大学高数总结范文

2022-05-29

总结是一次反思过程,是一种记录工作情况、回顾工作不足的重要方式,在总结写作的过程中,我们需要全面化的分析工作情况,这有利于我们的工作成长。怎么写出有效的总结呢?下面是小编为大家整理的《大学高数总结范文》,希望对大家有所帮助。

第一篇:大学高数总结范文

2014年大学高数学习方法总结

一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近xx年的数学学习生涯,仍然会有很多同学在初学大学数学时遇到很多困惑与疑问,更可能会有一种摸不着头脑的感觉。那么,究竟应该如何在大学中学好高数呢? 在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现,这时就一定得坚持住,能够知难而进,继续跟随老师学习。

很多同学在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,“吉米多维奇”上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,香港浸会大学的杨涛教授曾经在一次讲座中讲过:“在初学高数时感觉晕是很正常的,而且还得再晕几个月可能就好了。”所以关键是不要放弃,初学者必须要克服这个困难才能学好大学理论知识。除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。

所以,在开始学习数学时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。篇二:高等数学学习方法及经验总结

高等数学学习方法及经验总结

大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。

高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。

首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。

(一)做题的方法和技巧

学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。

(二)考试后的反思 每次的期中考试和期末考试结束后,应该知道自己在考场上不足的地方在哪里,需要提高的地方在哪里,这里不仅仅是对知识的掌握程度,更重要的还有考场技巧和心态的把握;并做好相应总结。期中考试结束后将卷子上的错题改正过来,将错题记到笔记上(包括解题思想和自己的感受),避免犯同样的错误;期末考试卷子不会发下来,但是考完后也要反思自己的不足,要记住学习不是为了应付考试,而是为将来学习专业基础课以及专业课。

(三)心态的养成

作为学习理工科的学生,我们应具备的素质是切勿浮躁,抵得住寂寞,无论做什么题目,一定做好冷静的分析后在做,避免走弯路,并注意平时勤思考习惯的养成,注意多种方法的比较以及发散思维的培养。以上我说的在做题是注意将自己的思想和答案的思想做比较就是培养发散思维的一方面,当题目做到一定的数量时,就会发现得心应手,习惯成自然,也不知不觉做到的举一反三,这不仅仅是对高等数学的学习,其他科目也是一样。

总之,做好了以上三大点,我想学好高等数学不会成问题了。篇三:大学高数学习方法

一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近12年的数学学习生涯,仍然会有很多同学在初学大学数学时遇到很多困惑与疑问,尤其是作为数学系的学生,在面对着“数学分析”之类的课程时,更可能会有一种摸不着头脑的感觉。那么,究竟应该如何在大学中学好高数呢?

学习数学首先就要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,这一点在刚开始进入大学学习数学时尤为重要。

在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,使得我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现(比如考试不及格),这时就一定得坚持住,能够知难而进,继续跟随老师学习。

很多同学在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,“吉米多维奇”上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,香港浸会大学的杨涛教授曾经在一次讲座中讲过:“在初学高数时感觉晕是很正常的,而且还得再晕几个月可能就好了。”所以关键是不要放弃,初学者必须要克服这个困难才能学好大学理论知识 。除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。

比如说,在“数学分析”一开始学习实数系的确界存在基本定理时,可能会有很多同学花很多时间来思考引入这个定理的目的是什么,但往往因为当时根本没什么基础,所以对于这个问题怎么想也想不通,甚至觉得这个定理没有什么实质的意义。直到后来学到了多元部分的数学分析,以及专业课“实变函数”时,才开始慢慢理解它的真正目的。这里之所以要说明是实数系有确界存在的性质,即相当于有一种连续的性质,目的就是为了后面的极限和连续做铺垫的,因为只有在自变量能够连续变化的时候,考虑因变量的相应变化才有意义,进而才能研究函数的性质。但是如果没有学到后面,只了解区间而不知其它一些怪异的点集时是很难想通这个问题的。

所以,在开始学习数学时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。

但是,也并不是说在初学时就不去思考任何问题。相反,勤于思考是学好数学必备的好习惯,“数学是思维的体操”,只有坚持思考才能掌握它的理论体系和逻辑关系。因此,应该在学习时掌握尺度,既要保证有充分的思考,但同时又不能过于钻牛角尖。

了解背景,理论式学习

大学数学与中学数学明显的一个差异就在于大学数学强调数学的基础理论体系,而中学数学则是注重计算与解题。直接反应就是大学数学系的考试几乎全是关于数学定理或定义的证明题,而中学则有很多技巧性强的计算或证明题。所以,针对这个特点,学习大学数学就应该注重建立自己的数学理论知识框架。

要学习理论体系,首先就应该知道为什么要建立这种理论,它的作用是什么,这就要了解

数学的历史背景知识。因此,向各位推荐两本数学史方面的书:《古今数学思想》(克莱因)和《20世纪数学经纬》(张奠宙)。前一本书是从古希腊一直写到了19世纪的数学发展,而后一本书则全是在讲上个世纪数学理论的发展情况,因此这两本书基本上恰好记录了整个数学理论的发展历史。

比如“数学分析”在一开始就强调对语言的掌握,而它的产生则是由于数学史上的“第二次数学危机”引起的。众所周知,newton创立的微积分,虽然在其应用方面取得了巨大的成就,但微积分在那时的理论基础是相当混乱的。newton在求导数时先将无穷小量看成非零数作为分母,后来又将其视做零而舍去,因此这就导致了逻辑上的错误。为了给微积分奠定正确而坚实的基础,大数学家cauchy提出了用语言的方法来推出极限和导数的概念。借助语言,可以十分清晰地展示出函数取极限的过程,而且在逻辑上也非常清楚严谨。这样,当了解了这些历史背景知识之后,就觉得学习语言是很必要的,学起来也就自然得多了。《20》一书中,还写了许多有关数学家的有趣故事,尤其其中有一篇是其书作者采访数学大师陈省身的记录稿。在那篇文章中,陈省身大师就谈了他自己许多学习数学的方法和态度,尤其是关于心态的问题,这对于我们学数学的学生有很大的启发意义。因此,建议大家如果有时间就一定要读一读这本数学史书。

除了了解背景帮助我们学习理论知识外,还要下苦功夫去学习。在接触了这些陌生的数学理论一段时间后,可能觉得看起来已经懂了,但其实自己不一定能真正掌握,尤其是那些证明中内含的逻辑关系最容易出错。所以在学习时,应该适当地记忆理论知识,有时还应该默写定理,只有通过默写才能发现自己在理论上的漏洞,才能培养出自己严密的理论、逻辑能力,这对以后的学习都是很有帮助的。

自然人文,全面式学习

以上全是有关学习数学知识的,但是要学好数学,并不能只单单学习数学知识,还要多了解其他学科的知识,拥有广泛的知识基础。著名应用数学家林家翘教授就曾说过,在mit每位大学生在第一年都要全面学习数、理、化、生的课程,而这也是它们学校一直保持的优良传统。自然科学当中的许多问题都是数学理论的创造源泉或应用基地。比如著名数学家riemann创造的“黎曼几何”一开始并没有发挥威力,但直到大物理学家einstein提出相对论后才使得该理论有了用武之地。因此多了解一些其它自然科学知识,有助于我们更好地理解数学理论,发现它的价值。

人文知识的学习同样必不可少,有许多数学家都有着深厚的人文知识素养。比如华裔菲尔兹奖获得者丘成桐教授就对我们的古代文学很精通,他写东西经常会引用《左传》等古文或者写古诗句来反应他的一些研究。其实,在学到很基础的数学理论知识如数理逻辑时,就必须借助人文知识来从哲学角度理解数学。著名的数理逻辑学家歌德尔在证明出了“不完备定理”之后,另一位数学家外尔就说:“上帝是存在的,因为数学无疑是相容的;魔鬼也是存在的,因为我们不能证明这种相容性。”这句颇有哲理的话,就是从哲学的角度反应了该数学定理的意义。

第二篇:大学高数下册试题及答案

《高等数学》(下册)测试题一

一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)

1.设有直线

及平面,则直线(

A

)

A.平行于平面;

B.在平面上;

C.垂直于平面;

D.与平面斜交.

2.二元函数在点处(

C

)

A.连续、偏导数存在;

B.连续、偏导数不存在;

C.不连续、偏导数存在;

D.不连续、偏导数不存在.

3.设为连续函数,,则=(

B

)

A.;

B.;

C.

D..

4.设是平面由,,所确定的三角形区域,则曲面积分

=(

D

)

A.7;

B.;

C.;

D..

5.微分方程的一个特解应具有形式(

B

)

A.;

B.;

C.;

D..

二、填空题(每小题3分,本大题共15分)

1.设一平面经过原点及点,且与平面垂直,则此平面方程为;

2.设,则=;

3.设为正向一周,则

0

;

4.设圆柱面,与曲面在点相交,且它们的交角为,则正数

;

5.设一阶线性非齐次微分方程有两个线性无关的解,若也是该方程的解,则应有

1

.

三、(本题7分)设由方程组确定了,是,的函数,求及与.

解:方程两边取全微分,则

解出

从而

四、(本题7分)已知点及点,求函数在点处沿方向的方向导数.

解:

从而

五、(本题8分)计算累次积分

).

解:依据上下限知,即分区域为

作图可知,该区域也可以表示为

从而

六、(本题8分)计算,其中是由柱面及平面围成的区域.

解:先二后一比较方便,

七.(本题8分)计算,其中是抛物面被平面所截下的有限部分.

解:由对称性

从而

八、(本题8分)计算,是点到点在上半平面上的任意逐段光滑曲线.

解:在上半平面上

且连续,

从而在上半平面上该曲线积分与路径无关,取

九、(本题8分)计算,其中为半球面上侧.

解:补取下侧,则构成封闭曲面的外侧

十、(本题8分)设二阶连续可导函数,适合,求.

解:

由已知

十一、(本题4分)求方程的通解.

解:解:对应齐次方程特征方程为

非齐次项,与标准式

比较得,对比特征根,推得,从而特解形式可设为

代入方程得

十二、(本题4分)在球面的第一卦限上求一点,使以为一个顶点、各面平行于坐标面的球内接长方体的表面积最小.

解:设点的坐标为,则问题即在求最小值。

令,则由

推出,的坐标为

附加题:(供学习无穷级数的学生作为测试)

1.判别级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?

解:由于,该级数不会绝对收敛,

显然该级数为交错级数且一般项的单调减少趋于零,从而该级数条件收敛

2.求幂级数的收敛区间及和函数.

解:

从而收敛区间为,

3.将展成以为周期的傅立叶级数.

解:已知该函数为奇函数,周期延拓后可展开为正弦级数。

《高等数学》(下册)测试题二

一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)

1.设,且可导,则为(

D

)

A.;;

B.;

C.;

D..

2.从点到一个平面引垂线,垂足为点,则这个平面的方

程是(

B

)

A.;

B.;

C.;

D..

3.微分方程的通解是(

D

)

A.;

B.;

C.;

D..

4.设平面曲线为下半圆周,则曲线积分等于(

A

)

A.;

B.;

C.;

D..

5.累次积分=(

A

)

A.;

B.;

C.;

D..

二.填空题(每小题5分,本大题共15分)

1.曲面在点处的切平面方程是;.

2.微分方程的待定特解形式是;

3.设是球面的外测,则曲面积分

=.

三、一条直线在平面:上,且与另两条直线L1:及L2:(即L2:)都相交,求该直线方程.(本题7分)

解:先求两已知直线与平面的交点,由

由两点式方程得该直线:

四、求函数在点处的梯度及沿梯度方向上函数的方向导数.(本题7分)

解:

沿梯度方向上函数的方向导数

五、做一个容积为1立方米的有盖圆柱形桶,问尺寸应如何,才能使用料最省?(本题8分)

解:设底圆半径为,高为,则由题意,要求的是在条件下的最小值。

由实际问题知,底圆半径和高分别为才能使用料最省

六、设积分域D为所围成,试计算二重积分.(本题8分)

解:观察得知该用极坐标,

七、计算三重积分,式中为由所确定的固定的圆台体.(本题8分)

解:解:观察得知该用先二后一的方法

八、设在上有连续的一阶导数,求曲线积分,其中曲线L是从点到点的直线段.(本题8分)

解:在上半平面上

且连续,

从而在上半平面上该曲线积分与路径无关,

取折线

九、计算曲面积分,其中,为上半球面:.(本题8分)

解:由于,故

为上半球面,则

原式

十、求微分方程

的解.(本题8分)

解:

由,得

十一、试证在点处不连续,但存在有一阶偏导数.(本题4分)

解:沿着直线,

依赖而变化,从而二重极限不存在,函数在点处不连续。

十二、设二阶常系数线性微分方程的一个特解为,试确定常数,并求该方程的通解.(本题4分)

解:由解的结构定理可知,该微分方程对应齐次方程的特征根应为,否则不能有这样的特解。从而特征方程为

因此

为非齐次方程的另一个特解,

故,,通解为

附加题:(供学习无穷级数的学生作为测试)

1.求无穷级数的收敛域及在收敛域上的和函数.

解:

由于在时发散,在时条件收敛,故收敛域为

看,

从而

2.求函数在处的幂级数展开式.

解:

3.将函数展开成傅立叶级数,并指明展开式成立的范围.

解:作周期延拓,

从而

《高等数学》(下册)测试题三

一、填空题

1.若函数在点处取得极值,则常数.

2.设,则.

3.设S是立方体的边界外侧,则曲面积分

3

.

4.设幂级数的收敛半径为,则幂级数的收敛区间为.

5.微分方程用待定系数法确定的特解(系数值不求)的形式为.

二、选择题

1.函数在点处(

D

).

(A)无定义;

(B)无极限;

(C)有极限但不连续;

(D)连续.

2.设,则(

B

).

(A);

(B);

(C);

(D).

3.两个圆柱体,公共部分的体积为(

B

).

(A);

(B);

(C);

(D).

4.若,,则数列有界是级数收敛的(

A

).

(A)充分必要条件;

(B)充分条件,但非必要条件;

(C)必要条件,但非充分条件;

(D)既非充分条件,又非必要条件.

5.函数(为任意常数)是微分方程的(

C

).

(A)通解;

(B)特解;

(C)是解,但既非通解也非特解;

(D)不是解.

三、求曲面上点处的切平面和法线方程.

解:

切平面为

法线为

四、求通过直线

的两个互相垂直的平面,其中一个平面平行于直线.

解:设过直线的平面束为

第一个平面平行于直线,

即有

从而第一个平面为

第二个平面要与第一个平面垂直,

也即

从而第二个平面为

五、求微分方程的解,使得该解所表示的曲线在点处与直线相切.

解:直线为,从而有定解条件,

特征方程为

方程通解为,由定解的初值条件

,由定解的初值条件

从而,特解为

六、设函数有二阶连续导数,而函数满足方程

试求出函数.

解:因为

特征方程为

七、计算曲面积分

其中是球体与锥体的公共部分的表面,,,是其外法线方向的方向余弦.

解:两表面的交线为

原式,投影域为,

用柱坐标

原式

另解:用球坐标

原式

八、试将函数展成的幂级数(要求写出该幂级数的一般项并指出其收敛区间).

解:

九、判断级数的敛散性.

解:

当,级数收敛;当,级数发散;

当时级数收敛;当时级数发散

十、计算曲线积分,其中为在第一象限内逆时针方向的半圆弧.

解:再取,围成半圆的正向边界

原式

十一、求曲面:到平面:的最短距离.

解:问题即求在约束下的最小值

可先求在约束下的最小值点

时,

这也说明了是不可能的,因为平面与曲面最小距离为。

第三篇:2014福州大学考研冲刺阶段高数复习计划

思远福大考研网

2014福州大学考研冲刺阶段高数复习计划

考研数学每年都是文科类考研的难点也是薄弱环节,那么针对冲刺阶段如何做好强化复习从以下几点给大家分享分享:

1.确立目标。高等数学部分的主体由函数、极限和连续、一元函数的微积分、多元函数的微积分、微分方程和级数五大模块构成(数学

一、

二、三在各个模块的要求有一定差异),从历年的试题中,高等数学的考查重点和难点更多的集中在前两个模块,他们既是考试的重点,也是学好后面模块的基础,因此,建议大家在整个寒假期间把复习高数的重点集中在这两个模块,根据个人实际情况,一步步扎实的复习,切不可囫囵吞枣,盲目图快。

2.资料选择。 考试大纲里有四种要求,分别是:掌握,理解,会,了解。这四个要求程度是不同的,是这么一种关系:掌握>会>理解>了解,所以对于掌握和会的知识点,一定要无比的透彻,往年大题的出题点一般都超不出这两个要求的范围。建议是:拿着大纲先将标有“掌握”和“会”的知识点标出来,然后尽最大努力全面掌握,比如09年考研的拉格朗日定理知识点就属于“会”的范畴,一定全面掌握,不但会用,更要会证明它。这一阶段复习建议以教材为主,数学

一、二的考生建议使用同济版高等数学、数学三同学推荐赵树嫄的《微积分》(第3版),中国人民大学出版社。当教材习题对你而言没有太大困难的时候,可以参考一本基础阶段的考研辅导讲义,比较推荐的是国家行政学院出版社出版的,李永乐的复习全书,或北京理工大学出版社出版,张宇、蔡燧林主编的辅导讲义。

3.复习任务。课本应该怎样看?课本很重要,其实从小到大老师无数遍强调要重视基础,不要只顾做题。如果你现在还在犹豫要不要再看课本,那就不用犹豫了,要想考到140分,这绝对是一个必不可少的过程。可能会有一些考研的同学来说:课本我也认真看过了,但结果依然很遭。我想说:课本不是用来看的,是用来研究的,课本学的细致了么!我们建议大家第一步先细看教材,以及结合上课内容,逐一突破每个知识点,然后通过习题去巩固检测,需要注意的是,由于考试是以题目是否作对为给分依据的,建议大家从现在开始就养成将每道题做到底的习惯,当然选题很重要,2014福大经济学综合考研模拟五套卷与解析这本书就紧贴专业课本,大眼看去感觉会做就不具体算出来这样完全没什么效果。教材习题解决后,可结合辅导书,适当增加难度。当遇到不懂得知识点,要做上记号,及时解决。

课本应该怎样看?课本很重要,其实从小到大老师无数遍强调要重视基础,不要只顾做题。如果你现在还在犹豫要不要再看课本,那就不用犹豫了,要想考到140分,这绝对是一个必不可少的过程。

可能会有一些考研的同学来说:课本我也认真看过了,但结果依然很遭。我想说:课本不是用来看的,是用来研究的,课本学的细致了么!

那什么样才叫细致呢,当课本研究完之后,上面会标记很多东西,画的比较乱,而不是崭新的像没看过一样。课本上的例题(这些题都是经典中的经典,一定弄透彻)没有不会的,课后题认真做过(哪怕只是在草纸上做,在书上标个答案,也要自己认真做一遍,这一遍就要训练自己合理利用草纸的习惯,做到对完答案发现错误后,都能很顺利找到这道题的过程然后分析为什么会做错,这个习惯很重要,如果你还有拿起草纸找个空就开始演算,就要赶紧改改这个习惯了,因为要改掉这个坏习惯真的需要平时多加练习),有些人说课本后的题实在太多了,应该挑着做,但我觉得这本2014福大经济学综合考研模拟五套卷与答案解析的习题是都贴近考题的,远远胜过市面上的参考书,它也不像你想象得那么简单,如果你觉得简单,那你能一遍做完,没有一个不会,一个都不错吗?当然了,你也可以选取一部分做,但如果课后题你一个都不做,那真的会吃亏的。定义性质定理公式,一定搞透彻了,弄清楚其中有几个点,而不是硬生生的背下来,而且要多思考下(比如说关于极大值,这个词大家一定都知道,而且高中开始就见过,你知道它的定义吗,你可能会说:定义没用。这你就错了,当你感觉一道题模糊不会做时,定义才是你根本的出发点。

第四篇:南通大学2012大一高数第一学年期末考试考点简括

三角函数基本公式(如积化和差,和差化积,二倍角公式等等)

反三角函数的值域与其对应三角函数的关系

数列的极限——注意数列有界是数列收敛的必要条件,但不是充分条件

函数极限的部分性质(唯一性,局部保号性,局部有界性)

无穷小与无穷大(后者是重点)

极限运算法则(不会直接考察,但题目中一定会用到,所以说是重点)

夹逼准则,几个重要不等式,两个重要极限(都是重点)

理解高阶无穷小,低阶无穷小,同阶无穷小,等阶无穷小的联系及区别

函数的间断点(第一类间断点包括可去间断点和跳跃间断点,其他的统称为第二类间断点)

导数的求导法则(重中之重!)

反函数,复合函数的导数的求法,及隐函数的求法(必考,重点)

微分与积分的联系与区别(微分=积分dx)

罗尔定理,拉格朗日中值定理的应用(必考)

洛必达法则的使用条件及如何使用

函数的极值与最值,驻点与拐点的区别

不定积分,定积分之间的联系(重点是其中的公式,要熟记)

第五篇:高数下册总结

篇一:高数下册总结

高数(下)小结

一、微分方程复习要点

解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解. 一阶微分方程的解法小结:

二阶微分方程的解法小结:

非齐次方程y???py??qy?f(x)的特解y?

主要: 量方程、线性微分方程的求解;

2、二阶常系数齐次线性微分方程的求解;

二、多元函数微分学复习要点

1、显函数的偏导数的求法 在求

?z?x 量,对x求导,在求

?z?y 量,对y求导,所运

求导法则与求导公式. 2数的求法

u???x,y?,v???x,y?,则

?z?x ?z?u ?u?x ?z?v ?v?x ?z?y ?

的形式为:

一阶

1、可分离变、二阶常系数非齐次线性微分方程的特解

一、偏导数的求法 时,应将y看作常时,应将x看作常用的是一元函数的、复合函数的偏导设z?f?u,v?,, 3 ?z?u ? ?u?y ? ?z?v ? ?v?y 几种特殊情况:

1u???x?,v???x?,则2)z?f?x,v?,v???x,y?,则

?z?x dzdx???f?vdzdu???u?x ??z?v ?dvdx ?v?y ? ?f?x ?v?x ?z?y ? ?f?u ? 3则

3、隐函数求偏导数的求法 1)一个方程的情况

?z?x ? dzdu ? ?u?x ?z?y ? dzdu ? ?u?y 设z?z?x,y?是由方程f?x,y,z??0唯一确定的隐函数,则

?z?x fxfz ??

)z?f?u,v?,, )z?f?u?,u???x,y?, ?fz ?0?, ?z?y ?? fyfz ?fz ?0? 或者视z?z?x,y?,由方程f?x,y,z??0两边同时对x(或y)求导解出

2)方程组的情况 ?z?x (或 ?z?y ). ?f?x,y,u,v??0?z?z )即可. 由方程组?两边同时对x(或y)求导解出(或

?x?y??gx,y,u,v?0?

二、全微分的求法 方法1:利用公式du? ?u?x dx? ?u?y dy? ?u?z dz 方法2:直接两边同时求微分,解出du即可.其中要注意应用微分形式的不变性:

??z du???u? dz?? ?z?dx??x?? ?z?v?z?y dv dy

三、空间曲线的切线及空间曲面的法平面的求法

?x???t? ? 1)设空间曲线г的参数方程为 ?y???t?,则当t?t0时,在曲线上对应点 ?z???t??p0?x0,y0 ? ,z0?处的切线方向向量为t???t0?,? ?

?t0?,??t0??,切线方程为

x?x0 ??t0? ? y?y0 ? ?t0? ? z?z0 ? ?t0?

法平面方程为 ??t0??x?x0t0??y?y0t0??z?z0??0 2)若曲面?的方程为f? x,y,z??0,则在点p0?x0,y0,z0?处的法向量

?n? ?f x ,fy,fz ? p0 ,切平面方程为

fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法线方程为 x?x0 fx?x0,y0,z0? ? y?y0 fy?x0,y0,z0? ? z?z0 fz?x0,y0,z0? 若曲面?的方程为z?f?x,y?,则在点p0?x0,y0,z0?处的法向量

? n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程为

fx?x0,y0??x?x0??fy?x0,y0??y?y0???z?z0??0 法线方程为

x?x0fx?x0,y0? ? y?y0fy?x0,y0? ?z?z0?1

四、多元函数极值(最值)的求法 1 无条件极值的求法

在点p0?x0,y0?的某邻域内具有二阶连续偏导数,由fx?x,y??0, fy ?x,y??0点? x0,y0 ? a?fxx ?x0 ,y0 ? b?fxy ?x0 ,y0 ? c?fyy ?x0,y0?. 2 c?b1 ?x ,y?取得极值,且当a?0时有极大值,当a?0 2则f?x,y?在点?x0,y0?处无极值. 3) 若ac?b 2 ?0 ?x ,y?是否取得极值.

设函数z?f?x,y?,解出驻,记 , , )若a?0,则f 在点?x0,y0?处时有极小值.

) 若ac?b2?0,,不能判定f 在点?x0,y0?处 2 条件极值的求法

函数z?f?x,y?在满足条件??x,y??0下极值的方法如下:

1)化为无条件极值:若能从条件??x,y??0解出y代入f?x,y?中,则使函数z?z(x,y)成为一元函数无条件的极值问题. 2)拉格朗日乘数法

作辅助函数f?x,y??f?x,y?x,y?,其中?为参数,解方程组

篇二:高数下册总结(同济第六版) 高数(下)小结

一、微分方程复习要点

解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解. 一阶微分方程的解法小结:

二阶微分方程的解法小结:

? 非齐次方程y???py??qy?f(x)的特解y的形式为:

主要: 一阶

1、可分离变量方程、线性微分方程的求解;

2、二阶常系数齐次线性微分方程的求解;

3、二阶常系数非齐次线性微分方程的特解

二、多元函数微分学复习要点

一、偏导数的求法

1、显函数的偏导数的求法 在求

?z?z时,应将y看作常量,对x求导,在求时,应将x看作常量,对y求导,所运?x?y 用的是一元函数的求导法则与求导公式.

2、复合函数的偏导数的求法

设z?f?u,v?,u???x,y?,v???x,y?,则

?z?z?u?z?v?z?z?u?z?v , ?x?u?x?v?x?y?u?y?v?y 几种特殊情况: 1)z?f?u,v?,u???x?,v???x?,则2)z?f dzdz?u?zdv dxdu?x?vdx?f?v ?x,v?则?x??x??v??x,

?z?f ?z?f?v?? ?y?u?y 3则

3、隐函数求偏导数的求法 1)一个方程的情况

?zdz?u?zdz?u, ?xdu?x?ydu?y 方程f?x,y,z??0唯一确定的隐函数,则

f?z ??x ?xfz ?fz ?z ?0? ?y fyfz ?fz ?0? 或者视z?z?x,y?,由方程f?x,y,z??0两边同时对x(或y)求导解出 2由方程组? ?z?z( ?f?x,y,u,v??0?z?z 求导解出(或)即可. ?x?y?g?x,y,u,v??0 方法1:利用公式du? ?u?u?u

,v???x,y?,)z?f?u?,u???x,y?设z?z?x,y?是由, ?? )方程组的情况 或). ?x?y 两边同时对x(或y)

二、全微分的求法 dx?dy?dz ?x?y?z 方法2:直接两边同时求微分,解出du即可.其中要注意应用微分形式的不变性:

?z??z du?dv??v??u dz?? ?z?z?dx?dy ?y???x

三、空间曲线的切线及空间曲面的法平面的求法

?x???t? ? 1)设空间曲线г的参数方程为 ?y???t?,则当t?t0时,在曲线上对应点

?z???t?? ? p0?x0,y0,z0?处的切线方向向量为t???t0?,??t0?,??t0?,切线方程为

?? x?x0y?y0z?z0 ?? ?t0?t0?t0法平面方程为 ??t0??x?x0t0??y?y0t0??z?z0??0 2)若曲面?的方程为f?x,y,z??0,则在点p0?x0,y0,z0?处的法向量

? n??fx,fy,fz? p0 ,切平面方程为

fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法线方程为

x?x0y?y0z?z0 ?? fxx0,y0,z0fyx0,y0,z0fzx0,y0,z0 若曲面?的方程为z?f?x,y?,则在点p0?x0,y0,z0?处的法向量

? n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程为

fx?x0,y0??x?x0??fy?x0,y0??y?y0???z?z0??0 法线方程为

x?x0y?y0z?z0 ?? fxx0,y0fyx0,y0?1

四、多元函数极值(最值)的求法 1 无条件极值的求法

设函数z?f?x,y?在点p0?x0,y0?的某邻域内具有二阶连续偏导数,由fx?x,y??0,

fy?x,y??0,解出驻点?x0,y0? ,记a?fxx?x0,y0?,b?fxy?x0,y0?,

c?fyy?x0,y0?. c?b1)若a 时有极小值. 2) 若ac?b2?0,则f?x,y?在点?x0,y0?处无极值. 3) 若ac?b?0,不能判定f?x,y?在点?x0,y0?处是否取得极值. 2 2 ?0,则f?x,y?在点?x0,y0?处取得极值,且当a?0时有极大值,当a?0 2 条件极值的求法

函数z?f?x,y?在满足条件??x,y??0下极值的方法如下:

1)化为无条件极值:若能从条件??x,y??0解出y代入f?x,y?中,则使函数z?z(x,y)成为一元函数无条件的极值问题. 2)拉格朗日乘数法

作辅助函数f?x,y??f?x,y?x,y?,其中?为参数,解方程组 篇三:高数下册公式总结

第八章 向量与解析几何

第十章 重积分

第十一章曲线积分与曲面积分

篇四:高数下册积分方法总结

积分方法大盘点

现把我们学了的积分方法做个大总结。

1、二重积分

1.1 x型区域上二重积分(必须的基本方法)

(1)后x先y积分,d往x轴上的投影得区间[a,b]; (2)x [a,b],x=x截d得截线y1(x)#yy2(x)(小y边界y=y1(x) 大y边界y=y2(x));

(3)b y(x)蝌f(x,y)dxdy= 蝌dx 2f(x,y)dya yd 1(x) 1.2 y型区域上二重积分(必须的基本方法)

(1)后y先x积分,d往y轴上的投影得区间[c,d]; (2)y [c,d],y=y截d得截线x1(y)#xx2(y)(小x边界x=x1(y) 大x边界x=x2(y));

(3)d x蝌f(x,y)dxdy= 蝌dy 2(y)f(x,y)dxc x d 1(y) 1.2 极坐标二重积分(为简单的方法)

(1)总是后q先r积分; (2)b r蝌f(x,y)ds= 蝌dq 2(q)f(rcosq,rsinq)rdra r(q) d 1其中,在d上a是最小的q,b是最大的q;q [a,b],射线q=q截d得截线r1(q)#r r2(q)(小r边界r=r1(q)大r边界r=r2(q))。用坐标关系

x=rcosq,y=rsinq和面积元素ds=dxdy=rdqdr代入(多一个因子r)。

当积分区域d的边界有圆弧,或被积函数有x2+y2 时,用极坐标计算二重

积分特别简单。

离 散

数 学

2、三重积分 2.1 二套一方法(必须的基本方法) (1)几何准备

(i) 将积分区域w投影到xoy面,得投影区域dxy;

(ii) 以dxy的边界曲线为准线,作一个母线平行于z轴的柱面.柱面将闭区域w的边界曲面分割为上、下两片曲面s2:z=z2(x,y()大z边界);

s 1 :z=z1(x,y()小z边界)

((x,y) dxy,过(x,y)点平行于z轴的直线截w得截线z1(x,y)#z z2(x,y))

; (2)z蝌蝌 f(x,y,z)dxdydz=蝌

dxdy2(x,y)f(x,y,z)dzz。

w d1(x,y) xy 还有两种(w往xoz或yoz面投影)类似的二套一方法(举一反三)。 2.2 一套二方法(为简单的方法) (1)几何准备

(i)把w往z投影得轾犏臌 c,d; (ii)任意给定z?轾犏臌

c,d,用平面z=z截w得截面(与z有关)dz; (2)d蝌蝌

f(x,y,z)dxdydz=dz f(x,y,z)dxdy, c 蝌 w dz 还有两种(w往x或y轴投影)类似的一套二方法(举一反三)。 2.3 柱面坐标计算三重积分(为简单的方法)

(1)把积分写成二套一zx,y)蝌蝌

f(x,y,z)dxdydz=蝌

dxdy2(f(x,y,z)dzz,y) w d1(xxy (2)用极坐标计算外层的二重积分

z蝌蝌f(x,y,z)dv= 蝌

dxdy2(x,y)f(x,y,z)dz zw d1(x,y) xyb r2(q)zrcosq,rsinq) = 蝌dqrdr f(rcosq,rsinq,z)dz a r 2(1(q) z 1 (rcosq,rsinq) (注意:里层的上下限也要用x=rcosq,y=rsinq代入)。(当用极坐标计算

外层二重积分简单时。)

还有两种(w往xoz或yoz面投影的二套一)类似的极坐标计算方法(举

第1章

集 合

离 散

数 学

2.3 三重积分(为简单的方法)

x=rcosqsinjy,=rsiqn sjinz=,r jc dv=dxdydz=r 2 sinjdrdqdj个因子r 2 sinj

f(rcosqsinj,rsinqsinj,rcosj)r 2 sinjdrdqdj w w 下限变成三次积分(总是先r后j最后q积分)

f(x,y,z)dvw b jr dq2(q)dj 2(q,j)

一反三)。

球面坐标计算(1)用坐标关系和o体积元素 (多一)代入

蝌蝌f(x,y,z)dv=; (2)三种情况定上蝌

=蝌f(rcosqsinj,rsinqsinj,rcosj)r 2 sinjdr a j 1(q) r 1 (q,j) 当w是课堂讲的三种情况或被积函数有x2+y2+z2时用球面坐标计算简单。 第1章

集 合

3曲线积分 3.1 平面情形

(1)准备 ?l:?x=x(t), ?y=y(t)(t?[a,b])ds=

;

?? ,f(x,y)ds= f(x(t),y(tt l a l:?l:y=y(x)(x [a,b])时用x作?í

x=x ?(x?[a,b])当??y=y(x)ì?l:x= x(y)( y [c,数l:?í

x=x(y) ??? y=y(y?[c,d])3.2 空间情形

、第一类对弧长的ì

í

,(2)代入b蝌。 ì

当参数;时用d]y作参。 ì??x=x(t)

(1)准备 l:? ? íy=y(t)(t [a,b? ]),ds=

;

z=z(t)蝌f(x,y,z)ds= f(x(t),y(t),z(tt l a y=y(x)??x=x ?(x?[a,b])作参数l:?x)x( ab[,;??z=z(x)í?y=y( ] ?? z=z(x) l:?? x=x(y) ?z=z(y(y?[c,d])时用y作参数

l:?? )? y=y(y [c,d]) z=z(y)ì?x=x(??x=x(z) l:? z) ?(z?[c,d])作参数l:??í?? y=y(z)? y=y(z)(z [c,d])。 z=z 间的特例。

篇五:高数下册复习知识点总结

下册复习知识点总结:

(2)代入b。ìì 当l:???í时用x当?? ìì??x=x(y) í í?? ;当 ìí 时用z平面是空高数 8空间解析几乎与向量代数

1. 给定向量的坐标表达式,如何表示单位向量、方向数与方向余弦、投影。

2. 向量的数量积、向量积的定义式与坐标式,掌握两个向量垂直和平行的条件。 3. 了解常用二次曲面的方程及其图形,以坐标轴为旋转轴的旋转曲面方程。空间曲线在坐标平面上的投影方程。

4. 平面方程和直线方程及其求法。

5. 平面与平面、平面与直线、直线与直线之间的夹角,利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。

6. 点到直线以及点到平面的距离。

9 多元函数微分法及其应用

1. 有关偏导数和全微分的求解方法,偏导要求求到二阶。

2. 复合函数的链式法则,隐函数求导公式和方法。

3. 空间曲线的切线和法平面方程,空间曲面的切平面与法线方程;函数沿着一条直线的方向导数与梯度。 4. 利用充分条件判断函数的极值问题;利用拉格朗日乘子法(即条件极值)分析实际问题或给定函数的最值问题。

10 重积分

1. 二重积分直角坐标交换积分次序;选择合适的坐标系计算二重积分。

2. 选择合适的坐标系计算三重积分。

3. 利用二重积分计算曲面的面积;利用三重积分计算立体体积;

4. 利用质心和转动惯量公式求解问题。

11曲面积分与曲线积分

1. 两类曲线积分的计算与联系;

2. 两类曲面积分的计算与联系;

3. 格林公式和高斯公式的应用。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:端午情粽香黏范文下一篇:大学先进事迹范文