网上购物的外文翻译

2022-10-30

第一篇:网上购物的外文翻译

染整外文的翻译解读

材料加工技术学报160(2005)99–106 纤维素酶处理对后工序的影响程度和棉织物的染色

一个国家研究中心,纺织研究部,Dokki, Cairo, Egypt,埃及教育学院,阿勒旺大学,开罗,埃及

2003年5月1日接收,2004年4月16日修订成16例,2004年4月19号接收

摘要

酸性和中性纤维素酶已应用于丝光和非丝光棉织物,作为预处理步骤,在随后的柔软处理后,易护理精整以及结合阴离子或阳离子染色和精整。这些酶处理的影响在完成棉织物的性能进行了研究。结果表明:(a)在织物增强弹性和柔软性以及在织物强度的降低是由酶活性对纤维素的影响,酸性>>中性,以及柔软剂的类型,Siligen® SIN> Solousoft® WMA> Basosoft® SWK;(b)酶预处理其次是树脂整理后导致交联程度的提高,表现为氮含量和织物的弹性,沿用织物的刚度降低,断裂强度和在上述性能的改变程度是由两个交联剂的反应性和功能以及纤维素基板的类型;(c)与酸处理的棉织物或中性纤维素酶和随后的阴离子或阳离子染色和精整理在反应性添加剂存在下,氯化胆碱或柠檬酸分别提高染色和树脂整理后的程度,而在上述的改善程度属性是由酶的性质所决定,纤维素,整理剂并随着染料类添加剂。

2004由Elsevier B.V.出版

关键词:阴离子染色;阳离子染料;纤维素酶;棉织物;易护理整理;柔软整理;

1、引言

纤维素酶已经被工业接受通过整理纤维素织物来实现各种效果包括织物表面强化、牛仔服装的软化没有或低的环境影响。酶处理通常染色和整理的之前和之后的工序中处理。

本研究的重点是评估影响纤维素酶处理,作为预处理步骤和随后的柔软整理,树脂整理以及随后阴离子或碱性染色以及树脂整理对经处理后的棉织物性能和颜色特性的影响。

2、实验

2.1 材料

轧机精练和漂白棉机织物(125克/平方米)以及煮练,漂白和丝光棉机织品(120克/平方米)贯穿于整个工序。

两个商业级的纤维素酶制剂,即®Cellusoft L(多功能酸性纤维素酶EN—酶制剂, 750EGU/g,)和Profazyme®53p(高强度灰石—酶粉的基础上设计的纤维素酶抗再沉积剂含缓冲,Profil®- tex),被使用。

整理剂FIXAPRET®使用CPN(基于dimethyloldihydroxyethylene urea,BASF)和FIXAPRET®ECO(ow-formaldehyde crosslinker, based on dimethy-loldihydroxyethylene urea,BASF)。

商业软化剂,即Solousoft®WMA(非离子改性聚硅氧烷,Clariant),basosoft®SWK(非离子脂肪酸的缩合产物,BASF),和siligen®SIN(非硅型乳液进行。商用染料使用了Sirius® K-CF (direct:Dystar), Levafix® Marine Blue (reactive: Dystar), Supranol®Rot 3BW (acid: Dystar), and Astrazon® Rot GTLN 200%轧机精练和漂白棉机织物(125克/平方米)以及煮练,漂白和丝光(基础:Dystar)。

氯化胆碱 [HO•C2H4N(CH3)]+Cl−,柠檬酸 (CHO •HO),六水合氯化镁 (MgC•l6H2O), 氯化铵 (NH4Cl),碳酸钠(Na2CO3), 和纯醋酸 (CH3COOH)。 2.2整理操作 2.2.1生物整理

生物整理后的棉织物样品,使用酸或中性纤维素酶的酶,进行了如下操作,酶用量:2%owf;pH值:5酸纤维素酶或7中性纤维素酶;非离子表面活性剂:1g/L科莱恩;浴比:20 / 1使用FIM®石洗旋转鼓机在50℃下处理30分钟。酶通过提高pH值至9(即碱性条件)失去活性,随着提高染液温度高达75℃时处理10分钟,然后彻底洗涤,烘干。 2.2.2柔软整理

生物处理后的织物样品的柔软处理进行,通过填充技术,在下列条件:柔软剂(20g/L),非离子表面活性剂(2g/L),p H值为5(使用醋酸),两次给湿占织物重的80–85%,其次,在85℃下烘燥3min然后在120℃下烘燥3min。 2.2.3易护理整理

一部分生物整理的样品和未处理的样品用交联剂粘在一起,整理的配方有:交联剂(50g/L),催化剂MgCl2•6H2O(5g/L)和柠檬酸(0.5g/L),非离子润湿剂(2g/L),Siligen® SIN(20g/L)作为一种柔软剂。该催化剂被添加到配方之前应用。衬垫织物带液率80–85%, 85℃下干燥3min,在160℃空气循环烘箱下烘3min。织物的洗涤在搅拌下完成(1g/L纯碱,1g/L润湿剂,50℃, 10min),彻底清后又在85℃下烘燥3min并将该状态保持到测试前。 2.2.4结合阴离子染色和树脂整理

被染色和整理的一部分生物处理后的织物样品和未经处理的对照组放入在染浴中,染浴中含有交联剂(50g/L),催化剂氯化铵(5g/L),氯化胆碱(20g/L),非离子润湿剂(2g/L)和阴离子染料即直接或活性染料(10g/L)。衬垫织物带液率80–85%,分别在85℃干燥 3min、在160℃循环空气烘箱烘3min。染色整理成品织物样品进行彻底水洗,皂洗和最后在85℃下干燥 3min。 2.2.5复合碱性染色和树脂整理

除非另有说明,完成生物处理和未经处理的织物样品结合基本染色和树脂整理放在填充了两倍的染浴中,包括:交联剂(50g/L),催化剂氯化铵(5g/L),柠檬酸(20g/L),非离子润湿剂(2g/L)与碱性染料(10g/L)80–85%湿法提取。在85℃下干燥 3min,织物的样品在160℃下固化3min,彻底水洗,皂洗,冲洗并且在85℃下干燥 3min。 2.3测试方法

氮含量(%N)测定根据Kjeldhal方法。

对染色整理后成品织物样品使用自动滤波分光光度计的波长测量其最大吸收波长从而测试着色程度和库贝尔卡-蒙克方程计算 [ 11 ]:

K / S =(1−R)2 / 2R 其中k是吸附系数,取决于染料的浓度,通过染色基底引起的散射系数,和R是染色织物样本的光反射。

K / S值越高,着色度越高。

染色整理成品织物样品的染色牢度性能,洗涤(WF),摩擦(RF)以及汗渍(PF)是根据AATCC测试方法评估分别为:91–1972,8–1972以及15–1973。

被用做评估条件的标准方法为测试折皱回复角(WRA(W+ F)°,AATCC:66–1996),断裂强度(BS,ASTM:d5035–95)以及弯曲刚度(FR,ASTM:d1388–64)。在经纱方向上不测量折皱回复角。

3.结果与讨论

由于目前的工作的主要任务是探讨生物整理的影响,用酸性纤维素酶、中性纤维素酶,对柔软整理完成程度,易护理整理以及结合棉织物的染色整理,范围广,如基质类型,参数纤维素酶,柔软剂,整理剂,以及除染料和整理配方外都已检查。得到的结果与他们的适当的讨论如下。 3.1柔软整理

表1显示了影响选择性酶预处理后采用不同的柔软剂对棉织物性能的柔软整理。对于一个给定的处理条件下,表1显示,(1)在织物弹性的增强,表现为织物的WRA值减小,低刚度,刚度为FR值,作为损失处理的织物样品的断裂强度值,表示为BS,根据下列指令:酸性纤维素酶>中性纤维素酶>未处理的棉织物,在联系到这些纤维素酶在类型,活性以及攻击纤维素部分酶水解纤维特别是在织物表面和区非晶的程度不同;(2)在上述性质的数量变化是由柔软剂的人工成本降阶:Siligen® SIN > Solousoft®WMA> Basosoft® SWK联系上述柔软剂化学成分的差异,相互作用的模式,位置和表面改变程度,以及减少纤维和纱线之间的摩擦从而影响织物的弹性,平滑度和强度;(3)织物莫迪阳离子的程度是由棉花基质类型决定,可按降序排列:丝光棉> 未丝光棉,其他参数保持不变,最可能是由于在其表面形态,差异区,表面面积,表面纤维数量,结晶度,反应以及可达性。 表1 纤维素酶处理和随后的柔软处理对棉织物的一些性能特性的影响

柔软剂: 20g/L ;非离子型润湿剂:2g/L,pH值5;带液率:80–85%;干燥 :85℃, 3min;%LW:失重; WRA:折皱回复角;FR:刚性(mg,cm);BS:断裂强度(W,kg);AC:酸性纤维素酶;NC:中性纤维素酶。 3.2树脂整理

表2显示了影响酶预处理用酸和中性纤维素酶单独对树脂整理后使用Fixapret® CPN或Fixapret®ECO作为交联剂存在和Siligen®SIN作为一个硅柔软剂缺失的交联程度。对于给定的一组酶预处理和后整理完成的条件下,获得的结果表明,(1)酶预处理后的树脂整理,随着FR和BS的处理基材值的减少带来的%N和WRA值的改善;(2)在上述性能变化的程度是由在基板的可用性和非晶及更少的有序的结晶区域可达性(丝光> 未丝光),所使用的交联剂的反应性和功能(Fixapret®CPN > Fixapret® ®ECO生态),纤维素酶类型,活性和酶的攻击范围(酸性纤维素酶、中性纤维素酶),随着整理配方(有柔软剂>没有柔软剂,不计%N值);(3)%N值是提高处理过的棉织物的交联程度增强的一个直接后果;(4)较高的织物弹性是归因于减少纤维与纤维和纱线与纱线间的FR值,然后通过酶处理使醚交联程度的增加;(5)FR值的损失,即在织物柔软性增加,主要是由于纤维表面纤维素酶去除和减少纤维和纱线间的摩擦通过后整理时制定的软化剂掺入;(6)处理过的棉织物的BS值下降的直接后果是棉纤维素的部分水解随着通过醚交联增加刚度和纤维脆化;(7)在整理剂连同其他成分配方中有机硅柔软剂的掺入带来% N值递减的,即较低的交联程度,在一个合理的增加变化,即更好的弹性和柔软性随着BS值略有降低,即降低纤维间和纱线间的凝聚力和纠缠,不论使用的棉衬底还是交联剂。 表2 纤维素酶处理后和随后的树脂整理对棉织物性能特性的影响

整理剂:50g/L;MgCl2•6H2O/柠檬酸:5 /0.5g/L;非离子表面活性剂:2g/L;Siligen® SIN:20g/L;pH值:5;在85℃下,干燥3min;在160℃下养护3min;WRA:折皱回复角;FR:弯曲刚度(mg,cm);BS:断裂强度(W,kg);AC:酸性纤维素酶;NC:中性纤维素酶。 3.3阴离子染料/树脂整理 表3–5显示酶处理对复合阴离子染色程度的影响,采用直接,活性染料或酸性染料,树脂整理以及氯化胆碱作为活性添加剂存在的其他性能。对于给定的一组酶处理随着染色和整理条件,获得的结果表明,(1)酶预处理的结果,增强的交联程度即%N和WRA值,取决于阴离子染料即K/S值,而不是所使用的酶;(2)在上述变化属性是由酶的类型,即酸性纤维素酶>中性纤维素酶 >不加纤维素酶,交联剂的类型,即Fixapret® CPN > Fixapret® ECO,染料类别即分子的大小,功能性,反应性,以及与其它成分的相容性,相互作用和固定程度模式,除了纤维素底物的反应类型,即丝光棉> 未丝光棉;(3)NH4Cl,作为一个潜在的催化剂,随着交联剂,阳离子染色剂,以及在染色/整理工序的制定将催化反应和固化阴离子染料的步骤如下:在FA:Fixapret® CPN 或Fixapret® ECO;=NCH2OR:=NCH2OH或 =NCH2O(CH2)OH; 染料–SO3−:阴离子染料(直接,反应性染料或酸性染料);(4)CC在染色/整理工序的制定和染料在整理剂和织物的固定的程度上具有积极的影响,从而导致的一个直接后果是引发阳离子活性位点的改变上。提高其溶胀性,即染料可以更好的固着在纤维上,也可以使阴离子染料上固着在整理剂或织物上;(5)莫迪阳离子的阳离子化程度以及交联剂的种类依次为Fixapret® CPN ECO.Fixapret®>Current,目前的数据也表明,酶的治疗作用有利于提高染色后的程度,表现为K/S值,而不是所使用的纤维素酶。最可能是由于单个松散的纤维末端从织物表面扩散,从而提高染料分子的扩散,减少染料或散射系数,向纤维织物表面的一个额外的便利的区域发展,即较高的K / S值,(6)莫迪阳离子的织物表面的程度以及染色后受类型的酶,即酸性纤维素酶>中性纤维素酶,通过底物的性质,即丝光棉>未丝光棉,染料的种类也影响染色牢度。(7)发现湿摩擦牢度性能低于干燥的牢度性能,这归因于未固定的染料或CC染料加合物遗留在莫迪纤维素结构中,与使用的染料种类无关。表3 纤维素酶处理和随后结合直接染色和树脂整理对棉织物一些性能特性影响

Sirius® K-CF:10g/L;整理剂:50g/L;氯化胆碱:20g/L;氯化铵:5g/L;非离子表面活性剂:2g/L;pH值为5;在85℃下干燥3min; 在160℃下处理3min;WRA:折皱回复角;WF:耐洗色牢度;RF:色牢度;AC:酸性纤维素酶;NC:中性纤维素酶。 表4 纤维素酶处理和随后的结合活性染色和树脂整理处理对棉织物的一些性能特性的影响

Levafix® Marine Blue:10g/L;整理剂:50g/L;氯化胆碱:20g/L;氯化铵:5g/L;非离子表面活性剂:2g/L;pH值为5;在85℃下干燥3min;在160℃下养护3min;WRA:折皱回复角;WF:耐洗色牢度;RF:色牢度;AC:酸性纤维素酶;NC:中性纤维素酶。

表5 纤维素酶处理和随后的结合酸染色和树脂整理处理对棉织物的一些性能特性的影响

Supranol® Rot 3BW:10g/L;整理剂:50g/L;氯化胆碱:20g/L;氯化铵:5g/L;非离子表面活性剂:2g/L;pH值为5;在85℃下干燥3min;在160℃下养护3min;WRA:折皱回复角;WF:耐洗色牢度;RF:色牢度;AC:酸性纤维素酶;NC:中性纤维素酶。 (a)醚交联[ 21,25 ]

(b)氯化胆碱(CC)固定到整理剂/织物[26– 28 ] 。

(c)、副反应

(d)、阴离子染料[26–28 ]

3.4、阳离子染料染色/树脂整理

表6显示了酶预处理对阳离子染料染色后,在柠檬酸(CA)存在下树脂整理完成程度的影响作为活性添加剂。很显然:(1)酶预处理对丝光棉比未丝光棉更有效,从而在染色后的程度越高,表示为K/S值,以及树脂整理后有更好的效果,表示为%N和WRA值,无论使用什么酶,可能是由于容易获得纤维素酶酶比表面积大,光滑,在丝光后使棉花纤维形态学改变为圆形;(2)阳离子染料染色程度的提高是自由羧基上整理剂和布料发生以下接枝反应的一个直接后果:

(3)整理后的织物在使用CA活性添加剂的情况下,WRA(表6)高于使用CC作为活性添加剂(表3–5)反应影响接枝羧基的积极影响,作为一个内置的催化剂可以提高交联程度,而不是所使用的交联剂和纤维素的类型;(4)丝光酶预处理有一些的牢度性能产生积极的影响,特别是洗涤和汗水,染色和整理纤维素织物样品。

表6 纤维素酶处理和随后的复合碱性染色和树脂整理处理对棉织物的一些性能特性的影响

Astrazon® Rot GTLN:10g/L;整理剂:50g/L;柠檬酸:20g/L;氯化铵:5g/L;非离子表面活性剂:2g/L;pH值为5;在85℃下干燥3min;在160℃下固化3min;WRA:折皱回复角;WF:耐洗色牢度;RF:色牢度;AC:酸性纤维素酶;NC:中性纤维素酶。

4、结论

在这项研究中,纤维素酶处理对随后的柔软光洁度的影响,树脂整理以及染色和树脂整理后评价。结果得出以下结论:(1)处理后织物的柔软弹性增强,随着织物强度的降低是由纤维素酶制剂以及柔软剂的类型决定,(2)预处理酶在树脂整理后带来了交联随织物的刚度减小,断裂强度提高,与所使用的整理剂和纤维素无关,(3)预处理酶提高染色后的树脂整理的效果,与使用的纤维素酶无关,整理剂只与染料种类有关。

读书的好处

1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

20、读书给人以快乐、给人以光彩、给人以才干。——培根

第二篇:求一篇土木工程专业的外文翻译

building types and design

A building is closely bound up with people,for it provides with the necessary space to work and live in .

As classified by their use ,buildings are mainly of two types :industrial buildings and civil buildings .industrial buildings are used by various factories or

industrial production while civil buildings are those that are used by people for dwelling ,employment ,education and other social activities .

Industrial buildings are factory buildings that are available for processing and manufacturing of various kinds ,in such fields as the mining industry ,the

metallurgical industry ,machine building ,the chemical industry and the textile industry . factory buildings can be classified into two types single-story ones and multi-story ones .the construction of industrial buildings is the same as that of civil buildings .however ,industrial and civil buildings differ in the materials used and in the way they are used .

Civil buildings are divided into two broad categories: residential buildings and public buildings .residential buildings should suit family life .each flat should consist of at least three necessary rooms : a living room ,a kitchen and a

toilet .public buildings can be used in politics ,cultural activities ,administration work and other services ,such as schools, office buildings,

parks ,hospitals ,shops ,stations ,theatres ,gymnasiums ,hotels ,exhibition

halls ,bath pools ,and so on .all of them have different functions ,which in turn require different design types as well.

Housing is the living quarters for human beings .the basic function of housing is to provide shelter from the elements ,but people today require much more that of their housing .a family moving into a new neighborhood will to know if the available housing meets its standards of safety ,health ,and comfort .a family will also ask how near the housing is to grain shops ,food

markets ,schools ,stores ,the library ,a movie theater ,and the community center .

In the mid-1960’s a most important value in housing was sufficient space both inside and out .a majority of families preferred single-family homes on about half an acre of land ,which would provide space for spare-time activities .in highly industrialized countries ,many families preferred to live as far out as possible from the center of a metropolitan area ,even if the wage earners had to travel some distance to their work .quite a large number of families preferred country housing to suburban housing because their chief aim was to get far away from noise ,crowding ,and confusion .the accessibility of public

transportation had ceased to be a decisive factor in housing because most workers drove their cars to work .people we’re chiefly interested in the

arrangement and size of rooms and the number of bedrooms .

Before any of the building can begin ,plans have to be drawn to show what the building will be like ,the exact place in which it is to go and how everything is to be done.An important point in building design is the layout of rooms ,which should

provide the greatest possible convenience in relation to the purposes for which they are intended .in a dwelling house ,the layout may be considered under three categories : “day”, “night” ,and “services” .attention must be paid to the provision of easy communication between these areas .the “day “rooms generally include a dining-room ,sitting-room and kitchen ,but other

rooms ,such as a study ,may be added ,and there may be a hall .the

living-room ,which is generally the largest ,often serves as a

dining-room ,too ,or the kitchen may have a dining alcove .the “night “rooms consist of the bedrooms .the “services “comprise the

kitchen ,bathrooms ,larder ,and water-closets .the kitchen and larder connect the services with the day rooms .

It is also essential to consider the question of outlook from the various

rooms ,and those most in use should preferably face south as possible .it is ,however ,often very difficult to meet the optimum requirements ,both on account of the surroundings and the location of the roads .in resolving these complex problems ,it is also necessary to follow the local town-planning regulations which are concerned with public amenities ,density of

population ,height of buildings ,proportion of green space to dwellings ,building lines ,the general appearance of new properties in relation to the

neighbourhood ,and so on .

There is little standardization in industrial buildings although such buildings still need to comply with local town-planning regulations .the modern trend is

towards light ,airy factory buildings .generally of reinforced concrete or metal construction ,a factory can be given a “shed ”type ridge roof ,incorporating windows facing north so as to give evenly distributed natural lighting without sun-glare .

翻译:

建筑类型和设计

建筑物与人们有着紧密的联系,他为人们提供必要的空间,用以工作和生活。 根据适用类型不同,建筑物可以分为两类:工业建筑和民用建筑。工业建筑包括各个工厂或工业生产所使用建筑,民用建筑是指那些人们用以居住,就业,教育和其他社会活动的建筑场所。

工业建筑的厂房可用于采矿业,冶金工业,机械制造,化学工业和纺织工业等各类领域的加工和制造。厂房可分为两种类型:单层的和多层的。工业建筑也属于建筑的一种。但是,工业建筑与民用建筑所用的材料和建筑方式不同。

民用建筑按使用可分为两大类:住宅建筑和公共建筑。住宅建筑要适应家庭生活。每个单位应包括至少三个必要客房:起居室,厨房和厕所。公共建筑可在政治,文化活动,管理工作和其他服务,如学校,写字楼,公园,医院,商店,车站,剧院,体育馆,宾馆,展览馆,洗浴池,等等。他们都有着不同的职能,这反过来又需要不同的设计类型。

房屋是用以住人的. 其基本功能是提供住房的内容,但今天人们需要更多的住房内容。一个家庭在进入一个新的社区后将知道,现有住房不仅要符合其安全,健康和舒适等标准。还要考虑其附近是否有相应的配套设施,如食品市场,学校,商店,图书馆,电影院,以及社区中心等。

在60年代中期住房最重要的价值是足够大的空间和方便的出入交通。大多数家庭会首选约半英亩面积土地的家庭住宅,这样将提供足够的空间的用以业余活动。在高度工业化的国家,许多家庭的首选是那种尽可能远离市中心商业圈的住房,即使距离上班地点不得不有一段距离。相当多的家庭首选是郊区的住房,因为他们的主要目的是要远离噪音,拥挤和混乱。拥有方便的公共交通使得距离不再是一个决定性因素,因为大多数人都是开着自己的汽车去上班了。人们现在主要感兴趣的是户型,房间的大小和卧室的数目。

在工程项目开始之前,要做好建筑设计和施工流程,让人提前知道该建筑建成后是什么样子以及下一步应该做什么。

在建筑设计中要特别重视房间的布局,其目的是提供最大的便利与可能的用途。在一个住宅建筑设计中,布局可考虑以下三个方面: “白天” , “夜晚”和“服务”。必须注意这些空间区域之间的连通交流。 “白天”房一般包括餐厅,起居室和厨房,但其他房间可能会增加,如书房,并有可能成为一个大厅。起居室通常是最大的,往往是一个餐厅,也或可能有厨房、凹室等。 “夜间”房间包括卧室、客

房。“服务”用房间包括厨房,浴室,储藏室 ,和厕所等。厨房和储藏室需设置在一起,以方便其房间功能的使用。

此外,还必须考虑各种客房的朝向问题,当然最好尽可能的将那些经常使用的房间朝南设置。然而,在考虑到周围的环境和地点、道路等多方面因素,往往很难达到最佳要求。在解决这些复杂的问题,还必须按照当地城市规划条例所涉及的对公共设施,人口密度,建筑物高度,绿化面积,建筑红线等的要求,还要考虑到有相邻建筑的情况,等等。

尽管工业建筑需要符合当地城市规划条例但很少有标准化的工业楼宇。现代厂房建筑的趋势是轻质、通风。一般的钢筋混凝土结构或钢结构的工厂,可以得到一个“跌”型脊屋顶,把窗户开向北以便使分布均匀的自然采光不会直射进来造成刺眼。

第三篇:外文翻译机械手的机械和控制系统

本科毕业设计

外文翻译

目 姓

名 专

业 指导教师

机械手的机械和控制系统 谢百松

号 20051103006

机械设计制造及其自动化 肖新棉

称 副教授

中国·武汉 二○○九年 二月

华中农业大学本科毕业设计外文翻译

机械手的机械和控制系统

文章来源: Dirk Osswald, Heinz Wörn. Department of Computer Science , Institute for Process Control and Robotics (IPR).,Engler-Bunte-Ring 8 - Building 40.28.

摘要: 最近,全球内带有多指夹子或手的机械人系统已经发展起来了, 多种方法应用其上,有拟人化的和非拟人化的。不仅调查了这些系统的机械结构,而且还包括其必要的控制系统。如同人手一样,这些机械人系统可以用它们的手去抓不同的物体,而不用改换夹子。这些机械手具备特殊的运动能力(比如小质量和小惯性),这使被抓物体在机械手的工作范围内做更复杂、更精确的操作变得可能。这些复杂的操作被抓物体绕任意角度和轴旋转。本文概述了这种机械手的一般设计方法,同时给出了此类机械手的一个示例,如卡尔斯鲁厄灵巧手Ⅱ。本文末介绍了一些新的构想,如利用液体驱动器为类人型机器人设计一个全新的机械手。 关键词:多指机械手;机器人手;精操作;机械系统;控制系统

1. 引言

2001年6月在德国卡尔斯鲁厄开展的“人形机器人”特别研究,是为了开发在正常环境(如厨房或客厅)下能够和人类合作和互动的机器人系统。设计这些机器人系统是为了能够在非专业、非工业的条件下(如身处多物之中),帮我们抓取不同尺寸、形状和重量的物体。同时,它们必须 1

华中农业大学本科毕业设计外文翻译

能够很好的操纵被抓物体。这种极强的灵活性只能通过一个适应性极强的机械人手抓系统来获得,即所谓的多指机械手或机器人手。

上文提到的研究项目,就是要制造一个人形机器人,此机器人将装备这种机器人手系统。这个新手将由两个机构合作制造,它们是卡尔斯鲁厄大学的IPR(过程控制和机器人技术研究院)和c(计算机应用科学研究院)。这两个组织都有制造此种系统的相关经验,但是稍有不同的观点。

IPR制造的卡尔斯鲁厄灵巧手Ⅱ(如图1所示),是一个四指相互独立的手爪,我们将在此文中详细介绍。IAI制造的手(如图17所示)是作为残疾人的假肢。

图1.IPR的卡尔斯鲁厄灵巧手Ⅱ

图2. IAI开发的流体手 2. 机器人手的一般结构

一个机器人手可以分成两大主要子系统:机械系统和控制系统。 机械系统又可分为结构设计、驱动系统和传感系统,我们将在第三部分作进一步介绍。在第四部分介绍的控制系统至少由控制硬件和控制软件组成。

我们将对这两大子系统的问题作一番基本介绍,然后用卡尔斯鲁厄灵 2

华中农业大学本科毕业设计外文翻译

巧手Ⅱ演示一下。

3. 机械系统

机械系统将描述这个手看起来如何以及由什么元件组成。它决定结构设计、手指的数量及使用的材料。此外,还确定驱动器(如电动机)、传感器(如位置编码器)的位置。

3.1 结构设计

结构设计将对机械手的灵活度起很大的作用,即它能抓取何种类型的物体以及能对被抓物体进行何种操作。设计一个机器人手的时候,必须确定三个基本要素:手指的数量、手指的关节数量以及手指的尺寸和安置位置。

为了能够在机械手的工作范围内安全的抓取和操作物件,至少需要三根手指。为了能够对被抓物体的操作获得6个自由度(3个平移和3个旋转自由度),每个手指必须具备3个独立的关节。这种方法在第一代卡尔斯鲁厄灵巧手上被采用过。但是,为了能够重抓一个物件而无需将它先释放再拾取的话,至少需要4根手指。

要确定手指的尺寸和安置位置,可以采用两种方法:拟人化和非拟人化。然后将取决与被操作的物体以及选择何种期望的操作类型。拟人化的安置方式很容易从人手到机器人手转移抓取意图。但是每个手指不同的尺寸和不对称的安置位置将增加加工费用,并且是其控制系统变得更加复杂,因为每个手指都必须分别加以控制。对于相同手指的对称布置,常采用非 3

华中农业大学本科毕业设计外文翻译

拟人化方法。因为只需加工和构建单一的“手指模块”,因此可减少加工费用,同时也可是控制系统简化。

3.2 驱动系统

指关节的驱动器对手的灵活度也有很大的影响,因为它决定潜在的力量、精度及关节运动的速度。机械运动的两个方面需加以考虑:运动来源和运动方向。在这方面,文献里描述了有几种不同的方法,如文献[3]中说可由液压缸或气压缸产生运动,或者,正如大部分情况一样使用电动机。在多数情况下,运动驱动器(如电机)太大而不能直接与相应的指关节结合在一起,因此,这个运动必须由驱动器(一般位于机器臂最后的连接点处)转移过来。有几种不同的方法可实现这种运动方式,如使用键、传动带以及活动轴。使用这种间接驱动指关节的方法,或多或少地降低了整个系统的强度和精度,同时也使控制系统复杂化,因为每根手指的不同关节常常是机械地连在一起,但是在控制系统的软件里却要将它们分别独立控制。由于具有这些缺点,因此小型化的运动驱动器与指关节的直接融合就显得相当必要。

3.3 传感系统

机器手的传感系统可将反馈信息从硬件传给控制软件。对手指或被抓物体建立一个闭环控制是很必要的。在机器手中使用了3种类型的传感器: 1. 手爪状态传感器确定指关节和指尖的位置以及手指上的作用力情况。知道了指尖的精确位置将使精确控制变得可能。另外,知道手指作用 4

华中农业大学本科毕业设计外文翻译

在被抓物体上的力,就可以抓取易碎物件而不会打破它。

2. 抓取状态传感器提供手指与被抓物体之间的接触状态信息。这种触觉信息可在抓取过程中及时确定与物体第一次接触的位置点,同时也可避免不正确的抓取,如抓到物体的边缘和尖端。另外还能察觉到已抓物体是否滑落,从而避免物体因跌落而损坏。

3. 物体状态或姿态传感器用于确定手指内物体的形状、位置和方向。如果在抓取物体之前并不清楚这些信息的情况下,这种传感器是非常必要的。如果此传感器还能作用于已抓物体上的话,它也能控制物体的姿态(位置和方向),从而监测是否滑落。

根据不同的驱动系统,有关指关节位置的几何信息可以在运动驱动器或直接在关节处出测量。例如,如在电动机和指关节之间有一刚性联轴器,那么就可以用电机轴上的一个角度编码器(在齿轮前或齿轮后)来测量关节的位置。但是如果此联轴器刚度不够或着要获得很高的精度的话,就不能用这种方法。

3.4卡尔斯鲁厄灵巧手Ⅱ的机械系统

为了能够获得如重抓等更加复杂的操作,卡尔斯鲁厄灵巧手Ⅱ(KDHⅡ)由4根手指组成,且每根手指由3个相互独立的关节组成。设计该手是为了能够在工业环境中应用(图3所示)和操纵箱、缸及螺钉螺帽等物体。因此,我们选用四个相同手指,将它们作对称、非拟人化配置,且每个手指都能旋转90°(图4所示)。

鉴于从第一代卡尔斯鲁厄灵巧手设计中得到的经验,比如因传动带而导 5

华中农业大学本科毕业设计外文翻译

致的机械问题以及较大摩擦因数导致的控制问题,卡尔斯鲁厄灵巧手Ⅱ采用了一些不同的设计决策。每根手指的关节2和关节3之间的直流电机被整合到手指前部肢体中(图5所示)。这种布置可使用很硬的球轴齿轮将运动传递到手指的关节处。处在电机轴上的角度编码器(在齿轮前)此时可作为一个精度很高的位置状态传感器。

图3.工业机器人上的KDHⅡ

图4. KDHⅡ的顶视图

为了感知作用在物体上的手指力量,我们发明了一个六维力扭矩传感器(图6所示)。这个传感器可当作手指末端肢体使用,且配有一个球形指尖。它可以抓取较轻的物体,同时也能抓取3-5kg相近的较重物体。此传感器能测量X、Y和Z方向的力及绕相关轴的力矩。另外,3个共线的激光三角测量传感器被安置在KDHⅡ的手掌上(图5所示)。因为有3个这样的传感器,因此不仅可以测量3单点之间的距离,如果知道物体的形状,还能测出被抓物体表面之间的距离和方向。物体状态传感器的工作频率为1kHz,它能检测和避免物体的滑落。

华中农业大学本科毕业设计外文翻译

图5. KDHⅡ的侧视图

图6. 带应变计量传感器的六自由度扭转传感器

4. 控制系统

机器人手的控制系统决定哪些潜在的灵巧技能能够被实际利用,这些技能都是由机械系统所提供的。如前所述,控制系统可分为控制计算机即硬件和控制算法即软件。

控制系统必须满足以下几个的条件:

1. 必须要有足够的输入输出端口。例如,一具有9个自由度的低级手,其驱动器至少需要9路模拟输出端口,且要有9路从角度编码器的输入端口。如再加上每个手指上的力传感器、触觉传感器及物体状态传感器的话,则端口数量将增加号几倍。

2. 需具备对外部事件快速实时反应的能力。例如,当检测到物体滑落时,能立即采取相应的措施。

3. 需具备较高的计算能力以应对一些不同的任务。如可以对多指及物体并行执行路径规划、坐标转换及闭环控制等任务。

4. 控制系统的体积要小,以便能够将其直接集成到操作系统当中。

华中农业大学本科毕业设计外文翻译

5. 在控制系统与驱动器及传感器之间必须要电气短接。特别是对传感器来说,若没有的话,很多的干扰信号将会干扰传感器信号。

4.1 控制硬件

为了应对系统的要求,控制硬件一般分布在几个专门的处理器中。如可通过一个简单的微控制器处理很低端的输入输出接口(马达和传感器),因此控制器尺寸很小,能轻易地集成到操纵系统中。但是较高水平的控制端口则需要较高的计算能力,且需要一个灵活实时操作系统的支持。这可以通过PC机轻易地解决。

因此,控制硬件常由一个非均匀的分布式计算机系统组成,它的一端是微控制器,而另一端则是一个功能强大的处理器。不同的计算单元则通过一个通信系统连接起来,比如总线系统。

4.2 控制软件

机器人手的控制软件是相当复杂的。必须对要对手指进行实时及平行控制,同时还要计划手指和物体的新的轨迹。因此,为了减少问题的复杂性,就有必要将此问题分成几个子问题来处理。

另一方面涉及软件的开发。机器人手其实是一个研究项目,它的编程环境如用户界面,编程工具和调试设施都必须十分强大和灵活。这些只能使用一个标准的操作系统才能得到满足。在机械人中普遍使用的分层控制系统方法都经过了修剪,以满足机械手的特殊控制要求。

华中农业大学本科毕业设计外文翻译

4.3卡尔斯鲁厄灵巧手Ⅱ的控制系统

如在4.1节中所说,对于卡尔斯鲁厄灵巧手Ⅱ的控制硬件,采用了一种分布式方法(图7所示)。一个微控制器分别控制一个手指的驱动器和传感器,另外一个微控制器用于控制物体状态传感器(激光三角传感器)。这些微控制器(图7左侧和右侧的外箱)直接安装在手上,所以可以保证和驱动器及传感器之间较短的电气连接。这些微控制器都是使用串行总线系统和主控计算机连在一起的。这个主控计算机(图

7、图8中的灰色方块)是由六台工业计算机组成的一个并行计算机。这些电脑都被排列在一个二维平面。相邻电脑模块(一台电脑最多有8个相邻模块)使用双端口RAM进行快速通信(图7中暗灰色方块所示)。一台电脑用于控制一个手指。另一台用于控制物体状态传感器及计算物体之间的位置。其余的电脑被安在前面提到的电脑的周围。这些电脑用于协调整个控制系统。控制软件的结构反映了控制硬件的架构。如图9所示。

图7. KDH II的控制硬件构架

图8.控制KDH II的平行主计算机

一个关于此手控制系统的三个最高层次的网上计划正在规划。理想的

华中农业大学本科毕业设计外文翻译

物体位移命令可由优越的机器人控制系统得到,并可用作物体路径的精确规划。根据已产生的目标路径就可规划可行的抓取行为(手指作用在物体上的可行抓取位置点)。现在知道了物体的运动计划,就可以由手指路径规划得出每个手指的运动轨迹,并传递给系统的实时能力部分。如果一个物体被抓取了,那么其手指的运动路径就传递给了物体的状态控制器。这个控制器控制物体的姿态,它由手指和物体状态传感器所决定,用以获得所需的物体姿态。如果一个手指没有跟物体接触,那么它的移动路径将会直接传递给手控制器。这个手控制器将相关的预期手指位置传递给所有的手指控制器,以协调所有手指的运动。这些在手指传感器的帮助下又反过来驱动手指驱动器。

图9. KDHⅡ的手部控制系统

5. 实验结果

为了验证卡尔斯鲁厄灵巧手Ⅱ的能力,我们选择了两个要求操作问题。一个问题是在网上对处于外部影响下的被抓物体姿态(位置和方向)的控制。另一个问题是被抓物体必须能够绕任意角度旋转,这只能通过重抓才能实现。这可以反映卡尔斯鲁厄灵巧手Ⅱ对复杂任务的操作能力。

5.1 物体姿态控制

这个物体姿态控制器的目的是为了确定好被抓物体的位置和方向以适

华中农业大学本科毕业设计外文翻译

合给定的轨迹。此任务必须在实时条件通过在线获得,尽管有内部变化及外部干扰的存在。内部变化比如在物体移动过程中,球形指尖在被抓物体上的滚动。这种状况如图

10、图11所示。这将导致物体的不必要的额外移动和倾斜。这些错误的物体姿势很难预先估计。因此,物体状态传感器的输入必须要修改这些错误。对于卡尔斯鲁厄灵巧手Ⅱ来说,其上的三个激光三角传感器就是用来纠正此种错误的。图12定量地说明了图9中物体在没有姿态控制情况下的倾斜情况。下图显示了在X方向上随时间推移的预期轨迹,而上图显示了物体实际的旋转(倾斜)结果情况。因为启用了物体状态控制,图13中的物体倾斜得到了很大的减少。上图物体的旋转保持基本恒定,这和期望的一样。

图10.因滚动产生的额外位移

图12.没有状态控制的物体倾斜

华中农业大学本科毕业设计外文翻译

图11.因球形指尖在物体上的滚动而产生

图13.物体状态控制下减少的物体

额外的不期望倾斜情况

倾斜情况

物体状态控制器对补偿外界干扰也是十分必要的。比如,机器人(手臂、手或手指)或被抓物体与外界的碰撞可能导致物体的滑落。这更有可能导致被抓物体的损耗,这是不能出现的情况。为了能够避免物体在这种情况下的损失,就必须检测出物体的滑落并迅速采取行动以稳定物体的状态。

为了验证卡尔斯鲁厄灵巧手Ⅱ控制系统对这种干扰情况的处理能力,我们做了以下的实验:物件被抓后,将手指的接触力恒定减少直至物体开始滑落。在激光三角传感器检测滑落后,物体状态控制器采取措施将物体重新调控到所期望的位置。图14和图15展示了此种实验的一个例子。尤其是图14,它显示出物体滑落启动的相当突然且相当快。但是物体状态控制器也能够足够快地检测和补偿滑落,这样物体的位置(这里:特别是X方向,就是滑落的方向)和物体的方向能够与最开始的期望值很快地相符。

华中农业大学本科毕业设计外文翻译

图14.滑落实验:X方向的实际物体

图15.滑落实验:关于Z轴的实际

位置

物体方向

5.2 重抓

虽然卡尔斯鲁厄灵巧手Ⅱ非常的灵活,但是它不能在第一次操作中就能得到每一个理想的对象操纵。这源于这样一个事实:手指相对于正常的工业机器人来说是十分小的,因此所具备的工作范围也是很有限的。如果物体被手指抓住,那么它第一次只能在所有手指的剩余空间内被操纵。可行操作的条件是所有的接触点必须长期地处在相联手指的工作范围内。这很大地限制了操作的可行性。为了能够克服此种限制,一个叫做重抓的操作就必须执行。即当一个接触点到达了相联手指的限制区域时,这个手指就必须从物体上脱离,并移到一个新的接触位置。这必须是多于3个手指的手才能使操作可靠。周期性的移动这些手指,就能使任意的操作变得可行。关于此种操作有一个例子,就是在大角度旋转被抓物体时,此时重抓动作很有必要。图16显示了卡尔斯鲁厄灵巧手Ⅱ在旋转一个螺帽状物体时的一系列图片。这个物体是绕它的垂直轴旋转的。在a到c图中所有的手指都跟物体接触,并且四个手指相互协调运动才使物体旋转。图d到图f显示了一 13

华中农业大学本科毕业设计外文翻译

个手指的的重抓动作。在d图中这个手指已经运动到其工作范围的极限位置,这时所有手指的协调运动也被终止。左前方的手指脱离物体并单独移动到另一个接触点。在图f中这个手指重新跟物体接触,另一个手指此时可以重新定位(没有显示)。所有的手指重新定位之后,协调旋转运动继续进行。视具体情况而定,卡尔斯鲁厄灵巧手Ⅱ也可以同时进行几个手指的重抓动作。这可以加速重抓过程,但是只能是被抓物体与外界接触的条件下才有可能。比如说螺丝钉上的螺帽或孔里的一挂钩。图17显示了卡尔斯鲁厄灵巧手Ⅱ将一个木柱从一个平方的基座孔内拉出来的一系列图片。图a到图b显示木柱被拉出一半,然后左手指和右手指在同一时刻脱离物体并重新定位(图c到图e)。那之后,前面与后面的手指也重新定位(图f)。那之后,整个木柱被拉出,从而可进行进一步的操作(没有显示)。

图16.利用重抓旋转螺帽状物体

图17.利用重抓从孔中拉出 14

华中农业大学本科毕业设计外文翻译

木柱

6.结论

为了使机械手能够完成灵活精确的操作,一合适的机械系统和控制系统是必需的。这些介绍的标准是必需加以考虑的,正如文中所说。卡尔斯鲁厄灵巧手Ⅱ表现的非常成功。这种机械手能够抓取很大范围的不同形状、尺寸和重量的物体。被抓物体的姿态也能可靠地加以控制,即使在外部干扰的情况下。此外,由于此系统,复杂的精细操作(如重抓)也能实现。在人行机器人的特殊研究领域,基于一个不同的概念叫做流体化(图2所示)的基础上,小型机械手也具有拟人化和机械化。这概念是由卡尔斯鲁厄研究中心的IAI所提出的。但是,这个控制软件的主要结构可经过相应修改而为此种小型机械手所用。

第四篇:交通运输外文翻译外文文献

交通事故分析的可能性和局限性

S.Oppe 关键字:后果;目的;描述;限制;关注;事故分析;可能性

摘要:交通事故的统计数字,尤其国家一级的数据对监控和预测事故的发展,积极或消极检测事故的发展,以及对定义安全目标和评估工业安全特别有益。事故分析是应用非常有限的分析,是前瞻性分析和回顾性分析,能够对新开发的交通安全系统和特殊过程的安全措施进行评价。目前迫切需要一个将实时事故分析与研究相结合的行为。将自动检测和视频录制相结合的研究交通事故的科研论文会比较容易接受。这种类型的研究最终会对交通理念有个完善的认识。

1.简介

本文主要是基于个人的经验,研究有关交通安全、安全分析以及事故分析等在研究中的作用。由这些经验推导出的哲学思考就像通过研究和统计得出的实践观点。而这些调查数字已经在其他地方发表了。

在缺少直接观察的事故中,许多方法论问题的产生,导致不能直接测试对结果持续讨论。通过看事故视频来讨论是富有成效的。事实证明,用来解释事故的大部分有关信息就是事故中缺少的记录。深入研究还无法回忆起所有的必要的用来测试有关事故发生的假设数据,。尤其是车-车相撞发生的车祸,这是在荷兰城市道路交叉口录制的视频,一辆从岔路驶来的汽车与主干路的汽车相撞,下列问题可以问:为什么汽车来自次干路上,突然加速后又几乎停止,撞上了在左侧主路的一辆汽车呢?为什么没有注意到正在驶来的车?是不是因为两车从右边驶来,司机因为前面的交叉为他们提供了可能性而斤斤计较?难道他向左看过,但他认为停在拐角处的绿色货车能让他停下来?当然,交通状况并不复杂。目前这个事故中没有骑自行车或行人在拥挤路口分散他的注意。如果停着的绿色车能够在五分钟内消失,这两辆车可能就不会相撞。在事故发生的相关条件下,几乎不可能观察下一个交通行为,因为交通事故是不可预见的。由于新的视频设备和自动检测事故设备的不断发展,如在收集数据方面不需要很高的成本就能变得越来越逼真。必要的增加数据类型也能更好的解释交通中存在的危险因素。关于事故分析的可能性和限制性的问题是不容易回答的,我们不能确切的分析交通事故。因为事故分析涵盖了每一个活动中的不同背景,并根据不同的信息来源范围来补充资料,特别是收集事故的数据,背景资料等,我们首先要看看在交通安全领域的活动周期然后再回答事故分析的可能性与限制。这些行为主要是与交通系统的安全管理有关,有些则是相关的研究活动。

应该用下面的步骤来加以区分: ——检测交通安全问题;

——描述问题和它的主要特征; ——分析其原因分析和改进建议; ——选择和执行安全措施; ——评价所采取的措施。

虽然这个周期可以由同一人或一群人做出来,而问题在每个阶段(政治/管理或科学)都有不同的背景。我们用事故分析来描述这一阶段。做这个决定是重要的。很多关于分析结果的方法的讨论由于忽视之间的区别而成为徒劳的。政治家或道路管理人员对道路的个别事故不是很留意。他们对事故的看法往往都是一视同仁,因为总的结果比整个事故中的每个人的因素重要。因此,每次事故看做一个个体,之间相互协调就会达成安全的结果。

研究人员研究事故发生时一连串事件中每个人的兴趣。希望从中得到关于每次事故的详细信息并能发现其发生的原因和有关的条件。政治家们希望只是因为细节决定行动。在最高一级事故总数减少。信息的主要来源是国家数据库及其统计学处理系统。对他来说,统计意外数字及其统计的波动来进行事故分析。这适用于事故分析中的交通安全领域。因此,我们将首先描述了事故的这些方面。 2.事故的性质和它们的统计特性

事故基本概念是意外,不管是其发生的原因还是引起事故出现的过程。两个简单的假设通常是来描述交通事故的形成过程:

-事故发生的概率与以往发生的事故之间是独立; -事故发生在时间上是同性质的

如果这两个假设成立,那么事故是泊松分布。第一个假设与大多数的批判不符。事故是罕见的事件,因此不会受到以前事故的影响。在某些情况下,有一个直接的因果链(例如,大量的车开到一起)这一系列的事故被认为是一个个体事故但包含许多的车。这个假设并不适用于统计人员伤亡。伤亡人数往往与同一事故有关,因此,独立性假设不成立。第二个假设乍一看似乎不太容易理解。穿越空间或在不同地点发生的的事故同样具有可能性。然而,假设需要很长一段时间并且没有缓缴期。其性质是根据理论的假设。如果其短时间内能成立,那么它也适用于长时间,因为泊松分布变量的总和,即使他们的泊松率是不同的,但也属于泊松分布。对于这些时期的总和泊松率则等于为这些地方的泊松率的总和。假设与一个真正的情况相比较计数,无论是从一两个结果还是总情况来看都有一个基本情况比较符合。

例如,对比在一年中特定的一天例如下一天,下一个星期的一天发生的交通事故。如果条件是相同的(同一时间,交通情况相同,同样的天气条件等),那么由此产生的意外数字是相同的泊松过程的结果。这一假设可以通过估算进行测试的两个观测值的基础上(估计是两个值的平均值)的速度参数。概率理论能够

考虑到这两个观察值的平均,用于计算的平等假设的可能性。这是一个相当强大的统计过程。泊松假设是研究了很多次,来获得证据支持。它已经应用于许多情况,数的差异表明在安全性的差异然后确定是否发生意外。这一程序的主要目的是检测在安全分歧。这可能是一个时间上的差异,或不同的地方或不同的条件。这种差异可以指导改进的过程。由于主要关注的是,以减少意外的发生,这种分析可能导致对治疗中最有前途的领域。为这样一个测试应用程序的必要条件是,那意外的数字进行比较是大到足以证明存在的分歧。在许多地方情况下,一个应用程序是不可能的。事故黑点分析往往阻碍了这一限制,例如,如果应用这种测试,找出事故是否在特定的位置数是高于平均水平。该程序的描述,也可以使用,如果发生意外乃根据数的特点找到有前途的安全目标。不仅聚集,而且还与分类泊松假设成立,而意外数字可以相互测试的泊松假设的基础。这种测试是相当麻烦的,因为每个特定的情况下,每一个不同的泊松参数,即,对所有可能结果的概率必须计算应用测试。然后,泊松分布近似为正态分布,均值和方差等于泊松参数。一旦均值和方差的正态分布,给出了所有的测试可以改写了标准零均值和

方差的正态分布条件。没有任何更多的必要计算,但测试统计,需要利用表绘制。3. 行车安全政策事故统计的应用

分析那些假设的基础上描述的测试程序的类型及其优点。这种应用最好的例子是为一个国家或地区进行超过一年的安全监测,用事故的总体数据(最终的特定类型,如死亡事故)与前几年的数据相比较。根据数年的事故序列,能够分析出它的发展趋势,并大致预测以后几年的事故数量。一旦建立了这样一种趋势,那么在误差范围内未来一年或几年都可以预见。从一个给定趋势的偏差也可以进行预测新的事件。最有名的是斯米德在1949年进行的分析。我们将讨论这个事故类型分析更详细的内容。

1、该测试应用推广到高阶分类。Foldvary和Lane(1974),在衡量强制佩戴安全带的效果,谁是最早应用于值的4路表高阶相互作用的总卡方分配的。

2、测试不局限于总体影响,但卡方值就可以分解模型内子假说。另外,在双向表,卡方总可以分解成零件表互动的作用。对1的优势。和2。比以前的情况是,这对许多相互关联的(子)表和相应的智广场卡方检验是由大量分析,取而代之的是一个一卡方的确切划分。

3、投入更多关注的是参数估计。例如,在卡方分割使人们有可能以测试有关行参数的线性或二次限制或趋势的不连续性。

4、分析的单位是从数到广义加权计数。这对于道路安全分析,那里一段时间,道路使用者的数量,地点或公里数的车辆往往是必要的修正有利。最后一个选项是没有发现在许多统计软件包。安徒生1977年给出了一个用于道路双向安全分析表的例子。工资保障运动的一个计算机程序。这一级没有说明事故原因分

析。它会尝试检测安全问题需要特别注意。所需的基本信息包括事故数字,来形容不安全总额,暴露的数据来计算风险,并找到一个高风险的情况下或(团体)道路使用者。

4. 事故分析研究目的

交通安全的研究是有关的事故及其后果的发生。因此,人们可能会说,研究对象是意外。然而研究人员的兴趣较少集中在这个最后的结果本身,而是多在进程更多的结果(或不结果)的事故。因此,最好是把作为他的研究对象,在流量的重要事件。一个在交通意外的过程,结果是,该实际发生是由研究者未落观测研究的主要问题。

调查一宗交通意外,他将努力重建了间接来源的事件,如涉及的道路使用者,所提供的资料或目击者有关情况,车辆,道路和司机的特点。因此这不是科学独特的,也有一个间接的研究对象的研究更多的例子。但是,第二个困难是,该研究的对象不能被诱发。有系统的控制实验手段研究只对问题方面的可能,而不是问题本身。

间接观察和缺乏系统的控制组合使调查人员很难发现在什么情况下造成事故的因素。虽然研究人员主要是在事故处理领导有兴趣,他几乎完全信息的后果,它的产品,意外。此外,事故背景是复杂的。一般来说,可分为以下几个方面:

-考虑到交通系统,交通量和组成国家,道路使用者,他们的速度,天气条件下,路面情况,车辆,道路使用者和他们的相互作用的演习,意外可以或无法预防。

-由于发生事故,也对这样的速度和车辆质量的因素,大量的不同,碰撞角度,对道路使用者和他们的脆弱性,影响等位置的保护,伤害是严重或或多或少物质损失是多还是少可观。虽然这些方面不能独立研究从理论的角度看,它也从由此产生的结果的优势,区分交通情况有潜在危险的数字,是由有一个意外的可能性,在这种潜在的危险局势,给定一个特定事故。

这个概念框架是对风险的关于个别道路使用者,以及上级的决定控制器的决定制定的一般基础。在风险的数学公式,我们需要一个明确的概率空间的介绍,基本事件(的情况),可能导致事故组成,每个类型的事件的概率,最终收在一次事故中,最后的具体成果,损失,鉴于事故的类型。

另一种方法是看事故特征组合,然后找出关键因素。这种类型的事故分析是通过分析事故的共组或子群来开展。事故本身是一个研究的单位,但也要研究道路因素:道路位置,道路设计(如一个弯道)等。

原文出处:SWOV institute for road safety research Leidschendam(会议记录),记录者,S.Oppe.

POSSIBILITIES AND LIMITATIONS OF ACCIDENT

ANALYSIS

S.Oppe Keyword:Consequences; purposes; describe; Limitations; concerned; Accident Analysis; possibilities Abstraet:Accident statistics, especially collected at a national level are particularly useful for the description, monitoring and prognosis of accident developments, the detection of positive and negative safety developments, the definition of safety targets and the (product) evaluation of long term and large scale safety measures. The application of accident analysis is strongly limited for problem analysis, prospective and retrospective safety analysis on newly developed traffic systems or safety measures, as well as for (process) evaluation of special short term and small scale safety measures. There is an urgent need for the analysis of accidents in real time, in combination with background behavioural research. Automatic incident detection, combined with video recording of accidents may soon result in financially acceptable research. This type of research may eventually lead to a better understanding of the concept of risk in traffic and to well-established theories. 1. Introduction. This paper is primarily based on personal experience concerning traffic safety, safety research and the role of accidents analysis in this research. These experiences resulted in rather philosophical opinions as well as more practical viewpoints on research methodology and statistical analysis. A number of these findings are published already elsewhere. From this lack of direct observation of accidents, a number of methodological problems arise, leading to continuous discussions about the interpretation of findings that cannot be tested directly. For a fruitful discussion of these methodological problems it is very informative to look at a real accident on video. It then turns out that most of the relevant information used to explain the accident will be missing in the accident record. In-depth studies also cannot recollect all the data that is necessary in order to test hypotheses about the occurrence of the accident.For a particular car-car accident, that was recorded on video at an urban intersection in the Netherlands, between a car coming from a minor road, colliding with a car on the major road, the following questions could be asked:Why did the driver of the car coming from the minor road, suddenly accelerate after coming almost to a stop and hit the side of the car from the left at the main road? Why was the approaching car not noticed? Was it because the driver was preoccupied with the two cars coming from the right and the gap before them that offered him the possibility to cross? Did he look left before, but was his view possibly blocked by the green van parked at the corner? Certainly the traffic situation was not complicated. At the moment of the accident there were no

5 5

bicyclists or pedestrians present to distract his attention at the regularly overcrowded intersection. The parked green van disappeared within five minutes, the two other cars that may have been important left without a trace. It is hardly possible to observe traffic behaviour under the most relevant condition of an accident occurring, because accidents are very rare events, given the large number of trips. Given the new video equipment and the recent developments in automatic incident and accident detection, it becomes more and more realistic to collect such data at not too high costs. Additional to this type of data that is most essential for a good understanding of the risk increasing factors in traffic, it also important to look at normal traffic behaviour as a reference base. The question about the possibilities and limitations of accident analysis is not lightly answered. We cannot speak unambiguously about accident analysis. Accident analysis covers a whole range of activities, each originating from a different background and based on different sources of information: national data banks, additional information from other sources, specially collected accident data, behavioural background data etc. To answer the question about the possibilities and limitations, we first have to look at the cycle of activities in the area of traffic safety. Some of these activities are mainly concerned with the safety management of the traffic system, some others are primarily research activities. The following steps should be distinguished:description of the problem and its main characteristics;selection and implementation of safety measures;the probability of an accident to occur is independent from the occurrence of previous accidents; -the occurrence of accidents is homogeneous in time. If these two assumptions hold, then accidents are Poisson distributed. The first assumption does not meet much criticism. Accidents are rare events and therefore not easily influenced by previous accidents. In some cases where there is a direct causal chain (e.g. , when a number of cars run into each other) the series of accidents may be regarded as one complicated accident with many cars involved.The assumption does not apply to casualties. Casualties are often related to the same accident and therefore the independency assumption does not hold. The second assumption seems less obvious at first sight. The occurrence of accidents through time or on different locations are not equally likely. However, the assumption need not hold over long time periods. It is a rather theoretical assumption in its nature. If it holds for short periods of time, then it also holds for long periods, because the sum of Poisson distributed variables, even if their Poisson rates are different, is also Poisson distributed. The Poisson rate for the sum of these periods is then equal to the sum of the Poisson rates for these parts. The assumption that really counts for a comparison of (composite) situations, is whether two outcomes from an aggregation of situations in time and/or space, have a comparable mix of basic situations. E.g. , the comparison of the number of accidents on one particular day of the year, as compared to another day (the next day, or the same day of the next week etc.). If the conditions are assumed to be the same (same duration, same mix of traffic and situations, same weather conditions etc.) then the resulting numbers of accidents are the outcomes of the same Poisson process. This assumption can be tested by estimating the rate parameter on the basis of the two observed values (the estimate being the average of the two values). Probability theory can be used to compute the likelihood of the equality assumption, given the two observations and their mean. This statistical procedure is rather powerful. The Poisson assumption is investigated many times and turns out to be supported by a vast body of empirical evidence. It has been applied in numerous situations to find out whether differences in observed numbers of accidents suggest real differences in safety. The main purpose of this procedure is to detect differences in safety. This may be a difference over time, or between different places or between different conditions. Such differences may guide the process of improvement. Because the main concern is to reduce the

7 7

number of accidents, such an analysis may lead to the most promising areas for treatment. A necessary condition for the application of such a test is, that the numbers of accidents to be compared are large enough to show existing differences. In many local cases an application is not possible. Accident black-spot analysis is often hindered by this limitation, e.g., if such a test is applied to find out whether the number of accidents at a particular location is higher than average. The procedure described can also be used if the accidents are classified according to a number of characteristics to find promising safety targets. Not only with aggregation, but also with disaggregation the Poisson assumption holds, and the accident numbers can be tested against each other on the basis of the Poisson assumptions. Such a test is rather cumbersome, because for each particular case, i.e. for each different Poisson parameter, the probabilities for all possible outcomes must be computed to apply the test. In practice, this is not necessary when the numbers are large. Then the Poisson distribution can be approximated by a Normal distribution, with mean and variance equal to the Poisson parameter. Once the mean value and the variance of a Normal distribution are given, all tests can be rephrased in terms of the standard Normal distribution with zero mean and variance one. No computations are necessary any more, but test statistics can be drawn from tables. 3. The use of accident statistics for traffic safety policy. The testing procedure described has its merits for those types of analysis that are based on the assumptions mentioned. The best example of such an application is the monitoring of safety for a country or region over a year, using the total number of accidents (eventually of a particular type, such as fatal accidents), in order to compare this number with the outcome of the year before. If sequences of accidents are given over several years, then trends in the developments can be detected and accident numbers predicted for following years. Once such a trend is established, then the value for the next year or years can be predicted, together with its error bounds. Deviations from a given trend can also be tested afterwards, and new actions planned. The most famous one is carried out by Smeed 1949. We will discuss this type of accident analysis in more detail later. 1. The application of the Chi-square test for interaction is generalised to higher order classifications. Foldvary and Lane (1974), in measuring the effect of compulsory wearing of seat belts, were among the first who applied the partitioning of the total Chi-square in values for the higher order interactions of four-way tables.

2. Tests are not restricted to overall effects, but Chi-square values can be decomposed regarding sub-hypotheses within the model. Also in the two-way table, the total Chisquare can be decomposed into interaction effects of part tables. The advantage of 1. and 2. over previous situations is, that large numbers of Chi-square tests on many interrelated (sub)tables and

corresponding Chi-squares were replaced by one analysis with an exact portioning of one Chi-square. 3. More attention is put to parameter estimation. E.g., the partitioning of the Chi-square made it possible to test for linear or quadratic restraints on the row-parameters or for discontinuities in trends. 4. The unit of analysis is generalised from counts to weighted counts. This is especially advantageous for road safety analyses, where corrections for period of time, number of road users, number of locations or number of vehicle kilometres is often necessary. The last option is not found in many statistical packages. Andersen 1977 gives an example for road safety analysis in a two-way table. A computer programme WPM, developed for this type of analysis of multi-way tables, is available at SWOV (see: De Leeuw and Oppe 1976). The accident analysis at this level is not explanatory. It tries to detect safety problems that need special attention. The basic information needed consists of accident numbers, to describe the total amount of unsafety, and exposure data to calculate risks and to find situations or (groups of) road users with a high level of risk. 4. Accident analysis for research purposes. Traffic safety research is concerned with the occurrence of accidents and their consequences. Therefore, one might say that the object of research is the accident. The researchers interest however is less focused at this final outcome itself, but much more at the process that results (or does not result) in accidents. Therefore, it is better to regard the critical event in traffic as his object of study. One of the major problems in the study of the traffic process that results in accidents is, that the actual occurrence is hardly ever observed by the researcher. Investigating a traffic accident, he will try to reconstruct the event from indirect sources such as the information given by the road users involved, or by eye-witnesses, about the circumstances, the characteristics of the vehicles, the road and the drivers. As such this is not unique in science, there are more examples of an indirect study of the object of research. However, a second difficulty is, that the object of research cannot be evoked. Systematic research by means of controlled experiments is only possible for aspects of the problem, not for the problem itself. The combination of indirect observation and lack of systematic control make it very difficult for the investigator to detect which factors, under what circumstances cause an accident. Although the researcher is primarily interested in the process leading to accidents, he has almost exclusively information about the consequences, the product of it, the accident. Furthermore, the context of accidents is complicated. Generally speaking, the following aspects can be distinguished: Given an accident, also depending on a large number of factors, such as the speed and mass of vehicles, the collision angle, the protection of road users and their vulnerability, the location of impact etc., injuries are more or less severe or the material damage is more or less substantial. Although these aspects cannot be studied independently, from a theoretical point of view it has advantages to distinguish the number of situations in traffic that are potentially dangerous, from the probability of having an accident given such a potentially dangerous situation and also from the resulting outcome, given a particular accident.

This conceptual framework is the general basis for the formulation of risk regarding the decisions of individual road users as well as the decisions of controllers at higher levels. In the mathematical formulation of risk we need an explicit description of our probability space, consisting of the elementary events (the situations) that may result in accidents, the probability for each type of event to end up in an accident, and finally the particular outcome, the loss, given that type of accident.

A different approach is to look at combinations of accident characteristics, to find critical factors. This type of analysis may be carried out at the total group of accidents or at subgroups. The accident itself may be the unit of research, but also a road, a road location, a road design (e.g. a roundabout) etc.

第五篇:外文翻译

大连海洋大学土木工程毕业设计

外文翻译

译文题目:

原稿题目:

原稿出处:

毕业设计

译文及原稿

施工项目成本上升的因素

Construction Project Cost Escalation Factors

Engrg. Volume 25, Issue 4, pp. 221-229 (October 2009)

土建08-3班 石骏 学号:080411051

5 大连海洋大学土木工程毕业设计

外文翻译

施工项目成本上升的因素

J. Mgmt. 文摘:私人和公共的建设项目,一直以来有成本增长的问题。交通运输项目,在计划和建设过程中具有典型的较长生产前置时间,这在历史上是被低估的。如图所示,通过对荷兰隧道建设的经验回顾增长的成本。在美国,大约50%的现役的大型运输项目都超出他们的最初的预算。大量的研究和研究项目已经确认个体因素导致增加的工程造价。虽然这个因素能影响私人资助项目鉴定效果,但是对公共资助的项目尤其不利。公共基金用于一些项目的建设效果是有限的,并且有积累的重要的基础设施的需要。因此,如果任何项目超过预算,其他项目被从这个计划删除或降低范围以提供必要资金来抵消成本的增长。这样的行为会加剧恶化的一个国家的运输基础设施。这项研究是通过对个人作品集的深入了解,来分门别类的鉴定费用增长因素。通过超过20个州际公路机构的验证,这18种分门别类的基本影响因素对各类建设项目的成本影响都适用。这些因素描绘了有据可依成本超支问题的原因。工程师在估计未来项目的成本因素,寻求减少它们的方法时考虑这些影响因素可以,提高他们的成本估算和项目预算的准确性。

介绍:历史的大型建筑工程已经饱受成本和时间超支的困扰(Flyvbjerg李玮2002)。在很多情况下,最后的项目成本一直高于估计的成本,发布时间可能在最初工程计划时,最终设计时,抑或在开始建设时“Mega项目需要更多的前提研究来避免成本超支。” (2002)早期的项目成本估计与最终报价结果或最终工程成本可以存在显著差异。在这个时间跨度里,项目启动发展概念和最终结束之间,许多因素会影响施工项目最终成本。这段时期通常持续几年,但对于高度复杂和技术挑战性的项目可以轻易超过10年。组织面临重大挑战的项目预算控制的时间跨度将从开始一直持续到完成的项目建设。开发成本估计准确反映工程范围、经济条件、社会利益协调和宏观经济条件提供基线成本管理,可以用来传递学科的设计过程。项目可以兑现预算,但需要一个好的开始,一个估算成本超支因素的意识,及项目管理法则。当缺少法则的时候,在一个项目上显著的成本增长会毁坏整体计划,因为经费将不适应未来项目的建设。

History-Holland隧道的案例研究

过去的历史经验,可以为建设一个优质项目的预算提供更好的理解。同样使工程造价增长的问题和经验都可以从过去的事实中学到。荷兰隧道,当它在1927年开放时,是最长的水下隧道,它也是人类建筑史第一个机械通气的海底隧道。它的初始成

1 大连海洋大学土木工程毕业设计

外文翻译

本的估计是由著名的土木工程师George Washington Goethals做出的。回顾荷兰隧道工程,它突出反映了一个具有争议性的问题:关系到对复杂重大工程建设预算的估计和实际成本时,即使是最杰出的工程师也会在评估一个超过本身物理特性的工程的启动成本时遇到麻烦。许多次没有认识到工程外部物理配置的运作成本问题,纽约和新泽西委员会在1918年建设一个交通隧道在河里“敦促新隧道,哈德逊”,“让国人共用去球衣的隧道。”汽车是为主导的交通方式,隧道被决定用于通车。正因如此,隧道会使用新通风技术来净化内燃机所产生的废气。11项设计被考虑在隧道建设里,最值得注意的是,一个由工程师负责整理最近为完成巴拿马运河建设的George Washington Goethals。他想像一个单一的、二层隧道与对方的交通每一层。Goethals做出规划项目成本估计1200万美元和3年建筑时间。第一次世界大战已经耗尽了很多国家的钢铁产品,所以他的设计,利用水泥街区为隧道结构的外壳。他的设计是领先的计划“赫德森车辆管。”(1919)。但他在别处有责任,并且不是这个项目的总设计师。他以荷兰克利头工程连同董事会的5号州际公路工程咨询的名字。荷兰带着在构建地铁、隧道项目的丰富经验来到在纽约的这个项目。“Goethals”计划的估计,这个项目的成本有120万美元。荷兰基于他的研究分析,在1920年2月份发表了一份报告,报告中说:他的发现并不是什么预期的好。荷兰发现:

•原来Goethals报告中7.47米的宽度不能适应车流。 •混凝土块不能承受隧道结构附件。

•Goethals所需的施工方法的设计完全是未经证实的。 •估计的建设成本是非常低的。 •工作不能在3年内完成。

咨询工程师的一致支持了荷兰的分析。提出了一个荷兰自己的设计,支持的咨询工程师一致通过。荷兰的设计,这是一个大范围的变化,称为“双铸铁管”。一个好处是将根据建设在东方河的隧道的经验和比哈德逊河更进一步。荷兰估计费用28,669,000美元,请求28,669,000美元的球衣试验,施工时间在三年多。

讨论了隧道的设计分歧已经持续了超过一年,创造了纽约和新泽西的佣金和延缓工作一个时间表改变。一个合同授予了新泽西侧进一步推迟启动建设和增加超过一半的100万美元的成本。在纽约的建设开始于1920年10月之后,在1921年12月底,在新泽西的一部分隧道出价“允许球衣方式。”隧道委托的竣工日期是1926年12月31日。现在的施工进度已增加到5年。估计项目成本在早年的施工的蠕变、进度拖延、范围和通货膨胀上增加了多次。增加的交通量预测需要更大的出入口广场和获取更多的权利的方式“汽车隧道在增加”。然后材料和劳动力成本将另一个600万美元增加到项目的通货膨胀。在1924年,成本已经提高1400万美元,车辆隧道费用高达1400万美元。由于功能和美学的因素范围蠕变,更复杂的道路设计方法,拓宽路面

2 大连海洋大学土木工程毕业设计

外文翻译

的途径,增加了更多的成本建筑治疗范围蠕变。重新设计的通风系统加15.24公分的隧道直径及4,422,000美元的支出。荷兰也决定替代铸钢为铸铁增加强度和安全因素的多隧道范围蠕变。最后,在新泽西的通风井不得不重新设计相应的基础,随着他们的付出的代价,因为意想不到700,000美元的土地条件,所有的这些变化增加了42.5亿美元,超过估计。新的资金拨款,它被认为足以完成项目,但到了二月,另一项增加3,200,000美元,隧道申请另外3,200,000美元。委员会解释说,这是新的成本是由于增加成本挑战劳动和材料成本控制。这时荷兰总工程师死于心脏衰竭,他的助手,Milton H. Freeman接替总工程师4个月后死于肺炎。Ole Singstad,设计通风系统的设计师便成了总工程师并且把项目完成。有三个不同的总工程师,耗费5个月是可以遇见混乱。1924年4月份,水从一个裂缝冲进其中一个隧道,迫使工人匆忙逃跑的意外情况。最后一笔专用款项被使用在早期1927年工程,总造价48,400,000美元。1927年11月13日隧道正式投入使用。隧道建造工作开始于7年前。

方法论

增长的成本因素导致项目成本增长已通过大样本的研究记录,研究证实了单独或团体。每个因子的概念,提出了一种挑战,一个机构对项目的成本估计准确。作为一项大型研究试图提高成本预算和成本管理的概念,从项目的投标的一天,一个文献进行彻底的了鉴定费用估计影响因素等(2006)。文献包括勘探研究报告、出版物、政府报告、新闻文章,和其他公开来源。竣工后的文献回顾的因素进行了分析和分类的人员进入成本因素所经历的交通建设项目的增加。这是由三角在多个调查者或资料来源暗示同一因素。这种分类方法把个人因素,在先前的研究已经确定,并建立了全球框架,用于解决这个问题的工程造价升级。在最后的分类的成本因素框架是通过验证升级的数据,从采访了三角法等20多个国家SHAS公路部门先前的工程支持识别的因素包括电话采访了50个沙斯党等面谈的准备和测试仪器是最初在现场采访两个沙斯党。修订后的采访乐器被送到了沙斯党面谈前,以便他们能准备。在随访现场为五个人访谈和通过沙斯党通过一组“同伴交流”剩下的随访电话。在所有情况下,研究人员追踪采访的协议,以确保在数据采集。结果分类的成本因素可以帮助升级项目业主和工程专业人员将注意力集中在这个关键问题,导致成本估算不精确。

成本因素的分类升级

从分析方法生成的已有研究成果的基础上,认为面谈来创建一个分类的成本的原因的规模。一个更好的理解成本因素是理解升级的部队各因素的驱动因素或者来源。在这层了解可能的设计策略,为应对这些成本升级的因素。这个因素影响的评估中,每一个项目都是由自然发展阶段的内部和外部的因素在起作用,控制成本升级的机构/业主为内部,而现有的直接控制的因素外,该机构/业主分为外部。这个报告的因素

3 大连海洋大学土木工程毕业设计

外文翻译

为不应被视为暗示一水平的影响并构建提供了潜在的因素。总结成逻辑划分的因素,并帮助在可视化分类项目成本预算是如何影响。值得注意的一个因素,指出问题劳动和材料成本的估计,但是大部分的因素,是指出“影响项目范围和影响”的时机。

4 大连海洋大学土木工程毕业设计

外文翻译

Construction Project Cost Escalation Factors

J. Mgmt.

Abstract: Construction projects, private and public alike, have a long history of cost escalation. Transportation projects, which typically have long lead times between planning and construction, are historically underestimated, as shown through a review of the cost growth experienced with the Holland Tunnel. Approximately 50% of the active large transportation projects in the United States have overrun their initial budgets. A large number of studies and research projects have identified individual factors that lead to increased project cost. Although the factors identified can influence privately funded projects the effects are particularly detrimental to publicly funded projects. The public funds available for a pool of projects are limited and there is a backlog of critical infrastructure needs. Therefore, if any project exceeds its budget other projects are dropped from the program or the scope is reduced to provide the funds necessary to cover the cost growth. Such actions exacerbate the deterioration of a state’s transportation infrastructure. This study is an anthology and categorization of individual cost increase factors that were identified through an in-depth literature review. This categorization of 18 primary factors which impact the cost of all types of construction projects was verified by interviews with over 20 state highway agencies. These factors represent documented causes behind cost escalation problems. Engineers who address these escalation factors when assessing future project cost and who seek to mitigate the influence of these factors can improve the accuracy of their cost estimates and program budgets

Introduction:Historically large construction projects have been plagued by cost and schedule overruns Flyvbjerg et al. 2002. In too many cases, the final project cost has been higher than the cost estimates prepared and released during initial planning, preliminary engineering, final design, or even at the start of construction “Mega projects need more study up front to avoid cost overruns.” The ramifications of differences between early project cost estimates and bid prices or the final cost of a project can be significant. Over the time span between project initiation concept development and the completion of construction many factors may influence the final project costs. This time span is normally several years in duration but for the highly complex and technologically challenging

5 大连海洋大学土木工程毕业设计

外文翻译

projects it can easily exceed 10 years. Organizations face a major challenge in controlling project budgets over the time span between project initiation and the completion of construction. The development of cost estimates that accurately reflect project scope, economic conditions, and are attuned to community interest and the macroeconomic conditions provide a baseline cost that management can use to impart discipline into the design process. Projects can be delivered on budget but that requires a good starting estimate, an awareness of factors that can cause cost escalation, and project management discipline. When discipline is lacking, significant cost growth on one project can raze the larger program of projects because funds will not be available for future projects that are programmed for construction History—Holland Tunnel Case Study A history of past project experiences can serve one well in understanding the challenges of delivering a quality project on budget. Repeatedly, the same problems cause project cost escalation and much wisdom can be gained by studying the past. The Holland Tunnel was, when it opened in 1927, the longest underwater tunnel ever constructed and it was also the first mechanically ventilated underwater tunnel. Its initial cost estimate was made by the renowned civil engineer George Washington Goethals. A review of the Holland Tunnel project serves to highlight the critical issues associated with estimating the costs of large complex projects and the fact that even the most distinguished engineers have trouble assessing cost drivers beyond the physical characteristics of a project. Many times there is no recognition of the cost drivers operating outside the project’s physical configuration. A joint New York and New Jersey commission in 1918 recommended a transportation tunnel under the river “Urges new tunnel under the Hudson.” 1918; “Ask nation to share in tunnel to Jersey.” 1918. The automobile was emerging as the predominate means of transportation and it was decided that this tunnel should be for vehicular traffic. As a result the tunnel would employ new ventilation technologies to purge the exhaust gases produced by the internal combustion engine. Eleven designs were considered for the tunnel, most notably, one by the engineer recently responsible for finishing the Panama Canal, George Washington Goethals. He envisioned a single, bilevel tunnel with opposing traffic on each level. Goethals made a planning project cost estimate of $12 million and 3 years for construction. World War I had consumed much of the nation’s steel and iron production, so his design made use of cement blocks as the tunnel’s structural shell. His design was the frontrunning plan “Hudson vehicle tube.” but he had responsibilities elsewhere and was not named chief engineer for the project. Clifford M. Holland was named to head the

6 大连海洋大学土木工程毕业设计

外文翻译

project along with a board of five consulting engineers “Name interstate tunnel engineers.” 1919. Holland came to the project with vast experience in constructing subways and tunnels in New York. The cost of the project was taken to be $12 million, Goethals’ planning estimate. Holland produced a report in February of 1920 based on his analysis of the Goethals’ design of the project. His findings were not what had been expected. Holland found • Goethals’ width of 7.47 m would not accommodate the volume of traffic. • Concrete blocks would not withstand the structural loads exerted on the tunnel. • The construction methods required by Goethals’ design were completely untried. • The estimated cost of construction was grossly low. • The work could not be completed in 3 years. The board of consulting engineers gave unanimous support for Holland’s analysis. Holland then presented a design of his own which was supported unanimously by the consulting engineers. Holland’s design, which was a major scope change, called for twin cast-iron tubes. One advantage was that construction would follow established methods of tunnel construction that had been implemented for rail tunnels under the East River and further up the Hudson. Holland estimated the cost at $28,669,000 “Asks $28,669,000 for Jersey tube.” 1920 and construction time at 31/2 years.

Debate about the tunnel design continued for more than a year creating disagreements between the New York and New Jersey Commissions and delaying the work—a schedule change. A disagreement about awarding a contract on the New Jersey side further delayed the start of construction and added over half of a million dollars in cost. Construction started on the New York side in October of 1920 and in late December 1921 the New Jersey portion of the tunnel was bid “Way all cleared for Jersey tunnel.” The mandated completion date was December 31, 1926. The construction schedule had now grown to 5 years. Estimated project cost increased multiple times throughout the early years of construction as a result of scope creep, schedule delays, and inflation. Increased traffic forecast necessitate larger entrance/exit plazas and acquisition of more right of way “Vehicular tube is growing.” 1923. Then increases in material and labor costs had added another $6 million to the project inflation. By the beginning of 1924, reestimated costs had been increased by $14,000,000 “Vehicular tunnel cost up $14,000,000.” 1924 due to functional and aesthetic factors scope creep. More intricate roadway designs for approaches, widening of the approach roadways, and architectural treatments increased the costs more scope creep. Redesign of the ventilation system added 15.24 cm to the tunnel

7 大连海洋大学土木工程毕业设计

外文翻译

diameter and $4,422,000. Holland also decided to substitute cast-steel for castiron to increase the strength and safety factors of the tunnel more scope creep. Last, the New Jersey ventilation shafts had to be redesigned along with their corresponding foundations at a cost of $700,000 due to unexpected soil conditions unforeseen conditions. All of these changes increased the estimate to over $42.5 million. New funds were appropriated and it was believed that these were sufficient to complete the project, but by February of 1926, there was another increase of $3,200,000 “$3,200,000 more asked for tunnel.” The commission explained that the new costs were due to increases in labor and material costs challenge in controlling cost. At this time Holland died of heart failure and his assistant, Milton H. Freeman, took over as chief engineer only to die of pneumonia 4 months later. Ole Singstad, the designer of the ventilation system then became chief engineer and brought the project to completion. Having three different chief engineers within 5 months created confusion unforeseen events. In April of 1924 water rushed into one of the tunnels from a leak forcing workers to make a hasty escape more unforeseen conditions. A final appropriation was requested in early 1927 brought the total project cost to $48,400,000. On November 13 of 1927 the tunnel officially opened “Work on tunnel began 7 years ago.” Methodology The cost escalation factors that lead to project cost growth have been documented through a large number of studies. Studies have identified factors individually or by groups. Each factor presents a challenge to an agency seeking to produce accurate project cost estimates. As part of a larger study seeking to improve cost estimates and management of costs from project conception to bid day, a thorough literature review was conducted to identify factors that influence cost estimates Anderson et al. 2006. The literature review included exploration of research reports and publications, government reports, news articles, and other published sources. Upon completion of the literature review the factors were analyzed and categorized by the researchers into factors that drive the cost increases experienced by transportation construction projects. This was accomplished by triangulation where multiple investigators or data sources suggested the same factor. This categorization took the individual factors which had been identified in previous research and established a global framework for addressing the issue of project cost escalation. Upon final categorization the cost escalation factor framework was verified through triangulation of data from interviews with more than 20 state highway agencies SHAs around the nation . A previous project that supported identification of the factors had included telephone interviews with all 50 SHAs Schexnayder et al. 2003 . An interview

8 大连海洋大学土木工程毕业设计

外文翻译

instrument was prepared and tested initially during onsite interview with two SHAs. The revised interview instrument was then sent to the SHAs before the interview so that they could prepare. The interviews were conducted onsite for five SHAs through individual interviews and through a group “peer exchange.” The remaining interviews were conducted by telephone. In all cases, the researchers followed the interview protocol to ensure consistency in data collection. The resulting categorization of cost escalation factors can help project owners and engineering professionals focus their attention on the critical issues that lead to cost estimation inaccuracy. Cost Escalation Factor Classification The triangulation analysis considered methodologies from past studies and interviews to create a categorization for the causes of cost escalation. A better understanding of the cost escalation factors is achieved through understanding the forces driving each factor or where the factor originates. With this understanding it is possible to design strategies for dealing with these cost escalation factors. The factors that affect the estimate in each project development phase are by nature internal and external. Factors that contribute to cost escalation and are controllable by the agency/owner are internal, while factors existing outside the direct control of the agency/owner are classified as external. The presentation order of the factors should not be taken as suggesting a level of influence is constructed to provide an over arching summary of the factors. It summarizes the factors into logical divisions and classifications and helps in visualizing how project cost estimates are affected. It is important to note that one of the factors points to problems with estimation of labor and material cost, but most of the factors point to “influences” that impact project scope and timing.

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:为企业形象识别系统下一篇:卫生间地砖施工方案