果壳中的宇宙的读后感

2024-06-06

果壳中的宇宙的读后感(精选9篇)

果壳中的宇宙的读后感 第1篇

果壳中的宇宙读后感

依照霍金的理论,胚在虚时间的历史将决定它在实时间的发展。高维泡泡在虚时间中产生一个完全光滑的球形的4维“果壳”的概率是最高的;然而,这又对应于在实时间内以暴胀方式永远膨胀的胚。星系不能在这种胚世界中形成,从而智慧生命也不会出现。然而,高维泡泡在虚时间中产生一个有点不光滑和偏离球形的4维“果壳”的概率虽然稍低一些,但是却能与实时间中的减速暴胀过程(胚在开始时有一个加速膨胀——暴胀的相,随后膨胀又缓慢下来)相对应。在这个减速暴胀过程中,星系可能形成,智慧生命也会出现。有趣的是,这些智慧生命将会创造一种宇宙理论,认识到他们来自于不那么光滑,也不那么圆的4维“膜”。

在读完《果壳中的宇宙》和《宇宙的起源与归宿》之后,有一种感觉。人类置于茫茫的宇宙之中实在是太渺小了,而且对所存在的宇宙也只是停留在理论阶段,完全没有实力实践。而当中一些妄想要挑战自然挑战宇宙的人类不是太狂妄,太可笑了吗?虽然他们可以说是人存理论决定这个宇宙,但是没有确凿的证据是不能使全世界的人类信服的。而神创论更是无从谈起,他们想说他们那个万能的上帝么?可惜,亲爱的上帝不是万能的,他能造出一块自己也搬不起的石头么?

人类还有很多未知的世界需要我们不断探索,我相信,事实只有一个,人类在将来,一定会得到我们想要的答案。

果壳中的宇宙的读后感 第2篇

我看的这本书名字叫做《果壳中的宇宙》,是由物理学家史蒂芬 霍金著。

在看这本书的前言时,我就在于被霍金先生坚持不懈的精神打动了,霍金这位伟大的科学家,在他22岁时就被医生诊断为萎缩性骨髓侧化症,医生说他最多只能活两年。可他没有像别人一样秃废,他想既然如此,那我就只有在这两年中做出一些有意义的事来,他从此便开始努力学习与研究。可是过不了多久他就开始感到身体越来越虚弱了,连上楼梯都十分费力,可他仍没有放弃。两年转眼就过去了,可死亡并没有降临到他头上,但他只能在轮椅上度日了,之后又一次手术,不能说话了,可他并没有向病魔屈服,没有向命运屈服,继续他的研究,终于通过他的努力成为了伟大的科学家,还当上了剑桥大学的教授。

霍金的坚持、勤奋和顽强拼搏深深打动了我,在这样的巨人面前,我无比惭愧,想想自己平时遇到一点困难就畏惧怕苦,霍金一个残疾人通过自己的努力登上了科学的顶峰,难到我们不应该向他学习吗难到作为正常人的我们还有什么办不到吗?难到我们不该像霍金一样努力吗?我们应该马上行动,努力学习才有可能成为霍金这样的科学巨人。

果壳中的宇宙的读后感 第3篇

关键词:宇宙常数,引力势能,宇宙真空场动量能量张量,暗能量,闭合宇宙

爱因斯坦认为, 这个和度规张量成比例的反引力项λ很小﹐在小尺度的范围可以忽略不计, 只在宇宙尺度的状态下﹐才可能存在有意义的效应﹐所以, 他将其称作为宇宙常数。

1929年, E·P·哈勃观察到星系光谱红移和距离的线性关系, 即所谓的哈勃定律。当爱因斯坦得知哈勃发现“宇宙普遍在膨胀”的事实后, 承认自己引入宇宙常数是犯了一个关键性的最大错误。最初, 爱因斯坦在黑洞问题上, 也有反对的意见。但在事实上, 爱因斯坦引入的宇宙常数, 并不被认为是错误的, 今天, 仍有不少科学家在研究它。

1 宇宙因子的量值

式 (2) 的值和式 (1) 的值是一致的。取两者的平均值可得:

2 极限状态引力的量值

3 宇宙的命运

从上可见, 宇宙常数λ是一种可以变化的变量。在极远处, λ→0。结合式 (5) 和式 (4) 可得:

可以看出, 此值和式 (6) 的结果是一致的。

从上可见, 在极远处, 通常的引力势能V为和宇宙常数λ相关的宇宙真空场的动量能量张量Λμν的3.125倍, 即引力势能V将远大于和宇宙常数λ相关的宇宙真空场的动量能量张量的数值。如果将暗能量归之于和宇宙常数相关的宇宙真空场的动量能量张量Λμν, 暗能量将仍然不敌较之大得多的引力势能。而在近距离处, λ→-8, 这时, 它则是一种吸引力。这和通常情况下物质的引力是相类似的。

同时, 在ρ0c2=ρmc2+εγ+Λ00中, 同Λ00一样, εγ也是一种排斥力。但在足够远的地方, 其εγ已足够小, 即有εγ→0, 可忽略。而且, 在考虑Λ00和εγ的共同作用后, 仍有Λ00+εγ<ρ0c2, 因此, 并不会改变以上所得的结论。

4 结论

所谓的宇宙常数是可变的。在极远处, 引力势能V将大于和宇宙常数λ相关的宇宙真空场的动量能量张量Λμν的数值。因此可以得出结论, 宇宙并不是永远膨胀的, 而是闭合的。

参考文献

[1]俞允强.物理宇宙学讲义[M].北京:北京大学出版社, 2002:120, 84.

[2]朱临.起伏式宇宙模型[M].杭州:浙江人民出版社, 2004:108—112.

[3]刘辽、赵峥.广义相对论[M].第二版.北京:高等教育出版社, 2004:87, 148.

轮椅中的霍金与果壳中的宇宙 第4篇

史蒂芬·霍金(2001年)

时至今日,对一般人来说,进行太空旅游并不是什么稀奇事。但对霍金来说,却是个惊人之举。还是在他读研究生的1962年,即21岁生日过后不久,就被诊断出患上了运动神经细胞萎缩症,从手、脚到心、肺和大脑,能够动的部位会越来越少。到1963年,医生宣判他的生命只剩下两年的时间。但他的顽强抗争,不仅延缓了死神的到来,而且成为著名的科学家。

不过,他的病情还是在20年前就已经很严重了,脑袋往下耷拉,手脚不能动,只能靠轮椅行动,说话很困难。1985年,在肺炎手术后,又完全不能说话了,只能靠安装在轮椅上的语言合成器与人交谈。开始,他用一只手的三根手指在计算机屏幕上选择词汇,组成句子,后来则只能通过眼皮的动作来选择词汇组成句子了。

《果壳中的宇宙》封面

霍金与宇宙有不解之缘。早在读研究生时,他就非常关注宇宙学问题,而现在,“即便把我关在果壳里,仍然自以为无限空间之王”。霍金使“轮椅”和“果壳”结了缘。

《果壳中的宇宙》正是霍金继《时间简史》之后又一科普力作。让我们来一睹芳容。

《果壳中的宇宙》虽然是科普书,我们还是要铺垫着来描述。

终极理论

所谓终极理论,是指宇宙中的一切都可以用一项单一的数学方程(定律)来描述的那种理论,又叫统一理论、万有理论、万物至理、万物终极理论等等。

建立终极理论,不是完全另起炉灶,而是设法把已有的成功理论统一起来。正如法国学者奥古斯特·孔特所说:“科学进步的重要是在不断扩展那些不同原理之间的联系、减少它们的数目。”

自现代科学诞生以来,一些科学家一直在追求宇宙的终极理论,并不断有人宣称离找到终极理论的时间不远了。

终极理论的源头,可以上溯到17世纪牛顿建立行星运动理论之时。那时就有拉普拉斯的决定论:只要给定宇宙在某一时刻的结构,由给定的一组定律,就能精确的决定它的演化。

1831年,英国物理学家迈·法拉第发现,电和磁虽然表面现象不同,但却是同一基本现象的不同方面。这暗示着以某种方式来看,宇宙具有一种基本的统一性。那时,法拉第还缺少实现这种统一的工具——数学。

1861年,詹·麦克斯韦成功地将法拉第的发现转换成数学语言,即麦克斯韦电磁方程组,成功地将电、光、磁统一到一个电磁理论中。但电磁理论不包含引力。

我们生活在一张膜上,或者我们只不过是张全息图?

进入20世纪以后,原子论已牢固地建立起来。当时的大多数物理学家认为,除了某些物质吸收热量的准确方式和某些原子蒸汽辐射出的奇怪谱线等少数几个问题外,对一切事物基本上已经完全了解了,剩下的那几个问题,过不了几年也可以得到解决。如在1903年,著名实验科学家迈克尔逊就说:“所有比较重要的基本定律和物理科学的事实,都已经被发现,它们已经很稳固地成立,甚至连因为有新的发现而要对它们进行补充的这种可能性,都极其微小。”

但是,其言犹在耳,就有崭新的物理学——爱因斯坦狭义相对论和包含引力的广义相对论诞生。更有卢瑟福砸碎原子,掏出一个广阔的微观世界,诞生了迄今应用成果最大的量子力学。

在原子被砸碎,了解到原子是由电子和原子核组成的以后,著名物理学家马克斯·玻恩在1928年发表评论说,“我们所了解的物理学,将于6个月内大功告成”。

爱因斯坦在发表广义相对论后的40年中,都在从数学上进行把广义相对论与电磁理论统一起来的理论——“统一场理论”的研究。

每个娃娃代表对自然的小到某一尺度的理论理解。每个娃娃都包含一个更小的娃娃,后者对应于描述在更短的尺度下自然的理论。但是在物理学中存在一个最小基本长度,即普朗克长度,这是自然可以用M-理论描述的尺度

爱因斯坦注意到,德国数学家卡卢扎1919年曾证明了有一系列方程能把广义相对论与电磁理论统一起来,但宇宙需要5维时空。宇宙这额外的一维哪里来呢?他还注意到瑞典数学家克莱因在1926年曾提出一种观点,认为宇宙的那个额外维卷曲得太小,我们无法察觉到。爱因斯坦虽然觉得卡卢扎和克莱因的发现很重要,但在用于他的统一场理论时,总有一些零星问题不能解决,或者会得到一些滑稽的结果。

在爱因斯坦还没有将引力和电磁力统一起来的时候,人们又发现了将原子核中质子和中子束缚在一起的强核力和弱核力。更糟的是,这两种基本力是由信使子传递的,这与爱因斯坦对引力的看法大相径庭。

1955年爱因斯坦逝世后,他的统一场理论很少有人问津。人们将注意力转向了电磁力与弱核力的统一——量子场理论。

20世纪60年代末,美国的温伯格和格拉肖、英国的萨拉姆找到了电磁力与弱核力统一的方程。电磁力和弱核力是统一的电弱力的不同方面。随后,他们的理论得到了证实。

1973年,格拉肖发现了把电磁力、弱核力与强核力统一起来的数学公式,这就是“大统一场理论”。电磁力、弱核力和强核力是统一的“超力”的不同方面。超力在宇宙大爆炸后分裂成电磁力、弱核力和强核力。但大统一场理论不包括引力。

为了统一电磁理论、狭义相对论和量子理论,狄拉克等人早在20世纪20年代就建立了量子场论。但量子场论也不包括引力。为弥补这个不足,科学家们又建立了量子引力论,就是把广义相对论与量子理论统一起来。1967年,惠勒和德威特找到一个数学公式,成功地将广义相对论与量子理论结合起来了。但是,在这些尝试中,他们像爱因斯坦一样遇到数学问题,其中包括无穷大的问题。

20世纪70年代初发现的“超对称理论”,又使科学家找到了把构成物质的粒子(费米子)与携带力的粒子(玻色子)统一起来的数学特性,即消除了亚原子粒子的差别,提供了把引力统一进来的线索。这就是“超引力理论”。

1984年,约翰·施瓦茨和迈克尔·格林提出了“超弦理论”,指出把引力与其它力统一起来的唯一条件是,把粒子看成是弦,它们必须拥有超对称(超弦),并且存在于10维时空中。不过,超弦理论仍然没有反映全部情况,而且超弦理论有5种之多。

在基本粒子物理学、量子力学取得了巨大成就的时候,霍金于1988年在他的畅销书《时间简史》中说,“可以谨慎乐观地说,我们对自然的终极规律的探索,现在也许接近了尾声。”

1996年,威滕提出M理论,认为5种超弦理论只是M理论的不同侧面。如果超弦代表膜,则5种超弦理论仅仅是11维膜的边缘。因此,霍金认为,M理论有可能成为人们追求的终极理论。

M理论

1985年以后,物理学家开始意识到,弦理论中的“弦”,只不过是延展成多于1维的众多物族的一员。

1994年以后,物理学家又知道一种描写强相互作用的闭弦理论与描写弱相互作用的开弦理论完全相同。对开弦理论的深入研究,特别集中于弦的边缘(即开弦的两个端点)可运动的空间。理论物理学家伦内特·赫伊斯佐恩在对这些边缘空间进行数学研究时,根据数学家狄利克雷的名字,将这些空间命名为“D-膜”。英国剑桥的数学和理论物理学家保罗·汤森对膜作了许多基本研究。他把由弦延展成多于1维的物体叫做“P-膜”(P表示维数)。一个P膜在P方向上有长度。这样,P=0的膜是点,P=1的膜就是弦,P=2的膜就是面,如此等等。而且,所有P-膜都是平等的。1996年,爱·威滕等人又发现,5种弦理论假设,实际上只是从不同侧面表述同一基本的11维假设。

在把众多的假设汇集成一种假设的过程中,物理学家意识到,他们的方程所描述的宇宙,不仅是由弦,而且是由薄膜状的东西组成的。这种薄膜状的东西就是“P-膜”。由此便产生了“M理论”(含有“所有理论之母”的意思)。M理论认为,一维的弦可延展为2维的面,即“膜”;二维的膜则可卷曲成3维的圆环膜,乃至11维空间交错的膜。膜可以因量子起伏而自发地创生和消失。我们就生活在D-膜的边缘上,即四维时空的表面(即膜)上。我们的四维时空,可能仅仅是真实宇宙的很小一部分,它是一个围绕着多维时空的泡泡。剑桥大学的尼尔·图洛克等人认为,不同膜之间的碰撞,有可能引发像我们宇宙诞生时的大爆炸那样的爆炸。

膜世界的形成就像在沸腾水中蒸汽泡的形成一样

果壳中的宇宙

既然M理论认为宇宙是11维的,但为什么除了4 维时空外,我们没有感觉到其他维的存在?M理论认为,那是因为我们处在低能的状态下,电子和其它粒子只能在大维中运动,因而使我们感觉不到卷曲得很小很小的7个额外维,也就无法领略整个10维空间的风光。如果用具有极高能量的粒子进行探测,就会看到宇宙具有11维时空,就像肉眼看头发只是一条一维的线,而用高倍放大镜观察则能看到它的3维结构一样。在宇宙诞生早期的高温高能状态下,宇宙正是11维的,随着温度(能量)的下降,额外的7维才卷曲起来。霍金相信,大型强子对撞机有可能观察到卷曲得很小的额外维。

在M理论中,有人认为,我们的宇宙除了三个大的空间维以外,还可能有一个或更多的大的空间维,只是由于它们相当大,甚至无限大,在目前的条件下我们无法观察到它们罢了。

霍金认为,这个思想具有巨大的优势,是我们寻找终极理论(或模型)的激动人心的新进展。为此,他在2001年将全息论、宇宙多重历史理论和人择原理等结合起来,提出果壳中的宇宙理论。这是不是宇宙终极理论呢?

2004年,霍金的思想来了个大转弯,宣布放弃终极理论,认为探索终极理论是徒劳无益的。当然,他并没有放弃果壳中的宇宙理论。

《果壳中的宇宙》

下面,举例说明《果壳中的宇宙》对宇宙难题的描述。

宇宙的起源和膨胀。我们知道,在烧沸的水中会产生气泡。膜的量子创生有点像气泡在沸水中创生。这就是,不确定性原理允许膜世界作为泡泡从无中出现,膜形成泡泡的表面,内部则是高维空间。小泡泡倾向于再坍缩为无,两个泡泡可能因为碰撞而合并,宇宙大爆炸或许就是两个泡泡之间碰撞造成的。我们就生活在四维时空的泡泡上(宇宙的边缘上)。一个超过某一临界尺度的泡泡会继续长大,生活在膜上的智慧生命(如地球人类)就会觉察到星系在相互离开,宇宙在膨胀,而没有任何星系是膨胀的中心。

在我们膜世界中的一个黑洞会延展到额外维中去。如果黑洞很小,它就几乎是球形的。但是在膜上的巨大黑洞会在额外维中延展成一个饼状的黑洞

在这里,有膜和泡泡两种模型,它们都是描述观测的数学模型。到底是使用膜还是使用泡泡,就看哪个更方便。

果壳宇宙。根据宇宙无边界的设想,宇宙在虚时间中的历史像一个果壳。如果宇宙是4维时空构成的,则果壳中是空的。根据M理论,则果壳中被卷曲得很小的6或7维充满,我们生活在4维泡泡的表面上;如果有额外的大维,则只有5或6维被卷曲在果壳中,我们就生活在5维泡泡的表面上。

人择原理与果壳宇宙。由于物质、电力等非引力的东西被限制在膜上而不能散发出去,这正是原子得以稳定的条件。原子稳定才能使星系和生命得以形成。人择原理说,宇宙必须适合于智慧生命,如果原子不稳定,我们便不能在此观察宇宙,并诘问它为何显得是4维的。

在膜世界场景中,由于引力传播入额外的维,行星可以围绕在影子膜上的暗质量公转

一个在虚时间中表面完全光滑的果壳是泡泡最可能的历史,但是它在实时间中对应于以暴涨形式永远膨胀的膜(泡泡的表面),星系不能在这样的表面上形成,就不可能有智慧生命发展。而在虚时间中不那么光滑的果壳历史,虽然概率稍低,但它在实时间中对应的泡泡历史,首先有一个加速暴涨的相,然后缓慢下来。在这个减速过程中,星系能够形成,智慧生命能够发展。稍稍长毛的果壳宇宙,正是智慧生命从M理论允许的大量的宇宙中选择出来的膜模型。

暗物质和影子人类。M理论认为,引力可以从膜上弥漫出去。这样,如果在邻近我们膜世界有一张额外的大膜,则它能防止引力向远处发散。这张邻近的额外大膜就是我们的“影子膜”(影子世界)。由于引力可以传播到影子膜上去,所以那里的恒星可以围绕影子星系中心公转、行星可以围绕暗质量公转。由于光被限制在膜上,所以我们看不到影子世界。但是,我们可以感觉到影子膜上物质的引力影响。这种引力影响在我们膜上真正是“暗的”。这或许就是我们宇宙中丢失的暗物质?在影子世界中或许还有影子人类,他们在解释恒星绕影子星系中心公转和行星绕暗质量公转时,也很想知道他们宇宙中下落不明的物质。

全息学

全息学把一个空间区域的信息编码到一个低一维的面上。一个黑洞的事件视界的面积是它的内部状态数的测度这一事实显示,全息原理似乎是引力的一个性质。在膜世界模型中,全息学是在我们四维世界的态和高维的态之间的一一对应。从实证主义的观点看,人们不能区分何种描述更为基本。

能量守恒。根据M理论,膜上的运动物体产生的引力波可以从膜上弥漫出去。如果存在一张影子膜,引力波就会在我们膜和影子膜之间来回反射。但是,如果影子膜是高度弯曲的(如马鞍型),就不能将引力完全反射回来,特别是波长比其曲率半径短的引力波会完全逃逸出去。由于引力波会带走能量,这仅从我们膜来看,是违反能量守恒定律的,但从多维世界来看,只不过是能量发散得更开而已。

黑洞辐射和消亡。黑洞发射的引力波会传播到额外维上去,并在我们维与额外维之间来回反射。因而,我们膜上的一个黑洞会延展成额外维上的一个黑洞。如果黑洞很小,则额外维上的黑洞是球形的,如果是巨型黑洞,则额外维的黑洞是饼状的。黑洞由于引力辐射而损失能量,它因此会慢慢蒸发,尺寸缩小。当它比马鞍型额外维的曲率半径还小时,它的引力波就会自由地逃逸而不再返回,在我们膜上就无法直接观测到黑洞的辐射,只有通过黑洞的质量损失间接地测量到。也许这正是我们迄今没有观测到黑洞激烈消亡时产生的伽玛射线的原因。

黑洞的熵和全息界。熵本来是热力学中的概念,表示一个物理系统的无序程度。1948年美国应用数学家香农在设法量化一条消息所包含的信息量时,得出了一条与玻尔兹曼热力学熵类似的公式,于是便把熵的概念引进信息论。一条消息的熵,就是编码这条消息所需二进制位(即比特)的个数。黑洞的熵是黑洞内部状态(质量、旋转和电荷)数目的度量。1974年,霍金发现一个计算黑洞熵的简单公式,即黑洞的熵等于黑洞视界的面积。这说明,熵是一个系统中的总信息的测度。这就暗示,与三维世界中的所有现象相关联的信息,能被存储在它的二维边界上。这就是“全息原理”。

物理系统所能容纳信息量的界限叫“全息界”。

宇宙是幅全息图。我们都知道全息照相,它可以把3维图像记录在2维的胶片上,描述3维图景的所有信息,都被编码到2维胶片的明暗相间的图样上。以适当方式放映这些胶片,我们就可以看到3维图像。从M理论的观点来看,宇宙也是一幅全息图。

如果宇宙是由4维时空组成的,我们就生活在4维时空泡泡上。根据M理论,4维时空很可能就是5维时空(其余空间维卷曲得很小)宇宙的边缘。根据全息原理,在我们生活的膜(泡泡)上,应该负载着5维时空内发生的一切信息的密码。那么,应用适当技术,我们就可以了解多维宇宙的情况。

根据全息原理,5维时空宇宙就是一幅画在其4维边界上的全息图像,4维时空的态与5维时空的态一一对应,两个宇宙是完全等效的。因此,生活在这些宇宙中的生物,将无法确定他们是栖息在一个由弦理论描述的5维时空中,还是生活在一个由量子场论描述的4维时空中。但是,由于全息等价,使得一个在某一时空中难以计算的问题,可以用另一种方式解决,如,4维时空中夸克和胶子特性的计算,可以转化为高度对称的5维时空中的简易计算。

果壳中的宇宙读后感 第5篇

《果壳中的宇宙》是一本相对通俗的科普书,它主要围绕着宇宙学,涉及到广义相对论,量子力学、黑洞、时间等一系列的科学术语,让我们在似懂非懂之间,粗略地认识了我们所在的宇宙,更让我们知道了人类在浩瀚的历史长河中所占据的不过是微小的一瞬,但是人类的智慧又让我们在进化的过程中有能力慢慢去探知宇宙的秘密,虽然有一些只是推理,但却又不乏真实。

首先它先向我们简单地阐述了爱因斯坦的广义相对论与量子论,广义相对论改变了有关宇宙起源和命运的讨论,爱因斯坦也为此承认他曾经犯了一生中最大的错误(在方程中加入宇宙常数),但并未影响到作者以及他的伙伴对宇宙更进一步的探究。

接下来向我们描述的是时间的形态。一直以来,时间都是我们衡量过去与未来的一个工具,因为大多数的时间里我们不去考虑时间与空间的问题。但不管我们如何忽略它们,它们却象迷一样让我们想一探究竟。科学指出,时间与空间是非常复杂地相互纠缠在一起,这样,时间就有了形态,而它只能往一个方向前进。广义相对论把时间维和空间的三维合并形成了所谓的“时空”。它使空间和时间弯曲,把它们从被动的事件发生背景改变成为发生的事件的动力参与者。时间是否有开始和终结成了最重要的研究课题。

第三章以哈姆雷特的道白开篇:即便把我关在果壳里,仍然自以为无限空间之王。宇宙到底是何物?以人类有限的思维是否可以理解无限的宇宙?本章从哈勃望远镜已经可以让我们探测到太空深处说起,我们不但可以看到数不清的星系,而且通过分析来自其它星系的光线,得出宇宙膨胀论。从而指出宇宙必须有一个开端,虽然在科学的基础上理解超过了我们现有的能力之外,但科学家们仍然在努力尝试它。或许我们真的是被束缚在果壳之中,而仍然自以为是无限的空间之王。

对于过去与未来,我们总是有着无限的遐想,人类总想控制未来,或者至少想预言将来发生什么。从科学宿命论的角度,我们在原则上可以预言未来。书中提到了黑洞的概念,那是连光的速度都无法逃逸的大质量恒星,所有的光都被其引力拖曳回去,我们看不到它。而对于过去,就不得不提到时间的旅行,我们看过太多的关于回到过去的科幻电影,他们小心翼翼地努力不去改变历史的轨迹,因为每一次的改变,历史都将重写,而科学告诉我们,如果你相信你能回到时间的过去,却还能有自由意志为所欲为的话,这个机率趋近于0。毕竟我们从来还未遇到一个来自于未来的人……

最后的两章,霍金对未来的地球做出预言,如果按前两个世纪人类的知识与技术的指数性增长的趋势来算,到了26,这个地球将人满为患,也会因大量使用电力而发出红热的光芒,到时候是否仍然适合人类居住?智慧是进化不可避免的后果,人类这个有智慧的生物可否与电子产品越来越趋同?我们现在已经探索到宇宙越来越广袤的空间,人类显得是如此的渺小,而与此同时,我们将观测的范围也延伸到了更小的尺度,从而可以推测出也许时空并非我们所想象的三维或四维,更可能具有十维或十一维,也许我们生活在一个膜的世界,却不自知。但是,在这样一个完全陌生的世界,能探索到如此地步,我们可以为人类的智慧感到骄傲吧!

《果壳中的宇宙》读后感 第6篇

当赏读完一本名著后,相信大家的视野一定开拓了不少,此时需要认真思考读后感如何写了哦。怎样写读后感才能避免写成“流水账”呢?下面是小编收集整理的《果壳中的宇宙》读后感范文(精选5篇),欢迎阅读与收藏。

《果壳中的宇宙》读后感1

读过这本书,使我又丰富了许多知识。书中说,空间实际并不是由三维单单构成的。就像是同学们在很多电视中看到的什么四维空间,黑洞穿越这样的事,这也并不是毫无根据的胡思乱想。人们口中常说的“维”其实应该有九或十个。而三维只不过是空间构成的大方向。而题目中的“果壳”,则是粒子与核子。宇宙这个大空间,有许多恒星、行星、银河系、空间的等极为复杂的物质而构成的。所以,宇宙是一个没有历史的空间,它一直到现在还在不断地向外膨胀。宇宙中有一个很神秘的东西——黑洞

题目中的果壳:粒子,却会引起很多现象,像预知未来。一只蝴蝶在东经鼓翼,而就会引起纽约中央公园的巨大雨。这是《侏罗纪公园》中的情节。实际:蝴蝶一下回鼓翼时,一大堆其他因素就会影响天气,这就是天气预报为什么有时不准的原因,而也是人们常说的:“蝴蝶效应。

我也认为霍金最后的演讲十分精彩!他说爱因斯坦说时空不是平坦的,时空中的物质和能量可以将它弯曲甚至翘曲。这也令我的猜想有了一个确切的答案。

《果壳中的宇宙》读后感2

《果壳中的宇宙》是霍金的又一部伟大的.作品。

第一章主要介绍了广义相对论和狭义相对论,以及爱因斯坦是如何以它为基础进行下一步的思考和研究的,同时还说明了霍金本人的看法,比如介绍相对论简史,这些内容听了多遍,自然很熟悉。还有就是里面关于膜的描述,很吸引人。这里涉及到我们对于空间维数的感知。二维的人对她们的世界司空见惯,很难理解三维的空间。对于身处四维时空的我们,去理解更高维度的空间就更难了。但是想象一下更高维度将是什么样子也是很头疼很好玩的。第二章讲了一种假设。作者假设时间是有形状的,并通过量子公式验证了这种假设与相对论的理论是相符的;第三章作者是在解说宇宙。他认为宇宙有许多重的历史,每一个历史都可以是由微小的粒子构成;第四章讲了一个预言,霍金先生预言在超引力的状态下(如黑洞)时间弯曲,我们如何降低我们自身来适应未来;最后两章用宇宙中的各种条件来拟出我们作为生物在时空中旅行的种种可能性以及我们与宇宙的关系,还提出了我们所生活的地方是否虚无等假设。

这本书的内容给了我很大的震撼。读了它,让我再碰到其他奇怪的问题时不会再迷惑,我希望把它做为科普读物仔细读读!

《果壳中的宇宙》读后感3

我是学文科的,高二起没再接触过物理,此后接触的数学都很浅显。可我偏偏爱好看科普作品,也许那种似懂非懂,有些类似于陶渊明的“一知半解”?又或许,那种满眼都是知识点,满足了我“开卷有益”的内心需求?

无论如何,我是第二次拿起《果壳中的宇宙》。浩淼的宇宙有无边界?它究竟从何而来,又将向何处去?每一个曾在夏夜独自仰望星空的人都会想过这个问题。霍金无疑是现代最有可能回答这个问题的人。他的文笔相当好,所以他的知名,从很大意义上来说,并非来自于他的学术成果,而是来源于他的这几本科普著作。吴超英译得也特别好,基本无损原作的魅力。可惜的是,我确实只能看懂其中的比喻。呵呵,看懂比喻也就够了,谁也没要求读者用数学重新验算一遍霍金的结论。他说“泡泡”于“膜”在数学上是等效的就是等效的,他说回到过去的概率接近于零就接近于零。我照单全收。质量让时空弯曲,量子的不确定性原理,宇宙的历史求和,长毛的黑洞,闭合的时间圈环,超弦理论,他把我领到这么多的科学处女地,如导游般,一一指点给我看。顾虑我不懂他的语言,又作了如此多、如此精彩的插图……

对我而言,霍金和哈姆雷特一样,“即便把我关在果壳之中,仍然自以为无限空间之王。”

《果壳中的宇宙》读后感4

依照霍金的理论,胚在虚时间的历史将决定它在实时间的发展。高维泡泡在虚时间中产生一个完全光滑的球形的4维“果壳”的概率是最高的;然而,这又对应于在实时间内以暴胀方式永远膨胀的胚。星系不能在这种胚世界中形成,从而智慧生命也不会出现。然而,高维泡泡在虚时间中产生一个有点不光滑和偏离球形的4维“果壳”的概率虽然稍低一些,但是却能与实时间中的减速暴胀过程(胚在开始时有一个加速膨胀——暴胀的相,随后膨胀又缓慢下来)相对应。在这个减速暴胀过程中,星系可能形成,智慧生命也会出现。有趣的是,这些智慧生命将会创造一种宇宙理论,认识到他们来自于不那么光滑,也不那么圆的4维“膜”。

在读完《果壳中的宇宙》和《宇宙的起源与归宿》之后,有一种感觉。人类置于茫茫的宇宙之中实在是太渺小了,而且对所存在的宇宙也只是停留在理论阶段,完全没有实力实践。而当中一些妄想要挑战自然挑战宇宙的人类不是太狂妄,太可笑了吗?虽然他们可以说是人存理论决定这个宇宙,但是没有确凿的证据是不能使全世界的人类信服的。而神创论更是无从谈起,他们想说他们那个万能的上帝么?可惜,亲爱的上帝不是万能的,他能造出一块自己也搬不起的石头么?

人类还有很多未知的世界需要我们不断探索,我相信,事实只有一个,人类在将来,一定会得到我们想要的答案。

《果壳中的宇宙》读后感5

我们的宇宙其实是一张膜,一切物体在上面运动,而膜的表面只是穿过万物的时间。

在广义相对论中,大质量物体以不同的程度弯曲着时空,这说明物体的自重压弯了膜的表面。我们都知道,任何物体的传播路径直线最近,时间在通过被压弯的膜的时候,走的路径被质量压弯,所以,大质量物体会弯曲时空,而狭义相对论不允许这一切。

起初,在无中,有很多(或无限)个膜(宇宙),因为无不是空间,它无限大,我们的膜很幸运,不知怎么开始扩大,于是出现了万物,但是,无限的空间就代表着无限的几率,那么,一定有另一个膜在扩大,早晚它们会碰在一起的!

这是一个我们目前的定律无法解释的现象,看来,一定有一种更高级的物理定律在等待人类的发现,在目前的理论还无法解释一些现象时,实在不能宣称已经找到了万物理论,例如膜的本身——时间。

果壳中的宇宙读后感 第7篇

以前我只知道有史蒂芬·霍金这个人,是一个只有一个手指可以活动的残疾人,一个整天不得不待在轮椅上的人,一个只能靠机器说话的天才科学家,还有与他个人一样有名的著作——《时间简史》。我个人对他的了解当时也就这么多,现在知道他还有一点不一样——他出生于1942年,而他的生日恰好是伽利略逝世三百年忌日。现任剑桥大学卢卡斯数学教授(这一职位曾由艾萨克·牛顿所任)。他广被推崇为继爱因斯坦后最杰出的理论物理学家,被称为“轮椅上的爱因斯坦”。他的主要著作是《时间简史》、《霍金讲演录——黑洞、婴儿宇宙及其他》和《果壳中的宇宙》。我不久前读过的《果壳中的宇宙》正好是《时间简史》的姐妹篇。书名的来源:在英国戏剧大师莎士比亚的名著《哈姆莱特》中,主人公哈姆莱特有这么一句吟唱:即便把他关在果壳中,他仍然是无限空间之王。

对于《果壳中的宇宙》,先说一下我自己的看法吧,《果壳中的宇宙》是一本图文并茂的科普著作,主题是宇宙学,涉及广义相对论、量子论、黑洞、暴胀、时间旅行、弦论、超引力等诸多前沿概念。当然,这些概念我到现在也没能完全明白。

这本书先第一章说的是相对论简史,相对论有狭义相对论和广义相对论。狭义相对论是由爱因斯坦在洛仑兹和庞加莱等人的工作基础上创立的时空理论,是对牛顿时空观的拓展和修正。爱因斯坦以光速不变原理出发,建立了新的时空观。进一步,闵科夫斯基为了狭义相对论提供了严格的数学基础,从而将该理论纳入到带有闵科夫斯基度量的四维空间之几何结构中。狭义相对论中最简单的例子是在加速度和引力场之间存在一个紧密的关系。待在一个封闭的盒子里,譬如升降机中的某人不能将盒子静止地处于地球引力场中和盒子在自由空间中被火箭加速这两种情形区别开来。广义 相对论的一个非常重要的推论是质量和能量的关系。爱因斯坦关于光速对于任何人而言都应该显得相同的假设,意味着没有任何运动的比光还快。当人们应能量加速任何物体,无论是粒子或者空间飞船,实际上发生的是,它的质量增加,使得对她进一步加速更困难。要把一个粒子加速到光速要消耗无限大能量,因而是不可能的,正如爱因斯坦的著名公式总结的:E=mc^2,质量和能量是等效的。我对于相对论了解的与此差不多,我记得大学时有一本物理书上说人们可以回到过去,前提是他得以超过光速前进,当时我就迷惘了,因为书上一边说我们可以回到过去,但要以超光速,另一边又说光速无法达到,更不用说超越了,那不就是说我们还是无法回到过去喽?

第二章说的是时间的形态,与爱因斯坦的相对论和大量的实验相符合,它提出时间和空间是非常复杂地相互纠缠在一起。人们不能单独使空间弯曲而不涉及时间。这样,时间就有了形态。在对时间的形态的研究与探讨中,霍金引出了超对称、超引力、P-膜、弦理论、M-理论、膜、全息原理等概念。P-膜是指在P-维延展的物体。很难想象我们是生活在一个多维(四维、八维、十维、更多维)的空间里。唉!时间为何物?!它是否像古老的赞歌说的那样,把我们所有的梦想一卷而空的东流逝波?抑或像一直前进,却又回到线上的早先过站。19世纪作家查里斯·朗母写到:“世间万物没有任何东西像时间和空间那么使我困惑。然而没有任何东西比时间和空间更少使我烦恼,因为我从不想起它们。”我们中的大多数人早本部分时间不去考虑时间和空间,不管他们为何物;但是我们所有人有时极想知道时间是什么,它如何开始,并且把我们知道何方。关于时间或者任何别的概念的任何可靠性的科学理论,依照我的意见,都必须基于最可操作的科学哲学之上:这就是卡尔·波普和其他人提出的实证主义的方法。按照这种思维方式,科学理论是一种数学模型,它能描述和整理我们所进行的观测。一种好的理论可在一些最简单假设的基础上描述大范围的现象,并且做出被验证的预言。如果预言和观测相一致,则该理论在这个检验下存活,尽管它永远不能被证明是正确的。另一方面,如果观测和预言先抵触,人们必须将该理论抛弃或者修正。如果人们如同我们那样采用实证主义立场,他就不能说时间究竟为何物。人们说能做的一切,是将所发现的描述成时间的一种非常好的数学模型并且说明它能预言什么。

第三部分说的是果壳中的宇宙:宇宙具有多重历史,每一个历史都是由微小的硬果确定的。霍金认为空间的最明显之处是它无限地向外延伸,通过现代仪器,我们可以看到各种形状和尺度的数以亿万计的星系。尽管宇宙似乎在空间的每一位置上都很相同,它肯定是随时间变化的。霍金的量子宇宙论的意义在于它真正使宇宙论成为一门成熟的科学,它是一个自足的理论,即在原则上,单凭科学定律我们便可以将宇宙中的一切都预言出来。而量子引力论正是这些书的大部分的主题。哎,这部分真的很难懂,就少说点了。第四部分说的是预言未来:黑洞中的信息丧失如何降低我们预言未来的能力。如果信息在黑洞中丧失,情况就并非如此,任何事情都可能已经发生过。预言将来的能力也被削减了。我们能够确定地预言粒子具有相反的自旋,但是如果一个粒子落进黑洞,就不能对余下的粒子作确定的预言,这意味着在黑洞外不能确定预言任何测量,作出确定预言的能力被减低至半。那么关于预言将来的能力呢?现在看来它至少在三个层次上受到限制。第一,是动力学系统的混沌行为,使得拉普拉斯意义上的决定性在实际上是不可能实现的。第二,在量子力学中状态是由波函数描述的,海森堡的不确定性原理使得经典意义上的决定性被减半。第三,不平凡的时空拓扑,使波函数被密度矩阵所取代,就在这里引进了热力学意义上的随机性。

第五章说的是护卫过去:时间旅行可能吗?我觉得不可能,我们大学书上也说不可能,至少来说最近的很多年里都不可能,因为我们还没有把原理完全弄清楚,而且最近的很多年里我们还造不出那种可以快过光速的时间机器,所以嘛,回到过去我们是不用想了,这辈子别想,下辈子也别想回到过去,我们要做的就是好好的活在现在,一种先进的文明能回返以前并改变过去吗?爱因斯坦的广义相对论是所有现代有关时间旅行讨论的基础。爱因斯坦方程描述宇宙中的物质和能量如何将空间和时间弯曲和变形,从而使空间和时间变成动力量,有了时空可能弯曲得这么厉害,在乘空间飞船出发之前即已返回的可能性。

第六部分是我们的未来《星际航行》可行吗?我觉得不可行,至少最近的N年内是不可行的,就象我认为时间旅行是不可行一样,生物和电子产品毕竟是不一样的,生物和电子生命将如何不断加速发展其复杂性。宇宙的未来是怎样的呢?让我们的孩子的孩子的孩子„„„去解决吧!如果我们承认科学定律的普适性和无穷威力,则不管人类的雄心有多大,毕竟要受环境和人口问题的限制,我们不能和这些限制作无望和愚昧的搏斗。人类只能采用一种明智和节制欲望的生活方式。

第七部分是膜的新奇世界:我们生活在一张膜上,或者我们只不过是张全息图?霍金说我们的宇宙可能是高维空间中的一个四维膜,我们的宇宙果壳更加新奇了。根据全息术理念,关于发生在时空的一个区域内的一切的信息可以被编码在边界上。这样,也许是因为我们是发生在泡泡内部的东西在膜上的投影,所以我们自以为是生活在四维的世界中。

果壳中的宇宙的读后感 第8篇

凤凰科技讯北京时间2014年3月20日消息, 国外媒体报道, 我们的地球位于广袤的银河系里, 银河系里聚集着3000多亿颗恒星, 这些恒星都被行星环绕着, 其中还漂浮着尘埃气体云。众所周知, 银河系和它环绕的伴星仙女座是名为本星系群的小型星系群体里的主要成员, 然而我们对自己宇宙邻居的了解却非常有限。

加拿大约克大学的马歇尔·麦考尔 (Marshall McCall) 教授发表的一篇最新文章绘制了距离地球3500万光年范围内的明亮星系。这张地图为我们展示了地球以外宇宙环境的新视野。

这张图表显示了距离银河系2000万光年的宇宙里明亮的星系, 这是从侧面角度观测的

麦考尔表示, 在本星系群的14个星系巨头中 (包括银河系和仙女座星系) , 有12个是螺旋星系, 这类星系有高度扁平的盘状物, 恒星可以在这个盘状物上形成。剩余的两个星系巨头是肿胀的椭圆星系, 有趣的是, 这两个椭圆星系位于“巨星委员会”的相反方向。它们发展的早期阶段驱散的风可能驱动气体朝本星系群中央移动, 从而帮助建造了银河系和仙女座星系的盘状物。

麦考尔还调查了巨星委员会里的星系是如何旋转的。他表示:“将星系想象为一块木头里的螺丝钉, 旋转的方向可以认为是螺丝钉旋进或者旋出方向。出人意料的是, 巨星委员会里的星系的旋转方向是以一个小型圆圈的方式排列。这种罕见的对齐可能是由宇宙早期银河系和仙女座星系所施加的重力力矩所致。”这项研究被发表在《英国皇家天文学会月刊》上。

(中国科技网)

果壳中的精灵 第9篇

推荐指数 ★ ★ ★ ★★

SONY VAIO G

优点专为商务人士打造的产品,安全、稳定,设计轻便小巧

缺点屏幕顶盖坚固程度欠佳

这种具有高度可靠性及用户友好特性的高效率的VAIO G,可帮助用户在最短时间里毫不费力地实现最大的产出。

规格表

处理器Intel Core Solo U1500

内存1GB

显卡Intel GMA950

硬盘100GB 4200转

光驱DVD±RW/±R DL/RAM

显示器12.1英寸,1024×768

尺寸215mm×77mm×(23.5~25.5)mm

重量1.15kg

精致的外观

不经意地一瞥,我们会把VAIO G当做是VAIO BX。事实上,在VAIO G身上,设计师的确吸取了不少前者的设计经验。合上屏幕的VAIO G前端从侧面看依然是Σ的造型,带给人一种专业的精巧感,抗震性能更强,也使得我们在翻开屏幕的时候更加顺手。但是,在使用中我们发现,由于VAIO G的主机部分重量太轻,如果不用手指按住机身,那么它也会随着屏幕一并抬高一段距离后落下,这样会对运行中的硬盘造成一定的影响。

如果你现在仍对VAIO BX的重量耿耿于怀,那么VAIO G必定是你的最佳选择,无论是尺寸还是重量,VAIO G都上升了一个新的高度。它的重量仅为1.15kg(内置光驱并含电池),最薄厚度4.4mm,这都得益于它所采用的White LED,这种技术目前已经普遍使用在VAIO 系列的高端产品中,从VAIO TX、VAIO SZ……如今来到了VAIO G上。如果评论该屏幕的色彩表现的话,我们几乎挑不出什么瑕疵,亮度适中,色彩鲜艳,可视角度也在我们正常的接受范围内。如果非要挑毛病的话,那么就是VAIO G并不坚固的顶盖设计,即便是采用了多层纯碳纤维材质,但是在一些轻微的人为挤压下,屏幕上就会出现严重的水波纹现象,大家在使用时还要尽量小心。

除了机身的小巧设计外,VAIO G的设计师没有放过任何一个能使它便于携带的细节设计。他们为VAIO G设计了仅半个手掌大、重170g的迷你电源适配器。这是笔者见过的最小最轻的笔记本电源适配器,甚至比SONY PSP的电源适配器还要小巧。而多年来关于笔记本电脑适配器大小的争论终于让SONY开了一个好头,我们也希望这种便于携带、轻便小巧的电源适配器及早在笔记本电脑厂商中普及,真正实现笔记本电脑的便携移动。

商务=安全

在安全性方面,VAIO G几乎完全复制了VAIO BX的措施,硬盘防震、指纹识别和TPM安全芯片成为保留项目,继续在VAIO G上时刻警惕非法入侵和来自外界的威胁。而针对指纹识别软件,SONY专门开发了Vista平台的版本,可以完全支持最新的Vista平台,设置的界面简单易懂,一旦设置成功后,就可以对应Vista的所有加密功能。此外,VAIO G还有一项人性化的小功能,只要在操作系统中随便划一下指纹识别器,系统桌面就会弹出一个对话框,内有“锁定计算机”、“注销站点”、“控制中心”等与指纹识别设置相关的选项和功能,方便用户的使用。

设计以人为本

VAIO G采用12.1英寸VGA尺寸的标准屏幕,SONY官方对于采用标准尺寸而非16∶9的宽屏幕的依据是他们在经过对1300家用户调查的基础上得出的结论。除此之外,我们在VAIO G操作平台上看到了极简的设计风格。为数不多的快捷按钮都考虑到了用户的实际应用,比如硬件无线网卡开关、可随意设置功能的P快捷按键和一键光驱弹出按钮,这些都是商务人士日常生活中最常用到的功能。

论配置,VAIO G并不是一款以性能取胜的产品,对于满足消费者日常工作需要而言,它现在的配置都能完全应付。其搭载了Intel Core Solo U1500 (1.33GHz)处理器,配备了1GB内存、100G硬盘、指纹识别、蓝牙以及DVD刻录机等,并预装了微软最新的Windows Vista 企业版操作系统,即便在应用条件苛刻的Vista系统下,它也可以流畅运行,为VAIO G极度轻薄和坚固的机身提供了强劲性能。

总结

上一篇:七年级数学课本知识点总结下一篇:一什么记忆