高中向量教学设计

2024-06-25

高中向量教学设计(精选8篇)

高中向量教学设计 第1篇

2015高中数学 第二章平面向量向量的概念教学设计 新人教B版必

修4 1.向量概念的形成

1.1 让学生感受引入概念的必要性

引子:生:去录播室怎么走?师:出了楼门走50米就到了.

意图:向量概念不是凭空产生的.用这一简单、直观例子中的“位移不仅有大小,而且有方向”,让学生感受“既有大小又有方向的量”的客观存在,自然引出学习内容.

问题1 你能否再举出一些既有方向,又有大小的量? 意图:激活学生的已有相关经验.

(学生能容易地举出重力、浮力、作用力等物理中学过的量.)追问:生活中有没有只有大小,没有方向的量?请你举例. 意图:形成区别不同量的必要性.

(学生所举的例子有年龄、身高、面积等.)概念抽象需要典型丰富的实例.让学生举例可以观察到他们对概念属性的领悟,形成对概念的初步认识,为进一步抽象概括做准备.

T:由同学们的举例可见,现实中有的量只有大小没有方向,有的量既有大小又有方向.类似于从一支笔、一本书、一棵树……中抽象出只有大小的数量1,数学中对位移、力……这些既有大小又有方向的量进行抽象,就形成一种新的量——向量(板书概念). 演练回馈一【概念辨析】

1、身高是一个向量()

2、温度含零上和零下温度,所以温度是向量()

3、坐标平面上的x轴和y轴都是向量()

4、有人说,由于海平面以上的高度(海拔)用正数表示,海平面以下的高度用负数表示,所以海拔也是向量,你认为对吗?

1.2 向量的几何表示

问题2 数学中,定义概念后,通常要用符号表示它.怎样把你所举例子中的向量表示出来呢?

意图:让学生先尝试向量的表示方法,自觉接受用带有箭头的线段(有向线段)来表示向量.

T:看来大家都认为用带箭头的线段表示向量比较好.在初中,常用AB,CD,a,b,c等表示线段.现在,我们加上箭头,用,,等表示向量.以前AB与BA表示同一线段,现在和表示同一向量吗?为什么?

S:不.向量和起点、终点正好相反.

T:对,方向是向量的本质属性之一.向量的另一本质属性是大小,我们用||表示,称为向量的模.同样,用||来表示向量的模.因为向量有大小和方向两个要素,只用代数形式或几何形式是无法确定的,必须两者结合.

思考:既然向量可以用有向线段表示,那么向量是否就是有向线段? 1.3 零向量与单位向量

T:现在,我们已经建立了一个向量的集合.就象每个人都有名字一样,这个集合中的每一个向量都有了名称.那么

问题3 你认为在所有向量组成的集合中,哪些向量较特殊?

意图:引导学生学会观察一组对象.面对一组对象,首先注意特殊对象是自然的.(学生普遍认为零向量、单位向量是特殊的.)T:大家为什么认为它们最特殊?你们是怎么想的?

意图:挖掘结果背后的思维过程.企图引导学生把向量集合与实数集类比.

(课堂中,学生从长度这个角度进行了解释,认为零向量的长度是0,单位向量的长度是1,最为特殊.这表明他们已经在把向量集与实数集作类比.从实数集的认知经验出发,自然会想到零向量、单位向量的特殊性.)

T:是的.类比实数的学习经验有利于向量的学习.在实数中,0是数的正负分界点,有0就可定义相反数;1是“单位”,作用很大.对实数的研究经验告诉我们,“引进一个新的数就要研究它的运算;引进一种运算就要研究运算律”.可以预见,引进向量就要研究向量的运算,进而就要研究相应的运算律或运算法则.所以,对于向量,还有许多内容等待我们去研究.

2.相等向量、平行向量、共线向量、相反向量概念的形成

问题例2观察图1中的正六边形ABCDEF.给图中的一些线段加上箭头表示向量,并说说你所标注的向量之间的关系.(举例)

意图:不是先给出相等向量、平行向量、共线向量、相反向量的定义,再做练习巩固,而是让学生参与概念的定义过程,使概念成为学生观察、归纳、概括之后的自然产物.

留给学生足够的时间,并提出问题5,组织学生交流.

问题5 你是怎样研究的?比如,你画了哪几个向量?你认为它们有怎样的关系? 意图:不仅关注结果,更要关注过程.尤其要挖掘学生用向量概念思维的过程.

(课堂中,有的学生首先关注大小;有的学生首先画出向量与,认为它们长度相等且方向相同,是相等的向量;也有学生首先画出向量

与,认为它们是共线的向量;等.教师适时介入,解释数学中的向量是自由向量,可以平移,因此,与也称为共线向量.“平行向量”的产生比较顺利,但“相反向量”的产生有困难,其间还类比了“相反数”.)

归纳得到:

(1)从“方向”角度看,有方向相同或相反,就是平行向量,记为 ∥;(2)从“长度”角度看,有模相等的向量,||=||;

(3)既关注方向,又关注长度,有相等向量=,相反向量=-. T:我们规定:零向量与任意向量都平行,即∥.

问题6 由相等向量的概念知道,向量完全由它的方向和模确定.由此,你能说说数学中的向量与物理中的矢量的异同吗?另外,向量的平行、共线与线段的平行、共线有什么联系与区别?

意图:让学生注意把向量概念与物理背景、几何背景明确区分,真正抓住向量的本质特征,完成“数学化”的过程.

3.阅读课本

请同学们把课本看一遍,看看我们的讨论过程与课本讲的是否一致,有什么遗漏?有什么不同?

意图:通过阅读,对本课的内容再一次进行归整、明晰.引导学生重视课本. 4.课堂练习5.课堂小结

问题7(引导学生自己小结)能否画个图,把今天学的内容梳理一下?

(有的学生提出可以把本课的内容分为三个部分,与图2所呈现的内容基本一致,只是把“特殊关系”说成了“向量的性质”,这也是正确的.教师肯定了她的结论,展示了图2.)

T:今天我们学习向量的概念及其表示方法,并初步研究了向量这个集合,发现了其中的两个特殊向量,以及向量之间的一些特殊关系.同学们要认真体会其中的基本思路,即:从同类具体事例中抽象出共同本质特征——下定义——符号表示——认识特殊对象——考察某些特殊关系.

这里特别要注意,因为向量带有方向,所以只用代数的形式已无法表示,必须结合几何的形式.因此,向量具有代数形式和几何形式的“双重身份”.随着学习的深入,我们会看到这种身份给向量带来的力量.

另外,我们用类比数集的方法初步认识了向量的集合.我们知道,数与运算分不开,数

2的概念的发展也与运算不可分割.例如,为了解方程x=2,我们需要有无理数概念,于是要有“开方”运算.引进一种新的数,就要研究关于它的运算;引进一种运算,就要研究相应的运算律.今天我们引进了一个新的量——向量,下面我们该研究它的哪些问题?如何研究?请同学们课后认真考虑,下节课来交流.(说罢,教师在“特殊关系”的右边增加了省略号“……”.)6.布置作业(略)

高中向量教学设计 第2篇

教科书以物体受力做功为背景,引出向量数量积的概念,功是一个标量,它用力和位移两个向量来定义,反应在数学上就是向量的数量积。

向量的数量积是过去学习中没有遇到过的一种新的乘法,与数的乘法既有区别又有联系。教科书通过“探究”,要求学生自己利用向量的数量积定义推导有关结论。这些结论可以看成是定义的直接推论。

教材例一是对数量积含义的直接应用。

学情分析:

前面已经学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积,教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到数量积与向量模的大小有及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

三维目标:

(一)知识与技能

1、学生通过物理中“功”等实例,认识理解平面向量数量积的含义及其物理意义,体会平面向量数量积与向量投影的关系。

2、学生通过平面向量数量积的3个重要性质的探究,体会类比与归纳、对比与辨析等数学方法,正确熟练的应用平面向量数量积的定义、性质进行运算。

(二)过程与方法

1、学生经历由实例到抽象到抽象的的数学定义的形成过程,性质的发现过程,进一步感悟数学的本质。

(三)情感态度价值观

1、学生通过本课学习体会特殊到一般,一般到特殊的数学研究思想。

2、通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力.

四、教学重难点:

1、重点:平面向量数量积的概念、性质的发现论证;

2、难点:平面向量数量积、向量投影的理解;

五、教具准备:多媒体、三角板

六、课时安排:1课时

七、教学过程:

(一)创设问题情景,引出新课

问题:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?

新课引入:本节课我们来研究学习向量的另外一种运算:平面向量的数量积的物理背景及其含义

新课:

1、探究一:数量积的概念

展示物理背景:视频“力士拉车”,从视频中抽象出下面的物理模型

背景的第一次分析:

问题:真正使汽车前进的力是什么?它的大小是多少?

答:实际上是力 在位移方向上的分力,即 ,在数学中我们给它一个名字叫投影。

“投影”的概念:作图

定义:| |cos(叫做向量 在 方向上的投影.投影也是一个数量,不是向量;

2、背景的第二次分析:

问题:你能用文字语言表述“功的计算公式”吗?

分析: 用文字语言表示即:力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦这三者的乘积;功是一个标量,它由力和位移两个向量来确定。这给我们一种启示,能否把“功”看成是这两个向量的一种运算结果呢?

平面向量数量积(内积)的定义:已知两个非零向量 与 ,它们的夹角是θ,则数量| || | 叫 与 的数量积,记作 · ,即有 · = | || | (0≤θ≤π).并规定 与任何向量的数量积为0.

注:两个向量的数量积是一个实数,不是向量,符号由cos 的符号所决定.

3、向量的数量积的几何意义:

高中数学向量教学探究 第3篇

一、突出向量的几何背景与物理背景, 体现向量的直观性

数学教师在进行向量教学的时候, 需要从几何背景与物理背景角度出发.在教材中, 通过日常生活中确定位移概念, 将向量知识的意义进行概述, 并且利用物理教材中的加速度、力等背景素材, 引出向量的概念, 再利用又向线段给出向量的几何背景.这样一来, 能够建立学生理解向量概念的背景支持.

如, 在学习“向量夹角概念”时, 教材从w=|F||s|cosθ 出发, 引出夹角的定义:对于两个非零向量:, 作, 那么∠AOB=θ (0°≤θ≤180°) 则是两个向量的夹角.此外, 在学习向量夹角的时候, 教师还可以画出各种向量关系题, 让学生根据自己的定义进行分析, 去体会两个向量有角的关系.见下图.

二、注重向量应用的教学, 培养学生的数学意识

1. 向量在代数不等式中的应用

例证明:

证明:因为不等式的左边=, 所以将向量设为, 那么可以证明不等式左边为

在此题的解答之中利用向量法代替传统的三角代换法, 不仅构思巧妙、解法新颖, 并且能够给人耳目一新的感觉, 最重要的是能够将本题的关键进行分析, 体现出了向量的重要作用.

2.向量在三角函数中的应用.

在高中数学教学中三角函数一直是教学的难点, 为突破这一难点, 可以利用向量进行求证.比如, 在直角坐标系x Oy之中, 以Ox为始边分别作角 α、β, 那么终边则利用P1 (cosα, sinα) , P2 (cosβ, sinβ) 所代替, 则∠P1OP2=α-β.

设向量, 那么则变换为.在根据向量数量积坐标的表示中, , 所以可以求证出cos (α-β) =cosαcosβ+sinαsinβ.

三、向量在几何之中的应用

在高中数学中最为主要的内容便是解析几何, 在解答几何习题的过程之中需要构建坐标系, 并且利用相关的方程式对曲线的性质进行分析.将向量法应用到几何习题的解析之中, 能够实现对两点距离公式、线段中点公式的推导.

如, 使用向量对点到直线的距离公式进行推导.已知点P的坐标为 (xo, yo) , 直线l的方程式为Ax+By+C=0, 并且知道P到L的距离为d, 那么

分析:在平面之内, 直线l的法向量为, M作为直线l上的一点, 根据几何意义可以得知点P到直线l的距离是

在平面直角坐标系之中, 可以得知P的坐标为 (xo, yo) , 直线l的方程式为Ax+By+C=0, 当B不等于0 的时候, 直线l的方向向量:;如果当B等于0 的时候, 那么向量则是直线l方向的向量, 可以得知直线l的法向量为:

在直线l上任意取一个点M, 那么向量, 所以得知向量的绝对值便是点 P 到直线 l 之间的距离, 所以可以求证出P到直线l的距离为:

有因为M在直线l上, 所以C=-Ax1-By1

将其带入可以得出

高中“平面向量”的教学探讨 第4篇

一、从运算的角度来讲,向量可分为三种运算

(1)几何运算 。本章教材给出了三角形法则,平行四边形法则,多边形法则。利用这些法则,可以很好地解决向量中的几何运算问题,从中去体会数形结合的数学思想。

(2)代数运算。①加法、减法的运算法则;②、实数与向量乘法法则;③向量数量积运算法则。

(3)坐标运算。在直角坐标系中,向量的坐标运算有加、减、数乘运算、数量积运算。通过向量的坐标运算将向量的几何运算与代数运算有机结合起来,充分体现了解析几何的思想,让学生初步利用”解析法”来解决实际问题,也为以后学习解析几何及立体几何相关知识打下了基础,作好了铺垫。

二、教学内容、要求、重点与难点

1.本章教学内容可分成两块:第一向量及其运算,第二解斜三角形

(1)平面向量基本知识,向量运算。具体教学内容有: 向量(5.1节)、向量的加法与减法(5.2节)、实数与向量的积(5.3节)、平面向量的数量积及运算律(5.6节)。

(2) 平面向量的坐标运算, 联结几何运算与数量运算的桥梁。具体教学内容体有: 平面向量的坐标运算(5.4节), 向量加减运算、实数与向量的积运算、平面向量的数量积的坐标表示(5.4节、5.7节)。

(3) 平面向量的应用, 具体教学内容有:线段的定比分点(5.5节),平移(5.8节),正弦定理, 余弦定理(5.9节),解斜三角形应用举例(5.10节),实习作业。

2.教学要求

(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念。

(2)掌握向量的加法和减法。

(3)掌握实数与向量的积,理解两个向量共线的充要条件。

(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。

(6)掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并能熟练运用;掌握平移公式。

(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。

(8)通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。

3.教学重点

向量的幾何表示,向量的加、减运算及实数与向量的积的运算,平面向量的数量积,向量的坐标运算,向量垂直的条件,平面两点间的距离公式及线段的定比分点和中点坐标公式,平移公式,正、余弦定理。

4.教学难点

向量的概念,向量运算法则及几何意义的理解和应用,解斜三角形等。

三、本章的特点

教材编排的特点决定了在教学中处理本章时,有别于其它章节。

(1)教材在本章处理上,充分体现了数形结合的思想。教材通过求小船由A地到B地的位移来引入向量,根据学生思维特点,由具体到抽象,以平面几何知识为背景。在概念、法则及例题的编辑上都尽量配了图形,并安排了较多的作图练习、看图练习及作图验证练习等,为学生积极参与教学活动提供了条件,为发挥学生学习的主体作用提供了条件,这样既抓住了平面向量的特点,又使学生通过操作性练习达到对新概念的理解。

(2)利用”向量法”解决实际问题是本章的显著特点之一。向量与几何之间存在着密切联系;向量又有加、减、数乘积及数量积等运算,也有平面向量的坐标运算,因而向量具有几何和代数的双重属性,能联系几何与代数,从而给了我们一种新的数学方法——向量法; 向量法能将技巧性解题化成算法性解题,正、余弦定理的推导就采用了向量法,为以后学习解析几何与立体几何打下了基础。

(3)强化数学能力是本章的另一显著特点。由于本章的向量法的精髓就是将技巧性解题思路化成算法性解题思路;利用所学知识解决实际问题的能力作为本章的重要教学要求;为了更好地培养学生应用数学知识解决实际问题的能力和实际操作能力, 教材还安排了”实习作业”, 通过实际测量, 使学生能运用正、余弦定理来解决实际问题,既体现了数学的工具作用和应用性,又从另一个方面促进了学生对知识的理解与掌握。

四、教学体会

依据教学内容、要求及本章的特点,根据学生认知水平和近几年的教学实践,对”平面向量”教学有如下的教学体会:

(1)认真研究《考试大纲》及教学要求和目标,分析本章节特点,根据学生原有知识结构对学习本章可能会产生的正负迁移作用,有针对性地设计教学计划,组织教学过程,做好学法指导。

(2)在教学中重基础知识,重基本方法,重基本技能,重教材,重应用,重工具作用,不拔高,不选偏题和难题,遵循学生认知规律和按大纲要求进行。

(3)抓住向量的数形结合和具有几何与代数的双重属性的特点,提高”向量法”的运用能力,充分发挥工具作用。在教学中引导学生理解向量怎样用有向线段来表示,掌握向量的三种运算,理解向量运算和实数运算的联系和区别,强化本章基础。

(4)利用解三角形的应用问题,结合教学过程进行数学建模的训练,要引导学生识记、区分和理解正、余弦定理的应用范围,会对公式进行变形;在运用公式解三角形时,会分类讨论三角形类型;指导学生在解三角形时掌握正、余弦定理的选用与寻找合理、简捷的运算途径的关系,总结出解与三角形有关的应用问题 。

高中向量教学设计 第5篇

请给出平面向量知识结构示意图

答:

向量是近代数学中重要和基本的数学概念之一。在高中教材中,平面向量章节内容主要有几个方面:⑴向量的物理背景与概念、向量的几何表示、相等向量与共线向量;⑵向量加法运算及其几何意义、向量减法运算及其几何意义、向量数乘运算及其几何意义;⑶平面向量基本定理、平面向量的正交分解及坐标表示、平面向量的坐标运算、平面向量共线的坐标表示;⑷平面向量数量积的物理背景及其含义、平面向量数量积的坐标表示、模、夹角;⑸平面几何中的向量方法、向量在物理中的应用举例。此外,教材安排了扩展内容,主要是向量几向量符号的由来,向量的运算(运算律)与图形性质。这些知识既有不同又紧密联系,教学的时候要注意联系与比较,并通过实际解题训练,来提高学生的理解能力和应用能力。

我用FreeMind设计了一个向量知识结构图:

我认为上面制作的这个图表基本上反映了高中数学中的平面向量的知识结构。

高中向量教学设计 第6篇

向量具有重要的教学价值,在数学、物理以及现代科学等各领域都有重要的应用。在数学中,向量是一个非常重要的工具,向量能够对位置进行准确的刻画。同时,向量不仅是几何的对象,还是代数的对象,不仅可利用向量进行数学运算,同时还可刻画切线、平面、面积以及体积等几何对象与度量。此外,还可利用向量求距离与夹角等。在物理中,向量的原型即为矢量,向量能够准确地刻画加速度、位移、力等物理量,具有较强的实际意义。在现代科技领域,向量被广泛地运用于飞船设计以及卫星定位等方面。

二、高中数学新课程向量教学的注意事项

1.在向量教学中,要兼顾其代数性质与几何意义

(1)注重向量的代数性质

向量的代数性质主要体现在运算意义以及运算律上,在实际的向量教学中,老师要注意引导学生总结数学运算律。例如,在苏教版数学必修四的向量与实数乘积的运算中,老师要采取适当方法引导学生总结向量与实数的数乘运算满足的运算结合律λ(μ)a=

(λμ)a以及第一与第二分配律等,让学生在掌握各运算律的基础上,了解线性空间的性质,了解数学运算律对于向量运用的意义。

(2)注重向量的几何意义

利用向量来刻画几何对象是向量代数性质几何意义的重要体现。例如,mn=0的几何意义体现为向量m与向量n两者是垂直的,从而将向量的代数运算有效地与其位置关系相联系,进而将其与直线的关系相联系。再如,mm的几何意义表现为向量m长度的平方,从而将向量长度与其数量积运算进行联系。因此,在高中数学新课程的向量教学中,老师应重点引导学生将向量的几何意义以及向量代数运算展开联系,帮助学生更好地理解向量数量积的几何意义,从而更好地利用向量代数性质对几何对象进行刻画,让学生能够深刻体会几何与代数两者间的联系。

2.在向量教学中,要注重丰富其物理背景

向量有着丰富的物理背景,老师在高中数学的向量教学中要注重突出这些物理背景,使学生更全面地了解向量。物理量如速度、位移以及力等都是向量的原型,它们与日实际生活联系紧密,在教学中老师要充分利用这些现实背景。例如,在对苏教版必修四的《向量的加法运算》进行教学时,老师可通过直观的位移合成背景的方式导入向量加法运算。如,假设某一物体从L位移到M,接着从M位移到N,那么从L到N的位移就为这两次位移的结果,将这个确定的总位移视作前两位移之和是自然的,以此导入向量的加法及其三角形、平行四边形法则。再如,可运用速度或位移的倍数为背景引入向量与数的`乘积运算;运用力做功作为背景引入向量的数量积运算。老师可先为学生创设情境问题如:在物理学中,某一物体在其所受的F力下,在F力方向上产生位移S,那么力F对物体做功为多少呢?然后引导学生进行如下探讨:

(1)F与S方向相同时,功的大小为:FS;

(2)力F与位移S两者产生θ角时,那么F与S方向一致的分力为F1,则F1=Fcosθ,那么该物体在分力F1的方向上有位移S产生,那么此时物体做功为:FScosθ。

在这一教学过程中,老师要让学生明白,物体所做的功是由力与位移两个向量决定的,向量的数量积意义就体现于此。

3.在向量教学中,要注重其在数学以及其他科学中的应用

数学中,向量应用广泛,它既可刻画几何对象以及几何度量的问题,又可以表示重要不等式、三角函数等。例如,ab≤ab是向量数量积中的一个重要的不等式,运用该不等式的关系还可对数学中许多不等式进行证明。又如,在对三角函数进行定义时,可运用向量数量积进行定义。例如,某平面上存在两个标准正交基e1与e2,a则是这一平面上的向量,标准正交基e1与向量a产生的夹角为α,那么三角函数的定义为:。在现代科技领域中,向量还被广泛应用于设计与操控机器人、设计飞船等。

综上所述,向量无论是在数学、物理,还是在现代科学技术领域都有广泛的应用。因此,在高中数学新课程向量教学时,老师要准确对向量定位,并在教学中要注重体现其代数性质以及几何意义,并着重突出其物理背景,关注它在各领域的应用,全面体现向量的教学价值。

参考文献:

[1]葛志强。向量与导数在教学中的应用[J]。试题与研究:新课程论坛,.

[2]高后运,杨华。例谈高中数学教学[J]。中国科教创新导刊,2012.

[3]赵燕。高中数学新课程中向量及教学[J]。小作家选刊:教学交流,.

[4]刘秀梅。浅议高中数学向量教学[J]。中华少年:研究青少年教育,2012.

高中向量教学设计 第7篇

教材分析

两个向量的数量积是中学代数以往内容中从未遇到过的一种新的乘法,它区别于数的乘法.这篇案例从学生熟知的功的概念出发,引出平面向量数量积的概念和性质及其几何意义,介绍向量数量积的运算律及坐标表示.向量的数量积把向量的长度和三角函数联系在一起,这为解决三角形的有关问题提供了方便,特别是能有效解决线段的垂直等问题.这节内容是整个向量部分的重要内容之一,对它的理解与掌握将直接影响向量其他内容的学习.这节内容的教学难点是对平面向量数量积的定义及运算律的理解和对平面向量数量积的应用.

教学目标

1.理解并掌握平面向量的数量积、几何意义和数量积的坐标表示,会初步使用平面向量的数量积来处理有关长度、角度和垂直的问题,掌握向量垂直的条件.

2.通过对数量积的引入和应用,初步体会知识发生、发展的过程和运用过程,培养学生的科学思维习惯.

任务分析

两个向量的数量积从形式和实质上都与数的乘法有区别,这就给理解和掌握这个概念带来了一些困难.在学习时,要充分让学生理解、明白两个向量的数量积是一个数量,而不是向量.两个向量的数量积的值是这两个向量的模与两个向量夹角余弦的乘积,其符号由夹角余弦值的正负而确定.

两向量的数量积“a·b”不同于两实数之积“ab”.

通过实例理解a·b=b·c与a=c的关系,a·b=0与a=0或b=0的关系,以及(a·b)c=a(b·c)与(ab)c=a(bc)的不同.

教学设计

一、问题情景

如图40-1所示,一个力f作用于一个物体,使该物体发生了位移s,如何计算这个力所做的功.由于图示的力f的方向与前进方向有一个夹角θ,真正使物体前进的力是f在物体前进方向上的分力,这个分力与物体位移的乘积才是力f做的功.即力f使物体位移x所做的功W可用下式计算.

W=|s||f|cosθ.

其中|f|cosθ就是f在物体前进方向上的分量,也就是力f在物体前进方向上正射影的数量.

问题:像功这样的数量值,它由力和位移两个向量来确定.我们能否从中得到启发,把“功”看成这两个向量的一种运算的结果呢?

二、建立模型

1.引导学生从“功”的模型中得到如下概念:

已知两个非零向量a与b,把数量|a||b|cosθ叫a与b的数量积(内积),记作a·b=|a||b|cosθ.其中θ是a与b夹角,|a|cosθ(|b|cosθ)叫a在b方向上(b在a方向上)的投影.

规定0与任一向量的数量积为0.

由上述定义可知,两个向量a与b的数量积是一个实数.

说明:向量a与b的夹角θ是指把a,b起点平移到一起所成的夹角,其中0≤θ≤π.当θ=时,称a和b垂直,记作a⊥b.为方便起见,a与b的夹角记作〈a,b〉. 2.引导学生思考讨论

根据向量数量积的定义,可以得出

(1)设e是单位向量,a·e=|a|cos〈a,e〉.(2)设a·b是非零向量,则a⊥b(3)a·a=|a|2,于是|a|=

a·b=0.

.(4)cos〈a,b〉=.(5)|a·b|≤|a||b|(这与实数|ab|=|a||b|不同).

三、解释应用 [例 题]

已知|a|=5,|b|=4,〈a,b〉=120°,求a·b. 解:a·b=|a||b|cos〈a,b〉=5×4×cos120°=-10. [练习]

1.已知|a|=3,b在a上的投影为-2,求:(1)a·b.

(2)a在b上的投影.

2.已知:在△ABC中,a=5,b=8,c=60°,求

四、建立向量数量积的运算律

·.

1.出示问题:从数学的角度考虑,我们希望向量的数量积运算,也能像数量乘法那样满足某些运算律,这样数量积运算才更富有意义.回忆实数的运算律,你能类比和归纳出向量数量积的一些运算律吗?它们成立吗?为什么?

2.运算律及其推导

已知:向量a,b,c和λ∈R,则(1)a·b=b·a(交换律). 证明:左=|a||b|cosθ=右.

(2)(λa)·b=λ(a·b)=a·(λb)(数乘结合律). 证明:设a,b夹角为θ,当λ>0时,λa与b的夹角为θ,∴(λa)·b=(λa)·|b|cosθ=λ|a||b|cosθ=λ(a·b); 当λ<0时,λa与b的夹角为(π-θ),∴(λa)·b=|λa||b|cos(π-θ)=-λ|a||b|(-cosθ)=λ|a||b|cosθ=λ(a·b);

当λ=0时,(λa)·b=0·b=0=λ(a·b). 总之,(λa)·b=λ(a·b); 同理a·(λb)=λ(a·b).(3)(a+b)·c=a·c+b·c(乘法对加法的分配律).

证明:如图40-2,任取一点O,作=a,=b,=c.

∵a+b(即)在c方向上的投影等于a,b在c方向上的投影的和,即

|a+b|cosθ=|a|cosθ1+|b|cosθ2,∴|c||a+b|cosθ=|c|(|a|cosθ1+|b|cosθ2)= |c||a|cosθ1+|c||b|cosθ2=c·a+c·b,∴(a+b)·c=a·c+b·c.

思考:(1)向量的数量积满足结合律,即(a·b)c=a(b·c)吗?(2)向量的数量积满足消去律,即如果a·b=c·b,那么a=c吗?

五、应用与深化 [例 题]

1.对实数a,b,有(a+b)=a+2ab+b,(a+b)(a-b)=a-b.类似地,对任意向量a,b,也有类似结论吗?为什么?

解:类比完全平方和公式与平方差公式,有

(a+b)2=a2+2a·b+b2,(a+b)·(a-b)=a2-b2. 其证明是:(a+b)=(a+b)·(a+b)= a·a+a·b+b·a+b·b= a2+2a·b+b2,2

2(a+b)·(a-b)=a·a-a·b+b·a-b·b= a2-b2. ∴有类似结论.

2.已知|a|=6,|b|=4,〈a,b〉=60°,求(a+2b)·(a-3b). 解:(a+2b)·(a-3b)= a2-3a·b+2b·a-6b2=

|a|-|a||b|cos60°-6|b|=-72.

3.已知|a|=3,|b|=4,且a与b不共线.当k为何值时,(a+kb)⊥(a-kb)? 解:(a+kb)⊥(a-kb),即(a+kb)·(a-kb)=0,即a2-k2b2=0,即9-k2×16=0,k=±. 2

2因此,当k=±时,有(a+kb)⊥(a-kb).

4.已知:正方形ABCD的边长为1,并且=a,=b,=c,求|a+b+c|.

解法1:∵a+b+c=++=2,∴|a+b+c|=2=2.

解法2:|a+b+c|2=(a+b+c)2=a2+b2+c2+2a·b+2a·c+2b·c=1+1+2+2×1×1×cos90°+2×1×

[练习]

1.|a|=4,|b|=3,(2a-3b)·(2a+b)=61,求a与b的夹角θ.

×

+2×1×

×

=8,∴|a+b+c|=2

2.在边长为2的正三角形ABC中,求

六、拓展延伸

·+·+·.

1.当向量a,b的夹角为锐角时,你能说明a·b的几何意义吗? 如图40-3,a·b,即以b在a上射影的长和a的长为两邻边的矩形面积(OA=OA1).

2.平行四边形是表示向量加法与减法的几何模型,如图40-4,=-

=+,.试说明平行四边形对角线的长度与两条邻边长度之间的关系.

3.三个单位向量a,b,c有相同终点且a+b+c=0,问:它们的起点连成怎样的三角形?

解法1:如图40-5,∵|a|=|b|=|c|=1,a+b+c=0,∴a+b=-c,∴(a+b)=(-c)2,2∴a2+b2+2a·b=c2,∴2|a|·|b|cos∠AOC=-1,cos∠AOC=,∠AOC=120°. 同理∠BOC=∠AOC=120°,故△AOB,△BOC,△BOC全等,∴AB=AC=BC,即该△ABC为等边三角形.

解法2:如图40-6,.

=c,=-a,=-b,由a+b+c=0,即=+

∵|a|=|b|=1,∴OADB为菱形.

又||=1,∴∠AOB=120°.

同理∠AOC=∠BOC=120°,…

4.在△ABC中,·=·=·,问:O点在△ABC的什么位置?

解:由同理⊥·,=⊥

·,即·(-)=0,即·=0,∴⊥,.故O是△ABC的垂心.

两角和与差的余弦

教材分析

这节内容是在掌握了任意角的三角函数的概念、向量的坐标表示以及向量数量积的坐标表示的基础上,进一步研究用单角的三角函数表示的两角和与差的三角函数.这些内容在高等数学、电功学、力学、机械设计与制造等方面有着广泛的应用,因此要求学生切实学好,并能熟练的应用,以便为今后的学习打下良好的基础. “两角差的余弦公式”在教科书中采用了一种易于教学的推导方法,即先借助于单位圆中的三角函数线,推出α,β,α-β均为锐角时成立.对于α,β为任意角的情况,教材运用向量的知识进行了探究.同时,补充了用向量的方法推导过程中的不严谨之处,这样,两角差的余弦公式便具有了一般性.

这节课的重点是两角差的余弦公式的推导,难点是把公式中的α,β角推广到任意角.

教学目标

1.通过对两角差的余弦公式的探究过程,培养学生通过交流,探索,发现和获得新知识的能力.

2.通过两角差的余弦公式的推导,体会知识的发生、发展的过程和初步的应用过程,培养学生科学的思维方法和勇于探索的科学精神.

3.能正确运用两角差的余弦公式进行简单的三角函数式的化简、求值和恒等式证明.

任务分析

这节内容以问题情景中的问题作为教学的出发点,利用单位圆中的三角函数线和平面向量的数量积的概念推导出结论,并不断补充推导过程中的不严谨之处.推导过程采用了从特殊到一般逐层递进的思维方法,学生易于接受.整个过程始终结合单位圆,以强调其直观性.对于公式中的α和β角要强调其任意性.数学中要注意运用启发式,切忌把结果直接告诉学生,尽量让学生通过观察、思考和探索,自己发现公式,使学生充分体会到成功的喜悦,进一步激发学生的学习兴趣,调动他们学习的积极性,从而使其自觉主动地学习.

教学过程

一、问题情景

我们已经学过诱导公式,如

可以这样来认识以上公式:把角α转动,则所得角α+的正弦、余弦分别等于cosα和-sinα.把角α转动π,则所得角α+π的正弦、余弦分别等于-sinα和-cosα. 由此,使我们想到一个一般性的问题:如果把角α的终边转动β(度或弧度),那么所得角α+β的正弦、余弦如何用α或β的正弦、余弦来表示呢? 出示一个实际问题:

右图41-1是架在小河边的一座吊桥的示意图.吊桥长AB=a(m),A是支点,在河的左岸.点C在河的右岸,地势比A点高.AD表示水平线,∠DAC=α,α为定值.∠CAB=β,β随吊桥的起降而变化.在吊桥起降的过程中,如何确定点B离开水平线AD的高度BE?

由图可知BE=asin(α+β).

我们的问题是:如何用α和β的三角函数来表示sin(α+β).如果α+β为锐角,你能由α,β的正弦、余弦求出sin(α+β)吗?

引导学生分析:事实上,我们在研究三角函数的变形或计算时,经常提出这样的问题:能否用α,β的三角函数去表示α±β的三角函数?为了解决这类问题,本节首先来探索α-β的余弦与α,β的函数关系式.

更一般地说,对于任意角α,β,能不能用α,β的三角函数值把α+β或α-β的三角函数值表示出来呢?

二、建立模型 1.探 究

(1)猜想:cos(α-β)=cosα-cosβ.(2)引导学生通过特例否定这一猜想.

例如,α=60°,β=30°,可以发现,左边=cos(60°-30°)=cos30°=-cos30°=-,右边=cos60°.显然,对任意角α,β,cos(α-β)=cosα-cosβ不成立.

(3)再引导学生从道理上否定这一猜想.

不妨设α,β,α-β均为锐角,则α-β<α,则cos(α-β)>cosα.又cosβ>0,所以cos(α-β)>cosα-cosβ. 2.分析讨论

(1)如何把α,β,α-β角的三角函数值之间建立起关系?要获得相应的表达式需要哪些已学过的知识?

(2)由三角函数线的定义可知,这些角的三角函数值都与单位圆中的某些有向线段有关系,那么,这些有向线段之间是否有关系呢?

3.教师明晰

通过学生的讨论,教师引导学生作出以下推理:

设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.

过点P作PM⊥x轴,垂足为M,那么,OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.

过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是

OM=OB+BM=OB+CP=OAcosα+APsinα= cosβcosα+sinβsinα. 4.提出问题,组织学生讨论

(1)当α,β,α-β为任意角时,上述推导过程还能成立吗?

若要说明此结果是否对任意角α,β都成立,还要做不少推广工作,可引导学生独立思考.

事实上,根据诱导公式,总可以把α,β的三角函数化为(0,)内的三角函数,再根据cos(-β)=cosβ,把α-β的余弦,化为锐角的余弦.因此,三、解释应用

[例 题]

1.求cos15°及cos105°的值.

分析:本题关键是将15°角分成45°与30°的差或者分解成60°与45°的差,再利用两角差的余弦公式即可求解.对于cos105°,可进行类似地处理,cos105°=cos(60°+45°).

2.已知sinα=的值.,α∈(,π),cosβ=-,且β是第三象限的角,求cos(α+β)分析:观察公式Cα+β与本题已知条件应先计算出cosα,cosβ,再代入公式求值.求cosα,cosβ的值可借助于同角三角函数的平方关系,并注意α,β的取值范围来求解.

[练习]

1.(1)求sin75°的值.

(2)求cos75°cos105°+sin75°sin105°的值.(3)化简cos(A+B)cosB+sin(A+B)sinB.(4)求cos215°-sin215°的值.

分析:对于(1),可先用诱导公式化sin75°为cos15°,再用例题1中的结果即可.对于(2),逆向使用公式Cα-β,即可将原式化为cos30°.对于(3),可以把A+B角看成一个整体,去替换Cα-β中的α角,用B角替换β角.

2.(1)求证:cos(-α)=sinα.

(2)已知sinθ=,且θ为第二象限角,求cos(θ-)的值.

(3)已知sin(30°+α)=,60°<α<150°,求cosα.

分析:(1)和(差)公式可看成诱导公式的推广,诱导公式是和(差)公式的特例.(2)在三角函数求值问题中,变角是一种常用的技巧,α=(30°+α)-30°,这样可充分利用题中已知的三角函数值.

3.化简cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°).

分析:这里可以把角36°+α与α-54°均看成单角,进而直接运用公式Cα-β,不必将各式展开后再计算.

分析:本题是一道综合题,由于cos(α-β)=cosαcosβ+sinαsinβ,欲求cos(α-β)的值,只须将已知两式平方相加求出cosαcosβ+sinαsinβ即可.

四、拓展延伸

1.由任意角三角函数定义,可知角α,β的终边与单位圆交点的坐标均可用α,β的三角函数表示,即α-β角与导公式Cα-β呢?

教师引导学生分析:在平面直角坐标系xOy内作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则由向量数量积的概念,有

=(cosα,sinα),=(cosβ,sinβ).,两向量的夹角有关,那么能否用向量的有关知识来推·=||||cos(α-β)=cos(α-β).

由向量的数量积的坐标表示,有

·=cosαcosβ+sinαsinβ.

于是,有

cos(α-β)=cosαcosβ+sinαsinβ.

依据向量数量积的概念,角α-β必须符合0≤α-β≤π,即在此条件下,以上推导才是正确的.

由于α,β都是任意角,α-β也是任意角,因此,须研究α-β为任意角时,以上推导是否正确.

当α-β为任意角时,由诱导公式总可以找到一个角θ,θ∈[0,2π),使cosθ=cos(α-β).

若θ∈[0,π],则·=cosθ=cos(α-β);

若θ∈[π,2π],则2π-θ∈[0,π],且 ·=cos(2π-θ)=cosθ=cos(α-β).

于是,对于任意角α,β都有

2.教师提出进一步拓展性问题:本节问题情景中,涉及如何用sinα,sinβ,cosα,cosβ来表示sin(α+β)的问题,试探索与研究sin(α+β)的表达式.

两角和与差的正弦

教材分析

在这节内容中,公式较多,一旦处理不当,将成为学生学习的一种负担.针对这个特点,应充分揭示公式的内在联系,使学生理解公式的形成过程及其使用条件,在公式体系中掌握相关的公式.同时,通过练习使学生能够熟练地运用这些公式.当然,这些公式的基础是两角和差的余弦公式.通过诱导公式sin(-α)=sinα,sinπ(-α)=cosα(α为任意

-(α+β)]角),可以实现正、余弦函数间的转换,也可推广为sin(α+β)=cos[=cos[(-α)-β],sin(α-β)=[

-(α-β)]=cos[(-α)+β].借助于Cα+β和Cα-β即可推导出公式Sα+β和Sα-β.Cα+β,Cα-β,Sα+β和Sα-β四个公式的左边均为两角和与差的正、余弦,右边均为单角α,β的正、余弦形式.不同点为公式Sα+β,Sα-β两边的运算符号相同,Cα+β与Cα-β两边的运算符号相反.Sα+β与Sα-β中右边是两单角异名三角函数的乘积,而Cα-β与Cα+β的右边是两单角同名三角函数的乘积.

任务分析

这节课计划采用启发引导和讲练结合的教学方式,对三角函数中的每一个公式要求学生会推导,会使用,要求不但掌握公式的原形,还应掌握它们的变形公式,会把“asinx+bcosx”类型的三角函数化成一个角的三角函数.在课堂教学中,将采用循序渐进的原则,设计有一定梯度的题目,以利于培养学生通过观察、类比的方法去分析问题和解决问题的能力,培养学生良好的思维习惯.在教学中,及时提醒学生分析、探索、化归、换元、类比等常用的基本方法在三角变换中的作用.这节课的重点是准确、熟练、灵活地运用两角和差的正、余弦公式进行三角函数式的求值、化简和证明,难点是公式的变形使用和逆向使用.

教学目标 1.能用两角差的余弦公式导出两角和的余弦公式,两角和差的正弦公式,并了解各个公式之间的内在联系.

2.能运用两角和差的正、余弦公式进行三角函数式的化简、求值和证明.

3.通过公式的推导过程,培养学生的逻辑思维能力,同时渗透数学中常用的换元、整体代换等思想方法.

教学过程

一、问题情景

如图42-1,为了保持在道路拐弯处的电线杆OB的稳固性,要加一根固定钢丝绳,要求钢丝绳与地面成75°角.已知电线杆的高度为5m,问:至少要准备多长的钢丝绳?

设电线杆与地面接触点为B,顶端为O,钢丝绳与地面接触点为A. 在Rt△AOB中,如果能求出sin75°的值,那么即可求出钢丝绳的长度.75°角可表示成两个特殊角45°与30°的和,那么sin75°的值能否用这两特殊角的三角函数值来表示呢?

二、建立模型 1.探 究

已知cos(α-β)=cosαcosβ+sinαsinβ,则sin(α+β),sin(α-β)中的角及函数名与cos(α+β)和cos(α-β)有何关系? 通过诱导公式可实现正、余弦函数的转换,即sin(α+β)=推导以上公式的方法并不是唯一的,其他推导方法由学生课后自己探索. 3.分析公式的结构特征

Sα+β与Sα-β中两边的加减运算符号相同,右边为α与β角的异名三角函数的乘积.应特别注意公式两边符号的差异.

三、解释应用 [例题一]

已知sinα=-,且α为第四象限角,求sin(-α)cos(+α)的值.

分析:本题主要训练公式Sα-β与Sα+β的使用.

由sinα=-及α为第四象限角,可求出cosα=,再代入公式求值.

[练习一]

分析:1.(1)强调公式的直接运用,寻找所求角与已知角之间的关系,α=(30°+α)-30°,再利用已知条件求出cos(30°+α).

2.应注意三角形的内角之间的关系,C=π-(A+B),再由诱导公式cos(π-α)=-cosα,要求cosC即转化为求-cos(A+B).

3.应注意分析角之间的关系,2β=(α+β)-(α-β),因此,求cos2β还应求出sin(α-β)和cos(α+β).解此题时,先把α+β与α-β看成单角,然后把2β用这两个单角来表示.

4.该题是在已有知识的基础上进一步深化,引导学生分三步进行:(1)求出α+β角的某个三角函数值.(2)确定角的范围.(3)确定角的值.其中,求α+β的某个三角函数值时,应分清是求cos(α-β)还是求sin(α-β).

已知向量的坐标. =(3,4),若将其绕原点旋转45°到′→的位置,求点P′(x′,y′)解:设∠xOP=α,∵|OP|=5,∴cosα=,sinα=.

∵x′=5cos(α+45°)=5(cosαcos45°-sinαsin45°)=-,y′=5sin(α+45°)=5(sinαcos45°+cosαsin45°)=,∴P′ -,.

已知向量=(4,3),若将其绕原点旋转60°,-135°到

1,2的位置,求点P1,P2的坐标.

[例题三]

求下列函数的最大值和最小值.

(1)y=cosx-sinx.

(2)y=3sinx+4cosx.

(3)y=asinx+bcosx,(ab≠0). 注:(1),(2)为一般性问题,是为(3)作铺垫,推导时,要关注解题过程,以便让学生充分理解辅助角φ满足的条件.

(3)解:考查以(a,b)为坐标的点P(a,b),设以OP为终边的一个角为φ,则

[练习三]

求下列函数的最大值和最小值.(1)y=cosx-sinx.

(2)y=sinx-sin(x+)

(3)已知两个电流瞬时值函数式分别是I1=12sin(ωt-45°),I2=10sin(ωt+30°),求合成的正弦波I=I1+I2的函数式.

四、拓展延伸

出示两道延伸性问题,引导学生独立思考,然后师生共同解决.

1.已知三个电流瞬时值的函数式分别为I1=5sinωt,I2=6sin(ωt-60°),I3=10sin(ωt+60°),求它们合成后的电流瞬时值的函数式I=I1+I2+I3,并指出这个函数的振幅、初相和周期.

2.已知点P(x,y),与原点的距离保持不变绕原点旋转θ角到点P′(x′,y′)(如图42-2),求证:

三角形边和角关系的探索

教材分析

初中已研究过解直角三角形,这节所研究的正、余弦定理是解直角三角形知识的延伸与推广,它们都反映了三角形边、角之间的等量关系,并且应用正、余弦定理和三角形内角和定理,可以解斜三角形.正弦定理的推证运用了从特殊到一般的方法,把直角三角形中得到的边角关系式推广到锐角三角形,再推广到钝角三角形,进而得出一般性的结论.余弦定理的推证采用向量的数量积做工具,将向量的长度与三角形的边长、向量的夹角与三角形的内角联系起来.对于正、余弦定理的推论,除了这节课的证法之外,还有其他的一些推证方法.教材中还要求,在证明了正、余弦定理之后,让学生尝试用文字语言叙述两个定理,以便理解其实质.当然,就知识而言,正弦定理有三个等式,可视为三个方程;余弦定理的三个式子也可看成三个方程,每个方程中均有四个量,知道其中任意三个量便可求第四个量.

这节课的重点是正、余弦定理的证明,以及用正、余弦定理解斜三角形,难点是发现定理、推证定理以及用定理解决实际问题.

任务分析

这节内容是在初中对三角形有了初步认识的基础上,进一步研究三角形的边、角之间的等量关系.对正弦定理的推导,教材中采用了从特殊到一般的方法,逐层递进,学生易于接受,而余弦定理的证明采用了向量的方法.应用两个定理解三角形时,要分清它们的使用条件.将正、余弦定理结合起来应用,经常能很好地解决三角形中的有关问题.

教学目标

1.理解正、余弦定理的推证方法,并掌握两个定理. 2.能运用正、余弦定理解斜三角形.

3.理解并初步运用数学建模的思想,结合解三角形的知识,解决生产、生活中的简单问题.

教学设计

一、问题情景

1.A,B两地相距2558m,从A,B两处发出的两束探照灯光照射在上方一架飞机的机身上(如图43-1),问:飞机离两探照灯的距离分别是多少?

2.如图43-2,自动卸货汽车的车厢采用液压机构,设计时应计算油泵顶杆BC的长度.已知车厢的最大仰角为60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平的夹角为6°20′,AC长为1.40m,计算BC的长.(精确到0.01m)

问题:(1)图中涉及怎样的三角形?(2)在三角形中已知什么?求什么?

二、建立模型

1.教师引导学生分析讨论

在问题情景(1)中,已知在△ABC中,∠A=72.3°,∠B=76.5°,AB=2558m.求AC,BC的长.

组织学生讨论如何利用已知条件求出AC,BC的长度.(让学生思考,允许有不同的解法)

结论:如图40-3,作AD⊥BC,垂足为D.由三角函数的定义,知AD=AC·sinC,AD=AB·sinB.

由此可得AC·sinC=AB·sinB.

又由∠A,∠B的度数可求∠C的度数,代入上式即可求出AC的长度,同理可求BC的长度.

教师明晰:

(1)当△ABC为直角三角形时,由正弦函数的定义,得

(2)当△ABC为锐角三角形时,设AB边上的高为CD,根据三角函数的定义,得CD=asinB=bsinA,所以,同理

.(3)当△ABC为钝角三角形时,结论是否仍然成立?引导学生自己推出.(详细给出解答过程)

事实上,当∠A为钝角时,由(2)易知设BC边上的高为CD,则由三角函数的定义,得 CD=asinB=bsin(180°-A).

根据诱导公式,知sin(180°-A)=sinA,.∴asinB=bsinA,即.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即

.正弦定理指出了任意三角形中三条边与它对应角的正弦之间的一个关系式,描述了任意三角形中边、角之间的一种数量关系.

思考:正弦定理可以解决有关三角形的哪些问题? 2.组织学生讨论问题情景(2)

这一实际问题可化归为:已知△ABC的边AB=1.95,AC=1.4,夹角为6°20′,求BC的长. 组织学生讨论:能用什么方法求出BC?(学生有可能有多种不同的解法)

教师明晰:如果已知三角形的两边和夹角,这个三角形为确定的三角形,那么怎样去计算它的第三边呢?由于涉及边长及夹角的问题,故可以考虑用平面向量的数量积.(也可用两点间的距离公式)

如图,设=a,=b,=c,则c=a-b.

∵|c|2=c·c=(a-b)·(a-b)=a2+b2-2abcosC,∴c=a+b-2abcosC.

同理a2=b2+c2-2bccosA,b2=c2+a2-2accosB. 于是得到以下定理:

余弦定理 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即

a2=b2+c2-2bccosA,b2=c2+a2-2accosB,c2=a2+b2-2abcosC.

思考:余弦定理可以解决一些怎样的解三角形问题? 3.进一步的问题

勾股定理指出了直角三角形中三边之间的等量关系,余弦定理则指出了一般三角形三边之间的等量关系,那么这两个定理之间存在怎样的关系?如何利用余弦定理来判断三角形是锐角三角形还是钝角三角形?

三、解释应用 [例 题] 2221.(1)已知:在△ABC中,A=32.0°,B=81.8°,a=42.9cm,解三角形.

(2)已知:在△ABC中,a=20cm,b=28cm,A=40°,解三角形.(角精确到1°,边长精确到1cm)

分析:(1)本题为给出三角形的两角和一边解三角形问题,可由三角形内角和定理先求出第三个角,再两次利用正弦定理分别求出另两边.

(2)本题给出了三角形的两边及其中一边的对角,于是可用正弦定理求出b边的对角B的正弦,sinB≈0.8999,但0<B<π,故B角有两个值(如图43-8),从而C角与c边的取值也有两种可能.学生在解题时容易丢掉一组解,应引导学生从图形上寻找漏掉的解.

2.(1)已知:在△ABC中,已知b=60cm,c=34cm,A=41°,解三角形.(角精确到1°,边长精确到1cm)

(2)已知:在△ABC中,a=134.6cm,b=87.8cm,c=161.7cm,解三角形.(角精确到1′).

分析:本例中的(1)题,给出了两边及其夹角,可先用余弦定理求出第三边,求其他两角时既可用余弦定理也可用正弦定理.(2)题给出了三边长,可先用余弦定理求出其中一角,然后同样既可用正弦定理,也可用余弦定理求出其他两角.

3.AB是底部B不可到达的建筑物,A为建筑物的最高点.设计一种测量建筑物高度AB的方法. 分析:由于建筑物的底部B是不可到达的,所以不能直接测量出建筑物的高.由解直角三角形的知识,只要能知道一点C到建筑物顶部A的距离CA,并能测出由点C观察A的仰角,就可以计算出建筑物的高.为了求出CA的长,可选择一条水平基线HG(如图43-9),使H,G,B三点在同一条直线上.在G,H两点用测角仪器测得A的仰角分别为α,β,设CD=a,测角仪器的高为h,则在△ACD中,由正弦定理,得-β),从而可求得AB=AE+h=ACsinα+h=[练习]

1.在△ABC中,已知下列条件,解三角形.(角精确到1°,边长精确到1cm)(1)A=45°,C=30°,c=10cm.(2)A=60°,B=45°,c=20cm.(3)a=20cm,b=11cm,B=30°.(4)c=54cm,b=39cm,c=115°.

2.在△ABC中,已知下列条件,解三角形.(角精确到0.1°,边长精确到0.1cm)(1)a=2.7cm,b=3.696cm,C=82.2°.(2)b=12.9cm,c=15.4cm,A=42.3°.(3)a=7cm,b=10cm,c=6cm.

四、拓展延伸

1.在△ABC中,有正弦定理

+h.,sin(α

这涉及比值的连等式.请探索并研究是一个什么样的量,并加以证明.

2.在△ABC中,已知三边的长为a,b,c,如何判定△ABC的形状? 3.已知:在△ABC中,a=60,b=50,A=38°,求B.(精确到1°)

分析:.∵0°<B<180°,∴B≈31°或B≈149°,但当B≈149°时,A+B=187°,这与A,B为三角形内角矛盾,故B角只能取31°. 由此题与例1中的(2)题的分析可以发现,在已知三角形两边及其一边对角解三角形时,在某些条件下会出现一解或两解的情形,那么会不会出现无解的情形呢?

(1)当A为钝角或直角,必须满足a>b才有解(a≤b无解),并且由sinB=计算B时,只能取锐角,因此,只有一解,如图43-10.

(2)当A为锐角时,①若a>b或a=b,则由sinB=解,如图40-11.

计算B时,只能取锐角的值,因此,只有一②若a<bsinA,则由sinB=,得sinB>1,因此,无解.如图43-12.

③若a=bsinA,则由sinB=,得sinB=1,即B为直角,故只有一解,如图43-13.

④若b>a>bsinA,则sinB<1,故B可取一个锐角和一个钝角的值,如图43-14.

高中数学向量教学的探索 第8篇

一、高中数学中向量教学存在的问题

数学学科具有逻辑性的特点, 需要调动和发挥学生的独立思考能力、 分析整理能力、探究创新能力最终解决数学难题, 这对学生综合素质能力的培养有着重要的意义, 这也是数学课程核心目标之一。 学生思维能力的形成并不是一蹴而就的, 是要经过不断训练逐渐形成的。 而运用向量法来解决数学问题, 就不需要学生进行作图、逻辑分析、综合分析等就可以有效解决问题。 由此可知, 虽然向量法可以简化高中几何难题的解决思路, 但这对培养学生的综合能力有着不利影响。 所以, 教师在解决数学问题教学时, 不仅要指导学生掌握向量法解题, 还要综合其他多种数学思维方法展开教学, 让多种思维、多种思想有机地交融在一起, 互相补充, 相辅相成。

二、高中数学中向量教学的实践

1.强化向量运算法则的理解与掌握

向量法可以凭借其独特、 简单运算规律和向量图形化的特点, 有效化简知识难点, 使原本抽象的数学难点具体化, 更便于学生提高解题速度和正确率。 但是向量法与数学其他运算方法还是有区别的, 最重要的区别是向量法采用了特殊的表示方式。 所以, 教师在运用向量解题教学时, 应运用对比的策略, 使学生在运用向量法解题过程中, 理解向量运算的几何意义, 加深对向量运算法则的认识, 明确向量的运算对象。 按以往的经验, 学生普遍采用机械记忆的方法来学习向量的运算法则和规律, 教师也容易忽略对向量运算规律形成过程的教学, 这样使得学生在学习向量时, 往往只学到皮毛, 无法深入到本质中。 所以, 数学教师在讲解这部分知识时, 需要注重让学生对向量运算法则反复验证的体验, 使学生充分认识向量将抽象的数学知识转换为具体化知识的过程, 理解向量运算的本质和意义, 提高学生运用向量知识解决难题的能力。

2.强化向量法的实践运用

向量法是一种高效的数学解题思维方法。在日常生活中, 也有很多实际应用涉及到向量的知识, 并且持续有效地促进了社会的进步。 所以, 在教学时, 数学教师应渗透实践运用的意识, 引导学生将课堂所学向量知识延伸至实际生活中, 指导学生解决实际问题, 提高学生理论联系实际的水平。 如, 在教平面向量的数量积这部分内容时, 可以结合一些具体的生活实例来展开。 某工厂刚刚买入一批货物, x千克A货物, y千克B货物, A货物价格为m元/千克, B货物的价格为n元/千克。假如数量向量用字母a表示, 价格向量用b字母表示, 就可以提到:a= ( x, y) , b= ( m, n) , 那么, 工厂购入货物的总费用就是数量向量a与价格向量b的数量乘积, 即mx+ny。 原本复杂的计算问题, 就这样迎刃而解了。 所以, 在生活中运用向量法可以极大提高问题解决的效率, 简化解决思路和方法。 教师应有意识地培养学生运用向量解决实际问题的意识和能力, 使学生体验到学以致用的满足感, 增强学好数学的动力。

3.强化向量教学思想方法的渗透

在高中数学知识架构中, 向量与其他的数学思想有着千丝万缕的联系。 比如数形结合思想、对比归纳思想等。 在进行向量教学时, 教师应鼓励、 培养学生积极探索和总结数学思想方法的意识, 让学生在不断练习、验证过程中体验数学思想方法, 逐渐形成符合自己特点的解题思维, 有效提高学生的向量解题能力。 教师在讲授向量的概念知识时, 应帮助学生准确把握和理清数学各部分内容间的内在联系, 并能有效整合, 将各部分知识内容互相渗透、融合, 最终构建起完整的、有效的知识体系, 真正提高学生对向量知识掌握和运用能力。

上一篇:美丽校园范文1500下一篇:美好的古诗词