缩应力加大,导致温度收缩裂缝。高强混凝土由于水泥含量高的多,所以在硬化早期由于水分蒸发引起的干缩也将大于普通混凝土。

碎石、砂、水、外加剂等经多次试验各项指标均符合规范要求。

3.1.2施工工艺因素

在混凝土养生,现场操作中有时不够及时,梁板顶面裸露在大气中,夏季最高气温达35℃,加快了水份的蒸发,致使表面干缩裂缝。

3.1.3混凝土自身应力形成的裂缝

①收缩裂缝:混凝土凝固时,水化反应会使混凝土的体积减少,表面水分蒸发,也会使混凝土体积减小。混凝土的干燥过程是由表面逐步扩展到内部的,在混凝土内呈现含水梯度。因此产生不均匀收缩,致使表面混凝土承受拉力,内部混凝土承受压力。当表层混凝土所产生的拉力超过其抗拉强度时,便产生收缩裂缝。

②温度裂缝:梁场建在海拔较高的山上,当地昼夜温差较大,最高温差达20℃。混凝土在较大的温度变化作用下产生收缩和膨胀,产生温度应力,温度应力超过混凝土抗拉强度时,即产生裂缝。

3.2裂缝的预防措施

(1)严把原材料质量关:水泥、砂、碎石等原材料要保持其料源的稳定,确保各种原材料质量满足规范要求。

(2)严格按照有关技术规范进行混凝土配合比设计,并在施工过程中经常校核,严格控制水灰比、砂率、坍落度等关键技术指标。每天施工前都要测定砂、石料含水量,得出符合实际的施工配合比。

(3)混凝土浇注应选择一天中温度较低的时候进行,采用插入式振捣器振捣时,移动间距不应超过振捣器作用半径的1.5倍,对每一振捣部位必须振动到混凝土停止下沉,不在冒出气泡,表面呈现平坦、泛浆,边振动边徐徐提出振动棒,避免过振,造成混凝土离析。

(4)混凝土养护,不论是收缩裂缝还是温度裂缝,混凝土的养护最为关键。合理掌握混凝土的养护时间,混凝土浇注完成收浆后,尽快覆盖和洒水养护,使混凝土表面始终保持在湿润状态,不允许混凝土在高温下裸露暴晒。在初期由于水化反应产生热量较大,应加大洒水次数,必要时在腹板采取喷淋养护加快散热,在温度较低的夜间进行覆盖,降低梁体温差大,减少由温差产生的温缩裂缝。结束语

预应力混凝土建筑结构论文 第6篇

3影响因素探究

3.1桥梁结构的参数确定

桥梁结构参数对于大跨度桥梁施工具备显著的直接影响,横截面积、预应力、材料质量以及混凝土材料等都应该注重桥梁的结构参数,需要开展更为严格的掌控。

3.2温度参数的改变

温度的改变将会对大跨度预应力混凝土发挥非常大的作用,乃至会让结构发生变形。桥梁构件变形跟附加应力成正相关,但是附加应力的大小又跟温度改变的程度成正相关,也就是说,温差越大,桥梁结构所得附加应力将会越大,也更容易产生变形。所以,设计者应该对于温度的改变具备更好地把控,尽量降低温度对于桥梁结构带来的影响。

3.3监测中所存在的误差

预应力混凝土建筑结构论文 第7篇

技术准备阶段首先应该针对桥梁结构有一个整体的了解,结合具体情况制定不同的结构规划,对于桥梁的受力情况开展更好地控制,施工过程当中也需要具备详细的施工流程。可以使用线性控制技术,对桥梁的预拱度开展整体考量,对桥梁的预拱度进行精确的控制。此外,还需要对桥梁的形状开展科学的选取,在当前,我国对于槽型以及T型截面所使用的范围比较广,然而在大跨度预应力混凝土桥梁当中很少会用到。大跨度预应力混凝土桥梁想要提升整体承载力度,可以采取变截面的方式,这样在提高整体承载力的同时还可以降低投入。桥梁的具体形状应该结合具体施工情况开展综合考虑。

4.2施工材料的控制

施工材料对于桥梁具备十分关键的影响,近几年来,许多的桥梁安全是事故都是由于建筑所选择的材料质量有问题、技术不符合规范、后期养护工作不完善所带来的。有关的单位应该对于施工当中的材料具备充足的重视,保证施工材料质量符合规定。在大跨度预应力混凝土桥梁的建设当中,应该本着“优质”、“高效”的准则开展施工材料的选取,还需要定时对材料开展检测,尽快替换不合格的材料。

4.3钢筋防腐

在大跨度混凝土桥梁的施工当中,需要首先选取具备优质防腐以及防水性能的钢筋,重点是在混凝土桥梁钢筋防腐蚀以及锈蚀方面来探讨的,与此同时,该种选取方法能够防止混凝土桥梁钢筋内部产生问题。另外,避免钢筋腐蚀也能够采取有关的电化学防范方式,在具体施工当中即使不常见,但是仍然具备参考价值,在某种意义上能够更快的改善钢筋的腐蚀问题。

4.4预应力孔道的施工控制

纵向以及横向预应力孔道重点是使用预埋塑料波纹管开展成孔的,在装设波纹管以前需要将检查工作开展到位,确保保温管没有污垢、不会开裂。一定要结合设计图纸将预应力管道埋设到位,确保管道的立面以及平面的精准性。在装设波纹管的时候,需要把钢筋和波纹管进行固定,接下来把定好位置的钢筋与腹板钢筋绑扎到一起,在箍筋上把定位筋的横向钢筋进行焊接,确保结构具备一定的稳定性,避免其发生位移。

4.5大跨度预应力混凝土桥梁水下基础质量的控制

大跨度混凝土桥梁水下工程的施工重点使用双壁钢围堰的方法。当前来说,具体施工当中经常会使用到的双壁钢围堰结构重点包括三个构成部分,分别为外部构成、内外壁连接刚性支持以及内部构成等。作为双壁钢围堰结构的底端最为明显的特点,斜向刃角可以保证施工可以更快的开展,与此同时,该种构成可以更好地起到防水以及防土的效果。

5结语

综上所述,随着我国社会经济的不断进步,推动了我国桥梁工程的发展。大跨度预应力混凝土桥梁施工技术慢慢获得了更为广泛的使用范围。然而,因为施工工序繁琐、技术复杂,所以在具体施工当中,需要根据桥梁工程的建设需求,将施工当中的每个要点与环节考虑到位,提高对于稳定性以及应力的控制度,确保施工的质量。

参考文献

[1]贺婷.浅谈浅覆土砂层泥水盾构带压换刀技术[J].中国科技信息,2012(5).

[2]孙优东,刘树涛,刘贵建.汽车维修行业现状及对策浅析[J].现代制造技术与装备,2015(04).

预应力混凝土建筑结构论文 第8篇

近年来, 工程建设规模迅猛发展, 结构日趋大型化、复杂化, 在大型公共建筑、商业中心及标准化厂房等工业和民用建筑物中, 越来越多的出现了单向大跨度框架结构体系。在预应力混凝土框架结构中, 在车道等位置经常采用大跨度次梁方案, 将大跨度作为间距较小的预应力次梁, 而跨度小的方向则作为混凝土主梁或预应力混凝土主梁, 这样可减小两个方向梁的截面, 达到节能优化结构的目标。

1 预应力张拉顺序对结构效应的影响

本工程通道为布置形式为单跨18m×27m, 采用大跨度次梁方案, 将27米方向做成间距较小的预应力次梁, 即跨度较小的方向为框架主梁, 这样使小跨度方向承受较大的荷载。若张拉时不采取合理的张拉顺序, 则次梁可能产生较大的收缩压力, 可能导致边梁的开裂。

为研究不同张拉方式对结构效应的影响, 本文采用MIDAS/Gen有限元分析软件建立局部模型进行研究, 平面模型如上图1所示, X向单跨布置, Y向由5根次梁将27米跨度进行分割, 边梁截面为1800mm×2650mm, 预应力筋在边梁侧一端张拉, 有限元模型图2。计算过程中施工活荷载为2.5KN/m2, 施工恒荷载为结构自重, 预应力筋采用四段抛物线布置, 张拉控制力为0.7σcon, 超张拉5%。经过对以上几种张拉方式进行计算分析后, 结果如下:

不同张拉方式对梁效应的影响

现拟定三种张拉工况, 工况1为预应力一次加载;工况2先张拉2、3、4次梁, 再张拉次梁1、5;工况3先张拉次梁2、4, 最后张拉次梁1、3、5。

根据计算结果, 工况1边梁水平位移如下:节点A:-1.602mm;节点B:-1.673mm;节点C:-1.654mm, 节点D:-1.461;节点E:-0.903mm, ;节点B位移最大, 为E节点位移的1.82倍, 边梁轴向应力最大为3.65Mpa, 有可能导致边梁开裂, 如图3。

工况2边梁水平位移如下:节点A:-0.729mm;节点B:-0.780mm;节点C:-0.755mm, 节点D:-0.661;节点E:-0.383mm, 节点B位移最大。所有预应力梁张拉完毕后边梁的最大轴向应力为3.06Mpa, 边梁变形见图4。

工况3边梁水平位移如下:节点A:-0.708mm;节点B:-0.747mm;节点C:-0.715mm, 节点D:-0.622;节点E:-0.053mm, 节点B位移最大。边梁的最大轴向应力为2.36Mpa, 边梁变形见图5。

从以上计算结果表明, 各种工况下, 边梁各节点的位移都很小, 相比较工况3的位移最小, 结合考虑工况1与工况3两种张拉条件下, 边梁的位移差别仅0.2mm左右, 而轴向压力也变化较大, 综合考虑施工条件, 建议可考虑工况3的张拉顺序进行张拉。

由于施工阶段的荷载为预应力对边梁的侧压力, 因此主要对结构各张拉施工工况下的弯曲应力进行对比分析。图6表示不同工况下边梁的弯曲应力对比图。

由图6可以看出, 边梁的受力情况均为端部左侧受压, 跨中截面右侧受拉;工况1边梁压应力最大为1.61MPa, 拉应力最大为0.86MPa;工况3跨中截面拉应力为工况1的0.79倍。从上述三种不同张拉顺序的对比来看, 张拉顺序工况1、工况2中边梁在施工过程中的应力较大, 容易引起边梁的开裂;工况3跨中截面引起的拉力较小, 对结构有利。

2 结论

采用不同顺序的张拉方式会引起边梁较大的结构效应。本工程在三种不同施工张拉工况下, 对边梁水平位移及弯曲应力的进行综合比较, 发现分批张拉次梁的预应力筋产生较小的位移, 对边梁的影响最小, 能有效防止边梁的不正常开裂。

参考文献

[1]王逵.预应力混凝土框架结构预应力梁张拉顺序对于边梁的影响的讨论[J].江苏建筑, 1994 (4) .

[2]吕志涛, 孟少平.现代预应力设计[M].中国建筑工业出版社, 1998.

浅谈预应力混凝土大板结构设计 第9篇

一、工程适用条件

现在很多工程都可以采用大板结构,例如高级公寓及住宅的层高仅为2.8米,由于是高档商品房,在房间内不得有梁出现,普通的梁板结构无法实现建筑功能的要求,但采用无粘结预应力大板结构方案,除核心筒外,每層由若干块大板组成。户内隔墙均落在预应力大板上,使得建筑布置十分灵活,方便。

二、设计参数

混凝土强度等级为C60,预应力筋采用强度为1860MPa的高强低松弛钢绞线,张拉控制应力Dcon=0.75fptk,板厚约200mm.

设计荷载:

静载:7.0KN/m2(包括板自重)

活载:2.0KN/m2+3.0KN/m2(隔墙荷载)

三、预应力砼结构的设计要求

对预应力混凝土结构,必须满足下列功能要求:

1.结构在预应力张拉施工阶段和将来正常使用阶段出现各种可能作用时,具有一定的安全度。

2.具有一定的延性变形能力。

3.预应力混凝土大板的挠度与反拱在允许范围内。

4.结构各截面裂缝宽度不超过允许范围,从而保证预应力与非预应力筋在其所处的环境条件下不产生影响结构耐久性的锈蚀。

进行设计时,一般考虑承载能力极限状态和正常使用状态,并对施工阶段进行结构强度验算与材料应力验算。

(1)对承载能力极限状态,应采用荷地、载效应的基本组合与偶然组合与长期效应组合进行设计。

一般按荷载的基本组合进行设计,并通过采取构造措施保证结构破坏时具有一定的延性,从而保证在偶然事件发生时及发生后仍能保证整体稳定性。而对无粘结预应力浊凝土多跨连续结构,由于偶然事件可能造成某跨预应力筋完全失效,根据无粘结筋的特点,其他各跨预应力筋随之也失效。

为保证不发生由此产生连续倒塌破坏, 应考虑预应力筋失效。并取与偶然作用同时出现的可变荷载,即长期效应组合值,按各材料的标准强度对结构承载能力作补充设计。

(2)对正常使用极限状态,应采用荷载的短期效应组合进行设计,使得结构构件的变形与裂缝等都不超过相应的规范限值。

对预应力混凝土结构,为保证结构变形不影响正常使用或外观,通常限制构件挠度或反拱值;由于预就力钢筋是采用单根直径较小的钢丝组成的高强钢丝束或钢绞线,对开裂造成的钢筋表面锈蚀比较第三,因此其耐外性对裂缝宽度应有严格的要求。

四、预应力混凝土结构的设计内容

预应力混凝土结构的设计内容应包括如下三个方面。

1.施工阶段的验算

1)施工阶段的条件:施工时的荷载条件中,预应力荷载应按扣除第一批预应力损失后的有效应力来确定;其他荷载应根据施工阶段可能的最不利荷载情况来定。而施工时的支撑条件应考虑施工方案的具体情况来定,模板周转情况影响施工阶段的结构分析模型的支撑条件与荷载条件的选取。

2)施工阶段的验算内容:一方面,要求在施工阶段的支撑条件下,在相应原施工荷载下,结构具有一定的安全度;另一方面,要求施工阶段结构的材料应力不超过允许范围。一般情况下,控制施工阶段预应力筋拉应力,截面混凝土的最大拉应力与压应力。当采用特殊的施工工艺时,尚应作相应条件下的验算。

2.正常使用阶段的适用性,耐久性验算

1)预应混凝土结构进行使用荷载下的挠度验算,挠度值不允许超过规范规定的允许挠度。

2)按现行规范控制裂缝要求,对有粘结预应力混凝土结构,短期荷载效应组合下,不允许出现裂缝。而长期荷载效应组合下,不允许出现拉应力。对无粘结预应力混凝土结构,一级裂缝控制时,不允许产生拉应力;二级裂缝控制时,不允许出现裂缝,短期效应组合计算时,混凝土拉应力控制系数取0.6,长期效应组合计算时取0.25。

工程实践经验表明,结构工作环境条件良好,可以对短期荷载的裂缝控制适当放松,允许出现裂缝。其宽度限值为低侵蚀性环境,在短期效应组合下,最大裂缝宽度不超过0.20.mm。

3.承载能力极限状态设计

1)对预应力板各截面进行多种可能的荷载效应组合的受弯强度设计,计算时要考虑预应力产生的次弯距的影响。

2)采用混合配筋设置非预应力筋,提高结构在地震作用下的延性和能量吸收,可有效分散受拉区裂缝,改善结构 的受力性能。

3)对无粘结者按预应力砼连续结构作补充设计,选取合适的荷载效应值与材料参数,验算抵抗预应力筋失效时连续倒塌所需的非预应力筋用量。

五、预应力大板的构造要求

1.预应力大板宜采用高强低松驰钢铰线,砼的强度等级不宜小于C40。

2.预应力大板的最小厚度不宜小于180mm使预应力筋具有一定的有效矢高,发挥预应力筋的作用。

3.在尖力大板中需有双层双向通常设置的普通钢筋。以提高板的延性和防止预应力反拱引起的开裂。

4.在一般建筑中裂缝宽度限制可取0.2mm.。

六、结论

1.无粘结预应力大板结构可有效降低楼层的高度,并可有效减小板的厚度,从而减轻整个楼层的重量,综合经济效益明显。

2.该结构使高层住宅的建筑平面更加灵活,并且有利于二次装修时室内布局的改造,适应市场的要求。

3.该结构在中关村力鸿公寓和通州东总屯1#综合楼的设计中被采用。

参考文献:

①龚世民 韦祖权 《珠江现代化建设》浅谈住宅设计 2007年6期

预应力混凝土建筑结构论文 第10篇

1引言

不同的环境需要不同类型和功能的桥梁来满足当前的经济发展以及人民生活的需要。同样,无论是哪种桥梁,随着时代的进步,将要面临的挑战、克服的困难也会不断增多。因此,更加安全可靠,稳定耐用,节省钢材,能够降低施工费用和养护费用的预应力混凝土桥梁自20世纪30年代出现至今其应用范围日益扩大,施工技术也逐步成熟完善并得到创新,成功地缓解了交通问题造成的各种不便,在社会建设中发挥了积极的作用。可以说在未来的发展中,预应力混凝土桥梁仍是施工单位在许多地区进行施工的首选,因此,为了帮助施工单位提升自身预应力混凝土桥梁的施工质量,本文将对施工中的技术要点进行简要分析。

2施工前准备

2.1严把预应力桥梁施工图设计质量

无论进行何种施工建设,图纸的设计始终是后续工作安全进行的基础环节,预应力混凝土桥梁也不例外。为了保证施工安全,设计人员务必深入施工现场进行全方位的考察,根据施工现场的实际情况进行施工图设计,并同技术人员、施工人员、监理人员进行综合评议,在确保施工方案科学性和可行性的前提下方可投入使用。

2.2严把材料质量关

施工材料的选择不但决定了工程施工与使用的安全,而且也是桥梁整体工程成本的重要影响因素,因此,施工单位应做好材料的选择工作,严把材料质量关。施工单位应选择优质厂商生产的并与设计图要求相符的混凝土,并对其进行再三检测,保证其各项指标都达到相关标准才能进行后续的施工工作。

2.3严把施工设备选择关

为了确保施工过程中拉伸作业的精准性和可靠性,必须保证预应力锚具以及千斤顶等施工设备选择的合理性和科学性,即选择高强度的预应力钢材和承重超出设定数量1.2倍的千斤顶[1]。对于压力表、水泥浆搅拌机等其他设备的选择,应确保其安全性和合理性,同时,可以有意识地使用新型设备,以提高施工效率和施工质量。

3施工中的技术要点

3.1水泥浆的制作

在配置水泥浆的过程中,要注意相关材料的混合比例,严格控制泌水率,制作后及时对水泥浆的抗压强度、抗折强度以及温度等因素进行分析检测,令其满足预应力桥梁的施工要求。

3.2选择科学的施工技术

预应力混凝土桥梁施工技术在长期的使用中不断被丰富完善,目前,业内主要使用的技术是预制装配整体施工技术、顶推施工技术、移动模架施工技术、悬臂施工方法等[2]。不同的技术有不同的侧重点,需要施工人员针对实际情况进行具体的分析,最终选择合适的施工技术。以应用范围广,对交通影响最小的顶推施工技术为例。该技术是沿着纵轴方向开辟预制场地,采用分段浇筑的方式进行桥身施工,当所有节段浇筑完成后,采用纵向应力把所有节段连成一个整体,再采用水平液压千斤顶进行顶进施工,目前,该技术在等截面连续梁施工中应用较多[3]。在实际施工中要最大限度地保证滑动装置和千斤顶的同步前进,而一旦连续桥跨度超过50m时,要及时设置临时支墩并换用单向顶推方式,以降低架设过程中由于施工负荷造成的桥梁变形损害。

3.3张拉工作的施工技术要点

所谓的预应力张拉就是在构件中提前施加拉力,使被施加预应力张拉构件承受拉应力,进而使其产生一定的形变,以抵消钢结构本身承受的一部分荷载,以提高桥梁的承载力。可以说这项工作的质量直接影响最后预应力混凝土桥梁的安全质量和使用寿命。在进行张拉工作前,应当做好清洗工作和检查工作,确保预应力管道及锚口的干净、无锈蚀,确认施工所需的相关材料和设备满足设计要求和施工需要,对不合格的混凝土进行及时的调整。在张拉过程中,要确保施工人员遵守相关规章制度,以科学规范的操作和熟练的技术保障张拉工作的顺利进行,从而保证预应力混凝土桥梁的施工质量。在张拉过程中,要合理分配并控制各级张力并精确记录,保证钢束处于绷紧状态,锚具与千斤顶处在同一水平面上,并保证钢束中每一根钢绞线受到的拉力相当,避免钢绞线相互缠绕。同时,张拉全程要有技术人员进行监督,一旦出现滑丝、断丝或张拉实际长度与理论长度超出±6%的情况都要停止施工,寻找原因,解决后方可继续施工。为了避免出现问题导致张拉工作停摆,延长施工时间,施工人员在进行以下工作时应有意识地进行反复探查分析。(1)结构截面尺寸的计算,由于其结果直接与预应力张拉的伸长值有关,是预应力混凝土桥梁变形结构的内在因素,因此,在分析计算时,要对设计数值和实际截面大小进行对比,准确把握构件截面的尺寸大小,以最大限度地降低结构截面尺寸出现的偏差,提高计算的科学性和准确性。(2)穿束前,预应力钢束必须按规范要求进行检验,编束,正确绑扎,以防止出现拉丝滑丝等情况,对不合格的钢绞线要及时进行更换。(3)选用合适的限位板并使用定型模板,将锚垫板准确牢靠地进行固定以避免锚垫板拉裂。

3.4孔道压浆工作的技术要点

为了避免由于出现压浆不足或漏浆现象导致的预应力混凝土桥梁质量问题,在进行压浆工作前要对锚具及夹片周围用原子灰进行认真封堵,防止从夹片周围漏浆,影响孔道压浆密实度。在压浆过程中,要保证水泥浆的检测强度超过325MPa,稠度在14~18s。同时,压浆要保证从低向高的施工顺序并确保连续不断地工作。结束后,准确检测浆体的密实度,对于不达标的部分,在20min后进行第二次压浆工作直至合格为止。在压浆工作完成后,需要对需要封锚的锚具进行封闭,以避免由于锚具裸露出现锈蚀等现象影响桥梁质量。具体来说,封锚时要做好锚具周边的清洗工作,保证梁体长度以及端梁及内部构件的位置角度等因素符合设计标准的要求;在对梁端混凝土凿毛后,设置不变形、准确牢固的钢筋模板以进行混凝土浇筑的封锚工序。

4结语

桥梁建筑施工安全不可小觑,因为桥梁的施工质量直接影响人民群众的生命安全,左右着经济建设的质量效果,因此,在预应力混凝土桥梁施工过程中要针对可能出现问题的环节进行严格控制,选择优质的混凝土进行施工,坚持选用科学合理的施工方案,将每一道工序都高质高效地完成,并主动进行技术工艺上的创新,从而提升预应力混凝土桥梁的整体质量水平。以此推动我国桥梁建筑行业的不断发展完善,为我国绿色可持续发展建设作出应有的贡献。

作者:刘高锋 单位:石家庄公路桥梁建设集团

参考文献:

预应力混凝土建筑结构论文 第11篇

在桥梁施工中,混凝土是应用最为广泛的材料。混凝土材料特性不稳定,容易受到季节气候、温度以及湿度等因素的影响。通常,在混凝土自重、桥面荷载等影响下,桥梁线性得不到很好的控制。而要使施工过程中的应力以及挠度变形得到控制,就需要计算出不同施工段桥梁的受力以及变形的理想值。为了实现桥梁工程质量的控制,对桥梁施工过程进行仿真实验有非常积极的意义。所以文章结合MIDAS/Civil、ANSYS等软件对浙江宁波地区的一座桥梁的施工全过程进行仿真分析。文章在仿真过程中涉及的方法较多,对全桥结构仿真主要通过构件分析建立详细的模型,然后运用数值分析方法获取分析结果,最后通过图形软件来获得相关定论。

1 工程概况

A桥位于浙江宁波,全长1578m,主桥为五跨(55m+3X100m+ 55m)预应力混凝土变截面斜腹板连续箱梁,长410m,引桥左侧为4跨35m预应力混凝土简装连续箱梁,右侧为5×50m预应力混凝土等截面连续箱梁十2×(7×35m)+8×35m预应力混凝土简装连续箱梁组成。设计车速100km/h,荷载汽车-超20级,挂车-120级,抗震等级为8级。该桥采用挂篮悬臂现浇法进行分段对称施工。其中,主桥混凝土箱梁采用三向预应力,张拉顺序为先纵向后横向,并按对称、均匀的原则实施。

上一篇:大学生财务助理岗位实习总结下一篇:第1篇投标邀请书格式