水塔水位范文

2022-05-19

第一篇:水塔水位范文

水塔水位报告

单片机课程设计

业 电气工程及其自动化

指导教师

题 目 基于单片机的

水位控制系统

2013年12月25日 基于单片机的水位控制系统设计

1 设计背景的简单介绍

由于自动化技术在工矿企业的广泛运用, 水位自动控制技术越来越频繁地进入到自动控制系统设计者的视线。传统的水位控制系统虽结构简单,但功能单一,无法实现人机交互,且通用性差。如今随着电子技术的飞速发展,电子产品制造工艺成熟,批量生产降低了产品价格。人们开始认识到运用单片机来实现水位控制。其人机交互性强, 功能强大, 控制精度高, 能够方便地与上位机通讯, 实现数据共享。且价格低廉, 通用性、实用性强, 能够在稍作改造后或直接用于诸如自来水厂的储水池、爆气池、污水处理厂、化学工厂的各类液体池以及电厂一的锅炉气泡等需要水位自动控制的场合。

知识目标:单片机开发软件的使用方法;单片机语言程序的基本结构及编译方法;单片机电路仿真调试方法。

能力目标:会利用keil C51软件对单片机程序进行编译;会利用proteus软件绘制电路原理图并实现仿真;会用keil C51软件对源程序进行编译调试及与proteus软件联调,实现电路仿真。 2 设计思路与方案 2.1 设计思路

随着社会的进步,人类生活水平的不断提高,现在许多家庭都要求能够进行家庭用水自动供水,基于调查我们决定设计一款简单实用、经济的水位控制系统。在水塔的内部我们设计一个简易的水位探测传感器用来探测三个水位,即低水位,正常水位,高水位。低水位时送给单片机一个高电平,驱动水泵加水,红灯亮;正常范围的水位时,水泵加水,绿灯亮;高水位时,水泵不加水,黄灯亮。本设计过程中主要采用了传感技术、单片机技术、光报警技术以及弱电控制强电的技术。 2.2 方案设计及功能

本方案采用单片机AT89C2051作为我们的控制芯片,主要工作过程是当水塔中的水在低水位时,水位探测传感器送给单片机一个高电平,然后单片机驱动水泵加水和显示系统使红灯变亮;当水位在正常范围内时,水泵加水,绿灯亮;当水位在高水位时,单片机不能驱动水泵加水,黄灯亮。图1方案结构方框图中使用了单片机处理,单片机技术是信息时代用于精密测量的一种新技术。此系统使用过程中采用稳压电路能够准确地把输入的电平送给单片机不会产生误判的情况,由于AT89C2051单片机有四端口,20引脚能够非常方便地设计显示系统。我认为本方案能帮助我很好地完成本次设计的各个指标和达到设计的目的。

图1 方案结构方框图

1 3 系统组成与工作原理 3.1 系统组成

本系统由电源电路、水位探测传感电路、稳压电路、单片机系统、光报警显示电路、继电器控制水泵加水电路、以及高塔模型组成。 3.2 系统工作原理

当水位处于低水位的时候,传感器的低水位探测线没被+5V的电源导通进入稳压电路经过处理在稳压电路的输出端有一个高电平,送入单片机的P1.0口,另一个稳压电路输出的高电平进入单片机的P1.1口单片机经过分析,在P1.2口输出一低电平,驱动红灯亮,P1.5出来一个信号使光电耦合器GDOUHE导通,这样继电器闭合,使水泵加水;当水位处于正常范围内时,水泵加水,在P1.3引脚出来一个低电平,使绿灯亮;当水位在高水位区时,传感器的两根探测线均被导通,均被+5V的电源导通,送入单片机,单片机经过分析,在P1.4引脚出来一个低电平,使黄灯亮,在P1.5端出来一个低电平不能使光电耦合器导通,这样继电器不能闭合,水泵不能加水;当三灯闪烁表示系统出现故障。 3.3 水塔水位控制原理

单片机水塔水位控制原理如图2所示,图2中的虚线表示允许水位变化的上、下限位置。在正常情况下,水位应控制在虚线范围之内。为此,在水塔内的不同高度处,安装固定不变的3根金属棒A、B、C,用以反映水位变化的情况。其中,B棒处于下限水位,C棒位于上限水位,A棒接5V电源,B、C通过电阻接地。当水位达到上限时,B、C棒接通高电平,此时应停止电机和水泵工作。水位下降到下限时,B、C棒不能与A棒连通,B、C为低电平,应启动电机供水。水位处于上下限之间时,A、B连通,B为高电平,C为低电平,此时,电机保持原有工作状态。

图2 水塔水位控制原理图

4 单元电路设计及元器件介绍 4.1 光报警显示统电路

本电路采用不同颜色的发光二极管来表示不同的水位情况。即红灯亮,其他两灯不亮表示是低水位状态,此时需要启动水泵加水;绿灯亮,其他两灯不亮表示在正常的水位线内;黄灯发亮,其他两灯不亮为高水位

2 状态,水泵停止加水,三灯闪烁表示系统出现故障,此电路采用的是共阳极的,所以只有当单片机给发光二极管为低电平时才能推动发光二极管点亮。其中R

14、R

15、R16为上拉电阻起限压控流作用。.

图3 光报警电路的原理图

4.2 继电器控制水泵加水电路

该电路由继电器RL1和闭合开关、光电耦合器、水泵R

7、R

8、R

9、R10Y以及D

2、Q3等组成。当水位在低水位时单片机给P2.0送一个高电平导通光电耦合器然后光电耦合器驱动Q3导致继电器闭合从而让220V的交流电接通使水泵加水。

图4 继电器控制

4.3 元器件介绍 4.3.1 光电耦合器

光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。它由发光源和受光器两部分组成。把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。发光源的引脚为输入端,受光器的引

3 脚为输出端,在本设计当中发光源为发光二极管,受光器为光敏三极管。本设计当中采用光电耦合器组成开关电路的作用,能够很好地将单片机信号稳定地送给继电器驱动继电器闭合。 4.3.2 继电器

继电器是具有隔离功能的自动开关元件,在本次设计当中主要来做自动控制作用,系统采用+5V的直流电来控制220V的交流电,以达到控制水泵的作用,因为是在这里是以一种弱电来控制强电,所以安装和使用的过程当中一定要注意用电安全注意事项。

磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。

图5 常见继电器外观图

4 5 程序设计

图6 程序流程图

开始系统亮红灯,水泵开始抽水时,达到低水位时,绿灯亮;开关处于高水位,而水位实际低水位还没达到,红绿黄灯一起闪烁,此时为故障状态;当达到低水位之后又达到高水位,黄灯亮。 6 系统仿真 6.1 程序编译和加载

利用keil C51软件对源程序进行编译,在菜单上选择output—create hex,生成目标代码文件。将编译调试成功的源程序生成可供单片机加载的HEX文件加载到芯片中,设单片机的晶振频率为12MHZ。 6.2 系统仿真

利用keil C51软件与proteus软件联调,实现电路仿真。点全速运行按键,得到图7所示的仿真结果,图中LOW闭合时处于低水位状态,水泵处于运行状态。

图7 低水位状态仿真结果

当HIGH和LOW处于闭合时水位处于故障时,仿真的结果如图8所示。

图8 故障状态仿真结果

当LOW先闭合时后经一段时间HIGH后闭合时水位处于正常状态时如图9所示。

图9 高水位仿真结果

6.3 仿真结果分析

在proteus环境,运行水位控制系统,我发现,当水位处于低水位区时,红灯亮,水泵处于运行状态,随着水位的上升,水泵仍处于运行状态,当水位到达高位时,黄灯亮,水泵停止运行。随着水位不断下降,此时,水泵处于停止状态,当水位到达低位时,水泵起动,重复以上过程。上述仿真表明,本设计达到了预期的设计目标,实现了水位自动控制。 7 总结

通过这次自己亲自设计学习,自己学会很多的东西。加深了理解所学会的理论知识,锻炼了自己,又提高了我的综合分析能力,使我受益匪浅。

本系统主要由水位探测传感器,单片机控制系统,水位显示系统,继电器驱动电路,水泵加水系统组成,系统简单,安装方便。

本系统采工作过程是当水位处于低水位的时候,传感器的低水位探测线没被+5V的电源导通进入稳压电路经过处理在稳压电路的输出端有一个高电平,送入单片机的P1.0口,单片机经过分析,在P2.3口输出一低电平,驱动红灯亮,P2.0出来一个信号使光电耦合器GDOUHE导通,这样继电器闭合,使水泵加水;当水位处于正常范围内时,水泵加水,绿灯亮;当水位在高水位区时,传感器的两根探测线均被导通,均被+5V的电源导通,送入单片机,单片机经过分析,在P2.2引脚出来一个低电平,使黄灯亮,在P2.0端出来一个低电平不能使光电耦合器导通,这样继电器不能闭合,水泵不能加水,当系统出现故障时,三灯闪烁。

这次单片机实验课程设计也教会我做事要谨慎,细心耐心,也需要勤于练习,不然一步错就会影响程序的成功性,更要掌握水位控制系统的原理,掌握实用电路的设计方法和技巧,也需要熟悉常用电子元件、调试工艺。当遇到困难时,自己学会了冷静分析原因,寻找自己的问题,不急不躁,请教他人,直到问题解决为止。

这次的单片机设计让我们有了一次机会,对我们的综合工程素质起了促进作用,也让我知道平时积累和学习知识的重要性,知道了自己知识的匮乏让我知道了自己存在的种种不足,知道了自己以后应该提升的地

7 方。此次的设计经验,将会是我以后的宝贵财富。

附录 1 电路图

2 程序清单

程序如下: ORG 0000H SETB P1.1 RESTART: MOV A,P1 ANL A,#00000011B CJNE A,#00H,LOOP1 ;在低水位之下,开启电动机,亮红灯 SETB P3.2 SETB P3.3 CLR P3.0 CLR P3.1 LCALL DELAY LJMP RESTART LOOP1: CJNE A,#01H,LOOP2 ;当超过低水位,并且未达到高水位时,保持电动机转动,亮绿灯 SETB P3.2 SETB P3.1 CLR P3.0 CLR P3.3 LCALL DELAY LJMP RESTART LOOP2: CJNE A,#02H,LOOP3 ; 系统故障(达到高水位,却没达到低水位)红,黄,绿灯均闪烁 SETB P3.0 CLR P3.3

8 CLR P3.2 CLR P3.1 LCALL DELAY SETB P3.3 SETB P3.1 LCALL DELAY LJMP RESTART LOOP3: CJNE A,#03H,RESTART ;当达到高水位时,停止电动机,亮黄灯 SETB P3.1 SETB P3.0 SETB P3.3 CLR P3.2 LCALL DELAY LJMP RESTART DELAY: MOV R0,#250 DELAY3: MOV R1,#200 DELAY2: MOV R2,#5 DELAY1: DJNZ R2,DELAY1 DJNZ R1,DELAY2 DJNZ R0,DELAY3 RET END

第二篇:水塔水位控制系统[大全]

水塔水位控制系统 TD-TW

一、产品简介:

济南腾达电子水塔水位控制系统可实现无线远距离控制水泵、水塔。系统基于中国移动信号遍布全国各地,能够稳定工作。控制系统采用12V供电,在山区送电不便的情况下可配置太阳能电池板给控制系统供电。安装简单,无需布线。操作简单,发SMS便可远程控制水泵启停,发SMS便可查询水泵工作状态。水泵工作异常报警主人号码,保证您的供水系统稳定运转。

二、系统组成:

水塔水位控制系统由两个GSMSMS远程控制器、两个输出12V电源、不锈钢浮球(或水位传感器)、两根天线组成。用户只需提供220V市电控制系统便可工作。一个控制器控制水泵、一个检测水塔内水位。

三、系统工作过程:

当水塔内水深低于用户设定的下限,控制器便启动水泵,给水塔供水。

当水塔内水深高于用户设定的上限,控制器便停止水泵,给水塔供水。

若水泵没有正常启动或停止,控制器便会给主人号码发送报警SMS,例如“水 泵工作异常,请到现场查看!”。

四、系统功能与优点:

1、系统优势无线远程控制,适应各种环境,无需考虑水塔与水泵相距多远。例如:水塔在山上,水泵在山下河里。

1、两个GSMSMS远程控制器相互通讯控制,无需人工干涉,节省人力。

2、最多能设置5个管理员号码,接收报警SMS,保证系统稳定工作。

3、控制器具有号码过滤功能,可以避免外界干扰和恶意破坏。

4、可配置水位传感器,用户可实时查询水塔内水深。

5、系统220VAC供电、太阳能电池板供电。功耗低,省电环保。

6、基于GSM无线远程控制,无需布线,信号覆盖面广。

7、水塔水位控制系统运行费用低(SMS费用),为用户省钱。

8、操作简单,发SMS便可控制水泵。

9、体积小(110mm*90mm*35mm),安装方便。

10、电子设备怕水,请勿被雨淋。

本公司还供应上述产品的同类产品:水泵水塔联动控制系统,水泵远程控制器,水泵远程遥控器

第三篇:课题2:水塔水位的PLC控制

周海堋、李志强、叶峰

1、控制要求

在有些小区,为了解决高层建筑的供水问题,修建了一些水塔。

某水塔高10m,正常水位变化0.5m,为保证水塔的正常水位,需要用水泵为其供水。水泵房有4台泵用异步电动机,交流380V,10KW。正常运行时,3台电动机运转,1台电动机备用。

因电动机功率不是很大,考虑直接起动,并错开起动时间(间隔时间为5s)。为防止某一台电动机因长期闲置而产生锈蚀,备用电动机可通过预置开关随意设置。如果未设置备用电动机组号,则系统默认为4号电动机组为备用。每台电动机都有手动和自动两种控制状态。在自动控制状态时,不论设置哪一台电动机作为备用,其余的3台电动机都要按顺序逐台起动。

在自动控制状态下,如果由于故障使某台电动机组停车,而水塔水位又未达到高水位时,备用电动机组自动起动;同时对发生故障的电动机组根据故障性质发出停机报警信号,提醒维护人员及时排除故障。当水塔水位达到高水位时,高液位传感器发出停机信号,各个电动机组停止运行。当水塔水位低于低水位时,相应的低液位传感器自动发出开机信号,系统自动按顺序起动(间隔5S)。要求每台电动机都有运行状态指示灯(运行、备用和故障)。同时液位传感器要有位置状态指示灯。

2、任务要求

1)明确控制要求,工艺流程,自行画出简化示意图 2)根据要求画出主电路图

3)根据要求选择合适的硬件配置,写出I/O分配表,画出I/O接线图 3)根据控制要求画出状态转移图、梯形图、写出指令表 4)调试控制程序

5)完成论文说明(不少于8000字)

第四篇:水塔水位自动控制电路的制作6

电子技术课程设计

水 位 控 制 器

水位控制器

1 引言

本水位控制器是农用无塔增压式供水器,采用点接点压力作为检测控制装置,电路简单,在水源不足或潜水泵出现故障时能自动切断 水泵电动机的工作环电源,同时还能发出声音报警。

2 总体设计方案

2.1 设计思路

2.2 总体设计框图

电路工作原理

该农用无塔供水器电路由刀开关Q1,熔断器FU,中间继电器KA,交流接触器KM,热继电器KR,报警器HA,指示灯HL1,HL2和泵出口压力计Q2的控制点,水灌水位检测压力计Q3的控制触点组成,如图所示:

刚接通刀开关Q1时,水罐内水位和压力较低,交流220V电压经Q1,FU,停止按钮S,水罐水位检测压力计Q3,的动力计Q3的动触电(中),下限触点(低),热继电器KR的常闭触点,中间继电器KA 常闭触点加至交流接触器KM上,使KM通电吸和,工作指示灯HL1点亮,水泵电动机M通电工作,开始向罐内抽水。此时,泵出水口的压力也较低,泵出水口压力计Q2的动力触点(中)与下线触点(低)接通,报警器HA发出报警信号。

当水位内水位上升至一定高度,压力达到一定值时,泵出水口压力计Q2的动触点与下线触电断开,当Q2达到设定的最大压力时,其动触点接通,HA停止发声。在Q2的动触点与上限触点接通后,水罐水位检测压力计Q3的动触点与下限触点断开。

当水罐内压力达到设定的最大压力时,Q3的压力上限控制触点(高)接通,中间继点器KA通电吸合,其常闭触电断开,使KM断电释放,水泵电动机M停止抽水。同时HL2点亮,HL1熄灭。

当用户用水,使水罐内水位下降,压力低于设定的最大压力时,水罐水位检测压力计Q3的触点与上限触电断开,使KA释放,HL2熄灭。

当水罐内水位继续下降,压力降至设定的最小压力值时,Q3的动触点接通,KM通电吸合,M又通电开始抽水。

若水泵损坏或水井内的水被抽干而导致水泵电动机M的电流增大时,热继电器KR动作,使KM断电释放,将M工作电源切断。 元器件选择

HL1和HL2均选用220V的电源指示灯。 HA选用工作电源为交流220V,内置报音源的报警器或电铃。 KA选用220V交流中间继电器。 S选用动断按钮。

KM选用CDC10或CDC20系列的220V交流接触器。

Q1,FU和KR应根据潜水泵电动机M的额定功率合理选用。

泵出水口压力计Q2和水罐水位检测压力计Q3均选用JX-150或JXC150型点接点可调压力计,使用时应很据水罐的容量的最大压力来设定压力计的上,下限的压力值。 心得体会

通过本学期的电子工艺实习,我懂得了电路设计的基本方法,加深了对电子课程的认识。让我懂得了理论联系实践,把学到的知识用到生活中,锻炼了我手操作的能力,加强了我设计电路的能力。简短的十多天的电子工艺课结束了,我学到的知识在这次课上得以应用,更加巩固了我对电工,电子技术的的理解。我们对电子产品,在实习过程中有了更直观的认识。

课程设计是培养学生们的动手能力的一次充分机会,学生们可以充分运用所学过的知识,发现,发觉,分析,解决设计中遇到的各种问题,锻炼实践能力是对学生实际工作能力的具体训练和考察的过程。 参考文献:

1:张庆双《全新实用电路集粹》机械工业出版社 2:李宝宏

《电工常用电路》 人民邮电出版社 3:李康华《电子技术基础》高等教育出版社

4:张义和《Protel DXP 电路设计大全》中国铁路出版社

第五篇:水塔水位PLC控制系统的设计

摘要:通过设计采用计算机网络技术、信息处理技术、PLC控制技术等多种先进技术组成的水塔水位控制系统,实现信息的实时监控、信息的集成和应急辅助等功能,从而为学生的综合知识的学习提供更好的教学设备。

关键词:MCGS组态;PLC;触摸屏;水位传感器

中图分类号:TP273 文献标识码:A 文章编号:1007-9416(2017)04-0004-01

水塔水位的控制在现实生活中占有着很重要的位置,随着高位生活用水的逐渐增多,?λ?塔水位的控制要求也越来越高。例如:要求对水位采集监控,并具有实时显示功能;由计算机进行实时数据的采集和保存;打印历史水位数据;水位过高、过低的报警设置等功能。为了满足这功能,我们可以利用MCGS开发界面环境,PLC开发控制环境,传感器采集水塔水位,从而实现水塔水位的自动控制。学生通过水塔水位的模拟控制,能对专业知识的综合应用达到一个新的高度[1]。

1 系统所要达到的控制要求

(1)水箱里面有4个液位传感器,SQ

1、SQ

2、SQ

3、SQ4,与之相对应有四个输出口,可以与PLC的输入信号相连接。(2)水塔下方有一个电机来控制水位,并有一个输出口与PLC的输出连接,还有2个报警指示灯分别用来高液位报警和低液位报警。(3)当水位上升时,浮标式传感器会根据水位的升高而升高,当浮标浮起,信号会接通,信号会传输到PLC,从而控制水泵的启停。(4)如果水位过高或者过低时,模拟站的报警指示灯会点亮。(5)当水位到达高液位时,水泵在设定时间内会保持工作状态,让水位充分到达高液位,计时结束后水泵会停止,水位慢慢下降,当水位下降到低液位时,水泵会自动启动,无限循环,直至按下停止按钮。(6)控制程序利用三菱FX3U系列的PLC编写;利用MCGS组态软件编辑触摸屏控制界面,要求实时监控水位,并能远程控制水泵的动作。水塔模型图1所示。

2 控制系统的制作分为两部分

2.1 PLC控制系统的设计

整个设计过程包括:熟悉控制要求;梳理输入、输出分配;完成外围电路;进行程序设计。在实际教学过程中,可以让学生自行分析并设计控制程序。水塔上设有4个液位传感器,安装位置由低到高依次分别为SQ1(X030)、SQ2(X031)、SQ3( X032)、SQ4 (X033)[2]。凡是液面高于传感器安装的位置,则传感器接通(ON)。凡是液面低于传感器安装位置时则传感器断开(OFF)。其中SQ2和SQ3则作为水位控制信号,而SQ1和SQ4作为水位的上下限信号,起到保护作用。按下SB1(X034) 后,水泵(Y022)开始运行,直到收到SQ3信号并保持2秒以上,确认水位到达高液位时停止运行;当水塔水位下降到低水位即SQ2接通时则重新开启水泵。一旦传感器SQ3失灵,则水位会继续上升至SQ4位置,此时SQ4发出信号,点亮高液位报警指示灯(Y021),水泵停止工作;而若传感器SQ2一旦失灵,则在收到SQ1信号时,点亮低液位报警指示灯(Y020),水泵停止工作。按下启动按钮SB1时,将报警指示灯复位,可重新开始工作。按下停止按钮SB2(X035),可立即停止整个控制程序。

2.2 MCGS组态界面的设计

MCGS水塔水位控制需要读取PLC实时数据,在将数据通过屏幕显示出来,并且将信号输入到PLC,如启动、停止信号等。在开始组态工程之前,先对该工程进行剖析,以便从整体上把握工程的结构、流程、需实现的功能及如何实现这些功能。结合实际环境进行仿真界面的设计,变量的组态和连接,设备的组态等[3]。

3 结语

经过对整个系统进行连接和运行调试发现,该系统能很好的完成一个短距离内的水位监控。但在实际应用过程中,其实是远程控制,这时我们采用现场总线的方式,来实现上下位机的联合运行即可。水塔水位的控制模型能更好的让学生对专业知识的综合应用有更清晰地认识,有着很好的实际应用价值。

参考文献

[1]王传艳.MCGS触摸屏组态控制技术[M].北京师范大学出版社,2015.

[2]张伟林,郭艳萍.三菱PLC、变频器与触摸屏综合应用实训[M].电力出版社,2011.

[3]文杰.三菱PLC电气设计与编程自学宝典[M].电力出版社,2015.

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:善行需行范文下一篇:涉税事项范文