高中物理公式定理总结

2024-07-26

高中物理公式定理总结(精选6篇)

高中物理公式定理总结 第1篇

中学物理教育网

全部资源完全免注册免费下载

http:// 高中物理基本概念、定理、定律、公式(表达式)总表

一、质点的运动(1)------直线运动 1)匀变速直线运动

1.平均速度V平=S/t(定义式)2.有用推论Vt2-Vo2=2as 3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2

4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo2 +Vt2)/2]1/ 6.位移S= V平t=Vot + at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t

以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0

8.实验用推论ΔS=aT2

ΔS为相邻连续相等时间(T)内位移之差

9.主要物理量及单位:初速(Vo):m/s

加速度(a):m/s2

末速度(Vt):m/s 时间(t):秒(s)

位移(S):米(m)路程:米 速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2)自由落体

1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。(2)a=g=9.8≈10m/s 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。3)竖直上抛

1.位移S=Vot-gt2/2 2.末速度Vt= Vo-gt(g=9.8≈10m/s2)3.有用推论Vt2-Vo2=-2gS

4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g

(从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。

初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!2 中学物理教育网

全部资源完全免注册免费下载

http://

二、质点的运动(2)----曲线运动 万有引力 1)平抛运动

1.水平方向速度Vx= Vo

2.竖直方向速度Vy=gt 3.水平方向位移Sx= Vot

4.竖直方向位移(Sy)=gt2/2 5.运动时间t=(2Sy/g)1/2

(通常又表示为(2h/g)1/2)6.合速度Vt=(Vx+Vy)1/2=[Vo+(gt)2]1/2 2

22合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo 7.合位移S=(Sx2+ Sy2)1/2 ,位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。2)匀速圆周运动

1.线速度V=s/t=2πR/T

2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V2/R=ω2R=(2π/T)2R 4.向心力F心=mV2/R=mω2R=m(2π/T)2R 5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR 7.角速度与转速的关系ω=2πn

(此处频率与转速意义相同)8.主要物理量及单位: 弧长(S):米(m)

角度(Φ):弧度(rad)频率(f):赫(Hz)周期(T):秒(s)

转速(n):r/s

半径(R):米(m)

线速度(V):m/s

角速度(ω):rad/s

向心加速度:m/s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。3)万有引力

1.开普勒第三定律T2/R3=K(=4π2/GM)

R:轨道半径

T :周期

K:常量(与行星质量无关)初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!中学物理教育网

全部资源完全免注册免费下载

http:// 2.万有引力定律F=Gm1m2/r2

G=6.67×10N·m2/kg2方向在它们的连线上

-113.天体上的重力和重力加速度GMm/R2=mg

g=GM/R2

R:天体半径(m)4.卫星绕行速度、角速度、周期

V=(GM/R)1/ω=(GM/R3)1/2

T=2π(R3/GM)1/2 5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s

V2=11.2Km/s

V3=16.7Km/s 6.地球同步卫星GMm/(R+h)2=m4π2(R+h)/T

2h≈36000 km h:距地球表面的高度 注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。

三、力(常见的力、力矩、力的合成与分解)1)常见的力

1.重力G=mg方向竖直向下g=9.8m/s2 ≈10 m/s2 作用点在重心

适用于地球表面附近2.胡克定律F=kX 方向沿恢复形变方向 k:劲度系数(N/m)X:形变量(m)3.滑动摩擦力f=μN 与物体相对运动方向相反 μ:摩擦因数 N:正压力(N)4.静摩擦力0≤f静≤fm

与物体相对运动趋势方向相反 fm为最大静摩擦力 5.万有引力F=Gm1m2/r2

G=6.67×10N·m2/kg2 方向在它们的连线上

-116.静电力F=KQ1Q2/rK=9.0×10N·m2/C2 方向在它们的连线上

97.电场力F=Eq E:场强N/C

q:电量C 正电荷受的电场力与场强方向相同 8.安培力F=BILsinθ

θ为B与L的夹角 当 L⊥B时: F=BIL,B//L时: F=0 9.洛仑兹力f=qVBsinθ θ为B与V的夹角 当V⊥B时: f=qVB,V//B时: f=0 注:(1)劲度系数K由弹簧自身决定(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定。(3)fm略大于μN 一般视为fm≈μN(4)物理量符号及单位 B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/S), q:带电粒子(带电体)电量(C),(5)安培力与洛仑兹力方向均用左手定则判定。

初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!中学物理教育网

全部资源完全免注册免费下载

http:// 2)力矩

1.力矩M=FL

L为对应的力的力臂,指力的作用线到转动轴(点)的垂直距离 2.转动平衡条件

M顺时针= M逆时针 M的单位为N·m 此处N·m≠J 3)力的合成与分解

1.同一直线上力的合成 同向: F=F1+F2

反向:F=F1-F2(F1>F2)2.互成角度力的合成

F=(F12+F22+2F1F2cosα)1/2

F1⊥F2时: F=(F12+F22)1/2

3.合力大小范围 |F1-F2|≤F≤|F1+F2|

4.力的正交分解Fx=Fcosβ

Fy=Fsinβ

β为合力与x轴之间的夹角tgβ=Fy/Fx

注:(1)力(矢量)的合成与分解遵循平行四边形定则。(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立。(3)除公式法外,也可用作图法求解,此时要选择标度严格作图。(4)F1与F2的值一定时,F1与F2的夹角(α角)越大合力越小。(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化成代数运算。

四、动力学(运动和力)

1.第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

2.第二运动定律:F合=ma 或a=F合/m

a由合外力决定,与合外力方向一致。3.第三运动定律F=-F′ 负号表示方向相反,F、F′各自作用在对方,实际应用:反冲运动 4.共点力的平衡F合=0 二力平衡 5.超重:N>G 失重:N

初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!中学物理教育网

全部资源完全免注册免费下载

http://

五、振动和波(机械振动与机械振动的传播)

1.简谐振动F=-KX F:回复力 K:比例系数 X:位移 负号表示F与X始终反向。2.单摆周期T=2π(L/g)1/

2L:摆长(m)g:当地重力加速度值 成立条件:摆角θ<5

03.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固 共振的防止和应用A140 5.波速公式V=S/t=λf=λ/T 波传播过程中,一个周期向前传播一个波长。

6.声波的波速(在空气中)0℃:332m/s 20℃:344m/s 30℃:349m/s(声波是纵波)7.波发生明显衍射条件: 障碍物或孔的尺寸比波长小,或者相差不大。

8.波的干涉条件: 两列波频率相同 *(相差恒定、振幅相近、振动方向相同)注:(1)物体的固有频率与振幅、驱动力频率无关。(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处。(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式。(4)干涉与衍射是波特有。(5)振动图象与波动图象。

六、冲量与动量(物体的受力与动量的变化)

1.动量P=mV P:动量(Kg/S)

m:质量(Kg)V:速度(m/S)

方向与速度方向相同 3.冲量I=Ft

I:冲量(N·S)

F:恒力(N)

t:力的作用时间(S)

方向由F决定 4.动量定理I =ΔP 或 Ft= mVtmVo 是矢量式 5.动量守恒定律P前总=P后总 P=P′

m1V1+m2V2= m1V1′+ m2V2′

6.弹性碰撞ΔP=0;ΔEK=0

(即系统的动量和动能均守恒)

7.非弹性碰撞ΔP=0;0<ΔEK<ΔEKm

ΔEK:损失的动能

EKm:损失的最大动能 8.完全非弹性碰撞ΔP=0;ΔEK=ΔEKm

(碰后连在一起成一整体)9.物体m1以V1初速度与静止的物体m2发生弹性正碰(见教材C158): V1′=(m1-m2)V1/(m1+m2)

V2′=2m1V1/(m1+m2)

10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!中学物理教育网

全部资源完全免注册免费下载

http:// 11.子弹m水平速度Vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损

E损=mVo2/2-(M+m)Vt2/2=fL相对

Vt:共同速度

f:阻力 注:(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上。(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算(3)系统动量守恒的条件:合外力为零或内力远远大于外力,系统在某方向受的合外力为零,则在该方向系统动量守恒(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒。(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加。

七、功和能(功是能量转化的量度)

1.功W=FScosα(定义式)W:功(J)F:恒力(N)

S:位移(m)α:F、S间的夹角 2.重力做功Wab=mghab

m:物体的质量

g=9.8≈10 hab:a与b高度差(hab=ha-hb)3.电场力做功Wab=qUab q:电量(C)Uab:a与b之间电势差(V)即Uab=Ua-Ub 4.电功w=UIt(普适式)U:电压(V)I:电流(A)t:通电时间(S)6.功率P=W/t(定义式)P:功率[瓦(W)] W:t时间内所做的功(J)t:做功所用时间(S)8.汽车牵引力的功率 P=FV P平=FV平P:瞬时功率 P平:平均功率 9.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(Vmax=P额/f)10.电功率P=UI(普适式)U:电路电压(V)I:电路电流(A)11.焦耳定律Q=I2Rt Q:电热(J)I:电流强度(A)R:电阻值(Ω)t:通电时间(秒)12.纯电阻电路中I=U/R P=UI=U2/R=I2R Q=W=UIt=U2t/R=I2Rt

13.动能Ek=mv2/2 Ek:动能(J)m:物体质量(Kg)v:物体瞬时速度(m/s)14.重力势能EP=mgh EP :重力势能(J)g:重力加速度 h:竖直高度(m)(从零势能点起)15.电势能εA=qUA

εA:带电体在A点的电势能(J)q:电量(C)

UA:A点的电势(V)16.动能定理(对物体做正功,物体的动能增加)W合= mVt/2ΔEP 注:(1)功率大小表示做功快慢,做功多少表示能量转化多少。(2)O≤α<90 做正功; 90<α≤180

做负功;α=90o 不做功(力方向与位移(速度)方向垂直时该力不做功)。(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少。(4)重力做功和电场力做功均与路径无关(见2、3两式)。(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化(6)能的其它单位换

6-19算:1KWh(度)=3.6×10J 1eV=1.60×10J。*(7)弹簧弹性势能E=KX2/2。O

0

O

O

八、分子动理论、能量守恒定律

1.阿伏加德罗常数NA=6.02×10/mol

2.分子直径数量级10-10米

233.油膜法测分子直径d=V/s V:单分子油膜的体积(m3)S:油膜表面积(m2)4.分子间的引力和斥力(1)r

f引

F分子力表现为斥力

(2)

r=r0

f引=f斥

F分子力=0

E分子势能=Emin(最小值)

(3)

r>r0

f引>f斥

F分子力表现为引力

(4)

r>10r0

f引=f斥≈0

F分子力≈0

E分子势能≈0

5.热力学第一定律W+Q=ΔE

(做功和热传递,这两种改变物体内能的方式,在效果上是等效的)W:外界对物体做的正功(J)Q:物体吸收的热量(J)ΔE:增加的内能(J)注:(1)布朗粒子不是分子,布朗粒子越小布朗运动越明显,温度越高越剧烈。(2)温度是分子平均动能的标志。(3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快。(4)分子力做正功分子势能减小,在r0处F引=F斥且分子势能最小。(5)气体膨胀,外界对气体做负功W<0。(6)物体的内能是指物体所有的分子动能和分子势能的总和。对于理想气体分子间作用力为零,分子势能为零。(7)能的转化和定恒定律,能源的开发与利用见教材A195。(8)r0为分子处于平衡状态时,分子间的距离。

九、气体的性质

1.标准大气压 1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

2.热力学温度与摄氏温度关系T=t+273 T:热力学温度(K)t:摄氏温度(℃)3.玻意耳定律(等温变化)P1V1=P2V2 PV=恒量 P:气体压强 V:气体体积

初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!中学物理教育网

全部资源完全免注册免费下载

http:// 4.查理定律(等容变化)Pt=Po(1+t/273)

Po:该气体0℃时的压强

P1/T1=P2/T2 5.盖?吕萨克定律(等压变化)Vt=Vo(1+t/273)VO:该气体0℃时的体积 V1/V2=T1/T2 6.理想气体的状态方程P1V1/T1=P2V2/T2 PV/T=恒量 T为热力学温度(K)7.*克拉珀龙方程PV=MRT/μ R=8.31J/mol·K M:气体的质量

μ:气体摩尔质量

注:(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关。(2)公式3、4、5、6成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。(3)P--V图、P--T图、V--T图要求熟练掌握。

十、电场

1.两种电荷、电荷守恒定律、元电荷(e=1.60×10C)

2.库仑定律F=KQ1Q2/r2(在真空中)*F=KQ1Q2/εr2(在介质中)F:点电荷间的作用力(N)K:静电力常量K=9.0×10N·m2/C

Q1、Q2:两点荷的电量(C)ε:介电常数 r:两点荷间的距离(m)方向在它们的连线上,同种电荷互相排斥,异种电荷互相吸引。

3.电场强度E=F/q(定义式、计算式)E :电场强度(N/C)q:检验电荷的电量(C)是矢量 4.真空点电荷形成的电场E=KQ/rr:点电荷到该位置的距离(m)Q:点电荷的电亘 5.电场力F=qE

F:电场力(N)

q:受到电场力的电荷的电量(C)

E:电场强度(N/C)6.电势与电势差UA=εA/q

UAB=UA-UB

UAB =WAB/q=-ΔεAB/q

7.电场力做功WAB= qUAB

WAB:带电体由A到B时电场力所做的功(J)q:带电量(C)UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关)8.电势能εA=qUA

εA:带电体在A点的电势能(J)q:电量(C)

UA:A点的电势(V)9.电势能的变化ΔεAB =εB-εA(带电体在电场中从A位置到B位置时电势能的差值)10.电场力做功与电势能变化ΔεAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)11.电容C=Q/U(定义式,计算式)C:电容(F)Q:电量(C)U:电压(两极板电势差)(V)12.匀强电场的场强E=UAB/d UAB:AB两点间的电压(V)d:AB两点在场强方向的距离(m)

92-19初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!中学物理教育网

全部资源完全免注册免费下载

http:// 13.带电粒子在电场中的加速(Vo=0)W=ΔEK

qu=mVt2/2

Vt=(2qU/m)1/2 14.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)类似于 垂直电杨方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)平抛运动平行电场方向:初速度为零的匀加速直线运动 d=at2/2 a=F/m=qE/m 15.*平行板电容器的电容C=εS/4πKd

S:两极板正对面积 d:两极板间的垂直距离 注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分。(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直。(3)常见电场的电场线分布要求熟记,(见图、[教材B7、C178])。(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关。(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面.导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面。(6)电容单位换算1F=106μF=1012PF(7)电子伏(eV)是能量的单位,1eV=1.60×-1910J。(8)静电的产生、静电的防止和应用要掌握。

十一、恒定电流

1.电流强度I=q/t I:电流强度(A)q:在时间t内通过导体横载面的电量(C)t:时间(S)2.部分电路欧姆定律I=U/R I:导体电流强度(A)U:导体两端电压(V)R:导体阻值(Ω)3.电阻 电阻定律R=ρL/S ρ:电阻率(Ω·m)L:导体的长度(m)S:导体横截面积(m2)4.闭合电路欧姆定律I=ε/(r + R)ε= Ir + IR ε=U内+U外

I:电路中的总电流(A)ε:电源电动势(V)R:外电路电阻(Ω)r:电源内阻(Ω)5.电功与电功率 W=UIt P=UI W:电功(J)U:电压(V)I:电流(A)t:时间(S)P:电功率(W)6.焦耳定律Q=IRt Q:电热(J)I:通过导体的电流(A)R:导体的电阻值(Ω)t:通电时间(S)7.纯电阻电路中:由于I=U/R,W=Q因此W=Q=UIt=I2Rt=U2t/R

初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!2中学物理教育网

全部资源完全免注册免费下载

http:// 8.电源总动率、电源输出功率、电源效率 P总=Iε P出=IU

η=P出/P总 I:电路总电流(A)ε:电源电动势(V)U:端电压(V)η:电源效率 9.电路的串/并联 串联电路(P、U与R成正比)并联电路(P、I与R成反比)电阻关系 R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+ 电流关系 I总=I1=I2=I3 I并=I1+I2+I3+ 电压关系 U总=U1+U2+U3+ U总=U1=U2=U3= 功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+ 10.欧姆表测电阻

(1)电路组成(2)测量原理

两表笔短接后,调节Ro使电表指针满偏得 Ig=ε/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为 Ix=ε/(r+Rg+Ro+Rx)=ε/(R中+Rx)

由于Ix与Rx对应,因此可指示被测电阻大

小(3)使用方法:选择量程、短接调零、测量读数、注意档位(倍率)。

(4)注意:测量电阻要与原电路脱开,选择量程使指针在中央附近,每次换档要重新短接调零。11.伏安法测电阻

电流表内接法: 电流表外接法:

初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!中学物理教育网

全部资源完全免注册免费下载

http://

电压表示数:U=UR+UA 电流表示数:I=IR+IV

R的测量值=U/I=(UA+UR)/IR=RA+R>R R的测量值=U/I=UR/(IR+IV)= RVR/(RV+R)>RA [或R>(RARV)1/2] 选用电路条件R<

[或R<(RARV)1/2] 12.变阻器在电路中的限流接法与分压接法

电压调节范围小,电路简单,功耗小 电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件Rp≈Ro 便于调节电压的选择条件Rp

1KV=103V=106mA ; 1MΩ=103KΩ=106Ω(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大。(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻。(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大。(5)当外电路电阻等于电源电阻时,电源输出功

2率最大,此时的输出功率为ε/(2r)。(6)同种电池的串联与并联要求掌握。

十二、磁场

1.磁感强度是用来表示磁场的强弱和方向的物理量,是矢量。单位:(T), 1T=1N/A·m 2.磁通量Φ=BS Φ:磁通量(Wb)B:匀强磁场的磁感强度(T)S:正对面积(m)3.安培力F=BIL(L⊥B)B:磁感强度(T)F:安培力(F)I:电流强度(A)L:导线长度(m)4.洛仑兹力f=qVB(V⊥B)f:洛仑兹力(N)q:带电粒子电量(C)V:带电粒子速度(m/S)5.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种)(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=Vo

2初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!中学物理教育网

全部资源完全免注册免费下载

http://(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下:(a)F心= f洛

mV2/R=mω2R=m(2π/T)2R= qVB R=mV/qB T=2πm/qB(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下)。(c)解题关键:画轨迹、找圆心、定半径。

注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负。(2)常见磁场的磁感线分布要掌握(见图及教材B68、B69、B70)。

十三、电磁感应

1.[感应电动势的大小计算公式] [公式中的物理量和单位] 1)ε=nΔΦ/Δt(普适公式)ε:感应电动势(V)n:感应线圈匝数 2)ε=BLV(切割磁感线运动)ΔΦ/Δt:磁通量的变化率 S:面积 3)εm=nBSω(发电机最大的感应电动势)εm:电动势峰值 L:有效长度(m)4)ε=BL2ω/2(导体一端固定以ω旋转切割)ω:角速度(rad/S)V:速度(m/S)2.感应电动势的正负极可利用感应电流方向判定(电源内部的电流方向:由负极流向正极)。3.自感电动势ε自=nΔΦ/Δt=LΔI/Δt L:自感系数(H),(线圈L有铁芯比无铁芯时要大)ΔI:变化电流 ?t:所用时间 ΔI/Δt:自感电流变化率(变化的快慢)注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点见教材C254。(2)自感电流总是阻碍引起自感电动势的电流的变化(3)单位换算1H=103mH=106μH。

初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!中学物理教育网

全部资源完全免注册免费下载

http://

十四、交变电流(正弦式交变电流)

1.电压瞬时值e=εmsinωt 电流瞬时值 ?=Imsinωt(ω=2πf)2.电动势峰值εm=nBSω 电流峰值(纯电阻电路中)Im=εm/R总 3.正(余)弦式交变电流有效值 ε=εm/(2)1/

U=Um/(2)1/2

I=Im/(2)1/

24.理想变压器原副线圈中的电压与电流及功率关系U1/U2=n1/nI1/I2=n2/n2

P入=P出 5.公式1、2、3、4中物理量及单位 ω:角频率(rad/S)t:时间(S)n:线圈匝数 B:磁感强度(T)S:线圈的面积(m2)U:(输出)电压(V)I:电流强度(A)P:功率(W)注:(1)交变电流的变化频率与发电机中线圈的转动的频率相同即: ω电=ω线 f电=f线(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变(3)有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值。(4)理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入。(5)在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P′=(P/U)2R P′:输电线上损失的功率 P:输送电能的总功率 U:输送电压 R:输电线电阻。(6)正弦交流电图象B111

十五、电磁振荡和电磁波

1.LC振荡电路T=2π(LC)1/2 f=1/T f:频率(Hz)T:周期(S)L:电感量(H)C:电容量(F)2.电磁波在真空中传播的速度C=3.00×108m/s λ=C/f λ:电磁波的波长(m)f:电磁波频率

注:(1)在LC振荡过程中,电容器电量最大时,振荡电流为零;电容器电量为零时,振荡电流最大。(2)麦克斯韦电磁场理论:变化的电(磁)场产生磁(电)场。

十六、光的反射和折射(几何光学)

1.反射定律α=i α;反射角 i:入射角

2.绝对折射率(光从真空中到介质)n=C/V=sini/sinγ 光的色散,可见光中红光折射率小。n:折射率

C:真空中的光速 V:介质中的光速 i:入射角 γ:折射角 3.透镜成像公式1/U+1/V=1/f

U:物距

V:像距(虚像取负值)

f:焦距(凹透镜取负值)4.像的放大率m=像长/物长=|V|/U V:像距 U:物距

5.凸透镜成像规律B203)初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!中学物理教育网

全部资源完全免注册免费下载

http:// 5.共轭法测凸透镜的焦距f=(L2-d2)/4L

成立条件:L>4f

f :凸透镜的焦距 L :物与屏之间的距离 d:移动凸透镜两次成像位置间的距离 6.光从介质中进入真空或空气中时发生全反射的临界角C: sinC=1/n 7.凸透镜中物和像的移动速度比较:成倒立缩小像时,物移动速度大于像移动速度:V物>V像。

注:(1)平面镜反射成像规律:成等大正立的虚像,像与物沿平面镜对称。(2)三棱镜折射成像规律:成虚像,出射光线向底边偏折,像的位置向顶角偏移。(3)在用共轭法求凸透镜的焦距时成像时,第一次成像的物距就是第二次成像的像距。(4)凹透镜与凸面镜成都是缩小的虚像。(5)光导纤维是光的全反射的实际应用,放大镜是凸透镜,近视眼镜是凹透镜(6)熟记各种光学仪器的成像规律,利用反射(折射)规律、光路的可逆、透镜的三条特殊光线等作出光路图是解题关键。(7)白光通过三棱镜发色散规律:紫光靠近底边出射B198

十七、光的本性(光既有粒子性,又有波动性,称为光的波粒二象性)1.两种学说: 微粒说(牛顿)波动说(惠更斯)2.双缝干涉:中间为亮条纹, 亮条纹位置:d= nλ 暗条纹位置:d=(2n+1)λ/2 n=0,1,2,3,??? d:路程差(光程差)λ:光的波长 λ/2:光的半波长

3.光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的颜色按频率从低到高的排列顺序是:红、橙、黄、绿、蓝、靛、紫。(助记:紫光的频率大,波长小。)4.薄膜干涉:增透膜的厚度是绿光在薄膜中波长的1/4,即增透膜厚度d=λ/4

5.电磁波谱(按波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线、γ射线。6.光子说,一个光子的能量E=?ν ?:普朗克常量 ν:光的频率

7.光电方程mVm2/2=?ν–W

mVm2/2:光电子初动能

?ν:光子能量

W:金属的逸出功 注:(1)要会区分光的干涉和衍射产生原理、条件、图样及应用,如双缝干涉、薄膜干涉、单缝衍射、圆孔衍射、圆屏衍射等(2)理解光的电磁说,知道光的电磁本质以及红外线、紫外、线伦琴射线的发现和特性、产生机理、实际应用。(3)光的直线传播只是一种近似规律。(4)其它相关内容: 光的本性学说发展史/泊松亮斑/发射光谱/吸收光谱/光谱分析/原子特征谱线/光电效应的规律B245/光子说/光电管及其应用B248/光的波粒二性/

初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!中学物理教育网

全部资源完全免注册免费下载

http://

十八、原子和原子核

1.α粒子散射试验结果:(a)大多数的α粒子不发生偏转。(b)少数α粒子发生了较大角度的偏转。(C)枀少数α粒子出现大角度的偏转(甚至反弹回来)。2.原子核的大小10---10m,原子的半径约10m

(原子的核式结极)3.玻尔的原子模型:(a)能量状态量子化:En=E1/n(b)轨道半径量子化:Rrn=n2?R1(C)原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:?ν=E初-E末(能级跃迁)。

4.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长枀短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的。5.质子的发现:卢瑟福用α粒子轰击氮原子核的实验,质子实际上就是氢原子核。

6.中子的发现:查德威克用α粒子轰击铍时,得到了中子射线。相同质子数和不同中子数的原子互称同位素。放射性同位素的应用:a利用它的射线;b做为示踪原子。7.爱因斯坦的质能联系方程:E=mC2

E:能量(J)m:质量(Kg)C:光在真空中的速度。8.核能的计算ΔE=ΔmC

2当Δm的单位用Kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uC2;1uC2=931.5MeV。

注:(1)常见的核反应方程(发现中子、质子、重核裂变、轻核聚变等核反应方程)要求掌握。(2)熟记常见粒子的质量数和电荷数。(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键。(4)其它相关内容:重核裂变/链式反应/链式反应的条件/轻核聚变/核能的和平利用/核反应堆/太阳能/

十九、实验:1共点力的合成/2练习使用打点计时器/3测匀变速直线运动的加速度/4验证牛顿第二定律/5碰撞中的动量守恒/6平抛物体的运动/7验证机械能守恒定律/8单摆测定重力加速度/9验证玻意耳-马略特定律/10用描迹法画出电场中平面上的等势线/11测定金属的电阻率/12用电流表和电压表测电池的电动势和内阻/13练习使用多用表测电阻/14研究电磁感应现象/15测定玻璃的折射率/16测定凸透镜的焦距/17用卡尺观察光的衍射现象。

二十、高中物理识结构概说:分为五大部分1力学(力学/运动学/动力学/机械能/振动和波动);2热学(分子动理论/气体的性质);3电磁学(静电场/恒定电流/磁场/电磁感应/电磁波(麦氏理论);4光学(几何光学/光的本性);5原子物理(原子的结极/衰变/核反应/质能方程)。物理是一门以实验为基础的学科,因此物理实验是高中物理的重要组成部分。其中能量观点贯穿于整个物理学的始终。-15

-10初高中物理教案|课件|试卷|试题|教学设计|说课|同步|论文|课件定做|参考资料|教学图片等新课标物理资源!

高中物理公式定理总结 第2篇

2.末速度Vt=gt

3.下落高度h=gt^2/2(从Vo位置向下计算)

4.推论Vt^2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

高中物理公式定理总结 第3篇

关键词:公式,定理,记忆,运用

在高中三年的数学学习过程中, 学生会碰到各式各样学习上的困难和挫折, 其中一个常见的问题就是对数学中的概念、公式、定理的记忆和运用有困难, 这也是造成许多聪明上进的学生学不好数学, 慢慢失去信心, 丧失学习兴趣的原因之一。

高中数学体系庞大, 包含了函数、数列、算法、概率、统计等诸多数学分支的基础性知识, 这本是希望为学生未来的数学学习打下基础, 可同时也造成高中数学公式、定理等繁杂难记。在高中阶段, 常用的数学概念、公式、性质、结论共计就有两百多条, 很多学生即使勉强记住却不知如何运用。例如, 在刚刚结束的2015 年高考中, 许多学生和我交流后才发现, 安徽省理科高考卷的第20 题第一个小问题运用一下定比分点公式就可以轻松解决。这本是必须拿分的题目, 处在考试时的紧张气氛下, 很多学生却不知如何下手。文章结合笔者经验, 较为系统地总结了教师如何帮助学生在学习过程中有效地记忆和运用数学公式和定理, 提高教学质量。

一、系统完整梳理, 不留遗漏

布鲁纳曾说过:“获得的知识, 如果没有完满的结构把它联在一起, 那是一种多半会遗忘的知识。一串不连贯的论据在记忆中仅有短促得可怜的寿命。”

基本上有经验的数学教师都知道系统梳理学科知识的重要性。在日常教学中, 有的教师把学生所学的知识变成一个网, 或绘制成扼要的直观结构图, 这样就很容易表现知识的内在联系, 实现知识间关系的清晰化。学生在掌握章节或是学科结构后对概念、公式的记忆也变得高效。但其实这仅仅是系统学习知识结构的第一步, 当学生可以轻松地画出一棵大树的主干枝节, 要想这棵树生动形象, 还要绘出丰富而不繁冗的树叶。而在数学这棵大树中, 树叶就是各种细节的知识点。教师在教学中, 需要丰富自己的学科经验, 细心梳理, 不留遗漏。例如, 许多高三一轮复习资料虽在第一章节中将集合的主要公式、性质一一列出, 但却遗漏一个重要的公式———求集合中元素个数。公式:A, B为两个集合, Card (A) , Card (B) 分别表示集合A, B的元素个数, 则:Card (A∪B) =Card (A) +Card (B) -Card (A∩B) 。当时, Card (A∪B) =Card (A) +Card (B) 。这个公式之所以需要提到, 是因为概率章节当中一个重要公式———概率的加法公式, 是这个公式的衍生。概率的加法公式:A, B为两个事件, 则P (A∪B) =P (A) +P (B) -P (A∩B) 。且当A, B为互斥事件时, P (A∪B) =P (A) +P (B) 。

如果教师在复习集合知识时可以清楚地解释集合元素个数公式, 并在复习概率加法公式时将两者加以类比, 那么学生不仅可以理解熟记这个公式, 而且运用时也不会犯错。这个公式可以进一步扩展为:Card (A∪B∪C) =Card (A) +Card (B) +Card (C) -Card (A∩B) -Card (A∩C) -Card (B∩C) +Card (A∩B∩C) 。

如果把上述公式中Card改为字母P变为概率公式, 显然也成立。变化后的公式其实就是大学概率知识中全概率加法公式的简单形式。所以对于后一个公式, 教师要根据学生的情况决定要不要补充, 防止学生过度记忆, 像这样被学生甚至是教师忽略的公式还有不少。

例如, 学生们都知道如果函数f (x) 关于原点对称, 那么它满足:f (-x) = -f (x) , 现在将这个性质进一步扩展, f (x) 关于点 (a, b) 对称, 则它满足f (2a - x) = 2b - f (x) , 后一个性质就不那么为学生所熟知。可是在高考中, 这个性质的确考查过。

另外, 一些看似简单却很典型题目的结论也需要教师总结后教给学生记忆, 方便学生提高运算速度。例如, 笔者在教学过程中, 反复要求学生记住一个简单却有用的结论:等边三角形边长为a, 边上高为, 面积为。再比如, sin 75°, cos 75°, sin 15°, cos 75°它们的值和相互关系;当sinα≥cosα时, α的取值范围为等。诸如此类的有用的结论在高中数学中可为数不少, 需要教师累积经验, 在教学过程中细致地为学生讲解梳理。

二、理解记忆, 有效复习

Perkins说过:“当学习者能思考, 能灵活地运用自身所学的知识时, 理解力就向人们展示它的存在。相反, 如果一个学习者无法超越死记硬背, 固执于某种思维和行为方式, 这就是缺乏理解的一种表现。”由于高中数学的学科性质决定了学习数学不能像小学生背诵乘法口诀表, 或是背诵化学元素周期表那样死记硬背, 运用其解题时更不能生拉硬套。没有理解就没有记忆, 很多经典的心理学实验也证明了, 对记忆对象深入理解, 更容易将其转化为长时记忆。

另外, 奥苏贝尔的有意义学习理论虽然已经被广大教育者所熟知, 但在教学实践过程中想运用理论可没那么容易。比如是根式运算中的一个常用公式, 这个公式在初中就已经学习过, 但是很多学生在运算中始终都不加绝对值, 即使教师反复提醒, 还不断犯错, 教师一提醒就知道, 不提醒就忘记了。究其原因是许多学生已经对平方根和算术平方根的概念没有真正理解, 而教师也忽略对其讲解, 主观认为学生们已经在初中学过, 就肯定知道了。

当然, 大部分教师在课堂教学中都会对重要概念、定理进行详细讲解, 并指导学生在理解的基础上记忆, 但学生自己是否“吃透了”教师传授的知识其实很难知晓。莫里斯·比格认为, 一个人真正理解了一条原理, 有几个判断标准: (1) 用自己的话把它陈述出来; (2) 给出有关它的例子; (3) 在不同的环境中认出它的各种形态; (4) 看出它能投入使用的地方; (5) 在各种情境中使用它; (6) 预期它的使用结果, 等等。可见, 完全让学生掌握一条定理或性质不是在一节课中就可以做到的, 需要师生双方在课上课下相互配合, 共同努力。

教师可以在课堂教学中遵循以上几条原则, 合理设计教学过程。例如, 在讲述新的概念、定理时, 教师可以让学生在预习的基础上相互讨论, 自己总结发言, 教师再适时的指导, 讲授一些典型的例题, 并要布置一些针对性强的课后作业让学生独立完成。学生自己也要以上面标准指导课后自学, 在课后要做一些习题, 掌握公式定理的运用条件, 避免“一看就会, 一听就懂, 一做就错”的现象, 那其实是知识还没有真正的掌握。

最后, 复习在学习中的作用不言而喻, 每复习一次就多一次重新考虑或寻找材料之间的机会, 从而也增加了信息加工的深度, 促进对公式、概念的理解。

教师在教学中应有意识地运用多种手段帮助学生复习知识, 教授给学生合理的复习方法并努力使学生主动参与进来。例如, 在对数列知识的讲解时, 将等差数列和等比数列的公式、性质列成表格, 将两块知识类比讲解, 促进学生的理解记忆;在讲解立体几何众多定理和性质时, 提醒学生将图形、符号、语言三者结合的方式联结起来记忆可达到事半功倍的效果;在每节课上课开始时通过提问、默写等方式带领学生一起复习上节课知识点等。

复习当然不是教师单方面的活动。信息加工论者和其他认知主义学习理论的支持者都认为, 仅仅依靠教师是无法直接把信息传递到学生的长时记忆中的。如果学生自己主观上不努力或不会有效复习, 那想要学生熟悉公式、定理, 再优秀的教师也是鞭长莫及。正所谓“志不强者智不达”, 学生自己要具有坚强的意志力, 克服困难的决心和斗志, 才能有有效的记忆效果。

三、积极思考, 主动参与, 勤于动笔

第斯多惠说:“一个坏教师奉送真理, 一个好的教师则教人发现真理。”建构主义学习理论教学倾向以学生为中心, 教师主要承担的是调动学生学习的积极性, 为学生提供学习资源, 为学生建构知识提供支持和帮助, 而不是把知识一股脑灌输给学生。既要把握知识脉络的细节, 又不能对有的知识点讲得太细, 留出空间让学生自己思考, 拿捏两者之间的度, 是成为优秀教师的必要条件。比如, 在向量章节中有一个典型的结论:△ABC中, 表示的是与方向相同的单位向量, 则表示的向量在∠BAC的角平分线上。为什么就表示的是与方向相同的单位向量?为什么表示的向量就是在∠BAC的角平分线上?学生刚接触这个结论时一定会产生这样的疑问, 而且这个结论如果不去理解而去死记硬背的话基本很难灵活运用。当然教师是可以很轻松地向学生讲解证明, 但以笔者的实际经验来看效果并不理想。讲解相似的题型两三遍, 有的学生再碰到感觉见过, 就是想不起来。其实还不如教师提示, 让学生利用平行四边形法则和平面几何知识自己思考证明, 实际记忆效果要比教师单方面讲解要好得多。

教学是教师和学生共同组成的双边活动。学生是学习的主体, 在教学活动中要积极参与, 而课下的自主学习是学生最需要花费精力和努力的, 也是学生提高成绩的关键。学生的自主学习, 教师可以指导, 但不可以替代。比如, 三角函数知识是高考考查的一个重点, 特别是三角函数恒等变换这一章节, 公式不仅繁多复杂, 相互之间还相似难以区分。但是这些公式其实可以由一个两角和的余弦 (或正弦) 公式将其全部推导出来, 学生应该在教师讲解完毕后课下自己反复地推导几遍, 推导的过程中会明确公式之间的衍变和联系, 公式自身的特征和运用时需要注意的要点。严格的说, 高中阶段绝大部分的数学公式、定理的推导和证明, 学生都必须要掌握。虽然说高考是没有时间让学生去证明公式, 但万一对某一个公式的回忆出现“短路”, 也可以通过推导的方法求出来。况且在高考中还出现过题目要求直接证明数学定理, 如2011 年陕西文科一道解答题就是余弦定理的证明。面对高中数学如此繁多的公式、定理的推导证明, 学生必须在课下付出汗水, 勤于动笔。

此外, 数学的学习是灵活多变的, 我们记公式的目的是运用公式解决实际问题, 解题目过程中, 我们可以进一步熟悉公式及其应用, 更深刻地理解公式, 这样也可加深记忆, 并且使公式有了运用的生命力, 这也是很多学生推崇题海战术的原因之一。但切忌一边做题一边翻书查公式, 而不作记忆, 下次碰到再查, 导致翻开书会做题, 合上书做不下去的情况。在大量做题的基础上, 学生自己或者在教师的引导下对同类型的进行分析、总结常见类型题目解题思路和常用公式, 分试题类型归纳公式, 将知识系统化。如分三角函数、概率、立体几何、数列、解析几何、导数解决函数问题几大类, 整理出常考知识点和常用公式, 形成学生自己的能够指导解题的公式大全。例如, 在开篇所提到的定比分点公式, 2011 年安徽省理科解析几何压轴题, 2013 年北京理科第17 题立体几何大题都运用了这个公式解题。

高中物理动能定理的教学设计反思 第4篇

1知识分析

在教学设计中我们关注学生原有的知识基础,根据我们的了解,学生在初中阶段的学习中知道了动能是物体由于运动而具有的能,知道动能的大小与物体的质量和速度有关.有了这样的认识,我们在高中阶段的教学中就不能满足于对这些基本知识的重复,而应该立足于这些知识同时又要有一定的提高,尤其是在教学引入、情境创设的过程中,要注意为后面动能定理的学习打下感知基础.

从学生的物理思维角度来看,由于前面重力势能知识的学习,学生已经知道了重力做功与质量、高度变化之间的关系,知道了WG=mgh1-mgh2的关系式.知道这样的关系及关系表达,可以为动能及动能定理的学习打下思维基础.不过,这需要根据学生对这一知识的理解情况,以确定是否需要在本知识学习之初进行一个复习.

本节的难点即是重点,其一是动能的表达式,学生知道动能与物体的质量与速度有关,但却不知道具体的定量关系.为什么动能的大小可以用mv2/2来表示,这是一个重要问题.一般情况下我们采取的策略是跟学生强调“物理上规定……”,这种强行灌输的方式固然可以完成课堂上的一个过渡,但如果能够寻找到更好的代替方法,我们还是尽量不要用这种方法的.其二是动能定理的表达形式,通常情况下我们是通过牛顿第二运动定律以及动力学的其它关系推理得出动能定理的表达式的,但在此过程中由于我们过于看重表达式本身,而对表达式得出过程中的许多细节予以了忽视,因此也丧失了不少有益的资源.因此笔者考虑,在教学实施的过程中,哪些内容可以交给学生自己去自主完成,哪些内容可以通过合作学习的方式完成.尤其是哪些内容可以进一步挖掘其中的物理意义,是笔者在教学设计中重点思考的一个内容.

2教学设计

重点一动能概念的强化

首先从知识上复习初中物理所学到的知识,但根据我们以往的经验,由于时间关系,学生忘记较多,因此这里与其说是重现,不如说是教师提醒下的加强印象.

其次,通过体验来加强学生的认识.正是因为考虑到学生已经遗忘较多的内容,因此我们设计了一个体验过程,让学生去体验运动的物体具有能量,去体验动能的大小与哪些因素有关.体验的过程并不复杂,体验的方式也是灵活多样(可以是实地体验,也可以结合多媒体,还可以通过语言描述加学生想像,让学生通过思维加工去完成体验过程).比如说笔者给学生播放了一段冷兵器时代打仗攻城的一种情形:守城者用石块向下扔,以阻挡攻城者.然后提出问题:为什么城上的石头扔下来可以起到阻碍进攻者的作用?而对于影响动能大小的因素,我们可以这样设计:教师和一个学生之间玩抛物接物的游戏,首先教师向学生抛一个较轻的物体,如一个纸团,学生可以轻易接住,然后教师以几乎相同的速度向学生抛一个重的物体,如砖头,学生则可能会下意识地避让(当然也不一定真的扔,让学生有所感受即可).当学生提出抛的物体质量太大时,我们还可以跟学生开玩笑:“好,我给个质量小的物体呢.”然后以手比划一把枪,“砰”地一声发射一颗子弹.这样可以引发学生的强烈兴趣,且让他们意识到动能的大小还与速度有关.

重点二动能的定量表示以及动能定理(具体的动能定理的引入略)的表达式得出

这两个内容在笔者的教学设计中基本上是一体的,因此这里也一起描述.在这个知识点的教学之初,我们要跟学生明确任务:寻找动能的定量表达式及动能定理的表达式.让学生知道:我们的任务就是去寻找一个可以表示动能的因式,去寻找动能变化与做功的关系.

推理的思路我们设计成这样:对于一个已知质量的物体,如果给它受到一个非平衡力,那它的运动状态就会改变,它的动能也会改变.在这个过程中要重点分析这两个改变:运动状态的改变意味着物体具有了加速度,意味着物体受到了一个不为零的合外力;而运动的改变正是我们研究的对象.明确了这两个改变(可以辅以副板书)之后,学生就会自然建立一种关系猜想:物体动能的改变是否与物体受到的合外力有关?在有了这种猜想之后,教学设计就进行师生共同协作,利用已有知识解决问题的阶段.这里用到的工具可由学生自主思考,也可由学生合作完成.总之最后的结果应当是牛顿第二运动定律F合=ma以及v2t-v20=2as的引入,当这两个工具开始合作时,动能定理的表达式(当然学生此时不知道这是动能定理)就先诞生了:Fs=mv2t/2-mv20/2.F是什么?是合外力!因此Fs就应当是合外力做的功;功是什么?功是能量转化的量度!这里是什么能量在转化呢?显然,是动能发生了变化!动能变化是多少呢?等号后面有两个因式的差,差不就意味着变化吗?!于是mv2/2可以用来表示动能就是顺理成章的事了.更因为此表达式中有m和v,v又是平方,这些都与学生的经验是一致的.因此到此为止,两个教学难点就化解了,教学内容也就完成了.

3教学反思

在实际的教学过程中,学生的思维也正如我们教学设计中所预设的一样,思维展开的顺序与知识生成的顺序也基本一致.这说明我们的教学设计是有效的.回过头来反思这一教学设计,应当说其中的主体部分仍然是继承了以前的教学思路,如果说有所创新的话,那笔者以为是更多地基于了学生的实际,先通过体验加强了学生的认识,再通过知识的梳理与结合,达到了一个新知识的生成.这个生成的表达式如何与动能定理结合起来,是我们重点描述的一个内容.

之所以要重点描述,是因为我们注意到很多物理规律的发现其实也遵循了这样的道路,都是通过逻辑推理得出一些新的表达式,然后赋予它们以物理意义.当这些新发现能够解释过去的事实,能够预测未来的事实时,其就会成为一种物理概念或规律.

高中物理公式总结 第5篇

动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}5.超重:FN>G,失重:FN

质点的运动1、速度Vt=Vo+at 2.位移s=Vot+at?/2=V平t= Vt/2t3.有用推论Vt?-Vo?=2as4.平均速度V平=s/t(定义式)5.中间时刻速度Vt/2=V平=(Vt+Vo)/26.中间位置速度Vs/2=√[(Vo?+Vt?)/2]7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2)2.互成角度力的合成:F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算.

高中物理公式总结 第6篇

2.竖直方向速度:Vy=gt

3.水平方向位移:x=V0t

4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[V02+(gt)2]1/2,合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

强调:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;

(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

匀速直线运动的位移公式:x=vt

匀变速直线运动的速度公式:v=v0+at

匀变速直线运动的位移公式:x=v0t+at2/2

向心加速度的关系:a=2ra=v2/ra=42r/T2

力对物体做功的计算式:W=FL

牛顿第二定律:F=ma

曲线运动的线速度:v=s/t

曲线运动的角速度:=/t

线速度和角速度的关系:v=r

周期和频率的关系:Tf=1

功率的计算式:P=W/t

动能定理:W=mvt2/2-mv02/2

上一篇:致运动会广播员广播稿下一篇:小学五年级解方程题