导数法证明不等式

2022-07-08

第一篇:导数法证明不等式

构造函数法证明导数不等式的八种方法

导数专题:构造函数法证明不等式的八种方法

1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法:

1、移项法构造函数 【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有11ln(x1)x x

12、作差法构造函数证明 【例2】已知函数f(x)

3、换元法构造函数证明

【例3】(2007年,山东卷)证明:对任意的正整数n,不等式ln(

4、从条件特征入手构造函数证明

【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证:.af(a)>bf(b)

5、主元法构造函数

1223xlnx. 求证:在区间(1,)上,函数f(x)的图象在函数g(x)x23的图象的下方;

1111)23 都成立. nnn1x)x,g(x)xlnx 例.(全国)已知函数f(x)ln((1) 求函数f(x)的最大值;

第 1 页 共 2 页 (2) 设0ab,证明 :0g(a)g(b)2g(

6、构造二阶导数函数证明导数的单调性 例.已知函数f(x)aexab)(ba)ln2. 212x 2(1)若f(x)在R上为增函数,求a的取值范围; (2)若a=1,求证:x>0时,f(x)>1+x

7.对数法构造函数(选用于幂指数函数不等式) 例:证明当x0时,(1x)

8.构造形似函数

例:证明当bae,证明abba

【思维挑战】

1、(2007年,安徽卷) 设a0,f(x)x1lnx2alnx

22求证:当x1时,恒有xlnx2alnx1, 11xe1x2

2、(2007年,安徽卷)已知定义在正实数集上的函数

f(x)

52122x2ax,g(x)3a2lnxb,其中a>0,且ba3alna, 求证:f(x)g(x)

22xb,求证:对任意的正数a、b,恒有lnalnb1. 1xa

3、已知函数f(x)ln(1x)

4、(2007年,陕西卷)f(x)是定义在(0,+∞)上的非负可导函数,且满足xf(x)f(x)≤0,对任意正数a、b,若a < b,则必有

(

)

(A)af (b)≤bf (a) (C)af (a)≤f (b)

(B)bf (a)≤af (b) (D)bf (b)≤f (a)

第 2 页 共 2 页

第二篇:构造函数,结合导数证明不等式

摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘隐含,联想构造等方法进行证明.

关键词:构造函数;求导;证明;不等式

利用导数证明不等式是四川高考压轴题的热点题型之一,此类问题的特点是:问题以不等式形式呈现,“主角”是导数,而不等式的证明不仅技巧性强,而且方法灵活多变,因此构造函数成为证明不等式的良好“载体”,如何有效合理地构造函数是证明不等式的关键所在,下面以实例谈谈如何构造函数的若干解题策略.

注:此题也可用数学归纳法证明.

解后感悟:函数隐藏越深,难度就越大,如何去寻找证明不等式的“母函数”是解决问题的关键,通过合理变形,展开思维联想的翅膀,发现不等式背后的隐藏函数,便会柳暗花明.

结束语:导数为证明不等式问题开辟了新方法,使过去不等式的证明方法,从特殊技巧变为通性通法,合理构造函数,能使解题更具备指向性,剑之所指,所向披靡.

第三篇:导数证明不等式的几个方法

1、直接利用题目所给函数证明(高考大题一般没有这么直接) 已知函数f(x)ln(x1)x,求证:当x1时,恒有

11ln(x1)x x1

如果f(a)是函数f(x)在区间上的最大(小)值,则有f(x)f(a(或)f(x)f(a)),那么要证不等式,只要求函数的最大值不超过0就可

2、作差构造函数证明

已知函数f(x)x2lnx.求证:在区间(1,)上,函数f(x)的图象在函数g(x)x3的图象的下方;

构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。

3、合理换元后构造函数可大大降低运算量以节省时间 (2007年,山东卷)

n1n21)3 都成立. 证明:对任意的正整数n,不等式ln(nn2312

4、从特征入手构造函数证明

若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证:.af(a)>bf(b) 几个构造函数的类型:

5、隔离函数,左右两边分别考察

第四篇:向量法证明不等式

向量法证明不等式高中新教材引入平面向量和空间向量,将其延伸到欧氏空间上的n维向量,向量的加、减、数乘运算都没有发生改变.若在欧式空间中规定一种涵盖平面向量和空间向量上的数量积的运算,则高中阶段的向量即为n=2,3时的情况.设a,b是欧氏空间的两向量,且a=(x1,x2,…,xn),b=(y1,y2,…,yn)(xi,yi∈R,i=1,…,n)

规定a·b=(x1,x2,…,xn)·(y1,y2,…,yn)=x1y1+x2y2+…+xnyn=xiyi.

(注:a·b可记为(a,b),表示两向量的内积),有

由上,我们就可以利用向量模的和与和向量的模的不等式及数量积的不等式建立一系列n元不等式,进而构造n维向量来证明其他不等式.

一、利用向量模的和与和向量的模的不等式(即

例1设a,b,c∈R+,求证:(a+b+c)≤++≤.

证明:先证左边,设m=(a,b),n=(b,c),p=(c,a),

则由

综上,原不等式成立.

点评:利用向量模的和不小于和向量的模建立不等式证明左边,利用向量数量积建立不等式证明右边.

作单位向量j⊥AC

j(AC+CB)=jAB

jAC+jCB=jAB

jCB=jAB

|CB|cos(π/2-∠C)=|AB|cos(π/2-∠A)

即|CB|sinC=|AB|sinA

a/sinA=c/sinC

其余边同理

在三角形ABC平面上做一单位向量i,i⊥BC,因为BA+AC+CB=0恒成立,两边乘以i得i*BA+i*AC=0①根据向量内积定义,i*BA=c*cos(i,AB)=c*sinB,同理i*AC=bcos(i,AC)=b(-sinC)=-bsinC代入①得csinB-bsinC=0所以b/sinB=c/sinC类似地,做另外两边的单位垂直向量可证a/sinA=b/sinB,所以a/sinA=b/sinB=c/sinC

步骤1

记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

步骤3.

证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D.连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

第五篇:放缩法证明不等式

在学习不等式时,放缩法是证明不等式的重要方法之一,在证明的过程如何合理放缩,是证明的关键所在。现例析如下,供大家讨论。 例1:设a、b、c是三角形的边长,求证

abc≥3 bcacababc证明:由不等式的对称性,不妨设a≥b≥c,则bca≤cab≤abc

且2cab≤0, 2abc≥0

 ∴abcabc3111

bcacababcbcacababc2abc2bac2cab2abc2bca2cab≥0

bcacababccabcabcababc≥3 bcacababc2bac无法放缩。所以在运用放

cab[评析]:本题中为什么要将bca与abc都放缩为cab呢?这是因为2cab≤0,

2abc≥0,而2bac无法判断符号,因此缩法时要注意放缩能否实现及放缩的跨度。

例2:设a、b、c是三角形的边长,求证

abc(bc)2(ca)2(ab)2≥ bccaab1 [(ab)2(bc)2(ca)2]

3证明:由不等式的对称性,不防设a≥b≥c,则3abc0,3bca≥bccca

bca0

左式-右式3abc3bca3cab(bc)2(ca)2(ab)2 bcacab3bca3cab(ca)2(ab)2 abab2(bca)3bca3cab(ab)2(ab)2(ab)2≥0 ababab ≥ ≥[评析]:本题中放缩法的第一步“缩”了两个式了,有了一定的难度。由例

1、例2也可知运用放缩法前先要观察目标式子的符号。

例3:设a、b、cR且abc1求证

111≤1 1ab1bc1ca证明:设ax3,by3,cz3.且 x、y、zR. 由题意得:xyz1。

∴1abxyzx3y3

∴x3y3(x2yxy2)x2(xy)y2(yx)(xy)2(xy)≥0 ∴x3y3≥x2yxy2

∴1abxyzx3y3≥xyzxy(xy)xy(xyz)

1z1≤

xy(xyz)xyz1abyx11≤,≤ ∴命题得证. xyzxyz1bc1ca同理:由对称性可得[评析]:本题运用了排序不等式进行放缩,后用对称性。

39例4:设a、b、c≥0,且abc3,求证a2b2c2abc≥

22证明:不妨设a≤b≤c ,则a≤1又∵(44。∴a0。 33ab23a23434)≥bc,即()≥bc,也即bc(a)≥(3a)2(a)。 2223833∴左边(abc)22(abbcca)abc

23434 92a(bc)bc(a)≥92a(3a)(3a)2(a)

2383

3416339(3a)[(3a)(a)a]9(3a)[a2a4]9(a32a2a12)8338899393a(a22a1)a(a1)2≥

2282893 ∴a2b2c2abc≥

22[评析]:本题运用对称性确定符号,在使用基本不等式可以避开讨论。

例5:设a、b、cR,pR,求证:

abc(apbpcp)≥ap2(abc)bp2(abc) cp2(abc)

证明:不妨设a≥b≥c>0,于是

左边-右边ap1(bca2abca)bp1(cab2bcab)cp1(abc2cabc)

ap1(ab)[(ab)(bc)]bp1(ab)(bc)cp1[(ab)(bc)](bc)ap1(ab)2(ab)(bc)(ap1bp1cp1(bc)2

≥(ab)(bc)(ap1bp1cp1) 如果p1≥0,那么ap1bp1≥0;如果p1<0,那么cp1bp1≥0,故有 (ab)(bc)(ap1bp1cp1)≥0,从而原不等式得证.

例6:设0≤a≤b≤c≤1,求证:

abc(1a)(1b)(1c)≤1

bc1ca1ab1abcabc≤,再证明以 bc1ca1ab1ab1证明:设0≤a≤b≤c≤1,于是有下简单不等式

abcab1c1(1a)(1b)(1c)≤1,因为左边(1a)(1b)(1c)

ab1ab1ab1

11c[1(1ab)(1a)(1b)],再注意(1ab)(1a)(1b)≤(1abab)

ab1 (1a)(1b)(1a)(1b)(1a)(1b)(1a2)(1b2)≤1得证.

在用放缩法证明不等式A≤B,我们找一个(或多个)中间量C作比较,即若能断定A ≤C与C≤B同时成立,那么A≤B显然正确。所谓的“放”即把A放大到C,再把C放大到B,反之,所谓的“缩”即由B缩到C,再把C缩到A。同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:电视剧剧评怎么写下一篇:电视新闻深度报道