万有引力高考真题汇编

2024-06-02

万有引力高考真题汇编(精选6篇)

万有引力高考真题汇编 第1篇

专题05

万有引力与航天(解析版)

近5年(2017-2021)高考物理试题分类解析

2.2021全国甲卷第5题.2021年2月,执行我国火星探测任务的“天问一号”探测器在成功实施三次近火制动后,进入运行周期约为1.8×105s的椭圆形停泊轨道,轨道与火星表面的最近距离约为2.8×105m。已知火星半径约为3.4×106m,火星表面处自由落体的加速度大小约为3.7m/s2,则“天问一号”的停泊轨道与火星表面的最远距离约为()

A.6×105m

B.6×106m

C.6×107m

D.6×108m

【答案】C

【解析】忽略火星自转则

可知

设与为1.8×105s的椭圆形停泊轨道周期相同的圆形轨道半径为,由万引力提供向心力可知

设近火点到火星中心为

设远火点到火星中心为

由开普勒第三定律可知

由以上分析可得

故选C。

5.2021全国乙卷第5题.科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示。科学家认为S2的运动轨迹是半长轴约为(太阳到地球的距离为)的椭圆,银河系中心可能存在超大质量黑洞。这项研究工作获得了2020年诺贝尔物理学奖。若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M,可以推测出该黑洞质量约为()

A.B.C.D.【答案】B

【解析】

可以近似把S2看成匀速圆周运动,由图可知,S2绕黑洞的周期T=16年,地球的公转周期T0=1年,S2绕黑洞做圆周运动的半径r与地球绕太阳做圆周运动的半径R关系是

地球绕太阳的向心力由太阳对地球的引力提供,由向心力公式可知

解得太阳的质量为

同理S2绕黑洞的向心力由黑洞对它的万有引力提供,由向心力公式可知

解得黑洞的质量为

综上可得

故选B。

8.2021湖南卷第7题.2021年4月29日,中国空间站天和核心舱发射升空,准确进入预定轨道。根据任务安排,后续将发射问天实验舱和梦天实验舱,计划2022年完成空间站在轨建造。核心舱绕地球飞行的轨道可视为圆轨道,轨道离地面的高度约为地球半径的。下列说法正确的是()

A.核心舱进入轨道后所受地球的万有引力大小约为它在地面时的倍

B.核心舱在轨道上飞行的速度大于

C.核心舱在轨道上飞行的周期小于

D.后续加挂实验舱后,空间站由于质量增大,轨道半径将变小

【答案】AC

【解析】

A.根据万有引力定律有

核心舱进入轨道后的万有引力与地面上万有引力之比为

所以A正确;

B.核心舱在轨道上飞行的速度小于7.9km/s,因为第一宇宙速度是最大的环绕速度,所以B错误;

C.根据

可知轨道半径越大周期越大,则其周期比同步卫星的周期小,小于24h,所以C正确;

D.卫星做圆周运动时万有引力提供向心力有

解得

则卫星的环绕速度与卫星的质量无关,所以变轨时需要点火减速或者点火加速,增加质量不会改变轨道半径,所以D错误;

故选AC。

9.2021广东卷第2题.2021年4月,我国自主研发的空间站“天和”核心舱成功发射并入轨运行,若核心舱绕地球的运行可视为匀速圆周运动,已知引力常量,由下列物理量能计算出地球质量的是()

A.核心舱的质量和绕地半径

B.核心舱的质量和绕地周期

C.核心舱的绕地角速度和绕地周期

D.核心舱的绕地线速度和绕地半径

【答案】D

【解析】

根据核心舱做圆周运动向心力由地球的万有引力提供,可得

可得

可知已知核心舱的质量和绕地半径、已知核心舱的质量和绕地周期以及已知核心舱的角速度和绕地周期,都不能求解地球的质量;若已知核心舱的绕地线速度和绕地半径可求解地球的质量。

故选D。

13.2021河北卷第4题.“祝融号”火星车登陆火星之前,“天问一号”探测器沿椭圆形的停泊轨道绕火星飞行,其周期为2个火星日,假设某飞船沿圆轨道绕火星飞行,其周期也为2个火星日,已知一个火星日的时长约为一个地球日,火星质量约为地球质量的0.1倍,则该飞船的轨道半径与地球同步卫星的轨道半径的比值约为()

A.B.C.D.【答案】D

【解析】

绕中心天体做圆周运动,根据万有引力提供向心力,可得

则,由于一个火星日的时长约为一个地球日,火星质量约为地球质量的0.1倍,则飞船的轨道半径

故选D。

18.2021浙江卷第10题.空间站在地球外层的稀薄大气中绕行,因气体阻力的影响,轨道高度会发生变化。空间站安装有发动机,可对轨道进行修正。图中给出了国际空间站在2020.02-2020.08期间离地高度随时间变化的曲线,则空间站()

A.绕地运行速度约为

B.绕地运行速度约为

C.在4月份绕行的任意两小时内机械能可视为守恒

D.在5月份绕行的任意两小时内机械能可视为守恒

【答案】D

【解析】

AB.根据题意可知,轨道半径在变化,则运行速度在变化,圆周最大运行速度为第一宇宙速度,故AB错误;

或根据及解得将g=9.80m/s2和R=6400km以及hmin=418km和hmax=421km代入得最大速度和最小速度分别为vmax=7.913km/s和vmin=7.911km/s.用h=0代入得v=7.92km/s.C.在4月份轨道半径出现明显的变大,则可知,机械能不守恒,故C错误;

D.在5月份轨道半径基本不变,故可视为机械能守恒,故D正确。

故选D。

2021年上海高考等级考第17题、在测量引力常量G的实验中。小球(可视为质点)偏离竖直方向一个小角度θ.两球心之间距离为r,质量为M的均匀圆球快速移开后,小球______(填写“可以”或“不可以”)视为简谐运动,若测量出圆球质量M、小球偏离坚直方向的水平距离d和小球摆动的周期T,则引力常量G可以表示为_________(当θ很小时sinθ=tanθ)

【答案】可以

G=

【解析】设小球的质量为m,根据万有引力定律,M与m的万有引力为,根据m的受力平衡,有

又单摆的周期公式

从图示可以得出,单摆的摆长L=

联立以上各式得G=.2021山东卷第5题.从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越。已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍。在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程。悬停时,“祝融”与“玉兔”所受陆平台的作用力大小之比为()

A.9∶1

B.9∶2

C.36∶1

D.72∶1

【答案】B

【解析】悬停时所受平台的作用力等于万有引力,根据

可得

故选B。

2020全国1卷第2题

2.火星的质量约为地球质量的,半径约为地球半径的,则同一物体在火星表面与在地球表面受到的引力的比值约为()

A.0.2

B.0.4

C.2.0

D.2.5

【答案】B

【解析】设物体质量为m,则在火星表面有

在地球表面有

由题意知

故联立以上公式可得

故选B。

2020全国2卷第2题

2.若一均匀球形星体的密度为ρ,引力常量为G,则在该星体表面附近沿圆轨道绕其运动的卫星的周期是()

A.B.C.D.【答案】A

【解析】卫星在星体表面附近绕其做圆周运动,则,知卫星该星体表面附近沿圆轨道绕其运动的卫星的周期

2020全国3卷第3题

3.“嫦娥四号”探测器于2019年1月在月球背面成功着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K倍。已知地球半径R是月球半径的P倍,地球质量是月球质量的Q倍,地球表面重力加速度大小为g。则“嫦娥四号”绕月球做圆周运动的速率为()

A.B.C.D.【答案】D

【解析】假设在地球表面和月球表面上分别放置质量为和的两个物体,则在地球和月球表面处,分别有,解得

设嫦娥四号卫星的质量为,根据万有引力提供向心力得

解得

故选D。

2020江苏省卷第7题

7.甲、乙两颗人造卫星质量相等,均绕地球做圆周运动,甲的轨道半径是乙的2倍.下列应用公式进行的推论正确的有()

A.由可知,甲的速度是乙的倍

B.由可知,甲的向心加速度是乙的2倍

C.由可知,甲的向心力是乙的D.由可知,甲的周期是乙的倍

【答案】7.CD

【解析】A.由,得,所以,A错误;

B.因为不相等,所以不能用公式作比较。应该用,得,所以,B错误。

CD正确。

2020北京卷第5题

5.我国首次火星探测任务被命名为“天问一号”。已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是()

A.火星探测器的发射速度应大于地球的第二宇宙速度

B.火星探测器的发射速度应介于地球的第一和第二宇宙速度之间

C.火星的第一宇宙速度大于地球的第一宇宙速度

D.火星表面的重力加速度大于地球表面的重力加速度

【答案】A

【解析】A.当发射速度大于第二宇宙速度时,探测器将脱离地球的引力在太阳系的范围内运动,火星在太阳系内,所以火星探测器的发射速度应大于第二宇宙速度,故A正确;

B.第二宇宙速度是探测器脱离地球的引力到太阳系中的临界条件,当发射速度介于地球的第一和第二宇宙速度之间时,探测器将围绕地球运动,故B错误;

C.万有引力提供向心力,则有

解得第一宇宙速度为所以火星的第一宇宙速度为所以火星的第一宇宙速度小于地球的第一宇宙速度,故C错误;

D.

万有引力近似等于重力,则有

解得星表面的重力加速度

所以火星表面的重力加速度小于地球表面的重力加速度,故D错误。

故选A。

2020天津卷第2题

2.北斗问天,国之夙愿。我国北斗三号系统的收官之星是地球静止轨道卫星,其轨道半径约为地球半径的7倍。与近地轨道卫星相比,地球静止轨道卫星()

A.周期大

B.线速度大

C.角速度大

D.加速度大

【答案】A

【解析】卫星有万有引力提供向心力有

可解得,,可知半径越大线速度,角速度,加速度都越小,周期越大;故与近地卫星相比,地球静止轨道卫星周期大,故A正确,BCD错误。

故选A。

2020山东卷第7题

7.我国将在今年择机执行“天问1号”火星探测任务。质量为m的着陆器在着陆火星前,会在火星表面附近经历一个时长为t0、速度由v0减速到零的过程。已知火星的质量约为地球的0.1倍,半径约为地球的0.5倍,地球表面的重力加速度大小为g,忽略火星大气阻力。若该减速过程可视为一个竖直向下的匀减速直线运动,此过程中着陆器受到的制动力大小约为()

A.B.C.D.【答案】B

【解析】忽略星球的自转,万有引力等于重力

解得

着陆器做匀减速直线运动,根据运动学公式可知

解得

匀减速过程,根据牛顿第二定律得

解得着陆器受到的制动力大小为

ACD错误,B正确。故选B。

2020浙江第7题

7.火星探测任务“天问一号”的标识如图所示。若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的()

A.轨道周长之比为2∶3

B.线速度大小之比为

C.角速度大小之比为

D.向心加速度大小之比为9∶4

【答案】C

【解析】A.由周长公式可得,则火星公转轨道与地球公转轨道周长之比为,A错误;

BCD.由万有引力提供向心力,可得

则有,即,BD错误,C正确。故选C。

1.2019全国1卷16题.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展。若某次实验中该发动机向后喷射的气体速度约为3

km/s,产生的推力约为4.8×108

N,则它在1

s时间内喷射的气体质量约为

A.1.6×102

kg

B.1.6×103

kg

C.1.6×105

kg

D.1.6×106

kg

【答案】16.B

【解析】动量定理,所以代入数据得kg.2.2019年全国2卷14题.2019年1月,我国嫦娥四号探测器成功在月球背面软着陆,在探测器“奔向”月球的过程中,用h表示探测器与地球表面的距离,F表示它所受的地球引力,能够描述F随h变化关系的图像是

【答案】14.D

【解析】万有引力定律,h越大,F越小,非线性关系,所以D正确。

3.2019年全国3卷15题.金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a金、a地、a火,它们沿轨道运行的速率分别为v金、v地、v火。已知它们的轨道半径R金

A.a金>a地>a火

B.a火>a地>a金

C.v地>v火>v金

D.v火>v地>v金

【答案】15.A

【解析】根据,得,因为R金a地>a火;

得,因为R金v地>v火

;只有A正确。

4.2019年北京卷18题.2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。该卫星

A.入轨后可以位于北京正上方

B.入轨后的速度大于第一宇宙速度

C.发射速度大于第二宇宙速度

D.若发射到近地圆轨道所需能量较少

【答案】18.D

【解析】同步卫星轨道在赤道上方,所以A错误;根据得,所以入轨后的速度小于第一宇宙速度,B错误;第二宇宙速度是脱离速度,所以发射速度小于第二宇宙速度,C错误;根据动能

=,重力势能,所以机械能,所以若发射到近地圆轨道(r小)所需能量较少,D正确。

5.2019年天津卷第1题.2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。已知月球的质量为、半径为,探测器的质量为,引力常量为,嫦娥四号探测器围绕月球做半径为的匀速圆周运动时,探测器的()

A.周期为

B.动能为

C.角速度为

D.向心加速度为

【答案】1.C

【解析】根据万有引力等于向心力,有得

A.周期

B.动能

C.角速度,C正确。

D.向心加速度

6.2019年江苏卷4题.1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G.则

(A)

(B)

(C)

(D)

【答案】4.B

【解析】根据开普勒行星运动定律之面积定律,以近地点问圆做圆周运动时,解得,因为卫星在近地点做离心运动,所以提供的向心力小于需要的向心力,即,所以。

7.2018年全国1卷20题.2017年,人类第一次直接探测到来自双中子星合并的引力波。根据科学家们复原的过程,在两颗中子星合并前约100

s时,它们相距约400

km,绕二者连线上的某点每秒转动12圈,将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星

A.质量之积

B.质量之和

C.速率之和

D.各自的自转角速度

【答案】20.BC

【解析】设两颗中子星相距为L,质量分别为、,轨道半径分别为、,根据万有引力提供向心力,有,因为,所以质量之和为=,其中=24(),可求,B

正确。

根据,得,可求。C正确;

可以求出两颗中子星互相绕着运动的角速度,不可以求出各自的自转角速度,D错误。

8.2018年全国2卷16题.2018年2月,我国500

m口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T=5.19

ms,假设星体为质量均匀分布的球体,已知万有引力常量为。以周期T稳定自转的星体的密度最小值约为

A.

B.

C.

D.

【答案】16.C

【解析】根据及得,代入数据得

9.2018年全国3卷15.为了探测引力波,“天琴计划”预计发射地球卫星P,其轨道半径约为地球半径的16倍;另一地球卫星Q的轨道半径约为地球半径的4倍。P与Q的周期之比约为

A.2:1

B.4:1

C.8:1

D.16:1

【答案】15.C

【解析】根据,得,得

10.2018年北京17题.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证

A.地球吸引月球的力约为地球吸引苹果的力的1/602

B.月球公转的加速度约为苹果落向地面加速度的1/602

C.自由落体在月球表面的加速度约为地球表面的1/6

D.苹果在月球表面受到的引力约为在地球表面的1/60

【答案】17.B

【解析】根据,选B

11.2018年天津第6题

6.2018年2月2日,我国成功将电磁监测试验卫星“张衡一号”发射升空,标志我国成为世界上少数拥有在轨运行高精度地球物理场探测卫星的国家之一。通过观测可以得到卫星绕地球运动的周期,并已知地球的半径和地球表面的重力加速度。若将卫星绕地球的运动看作是匀速圆周运动,且不考虑地球自转的影响,根据以上数据可以计算出卫星的A.密度

B.向心力的大小

C.离地高度

D.线速度的大小

【答案】6.CD

【解析】根据卫星的万有引力提供向心力,及在地球表面附近,可求卫星的轨道半径,则离地高度可求;线速度的大小可求;因为不知道卫星质量,所以向心力的大小不可求;可求地球的密度,不可求卫星的密度。

12.2018年江苏1题.我国高分系列卫星的高分辨对地观察能力不断提高.今年5月9日发射的“高分五号”轨道高度约为705

km,之前已运行的“高分四号”轨道高度约为36

000

km,它们都绕地球做圆周运动.与“高分四号冶相比,下列物理量中“高分五号”较小的是

(A)周期

(B)角速度

(C)线速度

(D)向心加速度

【答案】1.A

【解析】根据,可得A正确

13.2018年海南物理卷第2题

2.土星与太阳的距离是火星与太阳距离的6倍多。由此信息可知

A.土星的质量比火星的小

B.土星运行的速率比火星的小

C.土星运行的周期比火星的小

D.土星运行的角速度大小比火星的大

【答案】B

【解析】根据,B正确。

14.2017年全国3卷14题.2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行。与天宫二号单独运行相比,组合体运行的A.周期变大

B.速率变大

C.动能变大

D.向心加速度变大

【解析】质量变大,其它不变

【答案】14.C

15.2017年全国卷第19题

19.如图,海王星绕太阳沿椭圆轨道运动,P为近日点,Q为远日点,M,N为轨道短轴的两个端点,运行的周期为,若只考虑海王星和太阳之间的相互作用,则海王星在从P经过M,Q到N的运动过程中

A.从P到M所用的时间等于

B.从Q到N阶段,机械能逐渐变大

C.从P到Q阶段,速率逐渐变小

D.从M到N阶段,万有引力对它先做负功后做正功

【答案】CD

【解析】逐项研究

A.因为靠近近日点,所以从P到M所用的时间大于于,A错误

B.从Q到N阶段,只有万有引力做功,机械能守恒,B错误

C.P速度最大,Q速度最小,从P到Q阶段,速率逐渐变小,C正确

D.从M到Q阶段,万有引力对它做负功,从Q到N阶段,万有引力对它做负功做正功,所以从M到N阶段,万有引力对它先做负功后做正功,D正确

16.2017年北京17题.利用引力常量G和下列某一组数据,不能计算出地球质量的是

A.地球的半径及重力加速度(不考虑地球自转)

B.人造卫星在地面附近绕地球做圆周运动的速度及周期

C.月球绕地球做圆周运动的周期及月球与地球间的距离

D.地球绕太阳做圆周运动的周期及地球与太阳间的距离

【答案】D

【解析】逐项研究

A.地球的半径及重力加速度(不考虑地球自转),根据,可求M

B.人造卫星在地面附近绕地球做圆周运动的速度及周期,根据,及。可求M

C.月球绕地球做圆周运动的周期及月球与地球间的距离,根据,可求M

D.地球绕太阳做圆周运动的周期及地球与太阳间的距离,不可求球质量,可求太阳的质量。

17.2017年天津第9题

9.(1)我国自主研制的首艘货运飞船“天舟一号”发射升空后,与已经在轨运行的“天宫二号”成功对接形成组合体。学

科&网假设组合体在距地面高度为h的圆形轨道上绕地球做匀速圆周运动,已知地球半径为R,地球表面重力加速度为g,且不考虑地球自转的影响。则组合体运动的线速度大小为__________,向心加速度大小为___________。

【答案】9.(1)

18.2017年江苏6题.“天舟一号”货运飞船于2017年4月20日在文昌航天发射中心成功发射升空,与“天宫二号”空间实验室对接前,“天舟一号”在距离地面约380

km的圆轨道上飞行,则其

(A)角速度小于地球自转角速度

(B)线速度小于第一宇宙速度

(C)周期小于地球自转周期

(D)向心加速度小于地面的重力加速度

【答案】BCD

【解析】对于A和C根据,把“天舟一号”货运飞船与地球同步卫星相比(因为地球同步卫星与地球自转角速度及周期相同),因为,所以A错误C正确;对于B和D,因为,所以BD正确.19.2017年海南第5题.

5.已知地球质量为月球质量的81倍,地球半径约为月球半径的4倍。若在月球和地球表面同样高度处,以相同的初速度水平抛出物体,抛出点与落地点间的水平距离分别为s月和s地,则s月:s地约为()

A.9:4

B.6:1

C.3:2

D.1:1

【答案】A

【解析】,所以,平抛运动,所以。

万有引力高考真题汇编 第2篇

()A.2 kg B.1.5 kg C.1 kg D.0.5 kg 2.(2018·全国卷2)如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度,木箱获得的动能一定()A.小于拉力所做的功 B.等于拉力所做的功 C.等于克服摩擦力所做的功 D.大于克服摩擦力所做的功 3.(2016全国2)两实心小球甲和乙由同一种材质制成,甲球质量大于乙球质量。两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关。若它们下落相同的距离,则()A.甲球用的时间比乙球长 B.甲球末速度的大小大于乙球末速度的大小 C.甲球加速度的大小小于乙球加速度的大小 D.甲球克服阻力做的功大于乙球克服阻力做的功 4.(2015浙江)如图所示,用一块长的木板在墙和桌面间架设斜面,桌面高H=0.8m,长。斜面与水平桌面的倾角可在0~60°间调节后固定。将质量m=0.2kg的小物块从斜面顶端静止释放,物块与斜面间的动摩擦因数,物块与桌面间的动摩擦因数,忽略物块在斜面与桌面交接处的能量损失。(重力加速度取;

最大静摩擦力等于滑动摩擦力)(1)求角增大到多少时,物块能从斜面开始下滑;

(用正切值表示)(2)当增大到37°时,物块恰能停在桌面边缘,求物块与桌面间的动摩擦因数(已知sin37°=0.6,cos37°=0.8)(3)继续增大角,发现=53°时物块落地点与墙面的距离最大,求此最大距离 5.(2018全国1)一质量为8.00×104 kg的太空飞船从其飞行轨道返回地面。飞船在离地面高度1.60×105 m处以7.50×103 m/s的速度进入大气层,逐渐减慢至速度为100 m/s时下落到地面。取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s2。(结果保留2位有效数字)(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;

(2)求飞船从离地面高度600 m处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%。

6.(2014全国2)一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v.若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v.对于上述两个过程,用WF1、WF2分别表示拉力F1、F2所做的功,Wf1、Wf2分别表示前后两次克服摩擦力所做的功,则()A.WF2>4WF1,Wf2>2Wf1 B.WF2>4WF1,Wf2=2Wf1 C.WF2<4WF1,Wf2=2Wf1 D.WF2<4WF1,Wf2<2Wf1 7.(2014·江苏卷)如图所示,生产车间有两个相互垂直且等高的水平传送带甲和乙,甲的速度为v0.小工件离开甲前与甲的速度相同,并平稳地传到乙上,工件与乙之间的动摩擦因数为μ.乙的宽度足够大,重力加速度为g.(1)若乙的速度为v0,求工件在乙上侧向(垂直于乙的运动方向)滑过的距离s;(2)若乙的速度为2v0,求工件在乙上刚停止侧向滑动时的速度大小v;(3)保持乙的速度2v0不变,当工件在乙上刚停止滑动时,下一只工件恰好传到乙上,如此反复.若每个工件的质量均为m,除工件与传送带之间的摩擦外,其他能量损耗均不计,求驱动乙的电动机的平均输出功率.8.(2015天津)某快递公司分拣邮件的水平传输装置示意如图.皮带在电动机的带动下保持V=1 m/s的恒定速度向右运动.现将一质量为m=2 kg的邮件轻放在皮带上.邮件和皮带间的动摩擦因数μ= 0.5。设皮带足够长.取g=10m/s2,在邮件与皮带发生相对滑动的过程中,求(1)邮件滑动的时间t ;

(2)邮件对地的位移大小x ;

(3)邮件与皮带间的摩擦力对皮带做的功W。

9.(2016全国1)如图,一轻弹簧原长为,其一端固定在倾角为的固定直轨道的底端A处,另一端位于直轨道上B处,弹簧处于自然状态。直轨道与一半径为的光滑圆弧轨道相切于点,均在同一竖直平面内。质量为的小物块自点由静止开始下滑,最低到达点(未画出)随后沿轨道被弹回,最高到达点。已知与直轨道间的动摩擦因数,重力加速度大小为。(取,)(1)求第一次运动到点时速度的大小。

(2)求运动到点时弹簧的弹性势能。

(3)改变物块的质量,将推至点,从静止开始释放。已知自圆弧轨道的最高点处水平飞出后,恰好通过点。点在点的左下方,与点水平相距、竖直相距,求运动到点时速度的大小和改变后的质量。

题型二、动能定理与变力做功以及功能关系的综合应用 10.(2019全国2)从地面竖直向上抛出一物体,其机械能E总等于动能Ek与重力势能Ep之和。取地面为重力势能零点,该物体的E总和Ep随它离开地面的高度h的变化如图所示。重力加速度取10 m/s2。由图中数据可得()A.物体的质量为2 kg B.h=0时,物体的速率为20 m/s C.h=2 m时,物体的动能Ek=40 J D.从地面至h=4 m,物体的动能减少100 J 11.(2019江苏)如图所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m,从A点向左沿水平地面运动,压缩弹簧后被弹回,运动到A点恰好静止.物块向左运动的最大距离为s,与地面间的动摩擦因数为μ,重力加速度为g,弹簧未超出弹性限度.在上述过程中()A.弹簧的最大弹力为μmg B.物块克服摩擦力做的功为2μmgs C.弹簧的最大弹性势能为μmgs D.物块在A点的初速度为 12.(2018·江苏卷)如图所示,轻质弹簧一端固定,另一端连接一小物块,O点为弹簧在原长时物块的位置.物块由A点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B点.在从A到B的过程中,物块()A.加速度先减小后增大 B.经过O点时的速度最大 C.所受弹簧弹力始终做正功 D.所受弹簧弹力做的功等于克服摩擦力做的功 13.(2013江苏)如图所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连。

弹簧处于自然长度时物块位于O点(图中未标出)。

物块的质量为m,AB=a,物块与桌面间的动摩擦因数为滋。

现用水平向右的力将物块从O点拉至A点,拉力做的功为W。

撤去拉力后物块由静止向左运动,经O点到达B点时速度为零。

重力加速度为g。

则上述过程中()A.物块在A点时,弹簧的弹性势能等于 B.物块在B点时,弹簧的弹性势能小于 C.经O点时,物块的动能小于 D.物块动能最大时弹簧的弹性势能小于物块在B点时弹簧的弹性势能 14.(2015北京)如图所示,弹簧的一端固定,另一端连接一个物块,弹簧质量不计。物块(可视为质点)的质量为 m,在水平桌面上沿 x 轴运动,与桌面间的动摩擦因数为 µ。以弹簧原长时物块的位置为坐标原点 O,当弹簧的伸长量为 x 时,物块所受弹簧 弹力大小为 F=kx,k 为常量。

(1)请画出 F 随 x 变化的示意图;

并根据 F-x 的图像求物块沿 x 轴从 O 点运动到位置 x 的 过程中弹力所做的功。

15.(2016全国2)如图,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连。现将小球从M点由静止释放,它在下降的过程中经过了N点。已知M、N两点处,弹簧对小球的弹力大小相等,且∠ONM<∠OMN<。在小球从M点运动到N点的过程中()A.弹力对小球先做正功后做负功 B.有两个时刻小球的加速度等于重力加速度 C.弹簧长度最短时,弹力对小球做功的功率为零 D.小球到达N点时的动能等于其在M、N两点的重力势能 16.(2015江苏)一转动装置如图所示,四根轻杆OA、OC、AB和CB与两小球以及一小环通过铰链连接,轻杆长均为l,球和环的质量均为m,O端固定在竖直的轻质转轴上,套在转轴上的轻质弹簧连接在O与小环之间,原长为L,装置静止时,弹簧长为,转动该装置并缓慢增大转速,小环缓慢上升。弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g,求:

(1)弹簧的劲度系数k;

(2)AB杆中弹力为零时,装置转动的角速度;

(3)弹簧长度从缓慢缩短为的过程中,外界对转动装置所做的功W。

17.(2015天津)如图所示,固定的竖直光滑长杆上套有质量为m的小圆环.圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到 最大距离的过程中()A.圆环的机械能守恒 B.弹簧弹性势能变化了mgL C.圆环下滑到最大距离时.所受合力为零 D.圆环重力势能与弹簧弹性势能之和保持不变 18.(2015江苏)如图所示,轻质弹簧一端固定,另一端与质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长。圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h。圆环在C处获得一竖直向上的速度v,恰好能回到A;

弹簧始终在弹性限度之内,重力加速度为g,则圆环()A.下滑过程中,加速度一直减小 B.下滑过程中,克服摩擦力做功为 C.在C处,弹簧的弹性势能为 D.上滑经过B的速度大于下滑经过B的速度 19.(2013山东)如图所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮。质量分别为M、m(M>m)的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行。两滑块由静止释放后,沿斜面做匀加速运动。若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()A.两滑块组成系统的机械能守恒 B.重力对M做的功等于M动能的增加 C.轻绳对m做的功等于m机械能的增加 D.两滑块组成系统的机械能损失等于M克服摩擦力做的功 20.(2014·福建卷)如图所示,两根相同的轻质弹簧,沿足够长的光滑斜面放置,下端固定在斜面底部挡板上,斜面固定不动.质量不同、形状相同的两物块分别置于两弹簧上端.现用外力作用在两物块上,使两弹簧具有相同的压缩量,若撤去外力后,两物块由静止沿斜面向上弹出并离开弹簧,则从撤去外力到物块速度第一次减为零的过程,两物块()A.最大速度相同 B.最大加速度相同 C.上升的最大高度不同 D.重力势能的变化量不同 21.(2014·广东卷)图是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中()A.缓冲器的机械能守恒 B.摩擦力做功消耗机械能 C.垫板的动能全部转化为内能 D.弹簧的弹性势能全部转化为动能 题型三、动能定理与圆周、平抛运动等结合的综合类问题 22.(2018·全国卷III)如图,在竖直平面内,一半径为R的光滑圆弧轨道ABC和水平轨道PA在A点相切。BC为圆弧轨道的直径。O为圆心,OA和OB之间的夹角为α,sinα=,一质量为m的小球沿水平轨道向右运动,经A点沿圆弧轨道通过C点,落至水平轨道;

在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零。重力加速度大小为g。求:

(1)水平恒力的大小和小球到达C点时速度的大小;

(2)小球到达A点时动量的大小;

[来源:学。科。网](3)小球从C点落至水平轨道所用的时间。

23.(2019天津)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板是与水平甲板相切的一段圆弧,示意如图2,长,水平投影,图中点切线方向与水平方向的夹角()。若舰载机从点由静止开始做匀加速直线运动,经到达点进入。已知飞行员的质量,求(1)舰载机水平运动的过程中,飞行员受到的水平力所做功;

(2)舰载机刚进入时,飞行员受到竖直向上的压力多大。

24.(2018·天津卷)滑雪运动深受人民群众喜爱,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中()A.所受合外力始终为零 B.所受摩擦力大小不变 C.合外力做功一定为零 D.机械能始终保持不变 25.(2014全国2)取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力.该物块落地时的速度方向与水平方向的夹角为()A.B.C.D.26.(2014·福建卷)图为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB段轨道与四分之一光滑圆弧轨道BC在B点水平相切.点A距水面的高度为H,圆弧轨道BC的半径为R,圆心O恰在水面.一质量为m的游客(视为质点)可从轨道AB的任意位置滑下,不计空气阻力.(1)若游客从A点由静止开始滑下,到B点时沿切线方向滑离轨道落在水面上的D点,OD=2R,求游客滑到B点时的速度vB大小及运动过程轨道摩擦力对其所做的功Wf;

(2)若游客从AB段某处滑下,恰好停在B点,又因受到微小扰动,继续沿圆弧轨道滑到P点后滑离轨道,求P点离水面的高度h.(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F向=m)27.(2016年天津)我国将于2022年举办奥运会,跳台滑雪是其中最具观赏性的项目之一,如图所示,质量m=60kg的运动员从长直助滑道末端AB的A处由静止开始以加速度匀加速滑下,到达助滑道末端B时速度,A与B的竖直高度差H=48m,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧。助滑道末端B与滑道最低点C的高度差h=5m,运动员在B、C间运动时阻力做功W=-1530J,取(1)求运动员在AB段下滑时受到阻力的大小;

(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大。

28.(2016全国)轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l。现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接。AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如图所示。物块P与AB简的动摩擦因数μ=0.5。用外力推动物块P,将弹簧压缩至长度l,然后释放,P开始沿轨道运动,重力加速度大小为g。

(1)若P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB上的位置与B点间的距离;

(2)若P能滑上圆轨道,且仍能沿圆轨道滑下,求P得质量的取值范围。

29.(2015重庆)同学们参照伽利略时期演示平抛运动的方法制作了如题8图所示的实验装置。图中水平放置的底板上竖直地固定有M板和N板。M 板上部有一半径为的圆弧形的粗糙轨道,P为最高点,Q为最低点,Q点处的切线水平,距底板高为.N板上固定有三个圆环.将质量为的小球从P处静止释放,小球运动至Q飞出后无阻碍地通过各圆环中心,落到底板上距Q水平距离为处。不考虑空气阻力,重力加速度为.求:

(1)距Q水平距离为的圆环中心到底板的高度;

(2)小球运动到Q点时速度的大小以及对轨道压力的大小和方向;

(3)摩擦力对小球做的功.30.(2015新课标).如图,一半径为R、粗糙程度处处相同的半圆形轨道如图放置,三点POQ水平。一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道,质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小,用W表示质点从P运动到N点的过程中克服摩擦力所做的功,则()A.W = ,质点恰好可以到达Q点 B.W > ,质点不能到达Q点 C.W = ,质点到达Q点后,继续上升一段距离 D.W < ,质点到达Q点后,继续上升一段距离 31.(2016全国2)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短。将两球拉起,使两绳均被水平拉直,如图所示。将两球由静止释放。在各自轨迹的最低点,A.P球的速度一定大于Q球的速度 B.P球的动能一定小于Q球的动能 C.P球所受绳的拉力一定大于Q球所受绳的拉力 D.P球的向心加速度一定小于Q球的向心加速度 32.(2015海南)如图,一半径为R的半圆形轨道竖直固定放置,轨道两端登高。质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g,质点自P滑到Q的过程中,克服摩擦力所做的功为()A.B.C.D.33.(2017全国2)如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环,小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力()A.一直不做功 B.一直做正功 C.始终指向大圆环圆心 D.始终背离大圆环圆心 34.(2017全国2)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时对应的轨道半径为(重力加速度为g)()A.B C.D.35.(2015广东)如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R=0.5m,物块A以v0=6m/s的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨道上P处静止的物块B碰撞,碰后粘在一起运动,P点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L=0.1m,物块与各粗糙段间的动摩擦因数都为μ=0.1,A、B的质量均为m=1kg(重力加速度g取10m/s2;

A、B视为质点,碰撞时间极短)。

(1)求A滑过Q点时的速度大小v和受到的弹力大小F;

(2)碰后AB最终停止在第k个粗糙段上,求k的数值;

(3)碰后AB滑至第n个(n<k)光滑段上的速度vn与n的关系式。

36.(2015福建)如图,质量为M的小车静止在光滑的水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点,一质量为m的滑块在小车上从A点静止开始沿轨道滑下,重力加速度为g。

(1)若固定小车,求滑块运动过程中对小车的最大压力;

(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车,已知滑块质量,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为μ,求:

滑块运动过程中,小车的最大速度vm;

滑块从B到C运动过程中,小车的位移大小s。

题型四、动能定理与牛二定律运动学相结合的综合考查 37.(2019北京)雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关。雨滴间无相互作用且雨滴质量不变,重力加速度为g。

(1)质量为m的雨滴由静止开始,下落高度h时速度为u,求这一过程中克服空气阻力所做的功W。

(2)将雨滴看作半径为r的球体,设其竖直落向地面的过程中所受空气阻力f=kr2v2,其中v是雨滴的速度,k是比例系数。

a.设雨滴的密度为ρ,推导雨滴下落趋近的最大速度vm与半径r的关系式;

b.示意图中画出了半径为r1、r2(r1>r2)的雨滴在空气中无初速下落的v–t图线,其中_________对应半径为r1的雨滴(选填①、②);

若不计空气阻力,请在图中画出雨滴无初速下落的v–t图线。

(3)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。将雨滴简化为垂直于运动方向面积为S的圆盘,证明:圆盘以速度v下落时受到的空气阻力f ∝v2(提示:设单位体积内空气分子数为n,空气分子质量为m0)。

38.(2018·天津卷)我国自行研制、具有完全自主知识产权的新一代大型喷气式客机C919首飞成功后,拉开了全面试验试飞的新征程,假设飞机在水平跑道上的滑跑是初速度为零的匀加速直线运动,当位移x=1.6×103 m时才能达到起飞所要求的速度v=80 m/s。已知飞机质量m=7.0×104 kg,滑跑时受到的阻力为自身重力的0.1倍,重力加速度取。求飞机滑跑过程中(1)加速度a的大小;

(2)牵引力的平均功率P。

39.(2014·全国卷)一物块沿倾角为θ的斜坡向上滑动.当物块的初速度为v时,上升的最大高度为H,如图所示;

当物块的初速度为时,上升的最大高度记为h.重力加速度大小为g.则物块与斜坡间的动摩擦因数和h分别为()A.tanθ和 B.tanθ和 C.tanθ和 D.tanθ和 40.(2015浙江)我国科学家正在研制航母舰载机使用的电磁弹射器。舰载机总质量为,设起飞过程中发动机的推力恒为;

弹射器有效作用长度为100m,推力恒定。要求舰载机在水平弹射结束时速度大小达到80m/s。弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则()A弹射器的推力大小为 B弹射器对舰载机所做的功为 C弹射器对舰载机做功的平均功率为 D舰载机在弹射过程中的加速度大小为 41.(2018·北京卷)2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一。某滑道示意图如下,长直助滑道AB与弯曲滑道BC平滑衔接,滑道BC高h=10 m,C是半径R=20 m圆弧的最低点,质量m=60 kg的运动员从A处由静止开始匀加速下滑,加速度a=4.5 m/s2,到达B点时速度vB=30 m/s。取重力加速度g=10 m/s2。

(1)求长直助滑道AB的长度L;

(2)求运动员在AB段所受合外力的冲量的I大小;

(3)若不计BC段的阻力,画出运动员经过C点时的受力图,并求其所受支持力FN的大小。

42.(2014·安徽卷)如图所示,有一内壁光滑的闭合椭圆形管道,置于竖直平面内,MN是通过椭圆中心O点的水平线.已知一小球从M点出发,初速率为v0,沿管道MPN运动,到N点的速率为v1,所需时间为t1;

若该小球仍由M点以初速率v0出发,而沿管道MQN运动,到N点的速率为v2,所需时间为t2.则()A.v1=v2,t1>t2 B.v1t2 C.v1=v2,t1

若一地铁列车从甲站由静止启动后做直线运动,先匀加速运动20s达到最高速度72km/h,再匀速运动80s,接着匀减速运动15s到达乙站停住。设列车在匀加速运动阶段牵引力为1×106N,匀速阶段牵引力的功率为6×103kW,忽略匀减速运动阶段牵引力所做的功。

(1)求甲站到乙站的距离;

(2)如果燃油公交车运行中做的功与该列车从甲站到乙站牵引力做的功相同,求公交车排放气体污染物的质量。(燃油公交车每做1焦耳功排放气体污染物3×10-6克)题型五、动能定理机械能守恒定律与运动的合成与分解的综合考查 44.(2018全国1)如图,abc是竖直面内的光滑固定轨道,ab水平,长度为;

bc是半径为的四分之一圆弧,与ab相切于b点。一质量为的小球,始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动。重力加速度大小为。小球从a点开始运动到其轨迹最高点,机械能的增量为 A. B. C. D. a b c R 45.(2015新课标)如图,滑块a、b的质量均为m,a套在固定直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接。不计摩擦,a、b可视为质点,重力加速度大小为g。则 A.a落地前,轻杆对b一直做正功 B.a落地时速度大小为 C.a下落过程中,其加速度大小始终不大于g D.a落地前,当a的机械能最小时,b对地面的压力大小为mg 题型六、做功与功率的综合考查 46.(2018·全国卷III)地下矿井中的矿石装在矿车中,用电机通过竖井运送至地面。某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;

直击高考“万有引力定律”考点 第3篇

一、利用万有引力定律求天体的质量、密度、周期等

对万有引力定律的考查,多表现在应用它求卫星、天体的运动及天体的质量、密度、周期等问题.所有这些问题都与匀速圆周运动的知识相联系,其基本关系式为连等式和黄金代换式以及.

例1 (北京市)一物体静置在平均密度为ρ的球形天体表面的赤道上.已知万有引力常量G,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为()

解析:在赤道应有,对地面压力F等于物体的重力,即F=mg,若自转加快,则物体重力减小,当压力恰好为零是有:,又,联立解得:.因此选(D).

点评:重力加速度是天体运动和地面上物体运动的桥梁,在应用时要引起足够重视.地面上物体的重力随纬度的增大而增大,随离地面高度的增大而减小,由于地球自转角速度很小,故一般情况下认为重力等于万有引力.但什么情况下考虑重力的这种变化,什么情况下不考虑,则由问题的性质决定.

例2 (浙江省)如图1所示,宇宙飞船以周期为T绕地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程.已知地球的半径为R,地球质量为M,引力常量为G,地球自转周期为T0.太阳光可看作平行光,宇航员在A点测出的张角为α,则()

(A)飞船绕地球运动的线速度为

(B)—天内飞船经历“日全食”的次数为

(C)飞船每次“日全食”过程的时间为

(D)飞船周期为

解析:飞船绕地球运动的线速度为:

.

由几何关系知:

则:

则:

飞船每次“日全食”过程的时间为飞船转过α角所需的时间,即,因此(C)错误;一天内飞船经历“日全食”的次数为,因此(B)错误;综合选(A)、(D).

点评:该题目在解决时除具备必要的物理知识外还需要有一定的数学知识和空间想象能力,以便确定空间的数量关系.

二、利用万有引力定律分析、比较天体运行中的基本物理量

天体运行问题中,有许多物理量很容易混淆,如R和r、g和a等等,因此加强易混概念的辨析显得很重要;另外,应用万有引力定律和黄金代换式比较计算不同天体的运动也是重要考查的题型.

例3 (上海市)月球绕地球做匀速圆周运动的向心加速度大小为a,设月球表面的重力加速度大小为g1,在月球绕地球运行的轨道处由地球引力产生的加速度大小为g2,则()

(A) g1=a (B) g2=a

(C) g1+g2=a (D) g2-g1=a

解析:根据月球绕地球做匀速圆周运动的向心力由地球引力提供,而该处物体的重力等于万有引力.所以(B)正确;月球表面物体的重力等于月球对物体的万有引力,所以(A)错误.综合选(B).

例4 (湖南省)太阳系中8大行星的轨道均可以近似看成圆轨道.下列4幅图是用来描述这些行星运动所遵从的某一规律的图象.图2中坐标系的横轴是,纵轴是;这里T和R分别是行星绕太阳运行的周期和相应的圆轨道半径,T0和R0分别是水星绕太阳运行的周期和相应的圆轨道半径.下列4幅图中正确的是()

解析:由开普勒第三定律:,变换得:,两边取自然对数得,即,从公式可以看出,图线过原点,且斜率为,因此选(B).

点评:图象比较陌生,应从坐标轴间反映的物理意义入手分析,利用合适规律建立解析式,再认识图象.

例5 (海南省)火星直径约为地球的一半,质量约为地球的十分之一,它绕太阳公转的轨道半径约为地球公转半径的1.5倍,根据以上数据,以下说法正确的是()

(A)火星表面重力加速度的数值比地球表面的小

(B)火星公转的周期比地球的长

(C)火星公转的线速度比地球的大

(D)火星公转的向心加速度比地球的大

解析:在星球表面上有:,即:,故(A)正确;火星与地球均围绕太阳转动,根据连等式可知,将质量、公转半径关系代入比较得,(B)对,(C)、(D)均错;综合选(A)、(B).

三、关于双星模型的规律分析

天体中两颗恒星质量相差不大,相距较近时,它们绕两者连线某圆心分别做匀速圆周运动,叫双星.

例6 (全国Ⅰ)如图3所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间距离为L.已知A、B的中心和0三点始终共线,A和B分别在0的两侧.引力常数为G.

(1)求两星球做圆周运动的周期.

(2)在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T2.已知地球和月球的质量分别为5.98×1024 kg和7.35×1022kg.求T2与T1两者平方之比.(结果保留3位有效数字)

解析:(1)A和B绕O做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力相等.且A、B和O始终共线,说明A和B有相同的角速度和周期.因此有:mω2r=Mω2R,r+R=L,连立解得:.

对A根据牛顿第二定律和万有引力定律得:

化简得

(2)将地月看成双星,由(1)得:

将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得:

化简得.

所以,两种周期的平方比值为:.

点评:双星模型问题要抓住角速度相等的特点,双星做圆周运动的向心力是它们之间的万有引力,即它们的向心力也是大小相等的;还应注意,双星问题与其他绕中心天体作圆周运动的模型最大的不同在于它们的向心力中的R并不等于万有引力公式中的距离r,因为做圆周运动的圆心是它们连线上的一点,所以双星做圆周运动的半径都小于他们间的距离,它们的圆轨道半径之和等于他们间的距离.

四、宇宙飞船的发射和变轨问题

由连等式推出的二级结论主要分析变轨问题:

例7(江苏省)200g年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图4所示,关于航天飞机的运动,下列说法中正确的有()

(A)在轨道Ⅱ上经过A的速度小于经过B的速度

(B)在轨道Ⅱ上经过A的动能小于在轨道Ⅰ上经过A的动能

(C)在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期

(D)在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度

解析:根据开普勒第二定律,近地点速率大,远地点速率小,所以在轨道Ⅱ上经过A点的速度小于经过B点的速度,故(A)正确;又因为动能,所以(B)正确;再根据开普勒第三定律:,从图中可看出轨道Ⅰ的轨道半径大于轨道Ⅱ半长轴,所以在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,故(C)正确;根据万有引力定律:,所以在轨道Ⅱ上经过A点的加速度等于在轨道Ⅰ上经过A点的加速度,故(D)错.综合选(A)、(B)、(C).

例8 (山东省)1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”发射成功,开创了我国航天事业的新纪元.“东方红一号”的运行轨道为椭圆轨道,其近地点的M和远地点的N的高度分别为439 km和2384 km,则()

(A)卫星在M点的势能大于N点的势能

(B)卫星在M点的角速度大于N点的角速度

(C)卫星在M点的加速度大于N点的加速度

(D)卫星在N点的速度大于7.9 km/s

解析:由,得:,可见半径r越大,向心加速度a越小,线速度v越小,故(B)、(C)均正确;根据机械能守恒有:,由于,所以EPM

点评:卫星或人造飞船围绕中心天体从低轨道向高轨道自由运行,向心加速度、线速度、角速度均减小,周期增大;反之相反.同时一定要区分清楚运行速度和发射速度,第一宇宙速度(即近地轨道运行速度)是最大运行速度,卫星轨道越大,速度越小;最大运行速度也是最小发射速度,由于发射过程中要克服地球的引力做功,所以发射速度越大,卫星离地面越高,实际绕地球运行的速度却越小,向高轨道发射卫星比要比低轨道发射卫星困难的多.

五、同步卫星问题

例9 (四川省)如图6甲所示,a是地球赤道上一栋建筑,b是在赤道平面内作匀速圆周运动、距地面9.6×106m的卫星,c是地球同步卫星,某一时刻b、c刚好位于a的正上方(如图6甲所示),经48 h,a、b、c的大致位置是图乙中的(取地球半径R=6.4×106m,地球表面重力加速度g=10 m/s2,)()

解析:b、c都是地球的卫星,共同遵循地球对它们的万有引力提供向心力,是可以比较的.a、c是在同一平面内有相同角速度转动的,也是可以比较的.在某时刻c在a的正上方,则以后永远在正上方.对b有:,化简得:.

在48小时内b转动的圈数为:,所以(B)正确.

万有引力高考真题汇编 第4篇

一、行星运动定律

答案B

点评:此类型考查开普勒行星定律,题目较为简单。要求学生对基本的概念和定律内容充分了解,会带入公式计算。

二、“黄金代换式”万有引力定律及应用

三、卫星运行及宇宙速度

例3(2014·广东)如图所示,飞行器P绕某星球做匀速圆周运动,星球相对飞行器的张角为θ,下列说法正确的是

A.轨道半径越大,周期越长

B.轨道半径越大,速度越大

C.若测得周期和张角,可得到星球的平均密度

D.若测得周期和轨道半径,可得到星球的平均密度可得到星球的平均密度,故选项C正确,而选项D无法计算星球半径,则无法求出星球的平均密度,选项D错误。故选AC。

点评:此类问题中,万有引力提供向心力,重点把握变换公式以后的变量,抓住轨道半径的变化,在比例关系式中,注意物理量的意义,不能混淆。这类考题较多,对于近地卫星,同步卫星,卫星变轨问题均有可能涉及。

四、与其他知识综合

例4 (2014.四川)石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性的变化,其发现者由此获得2010年诺贝尔物理学奖。用石墨烯制作超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现。科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球

点评:此类题型将万有引力定律、重力加速度概念、匀变速直线运动、牛顿运动定律、机械能等概念融合在一起考查,涉及概念比较多,需要认真审题。

万有引力高考真题汇编 第5篇

万有引力与相作用的物体的质量乘积成正比,是发现引力平方反比定律过渡到发现万有引力定律的必要阶段。以下是万有引力公式总结,希望对考生复习物理有帮助。

1.开普勒第三定律:T2/R3=K(=42/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2(G=6.6710-11N m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;=(GM/r3)1/2;T=2(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s 6.地球同步卫星GMm/(r地+h)2=m42(r地+h)/T2{h36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

万有引力公式总结的内容就是这些,查字典物理网预祝广大考生金榜题名。

万有引力高考真题汇编 第6篇

您身边的高考专家

万有引力定律

万有引力定律是牛顿在前人大量观测和研究的基础上总结概括出来的最伟大的定律之一。万有引力定律被发现的意义在于把地面上所了解的现象与宇宙中天体变化的规律统一了起来,直接向有神论进行了冲击;另一方面万有引力定律的发现摧毁了人类过去对宇宙的错误认识,为人类确立全新的宇宙观打下了基础。这就是说万有引力定律的发现不仅具有学术上的意义,对人类物质观、宇宙观的发展和进步都起到了极其重要的作用。

一、历史的回顾: 古代从农牧业生产和航海的实际需要出发,很早就开始了对天体运动的研究。“天文学”可称作是发展最早的自然科学之一。在几千年的发展过程中“地心说”和“日心说”进行了长期的斗争。

1、公元二世纪以希腊天文学家托勒玫为代表的地心说认为:地球是宇宙的中心,宇宙万物都是上帝创造。宇宙中的一切天体都围着地球旋转。这个学说在教会支持下,延续一千余年。现在看来这个学说是错误的,但地心说的出现仍旧促使了世界航海事业的发展,对提高发展生产力起到了积极作用。

2、十六世纪波兰天文学家哥白尼,经过四十年的观测和研究,在古代日心说的启发下重新提出了新的日心说:太阳是宇宙的中心,地球和其它行星一样都绕太阳旋转。这个学说很容易解释许多天文现象。这种学说虽然受到教会的反对和迫害,但在伽利略、布鲁诺为代表的一些人支持下仍被人们逐渐接受。

3、丹麦天文学家第谷经过二十余年长期对行星的观测和精确测量,又经他的助手开普勒用二十年时间的统计分析概括进一步完善了“日心说”。开普勒于十七世纪发表著名的开普勒三定律。开普勒第一定律:所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳是在这些椭圆的一个焦点上。开普勒第二定律:对每个行星来说,太阳和行星的连线在相等的时间内扫过相等的面积。开普勒第三定律:所有行星的椭圆轨道的长半轴的三次方跟公转周期的平方的比值都相等。

二、牛顿对行星运动的解释:

版权所有@高考资源网

高考资源网(ks5u.com)

您身边的高考专家

应注意:

(1)公式中G称作万有引力恒量,经测定G6.671011N·m2/Kg2。

(2)公式中的R为质点间的距离。对于质量分布均匀的球体,可把它看做是质量集中在球心的一个点上。(3)从G6.671011N·m2/Kg2可以看出,万有引力是非常小的,平时很难觉察,所以它的发现经历了对天体(质量特别大)运动的研究过程。

四、万有引力恒量的测定: 自牛顿发表万有引力定律以来,人们试图在实验中测出引力的大小,其目的在于给“万有引力定律”进行鉴别和检验。因为没有被实验验证的理论总是空洞的理论,更无实际意义。英国物理学家卡文迪许承担了这样一项科学难题,他发挥了精湛的实验才能,取得了极其精确的结果。实验装置是用的扭秤(如右图所示),秤杆长2.4m,两端各置一个铅质球,再用另外两个球靠近,研究它们的引力规律。

实验原理是用力矩平衡的道理。

实验结果:首先验证了万有引力的正确性。另外测定了万有引力恒量为:

G6.751011

N·m/Kg 目前万有引力恒量的公认值为:

G6.67201011N·m/Kg 小结:

1、万有引力定律的发现,绝不是牛顿一人的成果。它是人类长期研究奋斗的结果,甚至有人献出了宝贵的生命。

2、万有引力定律的确立,并不是在1687年牛顿发表之时,而应是1798年卡文迪许完成实验之时。

3、万有引力定律的公式:FGm1m2r2 只适用于质点间的相互作用。这里的“质点”要求是质量分布均匀的球体,或是物体间的距离r远远大于物体的大小d(rd),这两种情况。

上一篇:农业银行新员工入职心得下一篇:最新电子工艺实训报告