智能农业机械解决方案

2024-06-12

智能农业机械解决方案(精选8篇)

智能农业机械解决方案 第1篇

中国农业物联网领航者——托普云农物联网!

智能农业基于物联网技术的农产品溯源服务平台解决方案

一、简述概论

智能农业基于物联网技术的农产品溯源服务平台解决方案,可以提高农产品的安全水平,减少了食源性疾病的危害,更加充分地保障公共健康;提高了公众对农产品安全体系的认识,增强消费者卫生意识,为消费者提供全面的历史信息。

农产品质量追溯系统包含整个智慧农业的全流程跟踪管理,是主干道,涉及农户、合作社、生产企业、农资供销商、产品销售商、政府和消费者,贯穿了农产品生产基地管理、种植养殖过程管理、采摘收割、加工、储存、运输、上市销售、政府监管的各个环节。追溯平台涉及到的各子系统为智慧农业的某一环节服务,并将采集到的信息即时传送到追溯平台,最终在追溯平台上进行全流程的展现,实现“质量可监控,过程可追溯,政府可监管”。

农产品全程质量安全管控和追溯服务系统以农产品生产、流通、销售产品为研究对象,以生产企业直至销售终端(超市或社区便民服务中心)为基本模式,分别完成了三个部分的系统设计。第一部分是产品部分:生产厂家可通过终端软件录入农产品从土壤耕作、种子选取、发芽、幼苗、开花、结果、收获、储藏、运输等各个阶段的土壤养分、温湿度、光照强度、水质监测、农药化肥使用、采摘时间、作物名称、数量等情况进行全面了解;第二部:将各个阶段的情况录入软件平台,上传数据到中心数据库,在农产品包装时,通过一定的编码规则,生成带有产品生产档案信息的条码,这便是电子标签;第三部分:消费者买到带有电子标签的农产品时,可以通过质量追溯系统中的网站、手机短信、超市扫描机等不同平台输入标签上的条码,即可查询产品情况。而对于农产品质量安全监管部门和消费者都可以通过对商品的追溯结果和所涉及企业的生产、销售等各个环节的查询与跟踪,监管部门可实现对农产品安全以及相关农企的有效监管,消费者也可有效维权。

食品安全问题关系到广大人民群众的身体健康和生命安全,关系到经济发展和社会稳定,历来受到高度的关注与重视,然而近年来食品安全问题日益突出,国际上疯牛病、口蹄疫和禽流感等疾病相继爆发和传播,而国内也发生了苏丹红、永年大蒜和劣质奶粉等食品质量问题。究竟原因是食品的生产过程存在众多问题,产品生产、物流信息,检疫检测信息等均有太多人工参与,各操作环节均容易产生错误/虚假信息,且各个不相关环节间很难做到信息核实,影响产品整体管理及信息查询;另外产品生产、物流、经销、检疫检测等各个环节的操作信息,难以做到信息流整体的监察管理;无法将监察管理信息传递到普通市民手中,真正的食品安全卫生上做到安心,放心,舒心。

中国农业物联网领航者——托普云农物联网!

二、项目意义

构建农产品溯源管理服务平台是提高农产品安全的一项重要手段,该平台的建立有以下重要意义:

1、对于消费者来说,可以提高农产品的安全水平,减少了食源性疾病的危害,更加充分地保障公共健康;提高了公众对农产品安全体系的认识,增强消费者卫生意识,为消费者提供全面的历史信息,从而使消费者了解实情,消费者可以掌握供方信息决定是否购买。

2、对于企业来说,系统的建立有助于降低总生产成本,企业往往因为产品不合格,导致保质期缩短,迫使企业频繁回收其产品,导致了企业的管理费用增加,系统的建立可以事先预测危害的原因与风险的程度,因此,可以通过管理将生产过程中的风险降低到最低水平,同时可以强化企业的责任感,良好的产品质量将不断增强消费者的信心,质量良好的企业将受到消费者的青睐,可以增加企业的信誉,并赢得大量的市场机会,降低商业风险。

3、对于政府来说,产品质量的提高有助于改善公众健康状况,减少公众健康支出,有质量问题的产品能够及时召回,减少了公众得病的几率,减少了因农产品原因带来的疾病的传播,减少了政府在公众健康上的支出,而且可以提高政府职能机构的执行能力及决策能力,为农产品生产提出合理的指导建议,并为人民的健康保驾护航。

中国农业物联网领航者——托普云农物联网!

三、项目建设内容

追溯包括跟踪和溯源两个方面。跟踪是指从供应链的上游至下游,跟随一个特定单元或一批产品运行路径的能力;溯源是指从供应链的下游识别一个特定单元或者一批产品来源的能力。食品安全追溯通过对个食品生产各环节信息的连接与记录,实现食品整个生命周期的跟踪与溯源。

RFID食品追溯管理系统将利用RFID先进的技术并依托网络技术、及数据库技术,实现信息融合、查询、监控,为每一个生产阶段以及分销到最终消费领域的过程中提供针对每件货品安全性、食品成分来源及库存控制的合理决策,实现食品安全预警机制。RFID技术贯穿于食品安全始终,包括生产、加工、流通、消费各环节,全过程严格控制,建立了一个完整的产业链的食品安全控制体系,形成各类食品企业生产销售的闭环生产,以保证向社会提供优质的放心食品,并可确保供应链的高质量数据交流,让食品行业彻底实施食品的源头追踪以及在食品供应链中提供完全透明度的能力。

中国农业物联网领航者——托普云农物联网!

四、系统功能

1、农产品安全生产管理

以农业生产者的生产档案信息为基础,实现对基础信息、生产过程信息等的实时记、生产操作预警,生产档案查询和上传功能。

2、农产品流通管理

以市场准入控制为设计基础实行入市申报,对批发市场经营者进行管理,记录其经营产品的交易情况,实现批发市场的全程安全管理。

3、农产品质量监督管理

实现相关法律法规、政策措施的宣传与监督功能;同时完成企业、农产品信息库的组建、管理和查询及分配管理防伪条码等功能。

4、农产品质量追溯

综合利用网路技术、短线技术、条码识别技术等,实现网站、POS机、短信和电话号码于一体的多终端农产品质量追溯。

通过食品追溯系统的建设,解决了因为油污、潮湿等原因造成的对条码的损坏而不能准确读出数据的问题,不仅可以追溯养殖与加工业的疫病与污染问题,还可以追溯养殖过程中滥用药、加工过程中超范围超限量使用添加剂,改变以往对食品质量安全管理只侧重于生产后的控制,而忽视生产中预防控制现象,完善食品加工技术规程、卫生规范以及生产中认证的标准,带动行业的整体进步,全面提升我国食品行业的水平。

四、系统特点

1、利用RFID 的优势特性达到对食品的安全与追溯的管理,相比记录档案追溯方式更加高效、实时、便捷。

2、在食品供应链中提供完全透明的管理能力,保障食品安全全程可视化控制、监控与追溯,并可对问题食品召回。

3、可以全面监控种植养殖源头污染、生产加工过程的添加剂以及有害物质、流通环节中的安全隐患。

4、可以对有可能出现的食品安全隐患进行有效评估和科学预警提供依据。

5、数据能够通过网络实现实时、准确报送,便于快速高效做更深层次的分析研究。

中国农业物联网领航者——托普云农物联网!

6、消费者可通过互联网或者短信、语音电话等多种手段查询所购买食品的完整追踪信息。

7、政府可以实现对农产品的无缝隙监管,并且可以根据相关信息为农业生产及发展提出指导性建议或决策。

农业物联网农产品安全溯源系统的特点:

8、农产品溯源系统是农产品从初级阶段到深加工建立了一个详细的数据库,一旦出现安全问题,能即时发现、即时处理,减少损失,同时也规范了种植和加工对农产品企业品牌也有促进作用;

9、农产品的种植、加工、储藏、运输及销售的全过程监控,解决了之前消费者使用后才发现问题的弊端,完善了食品安全监督体系;

10、可将携带农产品信息的RFID标签的信息转换成含有农产品信息的一维或二维条码标签,保证信息链的流通。为企业提供了科学的管理平台,二维码或RFID的智能管理,使食品保鲜、出入库管理更科学,效益提高,市场竞争力增强;

11、追溯系统可与物联网农业智能监测等系统共享数据库,数据库更安全,可靠性更高;

12、充分发挥无线射频技术(RFID)的优势,识别方便、灵活、抗污染、适合批量作业。

13、可将农业生产过程中的生产信息,包括产地环境、生产流程、病虫害防治、质量检测等信息进行记录。

智能农业机械解决方案 第2篇

佳多农林ATCSP物联网智能大棚利用先进的生物模拟技术,通过先进的网络设计,将复杂的系统模型转变成方便用户操作的电脑页面版本、手机页面版本,实现全天候实时操控;无线远程检测系统、环境检测系统、智能控制系统。结合当前棚内环境数据信息及历史大数据,系统分析对比运算,智能化对棚内滴灌、风机、遮阳网、卷帘等设施实施监控,模拟最适合棚内植物生长的环境,达到完全或部分摆脱对自然环境的依赖,实现农作物高效生产。

大棚作物的无线远程检测系统的应用。可全天候实时、定时采集棚内作物生长发育状态、病虫害活动的高清图片,棚内作物的大小也 清晰可见。其单路摄像,可进行焦距调节监控,达到近距离可以观测到植物叶面、茎干蚜虫等害虫。一般距离可以看到病虫害的发生状况、植物叶面等生长情况。远距离可观察作物整体长势状况。通过无线网络传输,千百里外也可以通过手机电脑实时监控,被称为测报人员的“听诊器”“千里眼”。

环境监测系统是智能大棚种植管理中的一项非常重要的功能。棚内空气温湿度、土壤温湿度、CO2、光照度等因素,对棚内农作物生长起着关键性作用。通过环境监测系统,可以帮助用户通过电脑、手机客户端监测整个棚内农作物生长情况,全天候无线网络传输,自动上传作物生长信息,可以及时快速的获取棚内环境变化。从而方便用户及时进行调控,保证适宜植物生长的环境。

拥有智能控制系统的农业大棚则是农业现代化的重要标志。智能控制系统;通过棚内感知层对作物生长环境中的信息参数进行无线传输上传,智能比对参数设置值,系统分析对比运算,自动进入模型控制卷帘、风机、生物补光等环境控制设备,智能化控制设施农业各项设备启闭,调控大棚内环境达到适宜植物生长的范围。“如果温度低了,自控系统将开启空调,自动给其加温;如果温度高了,自控系统将开启风机,通过通风自动给其降温;不需要阳光时,自动打开遮阳网。病虫害做为影响农作物生长的重要因素,在设施内可以通过杀菌灯和频振诱控技术进行智能无害化防治。

二氧化碳含量作为直接影响作物光合作用的重要环境因子。系统可智能化调整,预设二氧化碳浓度、阈值范围参数。将二氧化碳浓度,实时采集值与当前浓度阈值进行对比,如果小于所设二氧化碳浓度阈值,系统则自动打开二氧化碳气罐进行精准补给;如果大于所设二氧化碳浓度阈值,则自动打开风机进行适量排放。

佳多智能大棚系统中墒情监测、智能滴灌对不同作物的种类,生长阶段、生长环境、气候土壤条件实施智能化精细灌溉施肥。将微生物肥料、有机肥料与灌溉水一起均匀准确地输送到作物根部土壤。大幅度地提高了肥料的利用率,可减少50%的肥料用量,水量也只有传统浇灌的30%-40%。

智能农业机械解决方案 第3篇

“精确农业”信息技术的研究应用, 并不是一种新的技术应用理论问题的探索, 而是将信息高新技术领域逐步形成并将应用的成果向农业领域应用的技术转移。它需要以现代农业科学技术为基础, 通过多学科领域科技成果的组合与集成, 以实现农业大面积高产、高效、低成本生产和优化资源环境综合效益的目标。

2 精确农业的应用

支持精确农业示范应用的基本技术手段已经进入农业领域, 并逐步趋于成熟, 在示范应用中已经有了良好的发展前景, 成为我国农学, 农业工程高新技术应用研究富有吸引力的领域之一。愈来愈多的电子信息高新技术集成技术开发和试验研究成果运用到精确农业应用领域、资源环境、农业利润及农产品市场竞争问题的激烈, 精确农业技术的研究与实践, 将是目前农业高新技术应用前瞻技术, 并将引发本世纪电子信息高新技术集成应用于农业系统, 实践农业可持续发展的科技命。

2.1 GPS田间绘制杂草分布图的手携式数据采集系统

目前的农田化学除草实践是估计一下整块田区的平均杂草密度而决策是否需要喷施除草剂, 选用何种药剂和确定药剂喷量。发达国家的农民正在面临着不断增长的农药成本, 环境负效应开支和法律制约的压力而力求减少农药的投入。精确施药的目标是根据杂草密度、种类或病虫害的不均衡空间分布来调控除草剂或植保农药的投入方式和剂量。带GPS的手携式数据采集器, 可与办公室pc田间信息自动绘图系统组合起来, 将成为未来农民巡田观察获取田地闻作物、土壤、虫害等空间信息的有力辅助工具。含背负式6通道GPS接收器锁定在8个GPS卫星上, 软件可能性控制选择其中5个卫星提供的定位信息, 计算出定位数据。差分定位误差校正信号由基站发出, 通过R8232无线调制解调器运行于458MHz, 500mw的带天线接收机上, 背负装置总重量为5kg, 基站信号服务范围3km。GPS信号通过电缆与便携式PC连接, 便携PC带1MB RAM, 1个PCMCIA RAM CA夏日。软件由菜单驱动, 单功能键操作, 可将田间观测者的地理位置和田间观测数据, 通过便携PC和天线发往办公室PC。用软件绘出田间杂草分布图, 作为施药的依据。田间观察者还可通过便携PC调阅田间区的历史数据作为参考。

2.2 深松作业远程监管系统

随着深松整地作业的不断开展, 验收工作一直是较大的难题, 传统验收以抽检为主, 工作人员手持GPS测亩仪绕作业地块行走一圈, 来测出深松作业面积, 再借助铁棍、卷尺等工具进行深度抽查工作。这种验收方法存在工作量大, 检测效率低, 检查覆盖面少, 容易发生记录错误等问题;还存在农户用非深松机具进行作业、工作人员也无法辨别等情况, 作业质量管理非常难于执行。

2.2.1 深松作业远程监管系统设计与应用项目主要是与各类深松整地机配合使用, 远程监管深松作业质量。

该系统包括主控制器、监管机具、GPS传感器、深度传感器、九轴姿态传感器、速度传感器、配套监管机具、视频监控器及网络服务平台等设备模块。各个传感器统一安装在监管机具上, 监管机具安装在深松机具上, 主控制器通过一根专用数据线与各个传感器相连, 安装过程简单, 其他人员无法对其进行更改, 出现安装、使用异常情况主控制器会报警提示。人机界面采用触屏设置方式, 安装在驾驶室内, 机手可以通过主控制器查看作业深度、速度及实时作业影像等相关信息, 当未按规范进行作业时会提供报警提醒, 机手及时做出调整来保证机手一次性作业达标。

2.2.2 在无网络的状态下, 当地管理者可通过主控制器设置挂载机具的相关参数及调取完成作业达标情况。

主控制器会自动将实时监测数据上传到网络服务平台, 在网络服务平台上可以调取作业的位置、深度、速度、面积、图片等相关信息, 进行统计、分析并输出报表。还可以根据远程管理者的需要实时在线抓拍作业图像, 并与本地管理者或机手进行语音交流。该系统具有深松深度监测精度高 (误差8mm以内) 、可准确计算作业面积、安装和操作简便、监管机具不易更改、支持机手语音提醒、视频监控、支持本地与远程信息互通等特点, 实际有效的达到深松作业监测与管理的目的。该套系统曾在辽宁的朝阳、阜新等地做了多次实验推广, 深受农机合作社和农机操作人员的一致好评。

3 启示与建议

近十年来, 科学和技术发展的一个鲜明特征是日益求助于多学科融合的知识来解决问题。科学和技术愈益接近, 我国农业现代化的实现需要集成现代农业生物学科、农业工程学科和现代经济管理科学的综合支持, 加快用现代工程技术装备农业, 一是靠政策、二是靠投入。

1) 精确农业与农业机械化智能技术体系的研究, 需要政府相关部门和农业科技决策部门的重视和支持。

为缩小与国外先进农业机械化智能技术差距, 达到跨越发展, 建议有关领导都门组织认真研究, 支持国内学者参与有关国际学术交流, 推动国际合作, 尽怏提出一个适于我国的发展研究的建议和思路。

2) 加大对地理信息系统 (GIS) 在我国农业资源管理与生产管理系统的应用技术开发研究;研究和对接国内外GPS精确农业技术发展与在我国农业机械化智能技术体系发展应用研究的可行性及技术政策建议。

3) 促进农业机械化智能技术体系专家与信息科技专家的协作, 使有关农业生产模块、模型, 农业专家系统, 多媒体农业知识系统的现有研究成果组装集成;尽快为我国农业科技普及推广提供一种有效的信息科技支持手段。

4) 支持和加大“精确农业”技术体系的农业生物环境信息采集装置与处理系统开发研究。

参考文献

智能机械人 第4篇

机械人瓦力的兄弟?!

第一眼看见HDR-TD10E的时候,就令我联想到几年前的一部动画《机器人瓦力》的主角瓦力。HDR-TD10E最吸引人的地方就是它的双镜头设计,这令人感觉到它必定不是一个普通摄像机。的确,这家伙一点也不简单,它的功能和设计实是令人惊叹。

HDR-TD10E的机身是主要是黑色和银色的金属表面,外观时尚大方。在显示屏的内侧藏着按钮和插卡槽,用户能随意地转换2D和3D的模式,在2D的模式下,用户才可选择拍照或拍片。可惜的是若要在拍摄3D影片时要转成拍照模式不太方便,而且拍照和拍摄的按钮在两个完全不同的位置,令人一时难以转换过来。另外,HDR-TD10E比一般的摄像机较大,而且比较重,若然要经常带它到户外拍摄,也真不是一件轻松的事啊。

充满魅力的眼睛

HDR-TD10E实际上是将两部全高清的摄像机合二为一,摄像机配备整合式双镜头系统,包括两支Sony G镜、两枚1/4英寸的710万像Exmor R CMOS感光组件,以至两个BIONZ图像处理器。其中每一组单独系统都能拍摄出1920×1080/50P的高清2D影像,拍摄时只需要将模式选择键拨至“3D”,两组系统就会同时运作,并自动将影像合成处理,再输出MVC格式全高清3D立体影像。

若在拍摄影片的同时,需要配戴3D眼镜来重看影片的话,这样多不方便啊。HDR-TD10E配备一个122.9万像素的3.5英寸3D轻触式Xtra Fine LCD,用家无需配戴3D眼镜,即可“裸眼”观看所拍摄的3D画面,做到真正三维效果。不论是在2D或3D模式下,画面的质素都是相当高。

轻触式的设计非常方便,操作接口亦相当简单,即使没有经验亦能轻易上手。如果想播放影片的话,可以选择两种播放的模式,一种是普通播放,另一种则是精彩场面播放。精彩场面播放是会自动配合音乐和剪接,令到不同的片段能够串联起来,这样就能营造出另一种不同的感觉,又能省下麻烦的剪接程序。

小巧的遥控器

HDR-TD10镜头提供了10倍光学变焦,及内置光学防震系统、iAUTO拍摄模式等,使用户在随时随地亦能轻易地拍出高质素的影像。此外,HDR-TDlO更照顾到2D电视用户的需要,只要接上2D电视播放影像,更会自动切换至平面全高清影像输出。另外,HDR-TDlO的机身上有几个的推盖,内藏不同的接口,能有效防尘。除此之外,HDR—TDlO更配备遥控器,通过遥控器上的按键操作,使用户在接上电视播放时,亦能轻松地操作。试想想一边喝着咖啡,一边躺在沙发椅上重看着精彩的立体影片,真是人生一大乐事。

总结

智能农业机械解决方案 第5篇

2.1智能化动力机械

农业动力机械的智能化包括农用拖拉机、大型自走式农机(联合收获机械、植保机械)在行走、操控、人机工程等方面的智能化。利用GPS自动导航、图像识别技术、计算机总线通信技术等汽车航天技术来提高机器的操控性、机动性和人员作业舒适性。在上述机械驾驶室中,都有一台或数台计算机,具有统一标准设计的接口,用于与不同类型的农机具配套使用。与传统农机驾驶室中采用仪表盘显示作业参数不同的是,智能化农业动力机械安装有信息显示终端的人机交互界面,通过屏幕菜单操作者可任意选择显示机组中不同部分的终端信息,调用数据库信息,显示数据、图形、语音等多媒体信息。如美国研制成功一种激光拖拉机,利用激光导航装置,不仅能够精确地测定拖拉机所在位置及行驶方向,而且误差不超过25cm;英国开发的带有电子监测系统(EMS)的拖拉机具有故障诊断和工作状态液晶显示功能,通过EMS可严密地控制作业机具的耕作及播种的宽度、深度等。是德国的一款智能化甜菜收获机及其驾驶室内景。近年来,国内的福田、一拖等一些农机企业已意识到了农机“智能化”研发的重要性,开始着手研发智能化动力机械,并取得一定成效。据《中国农业机械化发展报告》显示,在国产东方红X ̄804拖拉机上已经设计开发出载波相位差分全球定位系统(DGPS)自动导航控制系统,该系统使得拖拉机的自动化和智能化水平大大提高,成功实现拖拉机的无人驾驶。

2.2智能化作业机械

智能化(有时亦称变量)作业机械主要包括播种机、施肥机、整地机械、田间管理机等作业机具,其智能化应用如激光平地、变量施肥与喷药,以及机具作业状态的监控、故障报警等。

(1)智能化收获机械。联合收割机装备有各种传感器和GPS定位系统,既可收获各种粮食作物,又可实时测出作物的含水量、小区产量等技术参数,形成作物产量图,为处方农作提供技术支撑。如美国卫西弗格森公司在联合收割机上安装了一种产量计量器,能在收割作物的同时,准确收集有关产量的信息,并绘成小区的产量分布图,农场主可利用产量分布图确定下一季的种植计划及种子、化肥和农药在不同小区的使用量;日本研制的自动控制半喂入联合收割机,其作业速度自动控制装置可利用发动机的转速检测行进速度、收割状态,通过变速机构,实现作业速度的自动控制,当喂入量过大时,作业速度会自动变慢。智能化粮食收获机械是当今国内智能化农机装备研究的重点和热点,目前已研制开发出实用化的大型智能化粮食收割机。如国机集团所属的中国农机院研制出智能型10kg/s通用性多功能谷物联合收割机,创造了中国收割机最大喂入量记录,并凭借自动化、智能化控制等先进技术,打破了国外技术垄断和市场垄断,可用于水稻、小麦、大豆等粮食作物收获;福田雷沃创新研发的基于GPS定位系统的精准农业远程信息化服务系统,能够对收割机故障进行远程实时诊断,并能指导维修作业。

(2)智能化喷药机械。智能化喷药机械能提高农药利用率,减少对土壤、水体、农作物的污染,保护生态环境。如作为智能农机领域中的引领者,美国约翰迪尔公司生产的自走式精确喷雾机具有灵活高效、作业精准等诸多优势;德国推出的一种莠草识别喷雾器,在田间作业时能借助专门的电子传感器来区分庄稼和杂草,只有当发现莠草时才喷出除莠剂,除莠剂使用量只有常规机械的10%甚至更低,减少了对环境的污染;俄罗斯研制的果园对靶喷雾机采用超声波测定树冠位置,实现对果树树冠的喷雾,大幅度减少或基本消除了农药喷到非靶标植物上的可能性,节省农药达50%,生产效率提高20%。国内对自动对靶喷雾等变量喷药技术进行了较深入的研究,结合生产实际开发了相应的机具。如将红外探测技术、自动控制技术应用于喷雾机上,研制出果园自动对靶喷雾机,较好地解决了现行果园病虫害防治存在的农药利用率低、污染环境等问题。作为智能农机领域中的领导者,约翰迪尔4630自走式喷雾机在中国实现本土化生产,目前已广泛地应用于国内玉米、棉花、高粱和甘蔗等高秆作物的大面积、高效率和精准植保作业。

(3)智能化施肥机械。施肥机可以在施肥过程中,根据作物种类、土壤肥力、墒情等参数控制施肥量,提高肥料利用率。如美国Ag ̄Chem仪器装配公司生产的施肥系统可进行干式或液态肥料的撒施,该系统通过电子地图内叠存的数据库处方,可同时分别对磷肥、钾肥和石灰的施用量进行调整;日本久保田株式会社推出的农业服务支援系统“久保田智能农业系统(KSAS)”,该系统的正式套餐中,联合收割机搭载了与KSAS对应的传感器,插秧机附带电动调节施肥量的功能,对应农机连动制作产量分析及施肥计划。国内山东省农机科研院、福田雷沃国际重工股份有限公司等单位研制出“2BYFZ ̄4型智能玉米精密播种施肥机”,该机采用自主研发的种、肥专用传感器分别设计了种子检测与自动补种系统、化肥检测与自动疏通系统,以及基于CAN总线的专用控制器与触控软件系统等三个主要系统,其中前者能完成已播数、重播数、漏播数的计量和缺种、堵塞故障报警及自动补种,而后者能实现株距与施肥量的电动无级调节。

(4)智能化灌溉机械。灌溉机械的智能化不仅可大量节约用水,而且还能省工、省时。如美国瓦尔蒙特工业股份有限公司和ARS公司开发的`智能红外湿度计,被安装在农田灌溉系统后,可每6s读取一次植物叶面湿度,当植物需水时,灌溉系统会及时通过计算机发出灌溉指令向农田中灌水;美国、以色列等国在大型平移式喷灌机械上加装GPS定位系统,结合存放在地理信息系统中的信息和数据,通过处方实现农作物的人工变量灌溉。此外,目前发达国家已实现喷水和施肥、喷药同步进行的一体化作业。国内将计算机与分布于农田内的各种传感器,如土壤水吸力、管道压力、流量、空气温度、空气湿度、雨量、太阳辐射、气压等传感器进行相连,实现数据采集自动化,同时对采集到的各种数据信息进行计算、分析,其结果不仅可作为确定精确的灌溉时间和最佳灌溉水量的依据,而且还可根据决策结果对灌溉设备进行自动控制与监测。

(5)智能化播种机械。智能化播种机械能根据播种期田块的土壤墒情、生产能力等条件的变化,精确调控播种机械的播种量、开沟深度、施肥量等作业参数。如美国依阿华州生产的“ACCU ̄PLANT”的播种机控制系统可附加在各类播种机上,通过该系统调控播种机上的播种量计量装置,实现不同地块的播种量调整。另外,部分条播机还加装了同时撒施肥料、杀虫剂和除草剂的撒施装置,将这些装置的驱动机构与播种机计量装置连结在一起,能实现撒施量与播种量大小的同步调整与变化。国内研制了基于全球定位技术(GPS)的智能变量播种、施肥、旋耕复合机,并在一些农场投入使用。此类机械具有复式作业功能,可一次性完成耕整、播种、施肥等多种功能,适用于小麦、大豆、油菜等多种作物,并且操作简便,通过电脑触摸屏调控机具作业参数。

(6)智能化设施农业装备。目前欧美、日本等发达国家已形成温室成套装备,其温室结构、环境控制设施设备,以及室内作业机械装备的制造技术都非常成熟,并向高度自动化、智能化方向发展,并已建立不受或很少受自然影响的全新农业生产技术体系。如荷兰的温室能够常年稳定地生产蔬菜和花卉,黄瓜、番茄等作物的产量可以达到40~50kg/m2;设施农业中的植物工厂(plantfactory)则完全摆脱了自然环境对植物生长的影响,其产量可达到常规栽培的几十甚至上百倍,图3为植物工厂的内部情况。国内许多机构利用计算机技术、传感器技术、通讯技术研制出温室环境监测和自动控制系统,不仅可自动监测温室内的气候和土壤参数,而且还能自动控制温室内配置的所有设备的优化运行,如开窗、加温、降温、加湿、补光照、CO2补气、灌溉施肥、环流通气等;与此同时利用物联网、互联网、大数据和云计算等先进技术,研制远程监控系统,并能通过手机或计算机实现温室可视化远程监控。图4是基于物联网的控制大棚。

(7)农业机器人。在先进发达国家,农业机器人在农业生产的许多领域得到发展和应用。如美国明尼苏达州一家农业机械公司研究推出的施肥机器人(如图5所示),会从不同土壤的实际情况出发,适量施肥;法国发明了专门服务于葡萄园的机器人,它几乎能代替种植园工人的所有工作,包括修剪藤蔓、剪除嫩芽、监控土壤和藤蔓的健康状况等;美国波士顿研制出育苗机器人,工作人员只要在触摸屏上设定地点参数,机器人就能感应盆栽,并自动把它们移动到目的地;英国、日本研发了挤奶机器人,不仅能完成挤奶工作,还可在挤奶过程中检测奶质;澳大利亚发明了一种像牧羊犬的机器人(如图6所示),能在农场代替传统的放牧劳力。国内农业机器人起步晚、底子薄、投资规模小、发展速度缓慢,目前仍处于理论研究时期,距离实际应用还有许多难题需要解决,与发达国家相比,在可靠性、精度和效率等方面差距很大。尽管如此,国内农业机器人的研究目前也已取得了一定的成果,如中国农大研制出蔬菜嫁接机器人,南京农业大学、上海交通大学、西北农林科技大学、陕西科技大学等高校已成功研制出采摘草莓、黄瓜、茄子、番茄等水果蔬菜的农业机器人和用于除草的农业机器人;但总体上处于研究试验阶段,进入实用化的农业机器人则很少。

2.3智能化农机管理

农业机械性能发挥程度和使用率高低受许多条件限制,既受农机具的保有量、配置和状态的制约,又受作物生长情况、气候变化等因素影响。只有在一个农场或区域形成一个高效的农业生产管理网络,并实现农机具的智能化管理,才能充分发挥各种农业机械的效率与作用。农机具管理智能化包括机具配置、机具状态监控、实时调度和维修保养的智能化。如欧洲一些大农场已建立和使用农场办公室计算机与移动作业机械间通过无线通信进行数据交换的管理信息系统,通过该系统不仅能够制定详细的农事操作方案和机械作业计划,而且驾驶员还能根据作业机械显示的相关数据,调整机械作业的负荷与速度,确保机组能在较佳的工况下运行,与此同时利用作业过程采集的数据,通过系统运算和处理,能够实现如作业面积、耗油率、产量的计算、统计及友好的人机界面显示等智能化功能;日本洋马株式会社的农机“智能助手”,通过搭载在农业机械上的GPS天线和通信终端,农机能够自动发送位置、运转及保养方面的信息,并每天自动生成作业报告,还可实现监视防盗、运转状况管理、保养服务、突发问题自动通知与迅速应对等方面的功能,该“智能助手”不仅能自动支持农业机械作业,还可与第三方公司提供的农业云应用程序“facefarm生产履历”配合使用,进一步提高效率,目前“智能助手”已在日本全国推广应用。国内一些省份农机管理部门、高校与有关公司合作,利用“互联网+”实现了农机智能化管理。如宁波市农机总站与宁波移动合作建设“智慧农机”信息服务平台,该平台整合了无线通信、农机定位、地理信息、计算机控制等先进技术,能实现农机定位、农机调度、农机作业面积统计计算等功能,通过几年试点工作,现已取得较好成效;中国移动湖北公司为湖北省农机局研发了“农机宝”手机APP智能应用系统,为全省农机手免费提供农机作业电召信息、农机维修及加油站点位置服务等九大类手机智能应用服务;浙江大学正呈科技有限公司与江苏北斗卫星应用产业研究院联合开发的“北斗农机作业精细化管理平台”能为农机作业提供定位监控、指挥调度、面积统计、信息管理等智能化精细化管理服务,经浙江省一些县市农机管理部门使用,反映效果好,目前已进入加快示范推广阶段。

3我国智能化农机未来发展建议

加强以信息化技术为先导的智能化、自动化农机技术与装备的研发制造,既是转变农业生产方式的现实要求,也是农业现代化发展的客观需要;因而国家非常重视智能化农业机械装备技术发展,“十二五”期间,国家不仅在《高端装备制造业十二五发展规划》《农机工业十二五发展规划》要求重点发展农机自动化、信息化和智能化技术,以提高农机装备的控制水平和智能水平,而且启动了当今农业装备领域财政投入最大的国家863计划项目“智能化农机技术与装备”重大项目。另外,还将农业机械列为智能制造试点的十大领域之一。根据目前国内智能化农业机械的研发、制造和应用现状,应采取如下几方面措施加快智能化农业机械领域发展,以适应现代农业发展对先进适用农业机械的需要。

(1)积极营造发展智能化农业机械的良好氛围。目前国内对农机“智能化”理解偏差较大,尤其是许多农机企业过于关注眼前利益,因而对发展智能化农机并不完全认同。为此,需要强化宣传,营造良好氛围,提高对发展智能化农机重要性的认知,使社会各界尤其是农机企业认识到中国农机走“智能化”发展道路,既是我国从“农机大国”走向“农机强国”的必然选择,也是由我国未来现代农业生产和新时代人群的需求所决定的。

(2)加强现有智能化农业装备成果转化和示范推广。“十二五”实施的国家863计划项目“智能化农机技术与装备”重大项目,目前已在秧苗高速栽插与精密播种技术研究、瓜菜田间生产智能化关键技术与装备研究、茶园智能化关键技术与装备开发等方面取得了许多研究成果。为使上述智能化农机技术与装备对农业现代化的发展确实起到支撑作用,应加快建立若干以智能化技术为引领的智能农机装备产业化示范基地,推进成果的转化与应用。

(3)进一步加大对智能化农机装备领域的支持力度。我国地域辽阔,地理环境、农作物种类和种植制度的多样性决定了对农业机械装备需求的多样性。虽然“十二五”期间在智能化农机技术与装备领域已取得了许多成果,但与国内农业生产和农业现代化发展对农业机械装备的需求仍存在巨大差距;为此需要国家进一步加大扶持力度,按照《中国制造2025》重点领域技术路线图中有关农业装备的发展要求,加快农业生产中急需而短缺的智能化农机装备研发,同时加大智能化农机装备补贴与推广力度,促进智能化农机装备研发与应用。

农业大棚智能检测环境系统 第6篇

农业大棚智能检测环境系统

作者:王峰萍 王佳

来源:《现代电子技术》2012年第14期

摘 要:介绍了以 STC89C52单片机为核心的光照和温度控制系统的工作原理和设计方法。系统由TSL2561光传感器和 DS18B20温度传感器采集数据传输给控制器,通过外围设备 LCM12864显示现场光照度和温度值,并设计上位机程序,通过串口通信实时获取光照度和温度,所采集的数据放入到Access数据库当中,然后从数据库读出光照度和温度的值,通过曲线显示到PC机上,进行实时曲线监控。同时,系统具有温度和光强报警功能。

人工智能农业转型和发展 第7篇

引言

我国是农业大国,农业是我国经济基础产业。为了满足大众衣食住行,国家提出了建设新农村的宏伟战略[1]。随着我国科技发展速度的不断加快,众多先进科学技术被应用到农业生产中,极大推动了我国农业生产转型和发展。当前,我国农业生产形式已由粗放型向集约型转变,农业生产结构不断调整升级。尽管我国农业生产水平不断提升,但在生产过程中仍存在一些问题有待解决,包括农业产业化发展速度慢、农业生产成本较高、农产品质量安全缺乏保障等,这些问题影响了我国农业生产快速发展,不利于农民经济收入增加和生活水平提升。随着农业现代化程度的不断提高,在农业生产过程中产生了大量数据,数据涵盖面广、数据源复杂,一般为非结构化数据[2]。人工智能技术的出现及在农业领域的推广应用解决了农业生产发展中的许多问题。人工智能在农业领域的应用方式多样,包括可以进行作物耕种、采摘等工作的智能机器人,以及可以对土壤进行探测分析、对病虫害进行监测、对气候灾害进行预警的智能识别系统等。人工智能在农业领域的应用有利于减少农业生产资源浪费、提高农产品产出率、提升生产效率、减少污染等,因此对农业可持续发展起到非常重要的作用。

1人工智能在农业领域的应用意义

人工智能在农业领域的应用具有非常重要的意义。在农业领域引用人工智能技术的想法在20世纪初已被提出[3]。人工智能AI(AritificialIntelligence)指基于计算机技术模拟或实现的智能[4]。随着人工智能在多个领域的推广应用,该技术已逐渐走向成熟,农业生产也将更加智能化[5]。当前,人工智能在农业领域的应用贯穿于农业生产整个过程,为农业生产在产前、产中、产后各环节的工作提供帮助,逐步实现农业生产自动化、智能化管理,并且有效提升了农业生产质量和效率[6],其典型表现是人工智能极大改变了农业生产方式,促进了农业生产水平快速提升。农业生产需投入高强度的劳动,但随着农村人口的不断减少,以及我国人口老龄化程度不断加深,农业生产中可用壮劳力数量不断减少,严重影响了我国农业生产可持续发展。人工智能技术的出现,使得作物耕种、畜禽喂养、农作物采集收割等许多劳动强度较高的农业生产活动能够借助各种农业机械、农业机器人等自动化、智能化设备代替农民工作,从而大幅降低农业生产人员的劳动强度、人工成本,在一定程度上提升了农业生产经济效益。另外,在农产品加工、农产品质量检测等工作中,应用人工智能技术可有效提升相关工作效率与工作质量,使我国农业生产能够为社会大众提供更加优质、安全的农产品,这也是人工智能在农业领域的应用意义所在。

2人工智能在农业领域的应用情况

当前,人工智能应用贯穿于农业生产的整个过程,因此本文将其划分为产前、产中、产后3个阶段进行具体介绍。

2.1产前阶段

2.1.1灌溉控制人工智能在农业生产过程中可以对生产环境实时监测,并且依据作物生长需要进行调控,如作物智能灌溉,具体指通过对作物需水量的分析可以将灌溉用水量控制在最佳情况,既能满足农作物在某一时期的生长需要,又能有效降低灌溉水量,在节约水资源的同时保证农作物的高产高收。该技术主要依靠智能灌溉控制系统通过人工神经网络等人工智能技术,使系统具备强大的学习能力[7]。智能灌溉控制系统除了能够对农作物灌溉用水情况进行分析和控制外,还可以利用大数据技术对所在地区的水文气象指数、气候数据等进行分析处理,从而制定出最佳灌溉计划。另外,将智能灌溉系统与传感器、灌溉设备等连接后,可以对土壤含水量进行实时监测,并据此计算出灌溉需水量,选择最合适的灌溉模式进行作物灌溉。

2.1.2土壤成分检测与分析在农业生产过程中,土壤情况是影响农作物产量的一个重要因素,因此在农业生产前期以及农作物种植、培育生长过程中需要对土壤成分进行检测分析,并根据分析结果确定适宜种植的农作物品种,之后在农作物生长过程中根据土壤成分检测结果进行施肥,将土壤结构始终控制在最适宜作物生长的状态,从而达到提升农作物产量的目的。LI等[8]基于ASP.NET平台,成功开发出一套甜橙施肥专家系统,该系统可以依据地理位置和气候条件对年幼的和成熟的甜橙拟定年度施肥计划。研究表明,在国外农业生产过程中,将近80%的作物增收率通过土壤结构控制实现,但在我国该概率尚不足50%,由此可见,我国在土壤成分检测分析和控制方面的工作还有待进一步增强。人工智能的应用可以实现简便快速的土壤成分检测与分析,具体作法是应用探地雷达获得土壤检测图像,之后将其转换为相应数字信号,利用人工智能技术对其进行处理和分析,从而分析出表层载土含量,同时利用专业检测设备可以检测出土壤具体成分,并且结合软件进行成分分析。通过对土壤相关数据的分析处理,人工智能可以制定出最合理的施肥方案,使作物在生长过程中始终处于最佳土壤环境,从而有效保证作物产量和质量。

2.1.3种子质量鉴定在农业生产过程中,农作物种子的.质量直接关系到最终产量、质量,因此种子质量鉴定是农作物生产过程中非常重要的一个环节。人工智能技术可以有效提升种子质量鉴定速度,并且进一步保证鉴定效果。其中,最关键技术为图像探测分析技术,该技术可以利用机器视觉对种子质量进行鉴定,整个鉴定过程不会对种子造成任何损害,因此不会对其质量造成影响,同时鉴定速度更快、准确率更高。另外,还可以应用人工智能对种植环境、种植需求等进行分析,帮助种植者选择最合适的种子类型,这也是提升农业生产收益的一种重要方式[9]。

2.2产中阶段

2.2.1专家系统专家系统是一种常见的人工智能系统,在农业及其它领域有非常广泛的应用。它可代替农业专家走向地头、走进农家,在全国各地具体指导农民科学种植农作物,这是科技普及的一项重大突破[10]。专家系统指利用人工智能技术使相应系统具备某个领域专家的经验、知识,并且可以利用这些经验、知识为使用者解决问题。在农业生产过程中,农业专家系统起着非常重要的作用,不仅在种植业应用广泛,在养殖业、渔业等行业也应用普遍。专家系统由知识库、推理机以及大数据处理引擎等核心部分构成。1978年,美国伊利诺斯大学开发的大豆病虫害诊断专家系统(CPLANT/ds)是世界上应用最早的专家系统[11]。随着大数据技术的快速发展,大数据在农业领域的应用也逐渐增多,专家系统将大数据技术、人工智能技术结合起来,通过大数据处理引擎对各种农业大数据进行分析、处理,并且利用推理机挖掘出最有价值的信息,再结合专家知识库中的专家经验、专业知识等,为农业生产各项决策提供帮助,实现农户对农业生产监管、生产操作与生产成本的管理与控制,并提供专家咨询辅导功能,为智慧农业的发展提供思路以及解决方案[12]。工作人员还可以将农业生产过程中收集到的土壤环境、作物生长状况等数据,利用专家系统进行分析,从而推测出农作物未来生长过程中可能出现的问题,并利用专家系统寻找到合适的解决方法。

2.2.2设施农业生产智能控制设施农业是近年来发展迅速的具有较高集约化程度的新型农业产业,是现代农业的重要组成部分[13],指在相对封闭的环境下,对农作物、畜禽等生长环境进行控制,使其能够顺利生长,如温室种植就是一种常见的设施农业类型。随着现代生活水平的不断提高,设施农业发展速度不断加快,人工智能在设施农业中的应用进一步促进了设施农业的快速发展。将人工智能应用到设施农业当中的典型示范是温室智能控制系统,该系统结合物联网技术,对温室温度、湿度、水分、土壤等环境因素进行自动监测,并且将监测所得数据进行分析、处理之后再利用人工智能技术进行调控,结合相应数据分析结果实现对温度控制设备、灌溉设备等环境控制设备的自动操控,从而创造出最适合农作物生长的温室环境,在降低温室环境控制成本的同时,还能有效提升作物产量、质量与温室生产效益。

2.2.3病虫害识别农作物生长过程中经常会遇到一些病虫害,影响农作物正常生长,如果病虫害情况严重,甚至会严重降低农作物品质和产量,从而降低农业生产经济效益,因此应当对其进行识别、预防和控制。利用人工智能可以实现对病虫害的识别、分析,具体作法是利用机器视觉技术、人工智能学习方法实现,通过对具体病虫害情况的分析,制定出合适的预防控制策略[14]。为准确进行病虫害的识别,需要建立专业的病虫害特征知识库,即采集常见农作物病虫害图像,并进行专业化处理,分割出病斑区域,之后采用专门的特征提取方法提取病斑颜色、纹理、形状等参数,并且依据不同病虫害参数差别对其进行分类,之后再建立分类数据库,这样才能在实际操作过程中准确识别病虫害的种类。农作物病虫害识别主要通过计算机视觉图像技术实现,利用该技术还可以准确区分出杂草和农作物,从而有利于物理除草工作的开展,物理除草可以有效减少除草剂的使用,从而提升农产品质量,为社会大众生产出更多绿色无公害的农产品。

2.2.4农作物采收农作物采收是农业生产当中的一个重要环节,其劳动强度较大,人工智能技术的应用可以实现农作物智能化采收,在提升采收效率和采收质量的同时,有效减少工作人员劳动强度。当前,农作物智能化采收大多通过具备机器视觉、感知、操作等多项功能的采收机器人实现。Wolfgang&Heinemann等[15]研发出了具有两层结构的自动机器人用于白芦笋采收。Pettersson等[16]设计了一种搬运不同形状食品的磁机器人手爪,可用于搬运苹果、胡萝卜、草莓、西兰花和葡萄,并且不会在表面留下手爪造成的淤痕和凹陷。在采收过程中,采收机器人利用机器视觉识别技术对需要采收的农产品果实进行定位,并且能够判断果实成熟度,确定果实处于成熟可采摘状态后,再利用相应采收工具进行采收,采收过程中还能够根据果实情况控制采收时的力度,从而保证农作物果实不会在采收过程中被破坏,因此智能采收对于果实比较柔软的农作物也能做到无损采收,比如图1中的西红柿采摘机器人。虽然,采收机器人采收速度并不快,但是可以24h不间断进行采收工作,综合而言采收机器人仍比人工采收的优势大,而且一些具备学习能力的采收机器人在持续采收练习过程中还能逐渐提升采收速度。

2.3产后阶段

2.3.1农产品检验在农产品生产完成之后,需要进行品质检验,之后才能进行农产品销售工作。农产品检验工作通常在农产品加工完成但尚未入库之前进行,根据检验结果可以依据品质差别进行农产品分类、包装,而智能化的农产品检验方式可以有效提升检验效率,让农产品尽快进入仓储、销售阶段。智能化农产品检验工作是由具备机器视觉功能的机械手臂完成,通过机器视觉功能对农产品进行扫描观察,并且通过图像处理、参数对比等方式判定农产品品质,再依此进行分类、包装[17]。随着图像处理、光学等技术水平的不断提升,农产品检验效率、质量不断改善,人工智能技术在农产品检验中的应用也将更加深入。

2.3.2农产品电商运营农产品销售是获得相应收益的一个重要环节,在电子商务快速发展的今天,农产品销售除了传统线下销售模式外,线上销售也是一个非常重要的渠道。农产品线上销售依赖农产品电商运营,它极大拓宽了农产品销售渠道,在提升产品销售量的同时,也给农产品零售业发展带来了新的发展机遇。农产品电商运营的一大优势是可以利用电商的物流快递渠道进行产品流通,其运输成本相较线下销售更低。在农产品电商运营的过程中,通过人工智能技术的应用可以帮助农产品企业制定灵活、合适的生产、销售策略,准确把握农产品市场行情,避免由于价格变动过大导致企业亏损发生。另外,在农产品电商运营过程中,可以利用人工智能技术、大数据技术对电商客户的消费行为、习惯等进行分析,从中挖掘出目标客户,之后进行针对性农产品信息推送,提升交易成功率,从而增加农产品电商运营收益。除此之外,利用人工智能技术可以辅助农产品电商运营企业实现客户咨询智能化,实现24小时在线咨询服务,让客户可以随时随地了解相应农产品信息,根据所需购买产品,提升交易成功率。

2.3.3农产品智慧物流农产品物流配送是农产品交易中的一个重要环节,完善的农产品物流配送服务可以让消费者快速拿到从线上、线下购买的农产品,而且能够有效降低农产品物流配送成本。农产品物流配送涉及仓储、运输装备、运输管理等环节,利用人工智能技术的农产品智慧物流利用互联网、物联网等技术,可实现农产品物流配送智能化管理,通过物流配送路径优化缩短配送时间,尽量保证农产品生鲜度,这一点对于一些保存期短、易变质的农产品尤其重要。常见方法为通过建立多目标路径优化数学模型,以农产品生鲜度、用户满意度、配送费作为约束条件进行仿真计算,并根据计算结果给出最佳路径选择方案。另外,还可以利用人工智能技术对农产品运输情况进行监控,并根据监控结果做出相应调整,保证农产品运输工作顺利进行。

3人工智能在农业领域的应用趋势

农业是我国基础产业,同时也是我国国民经济支柱产业,农业发展水平不止影响到国家经济发展情况,还与人民生活紧密相关。在人工智能时代,农业领域的快速发展离不开人工智能技术应用。而随着人工智能技术的快速发展及其在农业生产中的应用范围不断扩大,我国农业生产水平已取得很大提升。随着大数据处理技术的发展,其对遥感图像信息的提取和分类也更加准确,提高了农作物品种分类精度和对气象灾害评估准确性,促进了精准农业的实施[18]。当前,人工智能在农业领域的应用发展趋势主要体现在以下几个方面。首先,农业生产集约化程度不断提升,人工智能技术在农业领域的广泛应用极大提升了农业生产效率,而传统分散型农业生产模式并不适合人工智能技术的应用,因此农业生产集约化程度将不断提升;其次,随着人工智能技术在设施农业中的广泛应用,设施农业生产效率、操作简便度不断提升,设施农业生产规模也在不断扩大,且智慧化程度不断提升[19];再次,人工智能技术的应用使得灌溉用水、施肥等工作均能控制在最佳用量,极大节约了水、肥等用量,促进了资源节约型农业的快速发展。另外,智能化设备的应用可以利用最少的资源实现农业生产增产提质、增值拓展等目标,从而促进资源节约型农业快速发展。

4结语

久保田智能农业系统助力精准农业 第8篇

在全球面临粮食和饮用水不足、环境污染的背景下,未来粮食不足将成为世界性课题,如何实现粮食的增产和废水再生利用成为世界性难题。在这次分享报告会上,日本久保田公司的专家饭田聪讲解了ICT技术在智能农业领域的应用,表示未来的农业可以成为“赚钱的农业”。饭田聪认为,解决粮食供应不足的方案主要为提高效率、增加单位面积产量,具体措施就是开发智能农业技术。饭田聪以日本农业为例说明,日本农户存在着数量不断减少、高龄化日益严重的问题,承包土地面积不断扩大,那么在这种情况下,土地规模扩大后每块田地的管理、雇佣人员短缺将成为新的问题,而且由此引发的每块田地无法有效管理,将导致耕种品质下降,目前久保田开发的KSAS智能农业系统能有效地解决上述问题。

所谓KSAS就是利用农业机械和ICT,针对想要扩大规模的承包种田大户,收集作业以及作物信息,实现赚钱农业的新型农业经营系统,其目标是实现高产量、进行放心安全的农作物生产、强化农业经营基础、提供迅速对应的服务体制。KSAS智能农业系统共由KSAS农机(收集作业和作物信息)、KSAS移动终端(收集使用信息、发送作业指示、提供位置信息等)和KSAS服务器(信息的可视化、经营分析和信息统合)三部分构成。以食味感应器为例,利用蛋白质越高食味感越低的原理,KSAS感应系统可以在作物收割过程中或者刚刚收割完成就知晓产量、蛋白质和水分情况,可以根据得到的收割信息的数据制定施肥计划(如蛋白质多的地块减少肥料),提高生产效率。目前正在开发的KSAS智能农业系统是KSAS烘干系统,此系统研发完成后将实现收割机高效率地收割以及烘干计划地推行,通过收割、烘干情况的相互确认实现作业的效率化;根据水分情况区分烘干,节约烘干成本;根据蛋白质含量区分农作物品质,提高优质农作物售价。

上一篇:描写樱花的诗篇下一篇:秋天反思总结