纳米复合材料毕业论文

2024-07-11

纳米复合材料毕业论文(精选6篇)

纳米复合材料毕业论文 第1篇

有机/无机纳米复合材料的研究

储志博

集成1班 20135540

摘要: 有机/无机纳米复合材料是目前纳米复合材料发展的一个全新方向。结构和性能上差别较大的无机物和有机物以分子或原子尺度相复合,所得材料兼具有机物和无机物的特性,同时在力 学、光学、电学及电化学等方面呈现出新的特性,将成为2l世纪最有发展前途的复合材料⋯。本文是在搜集各种资料的基础上,对有机/无机纳米复合材料的发展的历程、制备方法、应用和发展前景进行了综述。

关键词: 有机/无机纳米复合材料;无机纳米粒子;聚合物;层装物

1,纳米复合材料的概念及发展

1.1纳米材料的概念

纳米材料是指晶粒尺寸在1~lOOnm间的单晶体或多晶体,纳米复合材料一般是指在陶瓷或金属基体中含有纳米粒子第二相的复合材料。近年来,人们对纳米材料许多不同寻常的特性有了进一步研究与了解,逐渐认识到其优异的物理和化学性质及广阔的应用前景,及对科技进步和社会发展的突出作用,不断投入人力物力进行纳米材料的开发研究,许多实验方法和工艺被成功地用于纳米晶体材料的合成及性能研究中。复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国防、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分,近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。

由于纳米材料的晶粒细小,使其晶界上的原子数的比例增大,即产生高浓度晶界,因而使纳米材具有许多不同于粗晶材料的特异的性质,如体积效应、表面与界面效应、量子尺寸效应、宏观量子隧道效应、特殊的光吸收特性、电化学性质等。从而使纳米材料在光、电、热力学和化学反应等许多方面表现出一系列优异性能,令目前科技手段无法解决的许多问题迎刃而解。因而在陶瓷、电子信息、生物工程、化学工业、金属加工和环境保护等行业具有非常广阔的应用前景。1.2纳米复合材料的发展

在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。我们制备的纳米蒙脱土/PA6复合材料中,纳米蒙脱土的层间距为1.96nm,处于国内同类材料的领先水平(中国科学院为1.5~1.7nm),蒙脱土复合到尼龙基体中后完全剥离成为厚度1~1.5nm的纳米微粒,其复合材料的耐温性能、阻隔性能、抗吸水性能均非常优秀,此材料已经实现了产业化;正在开发的纳米TiO2/聚丙烯复合材料具有优良的抗菌效果,纳米TiO2粉体在聚丙烯中分散达到60nm以下,此项技术正在申报发明专利。由于纳米聚合物复合材料的成型工艺不同于普通的聚合物,本方向还积极开展新的成型方法研究,以促进纳米复合材料产业化的进行。

碳纳米管是上个世纪九十年代初发现的一种新型的碳团簇类纤维材料,具有许多特别优秀的性能。我们在碳纳米管取得的研究成果主要包括:

1)大规模生产多壁碳纳米管的技术,生产出的碳纳米管的质量处于世界先进水平,生产成本也很低,为碳纳米管的工业应用创造了条件。

2)开发了制造碳纳米管为电极材料的双电层大容量电容器的技术。

3)开发了制造具有软基底定向碳纳米管膜的技术。

钨铜复合材料具有良好的导电导热性、低的热膨胀系数而被广泛地用作电接触材料、电子封装和热沉材料。采用纳米粉末制备的纳米钨铜复合材料具有非常优越的物理力学性能,我们采用国际前沿的金属复合盐溶液雾化干燥还原技术成功制备了纳米钨铜复合粉体和纳米氮化钨-铜复合粉体,目前正在加紧其产业化应用研究。

2, 有机/无机纳米复合材料的研究进展

2.1有机/无机纳米复合材料的发展历程

早在1959年,著名的物理学家Richard Feynaman E 在美国物理学年会中的讲演中首次提出了“What WOU1d happen if we could arrange theatoms one by one the way we want them?”的思想,日本科学家Kubo在1962年就对纳米离子的量子尺寸效应进行了理论研究,而后日本名古屋大学上田良二教授则定义纳米离子是用透射电镜TEM能看到的微粒。但寓至80年代初由Roy和Komarnanil】 提出“纳米复合材料”的概念以来,纳米复合材料的研究才得到迅速发展。近年来,制备有机/无机纳米复合材料是材料科学领域研究的一个热点,已引起人们的广 泛关注。如日本已将这种新材料应用于汽车工业食品包装业等,其它潜在的应用还包括飞机内部材料、电工和电子元件、防护罩结构部件、制动器和轮胎等有机/无机纳米复合材料已经成为日本、美国、法国等发达国家近年来在新材料和功能材料领域中研究的热点之一。材料的制备是性能研究的基础,因此,纳米复合材料的制备方法一直是该研究领域的一个重要课题。

2.2有机/无机纳米复合材料的应用

与传统的有机/无机复合材料相比,有机/无机纳米复合材料兼具无机物与有机聚合物的优点El4]。无机纳米粒子与聚合物间界面是微观的,而不是宏观的,甚至是分子级水平的,由于无机纳米粒子与聚合物的界面面积很大,这就大大降1氐了界面应力集中,消除无机物与有机物基体之间热膨胀系数不匹配问题,充分发挥无机物分子的优异力学性能,高耐热性,聚合物的可加热性,电学性能,光学性能等。有机/无机米复合材料物理性能明显优于相同组分的常规复合材料_I。2.2.1高性能增强高聚物复合材料[16]

纳米复合使材料比普通复合具有更优越的力学性能,它可作为聚合物一无机超韧高强结构材料,高温粘结剂和耐刮涂料等,如尼龙一6/蒙脱石已实现工业化,1990年日本丰田研究所已将此材料应用于汽车零部件,包装材料,1995年尤尼卡公司则将该材料应用于汽车引擎盖。2.2.2半导电和导电材料

导电聚合物嵌入无机层状物的有机/无机纳米复合材料可成为电子导电或粒子导电材料,这类材料有明显的各向异性。环氧乙烷聚合物硅酸盐系有机/无机纳米复合材料可用作固体电池的电解质。V205和Sn02的有机/无机纳米复合材料是优良的半导体,己加工成型为透明电极。2.2.3电致发光或变色材料

V205,Mo03,W03等无机层状物和PPy(聚吡咯)形成的嵌入型有机/无机纳米复合材料可制得电致发光材料和电致变色材料。2.2.4仿生材料

仿生材料是当前材料科学中的前沿领域。自纳米材料问世以来,仿生材料研究的热点已经开始向纳米复合材料转移。目前已有少量仿生材料应用于医疗领域,如A1 203于生物相容性好、耐磨损、强度高,韧性比常规材料高等特性,而用来制作人工关节、人工骨、人工齿根等,纳米Zr02也可以制作人工关节、人工齿根等。2.3有机/无机纳米复合材料的研究展望

目前,对有机/无机纳米复合材料的研究在国内外都属于起步发展阶段,尤其在国内,是近几年才开始对其研究的,无论是技术上还是理论研究方面,待研究的问题还很多,具有广阔的发展空间。研究结构一性能关系及性能变化的机理对设计、制备性能卓越的材料具有重要的指导意义,如何在分子基础上研究复合材料的特异性能是当今面』临的一大课题。综上所述,我们可以欣喜地看到,已有的方法在不断改进,新的方法在不断被发现和利用。有机/无机纳米复合材料以优异的性能越来越受到人们的关注,相信随着研究的不断深入和对复合机理了解的不断深化,必将有突破性进展,人们将根据实际需要设计并合成出更多性能优异的有机/无机纳米复合材料,从而更好的服务于人类。

3,纳米复合材料的未来展望

纳米复合材料在许多方面显示出特异的性质,因此,世界各地对其开发研究日益活跃。总体看来,纳米复合材料在许多方面显示出特异的性质,因此,世界各国对其开发研究日益活跃。总体看来,目前我国聚合物/纳米材料的应用仍处在科研开发和小批量生产阶段,离产业化和大批量进入市场还有相当一段距离。主要存在以下几个问题:一是加大纳米材料的科研开发及工业化生产;二是纳米粒子之间的自聚现象严重,直接使用纳米粒子及现有的共混复合方法难以达到在基体中的均匀分散,这可能成为影响复合材料性能的关键因素。三是纳米粒子与聚合物的界面结合性[7],深入研究纳米粒子与聚合物的界面结合理论,加强纳米粒子与聚合物的界面结合。这些问题希望能得到行业有关人员的重视、研究及解决。随着纳米科学技术的不断发展,可以预言,纳米材料在聚合物中必将得到广泛的应用。

参考文献

[1]党琴琴 陆守东 孙平川 袁直 丝素蛋白-粘土纳米复合材料的热力学及动力学行为 [A]南开大学学报:自然科学版.2010(3).-13-17 [2] 蒋蓓蓓 杨建军 吴庆云 张建安 吴明元 水性聚氨酯纳米复合材料的研究进展[A]化工新型材料.2010(6).-22-24,42 [3] 朱永康(编译)碳纳米管纳米复合材料研究的最新进展[A] 橡胶参考资料.2010(3).-6-11 [4] 马莺 陈玉萍 徐林 翟正 杨晓燕 侯文华 一些层状纳米复合材料的制备和应用[A] 无机化学学报.2010(4).-551-559 [5] 陈亚芳 王保国 陈晋芳 纳米复合材料的制备技术及应用进展[A] 山西化工.2010,30(2).-27-30,61 [5] 郭睿 贾建民 季振清 聚氨酯/无机纳米复合材料的研究[A] 皮革与化工.2010(1).-14-17,23 [6] 马志云 郭百凯 赵建社 有机/无机纳米复合材料的研究进展[A] 中国科技博览.2010(3).-119-120 [7] 艾照全 李吉莉 孙桂林 胡瑛 有机核-无机壳型纳米复合材料研究进展[A] 粘接.2010(1).-53-57 [8] 王孝虹 王峥 聚合物-无机纳米复合材料的制备方法[A] 广州化工.2010(1).-48-50 湖北大学化学化工学院,湖北武汉

[10] 贾建民 郭睿 聚氨酯/无机纳米复合材料应用研究进展精细[A] 石油化工进展.2009(12).-30-33 陕西科技大学教育部轻化工助剂化学与技术重点实验室

[11] 何冶 支文 纳米复合材料的性质及制备的研究[A] 长春大学学报.2009,19(10).-27-28 [1]长春大学机械工程学院,吉林长春130022 [2]长春大学理学院,吉林长春 [12] 刘学清 刘继延 周芳 稻壳SiO2/聚氨酯纳米复合材料的制备及性能研究[A] 广东化工.2010(2).-9-10,18 江汉大学化学与环境工程学院,湖北武汉

[13] 赵西坡 彭少贤 舒满星 黄颖婷 李敏立 汪燕 一步法原位插层聚合PA6/MMT纳米复合材料的工艺研究[A] 塑料工业.2010(4).-14-17 湖北工业大学化学与环境工程学院,湖北武汉

[14] 丁爱武 黄茂芳 高天明 曾宗强 聚合物/TiO2抗菌纳米复合材料的研究进展[A] 热带农业科学.2010,30(2).-28-33 [15] 高芳一 纳米复合材料提高锂离子电池性能[A] 技术与市场.2010(6).-109-109

纳米复合材料毕业论文 第2篇

【摘 要】纳米技术是当今世界最有前途的决定性技术。纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚爱好。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学特性,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。文章简要地概述了纳米技术,纳米材料的分类、特性以及纳米材料在催化、涂料、医药等领域的应用,并展望了纳米材料广阔的应用前景。

【关键词】纳米技术;纳米材料;分类;特性;应用;前景

一、纳米科技及纳米材料的涵义

纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。纳米科技是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。其中纳米材料是纳米科技的重要组成部分。

纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,广义地说,纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

二、纳米材料的分类

按其颗粒组成的尺寸和排列状态,可分为纳米晶体和纳米非晶体。前者指所包含的纳米微粒为晶体,后者由具有短程序的非晶态纳米微粒组成,如纳米非晶态薄膜.

按其结构来分,纳米材料的基本单元可以分为四类:零维的原子团簇和纳米微粒;一维调制的纳米单层或多层薄膜;二维调制的纳米纤维结构;三维调制的纳米相材料。

三、纳米材料的特性

纳米材料的特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与本体材料有明显差异。主要表现在:纳米材料性能表现出强烈的尺寸依赖性。当粒子尺寸减小到纳米级的某一尺寸时,则材料的物性会发生突变,与同组分的常规材料的性能完全不同,且同类材料的不同性能有不同的临界尺寸,对同一性能,不同材料相应的临界尺寸也有差异,所以当物质的粒子尺寸达到纳米数量级时,将会表现出优于同组分的晶态或非晶态的性质。如熔点下降、强烈的化学活性和催化活性及特殊的光学、电学、磁学和力学及烧结性能。这主要是由纳米材料的下列效应引起:小尺寸效应(体积效应);表面与界面效应;量子尺寸效应(久保效应);宏观量子隧道效应。

1、小尺寸效应指当超微粒的尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,从而使其声、光、电、磁,热力学等性能呈现新的尺寸效应。陶瓷材料在通常情况下呈现脆性,而由纳米超微粒制成的纳米陶瓷却具有良好的韧性和延展性。这是由于纳米超微粒制成的固体材料具有大的界面,界面原子排列相当混乱,原子在外力变形条件下容易迁移。因此使原先脆性的材料表现出良好的韧性和延展性,使陶瓷材料具有新奇的力学性能。

2、表面与界面效应指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多,因此纳米粉微粒通常具有相当高的表面能。

3、当粒子的尺寸降到一定值时,金属费米能级附近的电子能级出现由准连续变为离散的现象。当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,纳米微粒会呈现一系列与宏观物体截然不同的特性,称之为量子尺寸效应。例如,有种金属纳米粒子吸收光线能力非常强,在1.1365千克水里只要放入千分之一这种粒子,水就会变得完全不透明。纳米材料的量子尺寸效应使纳米材料具有:高度光学非线性;特异性催化和光催化性;强氧化性与强还原性。用这一特性可制得光催化剂、强氧化剂与强还原剂。可使用于制备无机抗菌材料。

4、微观粒子具有贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也有隧道效应,它们可以穿过宏观系统的势垒而产生变化,这种被称为纳米粒子的宏观量子隧道效应。

四、纳米材料的应用

1、在催化方面的应用

催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。

纳米微粒作为催化剂应用较多的是半导体光催化剂,主要是在有机物制备方面。光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂或钮催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。

2、在涂料方面的应用

纳米材料由于其表面和结构的非凡性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。

3、在医药方面的应用

21世纪控制药物释放、减少副作用、提高药效、发展药物定向治疗,已提到研究日程上来。纳米粒子将使药物在人体内的传输更为方便。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织;使用纳米技术的新型诊断仪器,只需检测少量血液就能通过其中的蛋白质和DNA诊断出各种疾病,美国麻省理工学院已制备出以纳米磁性材料作为药物载体的靶定向药物,称之为“定向导弹”。

纳米生物学用来研究在纳米尺度上的生物过程,从而根据生物学原理发展分子应用工程。在金属铁的超细颗粒表面覆盖一层厚为5~20nm的聚合物后,可以固定大量蛋白质非凡是酶,从而控制生化反应。这在生化技术、酶工程中大有用处。使纳米技术和生物学相结合,研究分子生物器件,利用纳米传感器,可以获取细胞内的生物信息,从而了解机体状态,深化人们对生理及病理的解释。

五、纳米材料的前景

21世纪将是纳米技术的时代,纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。纳米材料的应用涉及到各个领域,在机械、电子、光学、磁学、化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。

21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。

纳米复合材料毕业论文 第3篇

纳米氧化镁具有优良的耐热性、绝缘性、热传导性、补强性和很高的抗拉强度,当其用作塑料、金属和陶瓷的改性与增强材料时,显示出极佳的物理、化学性质和优异的机械性能[2,3]。而且氧化镁与金属基、非金属基相容性好, 在结构复合材料的基体中有很好的分散。

本方法以碳纳米管为模板,采取前驱物分解法制备出碳纳米管/氧化镁纳米复合材料,有望成为一种新型的功能材料。

1 实验部分

1.1 设备及分析仪器

SX-5-12型箱式电阻炉,天津市斯特仪器有限公司生产;美国FEI公司quanta 200扫描电子显微镜;配带OXFORD INCA 250能谱仪;SIMENS公司D5005X-射线衍射仪;美国Nicolet/instruments公司NEXWS 470傅立叶红外光谱仪;法国SETARAM公司TG-DTA92/DSC-111热重/差热联用分析仪。

1.2 分析测试方法

(1)在SIMENS公司D5005X-射线衍射仪上分析样品的物相。测试条件:CuK a辐射,管流15mA,管压35mV,扫描速度0.2°/min。

(2)在美国FEI公司Quanta 200扫描电子显微镜上观察晶化产物的形貌,结合OXFORD INCA250能谱仪分析元素的组成。

(3) 美国Nicolet/instruments公司NEXWS 470傅立叶红外光谱仪对样品红外吸收特征进行表征,KBr压片。

(4)TG-DTA92/DSC-111热重分析仪对样品进行热分析。

1.3 样品制备

1.3.1 碳纳米管的制备

碳纳米管的制备参照相关文献[4]

1.3.2 碳纳米管/氧化镁晶须复合材料的制备

将一定量的碳纳米管超声分散于无水乙醇中,然后加入到一定浓度的MgCl2溶液中,搅拌均匀后,升温到50℃,在磁力搅拌下,缓慢滴加入一定量氨水溶液,形成白色沉淀。滴加完毕,继续反应2h,室温下静置2h。将沉淀物过滤分离,滤饼分别用水和无水乙醇洗涤数次后,于80℃下真空干燥,得到白色前驱体。最后在空气气氛中600℃下煅烧4h,即得到碳纳米管/氧化镁纳米复合材料(称为样品S)。

2 结果与讨论

2.1 X射线衍射分析

对样品S进行XRD分析,如图1所示。显示出碳纳米管和氧化镁的衍射峰,说明样品S是由碳纳米管和氧化镁组成的复合材料。

2.2 红外光谱分析

对样品S进行IR分析,如图2所示。3356.31cm-1的峰为水的吸收峰,可能是样品中或KBr中有微量的水分,也可能是在测试过程中吸收了空气中的水分;428.83cm-1的峰是Mg-O的弯曲振动吸收峰, 538cm-1的峰为Mg-O的伸缩振动吸收峰。图中没有C化合物的峰,说明碳纳米管在反应中未受到破坏,也没有与MgO形成化学键。

2.3 扫描电子显微镜分析

对碳纳米管和样品S进行扫描电子显微镜观察和能谱分析,结果如图3、图4所示。从图3可以看出,碳纳米管管壁光滑,说明碳纳米管管壁上的缺陷较少,这为氧化镁的沉积提供了很好的衬底。与碳纳米管相比,氧化镁在碳纳米管表面沉积后,管径变粗且管壁表面较粗糙(b、c是不同放大倍数的前驱物扫描照片,从c图可以更清楚地看到管壁表面沉积的小颗粒)。前驱物煅烧后,形貌保持不变。

图4是样品S的面扫描能谱图,可以清楚地看到样品S由C、Mg、O组成。

2.4 讨论

晶体成核理论认为,在晶体成核过程中,根据成核发生的方式,大致可分为三种类型:均相成核(自发的),非均相成核(由其他粒子诱发)和二次成核(由晶体诱发)。非均相成核的成核功较均相成核的成核功小,也就是说非均相成核比均相成核容易。

在本研究体系中,加入了碳纳米管,提供了发生非均相成核的界面,而非均相成核比均相成核容易,所以加料结束后,溶液中离子扩散碳纳米管表面,在碳纳米管表面发生非均相成核,随后晶核在过饱和浓度的驱使下生长成晶体,也即含碳纳米管的前驱物,经化学分析(络合滴定)为5Mg(OH)2·MgCl2·8H2O。因为晶体生长沉积在碳纳米管上,所以反应结束时管径变粗。

图5是前驱物的DTG-TG曲线。由图5可看出,主要有4个峰值。前3个峰是失去表面吸附水和结晶水,并伴随氯化镁的水解失去部分氯化氢气体,最后一个峰是碱式氯化镁分解变成氧化镁。

由前驱物的DTG-TG曲线可知,含碳纳米管的前驱体在600℃煅烧4h时,沉积在碳纳米管上的碱式氯化镁分解变成氧化镁,而碳纳米管没有发生变化。在煅烧前后复合材料形貌保持不变,即所谓的假象技术。

3 结 论

以碳纳米管为模板,采用前驱物分解法合成了碳纳米管/氧化镁纳米复合材料。该材料是由氧化镁均匀包裹在碳纳米管上构成的一种复合材料,管径约100nm。和碳纳米管相比,复合材料管径变粗且表面粗糙,有望成为一种新型的复合材料增强剂。

摘要:以碳纳米管为模板,采取前驱物分解法合成了碳纳米管/氧化镁纳米复合材料,用XRD、IR、SEM和TG-DTG对产物进行了表征。结果表明,产物是由氧化镁均匀包裹在碳纳米管上构成的一种复合材料,管径约100nm。和碳纳米管相比,复合材料管径变粗且表面粗糙。

关键词:碳纳米管,氧化镁,前驱物分解,纳米复合材料

参考文献

[1]Florian H G,Jacek N,Zbigniew R.[J].Chemiccd Physics Let-ters,2003,370:820-824.

[2]Evans C C.Whiskers[M].London:Mills Boon Li mited,1972:1-68.

[3]Li Wu(李武).Inorgan Whisker[M].Beijing:Chemistry Indus-try Press,2005,120-130.

朝阳产业纳米塑木复合材料 第4篇

近年来,国内WPC产能年增长率高达50%以上,产量已超过200万吨/年,产值可超过200亿元。专家预测,在未来的10年内,我国WPC产量仍将以很快的速度增长,并发展成为一个年产量超过5000万吨、年产值达4000亿元左右的新兴产业。新产业意味着新机遇,率先进入这一全新的空白市场,抢占更多市场空间,必将成就终生财富!

业内统计,纳米塑木复合材料广泛用于建筑建材、园林景观、室内装饰、公路、铁路、地铁、船舶、港口、码头、航空、广告、礼品包装、物流,车用部件、工业、农业、教学器材、体育器材、民用设施、市政设施、商业场所、家用电器及日常生活用品等领域。这种材料主要原料是废旧塑料和废弃农作物秸秆,在许多领域可以替代木材和钢材,真正实现以塑代木、以塑代钢,可生产制作成各种二次、三次产品,不但减少了废旧塑料造成的“白色污染”,解决农村大量闲置的秸杆资源利用问题,还可以缓解森林资源危机,提高产品的附加值,市场前景极为广阔,极具商业价值,是名副其实的朝阳产业。

纳米材料论文 第5篇

关键词:光催化; 纳米材料; 环境保护;

工业废水和废气中都含有较多的毒害物质, 比如有机磷农药或是二氯乙烯等, 这些物质对于人体的影响都是十分明显的。传统的水处理方式, 比如吸附法、混凝法等方法在现阶段实际应用环节中仍然存在较大的困难, 效果并不理想, 所以在今后的实际发展过程中就需要不断探索和获取一种经济、合理的方式, 实现对传统方法处理后水中的残留物质进行更有效的降解。1976年, 科学家在对紫外线光照射下对纳米Ti O2进行了研究, 发现这种方式可以将难以降解的有机化合物多氯联苯脱氯进行有效降解。当前, 已经发现超过3000余种难降解的有机化合物都可以借助此种方式进行降解, 尤其是水中有机污染物浓度较低或是其他降解方式不佳的时候, 这项技术更是能发挥出前所未有的技术优势。

一、光催化纳米材料

光催化的纳米材料采用的绝大多数都是金属氧化物或是硫化物等半导体材料, 是一种特殊的电子结构。和金属相比, 这种半导体存在明显的不连续性, 在对电子的低能价带进行填满的过程中会和空的高能导带存在明轩的禁带, 所以当二者产生的能量大于光照射的时候, 在价带上的电子就会被转移到导带上, 最终在半导体表面形成具备高活性的电子[1]。

二、光催化降解原理

在光催化反应中, 获取光激发所出现的空穴, 和对给体或是受体产生的作用也是有效的。所以在实际工作中为了确保光催化反应能更有效的进行, 就应该适当降低电子和空穴之间的简单复合。

三、光催化纳米材料在环保中的应用

(一) 光催化纳米技术在污水处理中的应用

传统的水处理方式中可以对污水中出现的悬浮物质或是泥沙等大颗粒的污染物进行去除, 但是对于浓度较低的可溶性物质却很难进行有效的处理, 并且由于这项工作的工作效率比较低, 花费的经济成本比较高, 所以很多时候并不能进行有效的处理。但是借助纳米材料的光催化方法, 就可以将很多难以降解而定污染物进行合理转变, 从而将原本水中的污染物转化为水分子或是二氧化碳等无污染的分子物质。

比如在对有机废水的处理环节中, 光催化纳米材料就可以将水中的绝大多数有机污染物进行转化, 使其成为无污染的物质, 比如可以将酸。表面活性剂等有机污染物进行氧化, 使其转变为水或二氧化碳等无害的物质。借助纳米材料可以的对物质表面性能进行转变, 通过这种方式对水中纳米的分散性进行优化。从而实现对光激发作用下产生的电子和空穴复合问题进行抑制, 进一步实现对催化活性的提升[2]。

再比如对无机废水的处理环节中, 由于无机物在纳米粒子表面存在明显的光化学活性, 因此光催化纳米材料后所出现的电子和空穴都可以对高氧化状态的物质进行还原, 也就是借助此种方式实现对无机物污染的有效消除。

(二) 光催化纳米技术在大气污染治理中的应用

对大气污染产生影响的主要成分就是二氧化硫、一氧化碳等物质, 这些气体如果长期存在于空气中必然会对人体的健康造成不利的影响。光催化剂可以和一些气体吸附剂进行有效结合, 从而更有效的实现对降解浓度的有效降低。

将一些对日光有相应的半导体纳米材料涂抹在墙壁或是其他合理的位置上可以形成空气清洁剂的作用, 而二氧化硫、一氧化碳等物质吸附在上面的时候, 就可以在光的作用下被转变为无害物质, 这种方式对于去除臭气的影响也是十分重要的环节[3]。纳米对于氟利昂具备较强的光催化活性, 因此将这以技术进行融合后, 可以在表面对酸性进行催化, 通过这种方式获取较高的光催化活性作用, 这对于物质稳定性的提升也将起到一定的帮助作用。

此外, 纳米技术还能对室外的气象有机污染物进行分解, 比如在紫外线的照射下, 纳米材料可以将室内装饰建材中产生的甲醛、氯乙烯等物质进行有效分解。将活性炭纤维作为重要载体的过渡金属离子中适当进行纳米材料光催化剂的融合, 通过此种方式将紫外线光照射下浓度更低的甲醛进行或降解, 但是这种技术手段对于浓度高的污染物降解效果比较差, 同时由于使用时间的增加, 最终催化剂的活性也将大大降低, 最终甚至会出现活性的完全消失。

结束语:

综上所述, 光催化纳米材料在当前环境保护中有着越来越显着的应用, 不仅可以对难处理的污染物进行有效处理, 同时还能借助自身的吸附作用对低浓度的有害物质进行分解。在当前光催化纳米技术的不断发展过程中, 环境保护工作效率和质量也必然会得到显着提升。总而言之, 当前我国环境保护工作已经受到了越来越多的影响, 甚至对人们的身体健康产生了威胁, 所以在此种背景下, 更需要加强对相关技术的研究, 不断为我国环保工作的顺利开展提供帮助作用, 实现可持续工作的顺利进行。

参考文献

[1]熊玉宝.光催化纳米材料在环境保护中的应用研究[J].低碳世界, , 58 (06) :28-29.

[2]王骞.Ti O_2光催化纳米材料在环境保护中的应用[J].鞍山师范学院学报, , 13 (06) :17-20.

纳米材料论文 第6篇

摘要:纳米技术是在10到100纳米尺度的空间内研究电子、原子和分子运动规律及特性。纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能。随着国际科学研究的发展,人们发现当物质达到纳米尺度以后,大约在1~100纳米这个范围空间。物质的性能就会发生突变,出现特殊性能。这种既不同于原来组成的原子、分子,也不同于宏观物质的特殊性能的物质构成的材料,即为纳米材料。纳米材料是纳米技术的重要的组成部分。

关键字:纳米粒子,纳米材料,纳米管,磁纳米材料,纳米存储,纳米武器。

引言

现如今科学界普遍认为:纳米技术,信息技术与生物技术,是21世纪最有影响力的三大关键技术,不仅对人类社会的进步起到了重要的作用,而且对与促进各国经济、文化的发展起到了关键性的作用。纳米技术是现代高新技术的主要组成部分,它为许多特殊材料的制造提供了技术基础。目前,此项技术已经获得了巨大的研究成果,制造出许多高科技产品,但是也存在一系列困难和挑战。本文将讨论纳米科学和技术目前所获得的成果以及在新时期里发展所面对的困难和挑战。一系列新的方法将被讨论。我们还将讨论倘若这些困难能够被克服我们可能会有的收获。

1.医学方面的应用

目前,国际医学行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医学就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法,随着健康科学的发展,人们对药物的要求越来越高。控制药物释放减少副作用,提高药效,发展药物定向治疗,这些都必须凭借纳米技术。纳米粒子可使药物在人体内方便传输。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织,尤其是以纳米磁性材料作为药物载体的靶定向药物,称为“定向导弹”。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由的滚动,因此可以用检查和治疗身体各部位的病变。利用纳米系统检查和给药,避免身体健康部位受损,可以大大减小药物的毒副作用,因而深受人们的欢迎。

2.在工程中的应用

纳米科技在混凝土中的应用。随着经济全球化的进一步发展以及我国经济建设的全面开展,混凝土作为建筑中应用量最大、使用范围最广的建筑材料,其产量和用量都在不断的增加。纳米科技的不断发展,为传统混凝土的改造提供了前所未有的广阔前景。应用纳米技术改造后的混凝土,不仅具有传统混凝土的特性,而且拥有了新的特性:

2.1净化环境的混凝土:将纳米技术应用于混凝土,从而使得混凝土具备了净化环境的功能,不仅可以有效的分解有毒物质和某些微生物,净化空气和地表水等,还可在空间和地面同时起到保护环境的良好作用。

2.2智能预警混凝土和在线修复混凝土:利用纳米技术,使混凝土在产生破坏前具有报警功能,可以有效的避免事故的发生,具有非常广阔的发展前景。

2.3弹性混凝土:利用纳米材料特性,可以提高混凝土的弹性和韧性,应用于建筑应用中可提高建筑物防震能力及其他相关性能。

2.4自我修复混凝土:当混凝土出现裂纹等缺陷时,通过纳米技术的机制,调动混凝土自身的原子微区反应,进行自我修复,延长工程寿命,提高建筑物安全性

3.在陶瓷中的应用

陶瓷不仅广泛应用于日常生活和工业生产中。由于传统陶瓷材料存在质地脆,韧性强度差的先天性不足,使得其在应用中受到了限制。纳米科技的发展改变了这一不足,纳米陶瓷具有高硬度、高韧性、低温超塑性、易加工等传统陶瓷无与伦比的优点,使它们具有像金属一样的柔韧性和可加工性,这使得使纳米陶瓷材料的应用前景更为广阔。近年来国内外对纳米陶瓷的研究表明,在微米级基体中引人纳米分散相进行复合,可使材料的断裂强度、断裂韧性大大提高2至4 倍,使最高使用温度提高400%一600%,同时还可使材料的硬度、弹性模量、抗蠕变性和抗疲劳破坏性能提高。

4.在化工方面的应用

4.1制造特殊性能的橡胶材料:在橡胶塑料等化工领域,纳米材料能发挥重要作用。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3和SiO2加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。

4.2超高活性催化剂:我们知道,当物体被多次分割后,表面积会不断增大。如果把化学催化剂分割到纳米量级,其比表面积(面积与质量的比)就会变得非常大,所以纳米催化剂可以大大提高化学催化效率。例如,纳米TiO2能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有利污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。

5.在信息产业的应用

5.1磁存储介质材料:近年来随着信息量飞速增加,要求记录介质材料高性能化,特别是记录高密度化。高记录密度的记录介质材料与超微粒有密切的关系。若以超微粒作记录单元,可使记录密度大大提高。纳米磁性微粒由于尺寸小,具有单磁畴结构,矫顽力很高的特性,用它制作磁记录材料可以提高信噪比,改善图像质量。

5.2纳米磁记录介质:如合金磁粉的尺寸在80nm,钡铁氧体磁粉的尺寸在40nm,今后进一步提高密度向“量子磁盘”化发展,利用磁纳米线的存储特性,记录密度达400Gbit/in2,相当于每平方英寸可存储20万部红楼梦小说。5.3磁性液体:它是由超顺磁性的纳米微粒包覆了表面活性剂,然后弥漫在基液中而构成。利用磁性液体可以被磁场控制的特性,用环状永磁体在旋转轴密封部件产生一环状的磁场分布,从而可将磁性液体约束在磁场之中而形成磁性液体的“O”形环,且没有磨损,可以做到长寿命的动态密封。这也是磁性液体较早、较广泛的应用之一。此外,在电子计算机中为防止尘埃进入硬盘中损坏磁头与磁盘,在转轴处也已普遍采用磁性液体的防尘密封。磁性液体还有其他许多用途,如仪器仪表中的阻尼器、无声快速的磁印刷、磁性液体发电机、医疗中的造影剂等等。

5.4磁光存储器:当前只读和一次刻录式的光盘已经广泛应用,但是可重复写、擦的光盘还没有产业化生产。最具有发展前途的是磁性材料介质的磁光存储器,其可以像磁盘一样反复多次地重复记录。目前大量使用的软磁盘,由于材料介质和记录磁头的局限性,其存储密度已经达到极限;另外其已经不能满足信息技术的发展要求,无法在一张盘上存储更多的图象和数据。采用磁光盘存储,就能在一张盘上记录数千兆字节到数十千兆字节的容量,并且能反复地擦写使用。

6.军事领域的运用

6.1电波吸收(隐身)材料:纳米粒子对红外和电磁波有吸收隐身作用。由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,这就大大减少波的反射率,使得红外探测器和雷达接收到的反射信号变得很微弱,从而达到隐身的作用;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4个数量级,对红外光和电磁波的吸收率也比常规材料大得多,这就使得红外探测器及雷达得到的反射信号强度大大降低,因此很难发现被探测目标,起到了隐身作用。

6.2高强度防弹衣、武器外壳材料:碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。目前在工业上常用的增强型纤维中,决定强度的一个关键因素是长径比,即长度和直径之比。目前材料工程师希望得到的长径比至少是20:1,而碳纳米管的长径比一般在1000:1以上,是理想的高强度纤维材料。2000年10月,美国宾州州立大学的研究人员称,碳纳米管的强度比同体积钢的强度高100倍,重量却只有后者的1/6到1/7。碳纳米管因而被称“超级纤维”。可用于制造超级防弹衣。

7航空航天领域的应用

7.1高强度,耐高温材料:细晶是目前唯一的一种既可以提高金属强度,又可以提高韧性的方法。在纳米金属材料中普遍存在着细晶强化效应,即材料的硬度和强度随着晶粒尺寸的减小而增大,若把超微细陶瓷粉末引入金属基体(如向铝、铜、银、钢、铁等合金中引入SiC、Si3N4、TiN)可制造出质量轻、强度高、耐热性好的新型合金材料。纳米氮化钛应用于合金钢、铁纳米TiN具有高硬度、耐高温、粒度小和分散好的特点。表面ZETA电位:-18.0mV,与金属具有非常优秀的结合力。在钢水结晶过程中成为晶核相,大大增加成晶数量和减少晶粒尺寸。达到细化合金晶粒的效果,改善合金性能的目的。晶粒越细,单位体积内的晶粒界面越多,由于晶界间原子排列比晶粒内部的排列更加紊乱,因而位错密度较高,致使晶界对正常晶格的滑移位错产生缠结,不易穿过晶界继续滑移,变形抗力增大,表现为强度提高。由此可制造出高强度推进器,满足大型火箭发射需求。

7.2缓解树脂老化材料:树脂复合材料中加入一定量的SiO2后,可以强烈地反射紫外线,大大缓解树脂降解作用,从而延缓材料的老化。外太空的紫外线辐射非常强,将此种纳米材料涂于各种航天器表面可以大大延长航天器的寿命。

8.在制造电器元件的应用

8.1纳米微晶稀土软磁材料:在1988年,首先发现在铁基非晶的基体中加入少量的铜和稀土,经适当温度晶化退火后,获得一种性能优异的具有超细晶粒(直径约10nm)软磁合金,后被称为纳米晶软磁合金。纳米晶磁性材料可开发成各种各样的磁性器,应用于电力电子技术领域,用作电流互感器、开关电源变压器、滤波器、漏电保护器、互感器及传感器等,可取得令人满意的经济效益。

8.2巨磁电阻材料:将纳米晶的金属软磁颗粒弥散镶嵌在高电阻非磁性材料中,构成两相组织的纳米颗粒薄膜,这种薄膜最大特点是电阻率高,称为巨磁电阻效应材料,在100MHz以上的超高频段显示出优良的软磁特性。由于巨磁电阻效应大,可便器件小型化、廉价,可作成各种传感器件,例如,测量位移、角度,数控机床、汽车测速,旋转编码器,微弱磁场探测器(SQUIDS)等

8.3磁性薄膜变压器:个人电脑和手机的小型化,必须采用高频开关电源,并且工作频率越来越高,逐步提高到1~2MHz或更高。要想使高频开关电源进一步向轻薄小方向发展,立体的三维结构铁芯已经不能满足要求,只有向低维的平面结构发展,才能使高度更薄、长度更短、体积更小。对于10~25W小功率开关电源,将采用印刷铁芯和磁性薄膜铁芯。几个微米厚的磁性薄膜,基本上不成形三维立体结构,而是二维平面结构,其物理特性也与原来的立体结构不同,可以获得前所未有的高性能和综合性能

纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。

9.纳米结构的制备

有两种制备纳米结构的基本方法:build-up和 build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down 方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等);“Build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(MBE)、化学气相淀积(MOVCD)等来进行器件制造的传统方法。“Build-down”方法的缺点是较高的成本。

纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up” 方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。

10.纳米结构尺寸、成份、位序以及密度的控制

为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于GaN材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。⑴ 电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。

⑵ 聚焦离子束光刻是一种机制上类似于电子束光刻的技术。

⑶ 扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。

⑷ 多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。

⑸ 倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。

⑹ 与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。

⑺ 将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。

11.纳米制造所面对的困难和挑战

随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80 nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用X光和EUV 的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。

对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100 nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。

12展望

目前,已有不少纳米尺度图形刻制技术,它们仅有的短处要么是刻写速度慢要么是刻写复杂图形的能力有限。这些技术可以用来制造简单的纳米原型器件,这将能使我们研究这些器件的性质以及探讨优化器件结构以便进一步地改善它们的性能。必须发展新的表征技术,这不单是为了器件表征,也是为了能使我们拥有一个对器件制造过程中的必要工艺如版对准的能进行监控的手段。随着器件尺度的持续缩小,对制造技术的要求会更苛刻,理所当然地对评判方法的要求也变得更严格。随着光学有源区尺寸的缩小,崭新的光学现象很有可能被发现,这可能导致发明新的光电子器件。然而,不象电子工业发展那样需要寻找MOS晶体管的替代品,光电子工业并没有如此的立时尖锐问题需要迫切解决。纳米探测器和纳米传感器是一个全新的领域,目前还难以预测它的进一步发展趋势。然而,基于对崭新诊断技术的预期需要,我们有理由相信这将是一个快速发展的领域。总括起来,在所有三个主要领域里应用纳米结构所要求的共同点是对纳米结构的尺寸、材料纯度、位序以及成份的精确控制。一旦这个问题能够解决,就会有大量的崭新器件诞生和被研究。纳米技术是本世纪前20年的主导技术,纳米材料是纳米技术的核心,是21世纪最有前途的材料,也是纳米技术的应用基础之一。纳米科技的发展给传统磁性产业带来了跨越式发展的重大机遇和挑战,纳米级磁性材料的开发和研究是磁性材料发展的一个必然方向,但同时也应重视用纳米技术改造传统产业和对现有材料进行纳米改性方面的研究,以全面提高企业的技术水平和竞争能力,在世界民族之林树立中华民族的大旗。

参考文献:

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

【纳米复合材料毕业论文】相关文章:

纳米复合涂层05-26

纳米复合电极05-26

纳米复合橡胶07-18

纳米复合结构08-05

纳米复合薄膜材料07-06

纳米复合微球07-15

聚乳酸纳米复合材料07-28

基因纳米复合物08-12

碳纳米管/硫复合材料06-29

聚合物纳米复合材料08-29

上一篇:高校传媒联盟下一篇:幼儿园万圣节活动通知文案