剪力墙结构下的建筑结构论文

2022-04-14

下面是小编为大家整理的《剪力墙结构下的建筑结构论文(精选3篇)》的文章,希望能够很好的帮助到大家,谢谢大家对小编的支持和鼓励。摘要:本文结合工程实例,分别论述了高层建筑、大底板多塔楼建筑以及汽车坡道等钢筋混凝土结构在强约束条件下的变形与裂缝分布特点,对强约束部位的钢筋混凝土结构裂缝建议从减小约束、加强刚度、预压应力、控制混凝土伸缩等方面采取技术措施进行控制。

剪力墙结构下的建筑结构论文 篇1:

反循环钻孔灌注桩施工技术在工程中的应用

【摘 要】通过对某高层结构基础中353根桩采用反循环钻孔灌注桩进行施工。总结了在非自重失陷性黄土地质条件下的采用反循环作业的方法对钻孔灌注桩的施工工法和作业难点。为失陷性黄土地基条件下高层建筑结构的桩基础施工提供一定的建议。

【关键词】反循环作业;钻孔灌注桩;桩基础;高层建筑

随着国家基本建设投入的增大以及高层建筑的发展,钻孔灌注桩现在被广泛应用于高层建筑、公路桥梁等桩基础的施工。冲(钻)孔灌注桩以其承载力高,沉降量小,经济,施工方便,且适用范围广,能穿越地下水位上下的各类复杂地层,形成较大的单桩承载力,适应各种地质条件和不同规模的建筑物等优点被广泛应用。但由于冲(钻)孔灌注桩是一种桩孔和桩身均不可见的桩基形式且由于目前施工单位的素质参差不齐,对施工中的关键环节控制不严,在施工中常发生桩孔倾斜、塌孔与缩径、梅花孔、钢筋笼上浮、桩底沉渣过厚或桩底混浆等等质量问题,导致质量达不到设计要求。发生质量事故后,加固处理难度大,不仅影响工程质量和工期,且处理成本较高,造成投资浪费。因此,有必要对冲(钻)孔灌注桩施工中出现的问题进行分析,探讨其成因并提出预防措施及处理方法[1-7]。

1 钻孔灌注桩反循环工艺的基本原理

泵吸反循环是通过砂石泵的抽吸作用,在钻杆内腔形成负压,在孔内液柱和大气压的作用下.孔壁与环状空间的冲洗液流向孔底,将钻头切削下来的钻渣带进钻杆内腔,再经过砂石泵排至地面沉淀池内;沉淀钻渣后,冲洗液流向孔内,形成反循环。反循环与正循环的本质区别在于沉渣的冲洗、上返流速存在巨大差异,反循环冲洗液拚带钻渣后迅速进人过水断面较小的钻杆内腔,可以获得比正循环高出数十倍的上返速度[6-7]。

根据钻探水力学原理,冲洗液在钻孔内的上返速度Va为钻渣颗粒悬浮速度的Vs的1.2-1.5倍左右,当反循环钻进钻渣在钻杆内运动时,形态各异的钻渣群在有限的空间悬浮运动。在这种条件下采用利延哥尔公式计算颗粒悬浮的速度Vs为:

(1)

其中 为钻渣颗粒悬浮速度,单位m/S; 为颗粒群最大粒径,m; 为钻渣颗粒的密度, ; 为冲洗液密度, ; 为岩屑浓度系数,取0.9-1.1;浓度越大, 越小。 为岩屑颗粒系数,取1.0-1.1,当为球形颗粒时取1.0;颗粒越不规则, 越大。

2 工程概况

西安某高层建筑,建筑面积41539m2,高度98m,地下一层,地上25层,框架-剪力墙结构,基坑尺寸为63.5m×55.6m。地基处理采用桩基,据勘探资料,工程桩施工所遇到的土层自上向下依次为:杂填土;黄土状土;古土壤;粉质粘土;细砂;中砂;粉质粘土;中砂;粉质粘土;中砂;粉质粘土;中砂;粉质粘土组成,地貌单元属渭河Ⅱ级阶地。施工场地属非自重湿陷性黄土场地。水文地质资料:实测施工场地稳定水位深度为12.8m-13.00m,相应绝对标高69.71m-369.91m。地下水属于潜水类型。地下水年变化幅度在1.5米之间。地下有4~6.5m的砂层,对处理处理地基设计院要求用反循环灌注桩。Φ800直径灌注桩,设计桩长35.1m,单桩竖向极限承载力≥9600KN,总桩数为250根(其中3根Φ800试桩,桩长36.1m。12根Φ800锚桩,桩长36.1m)。Φ600直径灌注桩,设计桩长27.1m单桩竖向极限承载力≥4600KN,总桩数为103根。桩身混凝土强度等级:Φ800试桩位C45,锚桩及其余工程桩均为C40。

3 钻孔灌注桩的施工技术

3.1 施工前准备

3.1.1 场地平整、清除杂物,回填土应夯打密实,并接通水、电源,做好三通一平的准备工作;

3.1.2 设置闭合导线网并与市政高级控制点闭合。

3.1.3 挖泥浆池、沉淀池、储水池、准备合格粘土或膨润土;

3.1.4 埋设护筒,护筒四周应夯实,顶端高出地面30cm,底部埋深1.5-2.0m,护筒直径比桩径大20cm,上下正直,护筒中心线平面偏差小于5cm。一般用钢质护筒,钢板厚0.8-1.0cm。护筒用人工或机械方法埋设,并探明地下障碍物;

3.1.5 桩架就位。机架要平直,机座垫稳,不能软硬不均,一般桩机下垫枕木。钻孔过程中机架不能移位,并不能产生不均匀沉降;

3.1.6 你将指标的控制:泥浆指标:粘土层16°-17°,砂层17°-19°,含砂率不超过8%,胶体率90%以上,比重1.2-1.4左右。泥浆质量直接影响钻孔进度;

3.1.7 现场开挖后,用砖砌泥浆沉淀池断面尺寸为2500mm×4000mm(宽×深)、泥浆池断面尺寸为2500mm×4000mm(宽×深)和清水池断面尺寸为2.5米×4.0米(宽×深)以及循环槽,砖砌体表面用水泥砂浆抹面,防止失水过多,引起池壁坍塌。主循环槽的断面尺寸为800mm×1000mm(宽×深),支循环槽断面尺寸为400mm×400mm.坡度不小于1/100,以满足砂石泵正常工作需要;

3.2 关键施工过程及其质量控制

3.2.1 钻孔施工:循环系统采用自流回灌式系统,简单而且清渣容易,循环可靠。循环路线为:泥浆池→泥浆槽→孔口→钻杆与钻孔环状空间→钻头→钻杆内孔→水龙头→砂石泵→排浆胶管→沉淀池→泥浆池

钻机移动采用吊车吊运就位,到位后用枕木垫平钻机,并用水平尺从不同四个方向测量转盘是否水平,若不水平加垫薄木板精心调平,加以固定,保证钻机正常钻进时运行平稳,不发生晃动,确保钻机的天车、转盘和桩位中心三点在一条垂直线上。钻机移位时,由有经验的操作手进行操作,并有专人统一指挥,电缆有专人照看,防止将电缆拉断造成事故。钻孔按下列要求进行操作:

(1)开孔采用人工挖孔,挖孔深度为1.5m左右,便于钻机反循环钻进。

砂石泵启动前,钻头提离孔底0.2m,孔内冲洗面与孔口平齐,砂石泵启动后,待形成正常反循环后开机轻压慢速,下放钻头到孔底,逐渐加大转速和调整钻压。

(2)钻进中认真细心观察进尺情况和砂石泵的排水出渣情况,当排量减小和出水量中含钻渣量大时,控制钻进速度,防止因循换密度大或管道堵塞而中断循环。

(3)加接钻杆时,先停钻并将钻具提离孔底0.1m维持冲洗液循环1-2分钟,以清洗孔底、钻具中的钻渣,然后停泵加接钻杆。

(4)对钻孔进程中出现塌孔的异常情况,采用停机并将钻具提离孔底,控制泵量,保持泥浆循环,吸除坍落物,保持水头压力以控制防止孔壁继续塌孔。恢复正常钻进后,控制泵的排泥量不宜过大,避免吸垮孔壁。

(5)钻孔达到设计要求孔深后,将钻具提离孔底100mm左右,保持泥浆冲洗液继续循环一定时间,当返回地面泥浆不含泥渣时,停机测量桩底标高,校正孔深,符合设计要求并现场监理及技术人员验收合格后才可提钻。

(6)提钻时要求操作平稳,防止钻头拖刮孔壁,并向孔内补浆,保持孔内水头高度,防止坍孔。

(7)随时检查管路密封,防止假循环造成烧钻事故。

(8)钻头和钻杆下孔前,要求钻机操作人员认真检查,发现有裂痕的钻杆、钻具严禁下孔内,防止钻具脱落。对钻进中发现的异常声响和蹩车情况,要求立即停机,经现场技术人员找出原因并采取措施后才同意开钻。

3.2.2 清孔施工:

(1)钻孔到设计深度,施工单位提出终孔要求,需由现场监理工程师决定,并进行孔径,孔偏斜度、孔深的验收。验收方法是制造一个长度等于4-6倍桩径,直径等于孔径的钢筋笼,将钢筋笼吊放入孔,并顺利放到设计要求的孔底,说明孔径和偏斜度达到要求。孔深用测绳和钢尺丈量。钢筋笼放不到底时还需要修孔直至孔壁铅直,钢筋笼能顺利放到底为止;

(2)清孔方法是用原浆换浆法清孔,清孔后泥浆指标比重1.15-1.20之间,含砂量小于4%,粘度20-22°,孔底沉渣小于5cm。为防止孔内沉渣大于规范要求,一般用抽吵筒先将孔内泥砂打掉再换浆;

(3)清孔时应保持钻孔内泥浆面高于地下水位1.5-2.0m防止塌孔;

(4)清孔达到要求,由监理工程师再次验收孔深,泥浆和沉渣厚度。经监理工程师签证,同意隐蔽,灌注混凝土,再进行下道工序;

3.3 水下混凝土施工

开始灌注前,导管下端距孔底0.5-0.6m,把隔水塞用铁丝仅仅悬挂于导管内。先灌入一定质量的水泥砂浆(配合比为水泥:水:砂=1:0.5:1.5),再灌入设计要求的混凝土,初灌后检查混凝土面高度,保证埋管深度大于1.5米。混凝土均匀连续的注入导管,严禁中途停工,满足埋管深度要求并及时测量孔内混凝土面高度,适时拆卸倒灌,导管和埋置深度控制在2-7米。灌注过程中注意观察孔口返水情况,若出现返水偏小时,应检查原因及时处理,防止堵管事故发生。若发生堵管事故,则可以采取上下活动导管方法进行处理,要控制好高度,不得使导管埋深小于2m。灌注接近桩顶时,导管内外混凝土面高差减小,混凝土面上升困难,此时应控制到管内混凝土注入量,同时加密混凝土面高度测量次数,及时掌握灌注情况,为了保证桩头强度,混凝土超过设计标高50厘米 .测量混凝土时,要从桩面对称的2个和4个位置测量混凝土面,最低处为混凝土面高度。测量时要及时、准确记录孔内混凝土量,混凝土面上升高度、导管拆除长度、导管埋深及孔内导管长度等数据,作为灌注桩水下混凝土灌注施工纪录的工程资料。此外,还应注意,混凝土要连续浇注,中断时间不超过30分钟。浇灌的桩顶标高应高出设计标高0.5m以上。泵送混凝土直接输送至工作面,施工中应保证场地清洁卫生,泥浆不可到处外溢,泥渣应及时清除。

4 常见质量问题及其处理措施

4.1 持力层判断不准确

4.1.1 引起持力层判断不准确的原因有:因持力层厚度变化较大及中风化花岗岩层埋深太深,碎块状强风化花岗岩层误判为中风化花岗岩层。

4.1.2 常见的预防措施及处理方法是:①对桩基础持力层变化较大的场地,应适当加密地质勘探孔,必要时进行补充勘探;②以地质资料的的深度为基础,结合钻机的受力、主动钻杆的抖动情况和孔口模样进行综合判定;③持力层的判断必须由地勘单位人员判定。

4.2 孔口高程及钻孔深度误差

4.2.1 引起孔口高程及钻孔深度误差的原因有:①于地质勘探完成后场地再次回填,计算孔口高程时疏忽引起的误差;②施工场地在施工过程中废渣的堆积、场地硬化等导致地面不断升高,孔口高程发生变化所造成的误差。

4.2.2 常见的预防措施及处理方法是:

①认真校核原始水准点和各孔口的绝对高程,每根桩开孔前复测一次孔口高程;②钻孔的终孔标准应以桩端进入持力层深度为准,不宜以固定孔深的方式终孔(设计定长的桩除外,如:本工程纯地下室抗拔桩);③钻孔到达桩端持力层后应及时取样鉴定,并由地勘单位人员分入岩岩面判定、终孔岩面判定二次确认。

4.3 桩孔倾斜

4.3.1 引起桩孔倾斜的原因有:

①桩机架在施工中逐渐倾斜;②所用桩锤偏心过大或掉齿;③冲进过程中遇有探头石或障碍物;④桩施工现场地质岩层走向的坡度很大,或孔底土质不均匀,岩石强度不一。

4.3.2 常见的预防措施及处理方法是:

①压实、平整施工场地,安装机台时应严格检查钻机的平整度和主动钻杆的垂直度,发现偏差应立即调整;②定期检查钻头、钻杆、钻杆接头,定时检查桩锤,发现问题及时维修或更换;③在软硬土层交界面或斜岩面钻进,应低速低钻进;④发生斜孔后,若斜孔较严重的可向桩孔内回填块石和粘土块,然后用低锤密冲,反复矫正。

4.4 塌孔与缩径

4.4.1 引起塌孔与缩径的原因有:

①地层复杂,砂层、卵石层和淤泥层的整体性较差;②钻进进尺过快;③护壁泥浆性能差,施工至夹层部位时,仍采用劣质泥浆,在冲孔桩锤的连续作用下,夹层部位的孔壁不稳定;④成孔后放置时间过长没有灌注混凝土;⑤另外,在石灰岩地区进行桩基施工时,由于石灰岩地区地下溶洞裂隙发育期连通性好,当桩孔碰到地下溶洞、溶槽时,会因泥浆漏失而使桩孔内泥浆面骤然下降,孔壁突然失去泥浆静压力的作用而向桩孔内坍塌。

4.4.2 常见的预防措施及处理方法是:

①冲(钻)孔灌注桩穿过较厚的砂层、砾石层时,成孔速度应控制在2m/h以内,泥浆性能主要控制其密度为1.3~1.4g/cm3,粘度为20~30s,含砂率≤6%,若孔内自然造浆不能满足以上要求时,可采用加粘土法改善泥浆的性能,通过对泥浆的除砂处理,控制泥浆的密度和含砂率;②立即将桩锤提起,并抛填小石块和粘土块,致塌孔位置以上1~2m,并待其沉积后重新反复冲击造壁;③无特殊原因,钢筋笼安装完成,二次清孔后立即灌注混凝土。④若以上方法仍没有效果,那么,须征得设计同意采用其它有效的处理方法。

4.5 钢筋笼上浮

钢筋笼上浮经常发生在冲(钻)孔桩施工的最后环节:水下混凝土的灌注过程中。

4.5.1 造成钢筋笼上浮的主要原因有:

①导管底端接近钢筋笼底端时,灌注混凝土的速度太快,混凝土流出时冲击力较大,推动钢筋笼向上浮动;②埋管过深,混凝土时间过长,表层混凝土已近终凝,使混凝土与钢筋之间产生了一定的握裹力,此时若导管底端未及时提升到钢筋笼底端以上,混凝土从导管流出后向上升时,会带动钢筋笼上浮;③提管时法兰盘钩住钢筋笼。

4.5.2 常见的预防措施及处理方法是:

①钢筋笼的顶端若在钢扩筒范围内,可将其焊到钢护筒上,若在钢护筒以下,则可用钢管套在钢筋上顶压;②当导管底端接近钢筋笼底端时,适当放慢灌注速度,并控制好导管的埋深,以减少混凝土的上冲力;③尽量缩短混凝土的整体灌注时间,若整体灌注时间较长时,应采取措施延长混凝土的初凝时间;④若发现钢筋笼有上浮现象,除了采用钢管套在钢筋上顶压以外,还应提升导管(注意导管埋深),并放慢混凝土浇灌速度。

5 结论

通过西安某高层结构在非自重失陷性黄土地基下353根桩采用反循环钻孔灌注桩进行施工。总结了在非自重失陷性黄土地质条件下的采用反循环作业的关键方法及其对钻孔灌注桩的施工工法和作业难点进行了详细阐述。为失陷性黄土地基条件下高层建筑的桩基础施工提供一定的建议。

参考文献:

[1]黄炜,王加升等. φ3.8米超大直径深孔钻孔桩混凝土水下灌注[J].桥梁建设,2010(S1),55-58.

[2]熊祖发.淮河特大桥大桩径超深桩基的施工[J].安徽建筑,2011年第5期:137-139.

[3]苑晶.反循环工艺在钻孔桩施工中应用的优越性[J].交通世界,2009.4,3/4期:186-187.

[4]孟凡莹,杨飞等.浅析大直径深长钻孔桩在软、硬质岩层的工程实践[J].城市道桥与防洪,2009.9,第9期:133-137.

[5]殷花.正循环法钻孔灌注桩施工介绍及控制[J]. 城市道桥与防洪,2009.7,第7期:186-189.

[6]施德旭.钻孔灌注桩反循环工艺在渭河三号桥中的应用[J].山西建筑,2009.4,35(12):343-344.

[7]刘溢.钻孔桩施工工艺[J].科技资讯(工业技术),2010 No.8:102-103.

作者:刘骐玮

剪力墙结构下的建筑结构论文 篇2:

基于高层建筑钢筋混凝土结构强约束部位裂缝的分析与控制

摘 要:本文结合工程实例,分别论述了高层建筑、大底板多塔楼建筑以及汽车坡道等钢筋混凝土结构在强约束条件下的变形与裂缝分布特点,对强约束部位的钢筋混凝土结构裂缝建议从减小约束、加强刚度、预压应力、控制混凝土伸缩等方面采取技术措施进行控制。

关键词:高层建筑; 强约束; 钢筋混凝土结构; 混凝土裂缝; 结构刚度

文献标识码:B

1引言

高层建筑工程钢筋混凝土结构产生裂缝的原因很多,主要是由温度变形、收缩变形、基础不均匀沉降等变形作用引起的。据有关统计,由变形作用引起的裂缝几乎占全部裂缝的80%以上,其中,在条件相同的情况下,强约束部位工程裂缝出现的概率更大、裂缝更宽。结构物的变形受到约束后才产生约束应力,当约束应力超过钢筋混凝土结构的抗拉强度时便产生裂缝,因此约束强弱对结构物是否产生裂缝有着相当大的影响。

2高层建筑结构在强约束条件下的变形与裂缝分析

高层建筑中地下室外墙板、二层梁、顶层梁板与屋面女儿墙由于受温度应力的作用,比一般情况下更易产生裂缝,工程实践中经常会在这些部位出现裂缝。

2.1地下室结构

地下室工程中最容易产生裂缝的部位是外墙板,底板与顶板产生裂缝的概率不大,其主要原因是:高层建筑地下室结构往往超长,外墙板受到地下室底板的强大约束,其约束远远大于地下室底板与顶板所受的约束。外墙板产生的裂缝绝大多数为竖向裂缝,多数缝长与墙高相当,两端逐渐减小。裂缝大部分出现在拆模后不久,有的还与环境温度变化梯度有关。一般情况下为表面裂缝,有时也有贯穿裂缝。

2.2底层结构

高层建筑一、二层在上部结构中所受约束最大。地下室外墙板与顶板厚度大、配筋密集,地下室结构本身受到地下室基础、底板、外侧土体的约束,因此地下室结构对上部一、二层的约束很大。高层建筑一、二层结构梁板经常会出现横向裂缝,特别是位于两个电梯井间(电梯井采用筒体结构)的大梁,该大梁还受到两个钢筋混凝土简体的强大约束,实际工程中经常有竖向裂缝出现,裂缝一般位于板下梁的两侧,有时裂缝在梁底跟通,这些裂缝通常是表面裂缝,深度在1~2 cm以内。

2.3中间层结构

高层建筑中间结构层梁板产生裂缝的情况很少,一个主要原因就是其所受的约束较小。

2.4顶层结构

高层建筑楼层结构越往上所受的约束越小,其水平位移越大,符合“约束强变形小、约束弱变形大”的规律。因此,距离底部基础约束最远的顶层结构所受的约束最小,其水平位移最大。但是顶层上部由于无约束或约束极小(如屋面机房对其的约束),受到的下部结构约束与上部相比很大,再加上顶层结构温差变化大,屋面板面大体薄对温度变化敏感,加上屋面板转角部位分别受到两个方面的约束,因此屋面板容易在转角部位产生八字形裂缝。还有一些屋面南侧边梁受到日照温差相当大,因此南侧边梁也容易产生竖向裂缝。

2.5屋面女儿墙

屋面女儿墙的约束情况与地下室外墙板、顶层结构相似。女儿墙受到的下部约束很大,而上部由于一般只按构造要求设一道压顶梁,上部约束很小,再加上女儿墙为薄壁结构,温差变化大,极易产生收缩裂缝。

3大底板多塔楼建筑结构在强约束条件下的变形与裂缝分析

大底板多塔楼高层建筑产生的裂缝除具有一般高层建筑的特点外,还具有其自身的特点。大底板底板与地下室楼面在塔楼部位受到的水平约束与竖向约束均很大,因此在塔楼与裙房 (或广场)的连接部位容易产生裂缝。

3.1大底板底板

大底板多塔楼高层建筑经常采用桩筏或桩箱基础其特点是竖向荷载的差异,使塔楼与裙房或广场产生差异沉降,这种类型的桩筏或桩箱基础的一个特点是底板厚度H远小于长宽尺寸L,当H/L小于或等于0.2时,底板在温度收缩变形作用下,离开端部区域,板的全截面受拉应力较均匀。在不均匀沉降作用、地基约束、塔楼竖向作用力下,将出现水平法向应力,该应力是引起垂直裂缝的主要原因,尤其在底板厚度或肋梁较小的裙房与广场部位特别容易产生裂缝。

一般横向裂缝产生是由于上部荷载的不均匀作用,导致地基与基础受力不均匀,在差异沉降、底板收缩与地基约束下,底板自身的刚度不够,调节不均匀受力的能力较弱,遂产生了横向裂缝。沿底板对角线分布的斜向裂缝,其裂缝宽度一般呈现中间大两端小的枣核状,具有较明显的受剪破坏的特征,也是在差异沉降与地基约束作用下,底板自身的刚度不够而产生的。有时在塔楼与广场连接处的柱子会出现沿柱根呈“口”字形的裂缝,裂缝进一步发展时,“口”字四角再向外呈斜向发展,长度一般较短。

3.2地下室顶板

大底板多塔楼高层建筑的地下室顶板平面尺寸一般都很大、各边长度超长,温度变化引起的伸缩与混凝土自身收缩值均较大。塔楼大量的混凝土墙柱与剪力墙是结构中重要的抗侧力构件,它的存在大大提高了结构的抗侧移能力,加大对顶板变形的约束。由于顶板受到周边塔楼结构的强约束,而中间广场部位有一个较大的空间,只受到地下室墙柱的弱约束,因此顶板周边受到的约束远远大于中央部位受到的约束,周边受到的应力也远远大于中央部位。由于顶板在塔楼附近应力集中,因此裂缝首先在这里产生。由于平面尺寸大、結构超长,顶板其它部位也逐渐有裂缝产生,顶板中心由于约束很弱,一般无裂缝产生。塔楼部位的顶板受到地下室与上部结构的约束均较大,而自身的梁板跨度均较小且梁断面较大、刚度较好,一般不会出现裂缝。

3.3地下室外墙板

大底板多塔楼高层建筑地下室外墙板除具有一般地下室外墙板的特点外,由于外墙板受到塔楼结构的强约束,因此外墙板除具有一般的竖向裂缝外,在裙房 (或广场)与塔楼连接处易产生较大的裂缝,裂缝一般呈竖向略带斜向,裂缝上部靠近塔楼,下部靠近裙房。

4其它结构在强约束条件下的变形与裂缝分析

4.1汽车坡道

现代建筑物经常具有车辆直接进入二层的汽车坡道,一层通常作为车库。车道一端与一层楼面连接,另一端位于室外自然基础或地下室顶板上,平面布置如图1。由于车道的斜向布置使其具有极强的约束,特别是另一端位于地下室顶板上的情况,使车道产生平行于横向的裂缝,裂缝经常为贯穿性的。

4.2回字形结构

有些工程由于使用的需要,设计成呈“回”字形的内外两个钢筋混凝土简体,两简体间采用梁板连接。当内外两个简体间距较近时,梁板受到的变形约束极大,容易在楼面产生裂缝。某工程为地下一层结构,由内外两个简体构成,中间为无顶板水池,四周为走道有顶板,混凝土强度等级为C30。内外简体墙板厚度分别为250mm、300mm,顶板厚度为120mm,顶板配筋为上下双层双向10mm@150 mm。顶板刚度相对简体很弱,受到的约束很大。顶板产生的裂缝如图2所示,在角部呈45°角分布,中间呈垂直于简体方向布置。

5防止钢筋混凝土强约束部位结构裂缝的技术处理措施

强约束是建筑工程产生裂缝的一个重要原因,对有强约束的建筑工程,应采取减小约束、加强结构刚度、施加预应力等技术措施来有效减少裂缝的产生。

5.1减小约束

减小约束从根本上缓解裂缝的产生。对超长结构和大底板塔楼结构可以采用后浇带、伸缩缝,充分释放混凝土的伸缩应力,给结构留有合理的伸缩空间。对处在基岩或老混凝土上的基础或结构采用设置滑动层和铰接点的方法。如对斜形车道,可将其另一端设在具有滑动层的自然基础上。

5.2加强刚度

加强结构刚度,提高整体抗裂能力。在强约束区提高配筋,减小钢筋间距和钢筋直径,提高混凝土与钢筋的协同作用,提高抗裂能力。如:可在地下室外墙板中设置暗梁;在竖向荷载变化很大的连接部位加密钢筋;对加强大底板多塔楼高层建筑地下室底板整体刚度,提高其调节不均匀沉降的作用与抗裂能力;加强混凝土配合比的设计等。

5.3施加预应力

施加预应力直接约束结构的变形,减小因约束而产生的内力,从而防止结构开裂。预应力技术尤其适合于楼面结构,楼面结构的裂缝以横向为主,纵向钢筋的配置对其有重大的影响,一般可在纵向主梁中采用预应力筋以施加预应力。

5.4施工措施

加强施工,做好混凝土的养护工作,尽可能提高混凝土的实际强度。严格掌握后浇带的封堵时间,使混凝土有充分应力的时间等。

6工程实例

6.1实例 1

湖南某工程有地下室一层且连成整体,上部由7幢高层主楼组成。整个平面呈一个大的 “L”形,两个长边分别达到153.5m、133.6m。主楼采用框架剪力墙结构。广场地下室采用框架结构,柱网间距8.2m。每幢主楼有两个东西对称布置的电梯间和楼梯间混凝土筒体。

地下室外墙板产生较多竖向表面裂缝,间距在3~4m,个别有渗水现象。地下室底板无明显裂缝与渗水现象。地下室顶板产生了较多斜向45°裂缝且大多有渗水现象,裂缝主要分布在强约束区与应力集中的大阴角处,如图3所示。

7幢主楼连接两个电梯间、楼梯间的二层大梁均有裂缝产生。裂缝在梁侧呈竖向分布,上端接近于板底,下端通到梁底,梁底下侧个别也有连通。裂缝深度在1cm以内。三层该部位大梁也有少量裂缝产生,四层以上该部位大梁没有裂缝发现。由于顶层边梁配筋得到加强,屋面板转角均配置了上下层放射筋,因此顶层结构没有发现裂缝。

6.2实例2

湖南某工业科技园综合楼工程建筑面积56100m2。A楼地下1层,地上6层,结构长度(含悬挑结构)为300.5m。基础采用人工挖孔桩与钻孔灌注桩,底板厚度为40cm。结构形式为全现浇框架结构,混凝土强度等级为C30。上部建筑采用通透式设计,外墙采用落地式大排窗。

6.2.1地下室裂缝控制

1)减少约束

在29轴设置一条伸缩缝分成东西两块,每块底板又设置了两条后浇带,如图4地下室平面示意图所示。地下室底板、外墙板、室外顶板及后浇带的混凝土均采用掺入10%UEA -H的微膨胀混凝土,提高混凝土抗伸缩能力。

2)加强刚度

地下室底板与外墙板在满足要求的前提下纵向钢筋的小而密。底板上下配置 18mm@150mm钢筋网。外墙板厚度为300mm,水平筋配置为14mm@150mm。掺加粉煤灰、膨胀剂、外加剂等减少水泥与水的用量,提高混凝土极限拉伸值。黄砂采用中砂,碎石采用连续的5~25mm粒径。塌落度为12cm。

3)施工控制

按后浇带为界分块分批浇注,保证每一块混凝土的热量能最大限度地释放,使混凝土内不会集中较大的收缩应力。加强养护,加快土方回填。后浇带的填充时间为结构混凝土浇捣后3个月,使结构的总降温与收缩变形进行到一半以上,以有效释放应力。

6.2.2上部裂縫控制

1)加强刚度

板的配筋采用连续式配筋,上部结构楼面板厚为120mm,纵向板筋为上下18@150mm。屋面板厚度为120mm,纵向板筋为上下12 @125mm,对转角处楼板配置上下两层放射筋。

2)预加预应力

纵向框架梁采用无粘结预应力技术。按施工段划分为6个区块,每个区块以后浇带为界进行分段张拉,每段长度均在50m左右。后浇带处梁增设骑缝筋连接,也采用预应力技术。

3)施工控制

材料控制与施工控制类同于地下室结构施工。

6.2.3 施工效果

通过采取了一系列技术处理措施后,该强约束结构部位情况良好,经过近两年多的使用,没有发现结构裂缝和渗漏水现象。

参考文献:

[1] 混凝土结构设计规范.GB50010-2002.北京,中国建筑工业出版社,2002.

[2] 高层建筑混凝土结构技术规程.JGJ 3-2002.中国建筑工业出版社.

[3] 王铁梦.超长大体积混凝土裂缝控制.混凝土工程新技术,1998.

[4] 李国胜.建筑结构裂缝及加固疑难问题的处理-附实例.中国建筑工业出版社,2006.

作者:黄 祥

剪力墙结构下的建筑结构论文 篇3:

高效耗能阻尼器性能试验及理论研究

摘要: 研发一种高效耗能新型阻尼器,对其进行不同位移幅值和加载频率下的力学性能试验,研究阻尼器的滞回耗能性能和位移频率相关性。根据该新型阻尼器构造特点及工作原理,建立力学分析模型,并对附加该阻尼器的建筑结构在地震作用下的动力响应进行分析。研究结果表明:相对于普通黏滞阻尼器,新型阻尼器阻尼力有显著提升,滞回曲线更加饱满,表现出更强的耗能性能;力学性能的位移频率相关性明显,阻尼力随加载位移频率的增大而增大;速度-力、位移-力试验曲线均与理论曲线吻合较好,力学分析模型合理;可减小结构自身黏滞阻尼耗能和滞回耗能,降低结构动力响应。

关键词: 黏滞阻尼器; 性能试验; 滞回曲线; 恢复力模型; 地震响应

DOI:10.16385/j.cnki.issn.1004-4523.2019.05.003

引 言

黏滞阻尼器自20世纪80年代引入土木工程领域以来,取得了快速发展。因具有滞回曲线饱满,耗能能力强、性能稳定可靠等诸多优势,目前已成为降低风、地震等荷载作用下结构动力响应的有效对策,在国内外新建工程设计和既有工程加固改造中得到广泛应用[1-3]。美国学者Taylor,Constantinou,Reinhorn及Makris等[4-7]对应用在工程结构中的黏滞阻尼器进行试验研究,提出了黏滞阻尼器力学分析模型,并对附加黏滞阻尼器的建筑结构在地震荷载作用下的动力响应进行了分析。日本学者Miyazaki和Arima等[8]首次提出墙式黏滞阻尼器,通过对附加该阻尼器的5层缩尺模型进行振动台试验,验证了墙式黏滞阻尼器的减震性能。中国学者欧进萍等[9-10]分别对双出杆油缸间隙式和孔隙式黏滞阻尼器进行了性能试验和理论研究,探讨了不同类型黏滞流体的特性,并在幂律流体本构关系的基础上,建立了黏滞阻尼器的力学计算模型。贾洪等[11]发明了一种高耗能间隙式黏胶阻尼器,提出了阻尼器滞回模型、串联动态刚度计算公式和耗能性能评价指标。黄镇等[12]研制了一种实现阻尼器性能可控化的带压力调节阀的黏滞阻尼器,根据该阻尼器的构造特点和工作原理,建立阻尼器在调节阀开启前后的简化力学模型,并对其进行力学性能试验及仿真分析。

虽然黏滞阻尼器在工程结构中应用广泛[13-14],但张恒晟等[15]通过试验发现阻尼器在较小输入位移下其阻尼力小于理论值,不足以充分发挥耗能作用。为解决这一问题,Constantinou等[16]提出了肘节型黏滞阻尼系统,利用肘节支撑机构使黏滞阻尼器产生较大的输入位移。Berton和Bolander[17]采用齿条齿轮加速器来放大结构振动传递给阻尼器的位移。Smith等[18]提出消能伸臂的概念,利用核心筒的弯曲变形和外框架的剪切变形之间较大的竖向变形差,放大黏滞阻尼器的输入位移。上述方法均通过增大阻尼器输入位移来放大阻尼器活动钢板的相对速度,从而实现提高阻尼器阻尼力的目的。在此基础上,本文针对黏滞阻尼器存在的问题,提出了一种高效耗能新型阻尼器,对其进行力学性能试验及相关理论研究,并与普通黏滞阻尼器对比分析。

1 高效耗能新型阻尼器简介

高效耗能新型阻尼器是一种在墙型普通黏滞阻尼器基础上附加位移放大机构的位移放大型黏滞阻尼器。位移放大机构与结构上部楼层和阻尼器活动钢板连接,通过把结构层间位移,特别是微小的结构层间位移放大后再传递给阻尼器的活动钢板,从而放大阻尼器活动钢板的相对速度,提高阻尼器的阻尼力,增加其耗能能力[19-20]。高效耗能新型阻尼器工作原理示意图如图1所示。

图2为高效耗能新型阻尼器简化力学模型。其中m,k,c分别表示原结构楼层的质量、刚度和阻尼;kd为普通黏滞阻尼器内部刚度,一般可忽略不计;cα为普通黏滞阻尼器的阻尼系数;L,ηL分别为位移放大机构上、下部分的长度,η为位移放大机构的放大倍率。当结构产生水平位移u时,经η倍位移放大机构放大后传递给活动钢板的位移为ηu。

 高效耗能新型阻尼器性能试验〖2〗2.1 加载装置  本性能试验采用北京富力通达科技有限公司FTS伺服作动器进行加载。根据作动器和加载试件的特点设计了阻尼器的加载框架,包括加载梁、立柱和底梁。试验装置除有电液伺服作动器外,还包括动态位移传感器、力传感器和动态数据采集系统。同时为保证数据采集的可靠性,试验过程中增加了外采位移传感器采集位移数据。阻尼器性能试验加载图如图3所示。

2.2 试件设计

位移放大机构是高效耗能新型阻尼器的关键组成部分,因此该新型阻尼器的设计主要是位移放大机构的设计。图4为位移放大机构运动轨迹图。随着高效耗能新型阻尼器上连接板水平运动,支点轴发生竖向運动,为保证位移放大机构正常转动,要求支点轴不能触碰上连接板边缘,即需满足以下条件L>u2+d1+d22

(1)式中 L为孔1、孔2圆心距;d1为孔1圆心到上连接板边缘的距离;d2为孔2半径。同时,该机构受力分析需考虑以下两个方面:机构及连接构件受压,连接螺栓受剪。经设计,加工了普通黏滞阻尼器和高效耗能新型阻尼器两组试件,均由Q345钢板焊接而成,连接螺栓采用12.9级高强螺栓。两组试件主要尺寸基本相同,活动钢板有效剪切面积为160 mm×200 mm,厚度为12 mm。黏滞阻尼材料阻尼系数为20 kN/(m0.45·s-0.45),阻尼指数为0.45。高效耗能新型阻尼器位移放大机构放大倍率为3,厚度为24 mm。试件尺寸设计详图见图5。

2.3 试验工况

在环境温度为20 ℃的情况下,对两种阻尼器进行低周循环加载试验。试验按照正弦波规律变化的输入位移u(t)=Asinωt来控制试验系统加载,通过控制不同的加载频率和位移幅值,分别测得相应的阻尼力-位移关系曲线,进而研究高效耗能新型阻尼器的滞回性能以及阻尼器随加载频率、位移幅值变化的力学特性。阻尼器性能试验加载方案如表1所示。

3 高效耗能新型阻尼器性能试验结果及分析

3.1 试验现象  在试验加载过程中,加载梁滑动平稳,没有明显的转动,加载框架没有明显的变形及位移。高效耗能新型阻尼器由于附加了位移放大机构,某些工况下经过位移放大后的阻尼器活动钢板相对位移较大,偶尔可以听到气泡爆裂的声音,并且有少量硅油被挤出钢箱。

3.2 滞回耗能性能

图6为普通黏滞阻尼器和高效耗能新型阻尼器滞回曲线对比,其中DAD为高效耗能新型阻尼器,VD为普通黏滞阻尼器。从图6可以看出,两种阻尼器的滞回曲线均非常饱满,具有较好的耗能能力。

但将两种阻尼器的滞回曲线进行比较,不难发现在相同加载位移情况下,高效耗能新型阻尼器的阻尼力相对于普通黏滞阻尼器有明显提高,滞回曲线更加饱满,耗能能力显著增强。

3.3 位移相关性

图7为普通黏滞阻尼器和高效耗能新型阻尼器在不同加载位移下滞回曲线对比。由图7可以得出,在加载频率相同时,阻尼器出力随位移幅值的增大而增大,滞回曲线亦更加饱满。高效耗能新型阻尼器在加载位移幅值较小工况下,滞回曲线倾斜现象明显,其原因在于黏滞介质的可压缩性,使得阻尼器表现一定的弹性,形成动态刚度。在加载位移幅值较大工况下,高效耗能新型阻尼器滞回曲线呈小幅度“内缩”现象。这是因为阻尼器活动钢板相对位移较大,硅油有一定扰动,内部产生气泡,对阻尼力造成影响。在加载频率0.5 Hz条件下,加载位移幅值±5,±7.5,±10,±12.5,±15 mm对应的普通黏滞阻尼器阻尼力依次为2.84,3.44,3.98,4.45,5.21 kN;高效耗能新型阻尼器阻尼力依次为13.61,15.88,18.12,18.36,20.93 kN。

3.4 频率相关性

图8为普通黏滞阻尼器和高效耗能新型阻尼器在不同加载频率下滞回曲线对比。从图8可以看出,在位移幅值相同时,而增大,滞回曲线也更加饱满。在位移幅值±10 mm条件下,加载频率0.1,0.3,0.5,0.7,1.0 Hz对应的普通黏滞阻尼器阻尼力依次为2.31,3.08,3.98,5.31,6.01 kN;高效耗能新型阻尼器阻尼力依次为9.95,14.16,18.12,23.44,24.97 kN。

4 高效耗能新型阻尼器理论研究及效果分析

由于结构的动能Ev和弹性应变能Ek随时间在零线附近上下摆动、相互转换,输入结构的总能量则通过阻尼耗能Ec,Ed和滞回耗能Eh的作用耗散掉。因为结构塑性变形的不可恢复性,所以通常将结构的滞回耗能视为结构的破坏能量。从能量平衡方程式(14)可以看出,若地震输入结构的能量一定,相对于普通黏滞阻尼器而言,高效耗能新型阻尼器可大幅度提高阻尼器消耗能量,因此可有效减小结构自身黏滞阻尼耗能和滞回耗能,从而降低结构动力响应,避免结构破坏。

4.2 效果分析

图10为普通黏滞阻尼器和高效耗能新型阻尼器速度-阻尼力关系曲线对比,表2为普通黏滞阻尼器和高效耗能新型阻尼器阻尼力对比。由图10可知,普通黏滞阻尼器阻尼力试验值与理论值吻合非常好,平均误差仅有1%,说明普通黏滞阻尼器恢复力模型可以用Maxwell模型表示。由于位移放大机构会进一步放大连接件存在间隙、硅油扰动等因素对阻尼力的影响,且阻尼器在运动过程中存在少量硅油被挤出钢箱的现象,高效耗能新型阻尼器阻尼力试验值略低于理论值,平均误差为11%,但新型阻尼器速度-阻尼力试验值关系曲线趋势与理论曲线基本一致,其力学分析模型合理。由表2可知,高效耗能新型阻尼器阻尼力放大系数试验最大值为4.79,最小值为4.02,平均值为4.40,与理论值平均误差为11%,说明高效耗能新型阻尼器较普通黏滞阻尼器而言可以显著提高阻尼器出力,其阻尼力放大系数可以用式(10)计算。

图11是0.5 Hz,15 mm和0.7 Hz,10 mm工况下普通黏滞阻尼器和高效耗能新型阻尼器力-位移试验曲线与理论曲线对比。从图11中可以看出,普通黏滞阻尼器力-位移试验曲线与理论曲线非常吻合,高效耗能新型阻尼器试验曲线与理论曲线总体上吻合较好,因此验证了阻尼器力-位移理论模型的正确性。但由于位移放大机构与黏滞介质挤压回弹力和孔隙等因素的综合影响,高效耗能新型阻尼器试验曲线存在第一、三象限耸起,第二、四象限滞回环面积减小的现象。图12为普通黏滞阻尼器和高效耗能新型阻尼器耗散能量对比,具体数值如表3所示。

  由图12、表3可知,新型阻尼器耗能能力较普通黏滞阻尼器而言有显著提升,其耗能放大系数试验最大值为4.41,最小值为3.98,平均值为4.30,与理论值平均误差为13%。这表明了位移放大机构的有效性,且新型阻尼器消耗能量放大系数计算公式准确可靠。

5 结构地震响应分析

5.1 工程概况  为了研究高效耗能新型阻尼器对结构地震响应的影响,以某剪力墙结构体系为例进行减震分析。该建筑地下1层,层高6.6 m,地上28层,层高2.8 m,所在地区抗震设防烈度为8度,设计基本地震加速度为0.3g,设计地震分组为第二组,建筑场地类别为III类。结构前三阶自振周期:T1=1.68 s,T2=1.52 s,T3=1.25 s。圖13为建筑立面图。该结构在5条天然波Imperial Valley,Superstition,Erzican,TJ,Coalinga和2条人工波RH1,RH3作用下,第13-22层、第28层Y向层间位移角大于1/1000,超过《规范》[25]规定的多遇地震作用下层间位移角限值,如图14所示,需进行减震设计。图15为地震波加速度反应谱,由图14可知,7条地震波加速度反应谱与规范反应谱在统计意义上基本相符。且该结构振型分解反应谱法计算得到的基底剪力为14.035 MN,7条地震波作用下基底剪力均值为12.098 MN,最小值为9.372 MN,满足“每条时程曲线计算所得结构基底剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得结构基底剪力的平均值不应小于振型分解反应谱法计算结果的80%”规范要求,说明地震波选取合理。

采用普通黏滞阻尼器和高效耗能新型阻尼器(位移放大倍率为3)两种方案对结构进行減震设计,阻尼系数为500 kN/(m0.45 ·s-0.45)。阻尼器布置在结构第15-25层,其中第15,25层各布置2个、第16层布置5个、第17-24层各布置4个,共41个。

5.2 地震响应对比分析

图16为不同结构地震响应对比分析。由图16可知,高效耗能新型阻尼器减震效果明显优于普通黏滞阻尼器,可有效降低结构动力响应。相对于无阻尼器结构,附加普通黏滞阻尼器结构层间位移角、层加速度、层剪力分别平均减小7.77%,9.88%,7.94%。附加高效耗能新型阻尼器结构层间位移角、层加速度、层剪力分别平均减小24.36%,20.69%,24.49%,结构Y向层间位移角均小于1/1000,满足规范要求。图17是TJ波作用下普通黏滞阻尼器和高效耗能新型阻尼器滞回曲线对比。图18为附加上述两种阻尼器结构对应的能量曲线对比。从图18中可以看出,高效耗能新型阻尼器在输入位移远小于普通黏滞阻尼器情况下,附加高效耗能新型阻尼器结构在TJ波作用下的阻尼器耗能能力依然比普通黏滞阻尼器强,是普通黏滞阻尼器的2.74倍,同时振型阻尼能量下降17.75%。因此,高效耗能新型阻尼器可显著提高阻尼器消耗能量,有效减小结构自身黏滞阻尼耗能和滞回耗能,从而降低结构动力响应,避免结构破坏。

6 结 论

本文提出一种高效耗能新型阻尼器,通过对该阻尼器进行力学性能试验研究和理论分析,并与普通黏滞阻尼器进行对比,得到以下结论:

(1)高效耗能新型阻尼器通过在普通黏滞阻尼器基础上附加位移放大机构来放大传递给阻尼器活动钢板的位移和速度,从而实现提高阻尼力,增强耗能能力,减小结构自身黏滞阻尼耗能和滞回耗能,降低结构动力响应的目的。附加位移放大机构(放大倍率为η)的高效耗能新型阻尼器的阻尼力和耗能能力是普通黏滞阻尼器的η1+α倍。

(2)高效耗能新型阻尼器速度-阻尼力、位移-阻尼力试验值关系曲线均与理论曲线吻合良好,阻尼力试验值略低于理论值,平均误差为11%,表明基于Maxwell模型提出的新型阻尼器力学计算模型合理准确。

(3)在力学性能试验中,当新型阻尼器附加放大倍率为3的位移放大机构时,相对于普通黏滞阻尼器,阻尼力平均放大4.4倍,耗散能量平均放大4.3倍。

参考文献:

[1] 赵 昕, 马浩佳, 丁 鲲. 超高结构黏滞阻尼系统风振减振优化设计方法[J]. 振动工程学报, 2018, 31(1): 12-19.

Zhao Xin, Ma Haojia, Ding Kun. Optimal wind-induced vibration attenuation design of viscous damper systems for super tall structures[J]. Journal of Vibration Engineering, 2018,31(1): 12-19.

[2] 周 颖, 吕西林, 张翠强. 消能减震伸臂桁架超高层结构抗震性能研究[J]. 振动与冲击, 2011, 30(11): 186-189.

Zhou Ying, Lv Xilin, Zhang Cuiqiang. Seismic performance of a super-tall building with energy dissipation outriggers[J]. Journal of Vibration and Shock, 2011, 30(11): 186-189.

[3] 贾 斌, 罗晓群, 丁 娟, 等. 黏滞阻尼器对空间桁架结构减震作用研究[J]. 振动与冲击, 2014, 33(6): 124-130.

Jia Bin, Luo Xiaoqun, Ding Juan, et al. Vibration reduction of space truss structure with viscous dampers[J]. Journal of Vibration and Shock, 2014, 33(6): 124-130.

[4] Taylor D P, Constantinou M C. Test methodology and procedures for fluid viscous dampers used in structures to dissipate seismic energy[R]. New York: Taylor Devices, Inc., 1994.

[5] Constantinou M C, Symans M D. Experimental and analytical investigation of seismic response of structures with supplemental fluid viscous dampers[R]. New York: State University of New York at Buffalo, 1992.

[6] Reinhorn A M, Li C. Experimental and analytical investigation of seixmic retrofit of structures with supplemental damping part 1—Fluid viscous damping devices[R]. New York: State University of New York at Buffalo, 1995.

[7] Makris N, Constantinou M C. Fractional-derivative Maxwell model for viscous dampers[J]. Journal of Structural Engineering, 1991, 117(9): 2708-2724.

[8] Miyazaki M, Kitada Y, Arima F, et al. Earthquake response control design of buildings using viscous damping walls[C]. Proceedings of the 1st East Asian Conference on Structural Engineering and Construction. Bangkok: Science Council of Thailand, 1986: 1882-1891.

[9] 歐进萍, 丁建华. 油缸间隙式黏滞阻尼器理论与性能试验[J]. 地震工程与工程振动, 1999, 19(4): 82-89.

Ou Jinping, Ding Jianhua. Theory and performance experiment of viscous damper of clearance hydrocylinder[J]. Earthquake Engineering and Engineering Vibration, 1999, 19(4): 82-89.

[10] 丁建华, 欧进萍. 油缸孔隙式黏滞阻尼器理论与性能试验[J]. 世界地震工程, 2001, 17(1): 30-35.

Ding Jianhua, Ou Jinping. Theoretical study and performance experiment for cylinder-with-holes viscous damper[J]. World Information on Earthquake Engineering, 2001, 17(1): 30-35.

[11] 贾 洪, 闫维明, 张同忠. 高耗能间隙式黏胶阻尼器的试验研究[J].北京工业大学学报, 2008, 34(3): 292-297.

Jia Hong, Yan Weiming, Zhang Tongzhong. Experimental study on high energy dissipation clearance viscous damper filled with silica cement[J].Journal of Beijing University of Technology, 2008, 34(3): 292-297.

[12] 黄 镇, 李爱群. 新型黏滞阻尼器原理与试验研究[J]. 土木工程学报, 2009, 42(6): 61-65.

Huang Zhen, Li Aiqun. Experimental study on a new type of viscous damper[J]. China Civil Engineering Journal, 2009, 42(6): 61-65.

[13] 汪大洋, 周 云, 王绍合. 耗能减振层对某超高层结构的减振控制研究[J]. 振动与冲击, 2011, 30(2): 85-92.

Wang Dayang, Zhou Yun, Wang Shaohe. Vibration reduction for a super-high structure with energy dissipation story[J]. Journal of Vibration and Shock, 2011, 30(2): 85-92.

[14] 张微敬, 钱稼茹, 沈顺高, 等. 北京A380机库采用黏滞阻尼器的减振控制分析[J]. 建筑结构学报, 2009, 30(2): 1-7.

Zhang Weijing, Qian Jiaru, Shen Shungao, et al. Vibration reduction analysis of Beijing A380 hangar structure with viscous dampers[J]. Journal of Building Structures, 2009, 30(2): 1-7.

[15] 张恒晟, 葛继平. 黏滞阻尼器在小行程条件下的力学性能试验研究[J]. 结构工程师, 2008, 24(6): 106-110.

Zhang Hengsheng, Ge Jiping. Experimental mechanic research on viscous damper under minor stroke[J]. Structural Engineers, 2008, 24(6): 106-110.

[16] Constantinou M C, Tsopelas P, Hammel W, et al.. Toggle-brace-damper seismic energy dissipation systems[J]. Journal of Structural Engineering, 2001, 127(2): 105-112.

[17] Berton S, Bolander J E. Amplification system for supplemental damping devices in seismic applications[J]. Journal of Structural Engineering, ASCE, 2005, 131(6):979-983.

[18] Smith R J, Willford M R. The damped outrigger concept for tall buildings[J].The Structural Design of Tall and Special Buildings, 2007,16:501-517.

[19] 郭 彥, 刘文光, 何文福, 等. 长周期地震波作用下超高层框架-核心筒减震结构动力响应分析[J]. 建筑结构学报, 2017, 38(12): 68-77.

Guo Yan, Liu Wenguang, He Wenfu, et al. Dynamic response analysis of super high-rise frame-core tube structure under long-period ground motions[J]. Journal of Building Structures, 2017, 38(12): 68-77.

[20] 刘文光, 董秀玲, 何文福, 等. 位移放大型阻尼墙减震结构的模型试验与数值分析[J]. 振动工程学报, 2015, 28(4): 601-609.

Liu Wenguang, Dong Xiuling, He Wenfu, et al. Dynamic tests and numerical response analysis of new energy dissipated structures with displacement amplification damper[J]. Journal of Vibration Engineering, 2015, 28(4): 601-609.

[21] Lin W H, Chopra A K. Earthquake response of elastic SDF systems with non-linear fluid viscous dampers[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(9): 1623-1642.

[22] 翁大根, 张 超, 吕西林, 等. 附加黏滞阻尼器减震结构实用设计方法研究[J]. 振动与冲击, 2012, 31(21): 80-88.

Weng Dagen, Zhang Chao, Lü Xilin, et al. Practical design procedure for a energy dissipated structure with viscous dampers[J]. Journal of Vibration and Shock, 2012, 31(21): 80-88.

[23] 社团法人日本隔震结构协会. 被动减震结构设计·施工手册[M]. 北京: 中国建筑工业出版社, 2008.

[24] 周 云. 黏滞阻尼减震结构设计[M]. 武汉: 武汉理工大学出版社, 2006.

Zhou Yun. Structural Design of Buildings with Viscous Dampers[M]. Wuhan: Wuhan University of Technology Press, 2006.

[25] 建筑抗震设计规范: GB 50011-2010[S]. 北京: 中国建筑工业出版社, 2010.

Key words: viscous damper; performance experiment; hysteretic curves; restoring force model; seismic responses

作者简介: 郭 彦(1989-),女,博士研究生。E-mail:guoyanyy@foxmail.com

作者:郭彦 杨巧荣 何文福

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:建筑智能化中的项目管理论文下一篇:大学生理国主义文化建设论文