新纤维材料与应用

2022-08-08

第一篇:新纤维材料与应用

芳纶纤维材料及其应用

摘要:本文对芳纶纤维的发展概况,结构性能以及主要应用领域作简单介绍。最后分析一下芳纶纤维的发展前景。

关键词:芳纶纤维材料;芳纶1313;芳纶1414;结构性能;应用;发展前景

Aramid fiber material and its application Abstract:In this paper, the general development of aramid fiber, structure, performance and main application field are introduced. Finally, analysis of the development of the aramid fiber Key words: Aramid fiber material; Aramid 1313; Aramid 1414; Structure performance; Application; Future development

1 芳纶纤维概况

芳纶纤维即芳香族聚酞胺纤维,是以芳香族化合物为原料经缩聚纺丝制得的合成纤维。芳香族聚酰胺纤维首先是由美国杜邦公司于1965年引入市场的。这种间位取向的芳香族聚酰胺纤维称作Nomex。上世纪70年代早期,杜邦公司开发了第二种产品即对位芳香族聚酰胺纤维Kevlar,并且此后一直占据芳纶的首要地位,直到1986年荷兰Akzo公司的Twaron、1987年日本帝人公司的Technora及俄罗斯的ARMOC纤维的出现,才使Kevlar独占体系崩溃。[1]

芳纶纤维工业化的产品有两种:芳纶1313(全称为聚间苯二甲酰间苯二胺纤维)和芳纶1414(全称为聚对苯二甲酰对苯二胺纤维)。芳纶纤维具有良好的抗冲击和耐疲劳性能,有良好的介电性和化学稳定性,耐有机溶剂、燃料、有机酸及稀浓度的强酸、强碱,耐屈折性和加工性能好。它可用普通织机编织成织物,编织后其强度不低于原纤维强度的90%[2]。

2 芳纶1313 2.1发展情况

芳纶1313最早由美国杜邦公司研制成功并实现工业化生产,产品注册为Nomex(诺美克斯)。1967年正式工业化生产。是一种耐高温纤维,由聚间苯二甲酰间苯二胺构成,是目前所有耐高温纤维中产量最大,应用最广的一个品种。日本Teijin公司于1974年也成功实现商业化,商品名为Conex ,其主要侧重纤维的开发,除常规纤维品种外,还有染色纤维、高度阻燃稳定纤维Conex FR和耐候性极好的Conex L。另外,还有日本Unitika公司的Apyeil和俄罗斯的Fenilon纤维。国内广东彩艳股份有限公司与烟台泰和新材料股份有限公司(原烟台氨纶)于20世纪90年代分别通过自主研发和引进俄罗斯技术开发出芳纶1313,现在均已实现产业化生产。目前,国内芳纶1313产业不但实现了自主供应,而且走出国门开始参与国际竞争[3]。

2.2结构与性能

芳纶1313是一种柔软洁白、纤细蓬松、富有光泽的纤维,化学名为聚间苯二甲酰间苯二胺,分子结构式见图1,是排列规整的锯齿型大分子。

图1 芳纶1313分子结构式

芳纶1313断裂强度0.4~0.53牛/特,伸长率30~50%,回潮率6.5%。其性能优良,具有持久的热稳定性,骄人的阻燃性,极佳的电绝缘性,杰出的化学稳定性,优良的机械特性和超强的耐辐射性[4]。当然,芳纶1313 的缺点就是耐光性差。

2.3芳纶1313 的应用

芳纶1313纤维其主要用于宇航,航空以及其他工业部门。其可应用于特种防护服、高温过滤材料、电气绝缘材料、蜂巢结构材料。此外,纯间位芳纶制成的芳纶纸具有高强度、低变形、耐高温、耐化学腐蚀、阻燃和优良的电绝缘性能,广泛应用于国防、航空航天、高速列车和电工绝缘等领域,是一种关系国家安全的高科技新材料[5]。芳纶纸还广泛应用于影剧院、宾馆等公共场所的隔热阻燃材料,如背景幕、墙纸、聚光灯隔热材料、装饰材料等。

3 芳纶1414

3.1发展情况

20世纪60年代,在芳纶1313基础上,美国DuPont公司成功研制出芳纶1414,并于1972年实现了工业化生产,商品名为Kevlar。芳纶1414具有比芳纶1313更好的综合性能,它的出现被认为是材料界发展的一个重要里程碑。荷兰AkzoNobel公司也于20世纪70年代开始研制芳纶1414,并于1986年实现工业化生产,商品名为Twaron。 2000年日本Teijin公司将Twaron收购,之后先后几次对其进行扩产,目前Twaron已成为Teijin公司的核心新材料产品。此外,韩国Kolon公司于2005年成功产业化生产出芳纶1414,商品名为Hercron。韩国Hyosung公司也于2009年实现了芳纶1414的工业化生产。国内,中蓝晨光化工研究院有限公司经过20多年的研究,于2011年成功建设了1 000 t/a芳纶1414工业生产装置,并同时实现产业化生产,商品名为Staramid 。同样在2011年,烟台泰和新材料公司年产1 000 t芳纶1414长兹产业化项目顺利投产,商品名为Taparan [3]。

3.2 结构与性能

芳纶1414外观呈金黄色,貌似闪亮的金属丝线,实际上是由刚性长分子构成的液晶态聚合物。芳纶1414的化学名为聚对苯二甲酰对苯二胺,分子结构式见图2。

图2 芳纶1414分子结构式

由于芳纶1414分子链沿长度方向高度取向,并且具有极强的链间结合力,从而赋予纤维空前的高强度、高模量和耐高温特性、比重小、化学性质稳定等优良性能[6]。

3.3芳纶1414的应用

3.3.1运用于航空航天和国防军用领域

芳纶1414可应用于航空航天工业中用于制造导弹的固体火箭发动机壳体和用于制作大型飞机的二次结构材料(如机舱门、窗、机翼有关部件、消防服等)、国防工业中的防弹衣、防弹头盔、防刺防割服、排爆服、高弹度降落伞、防弹车体、装甲板等[4]。 3.3.2土木工程

混凝土结构的损蚀问题已经引起全世界的日益关注。一些修复技术现已开发,并将对位芳纶纤维用于解决方案中。其中一项广泛采用的技术就是柱包敷加固,即将芳纶纤维包裹在钢筋混凝土柱上。然后进行树脂浸柱和固化。柱包敷加固用于维修老旧和损蚀结构,然后对结构作另外加固。与传统的加固修补技术相比,芳纶纤维材料加固修补技术具有明显的技术优势。主要体现在高效高强,具有良好的耐久性和耐腐蚀性,适用面广这三个方面[7]。

芳纶纤维布在旧桥加固的应用范围比较广,芳纶纤维布在加固构件时,主要用于抵抗拉力,一般用于梁的受拉部位、梁与柱的抗剪部位、柱或桥墩台的围束加固等[8]。芳纶纤维加固钢筋混凝土刚架拱桥具有工艺简单、施工方便、综合造价低等优点,不失为一种值得推广采用的加固方法。

3.3.3制作芳纶1414复合材料

当前,轻巧耐用的复合材料正逐渐取代传统材料,对此,对位芳纶纤维发挥了重要作用。增强复合材料对轻量化和损伤容限有着极高的要求,对位芳纶纤维对此起到了不容小觑的作用。芳纶1414复合材料主要应用于航空,航天及其他军事用途,还运用于民用工业领域[9]。 3.3.4新型的耐摩擦材料 加入芳纶浆粕和短切纤维可改善刹车片、刹车片衬里、以及离合器摩擦片的性能,从而延长产品使用寿命并提高驾驶的舒适性。尤其是在舒适性方面,芳纶浆粕对减少噪音、振动和不平顺性(NVH)作出了巨大贡献。

正是基于这些独特性能,使芳纶浆粕成为世界各地的摩擦产品制造商的首选材料。 由于刹车片的摩擦力减少,使得对所用材料的性能要求进一步加强——芳纶纤维产品的优异性能在此再次发挥作用。 3.3.5在轮胎行业的应用

由于芳纶具有许多优异性能和耐高低温性能因此可以作为航空轮胎和汽车轮胎良好的帘线材料。芳纶作为轮胎的骨架材料具有很多的优点:轮胎质量小,乘坐舒适性好、滚动阻力低,节油性能提高.是未来绿色环保轮胎的主要材料。另外还有很好的耐刺扎、耐切割性能耐磨性能提高约3%、芳纶轮胎使用过程中接地压力重心移动小,转向性能好,轮胎变形滞后小、生热较低,芳纶帘线模量高,硫化后帘线不收缩,轮胎使用出现的“平点”问题也可以得到强有力的限制,对于有后充气装置的厂家来说,可以节省这方面的费用,而且芳纶轮胎的硫化时间也可以适当减少,提高硫化效率[10]。

4芳纶纤维的发展前景

芳纶1313从问世以来,其应用领域与市场需求稳步增长。芳纶1414发明至今,根据市场需要,产品已向高强度、高模量、高伸长的系列化发展。21世纪是新技术新材料时代,也是高科技纤维的时代。随着人们对纺织品使用安全性能要求的提高,芳纶纤维的需求量在不断增长。同时,随着科技进步和世界经济的进一步发展,芳纶纤维还将在更多领域有所应用,芳纶纤维在市场容量和更加复杂的性能方面将会加速发展。世界芳纶工业正迎来一个大发展的机遇[6]。

总结

随着社会的发展,芳纶作为一种高性能的纤维,其应用将会越来越广泛。与海外芳纶纤维发展相比,我国的芳纶纤维国产化可以说才刚刚起步。诸如涉及到国防领域,美国杜邦和日本帝人都建立了严格的出口管制制度,几乎不对我国出口能制造防弹衣的高端对位芳纶。由于起步晚,国外公司对核心技术的封锁垄断等原因,目前我国芳纶纤维的技术水平、产品档次及生产能力都与国外发达国家存在着一定的差距。我国要打破外国的芳纶技术垄断和突破生产技术的障碍,就必须全力以赴进行工程技术攻关,研制出具有中国自主知识产权的芳纶技术专利,生产出可与国外同类产品媲美的高性能芳纶纤维,以取得市场的制高点和主动权。

第二篇:碳纤维复合材料在航空中的应用

摘要:碳纤维复合材料由于其质轻高强的特点而在航空领域大量使用,主要介绍了其在飞机上的大量应用,期待我国碳纤维工业能早日达到先进水平。 关键字:碳纤维;碳纤维复合材料;商用飞机。 1引言 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。

碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。

正是由于碳纤维在力学上的出色性能,碳纤维复合材料(CFRP)被广泛用于航空航天领域。早在上世纪50年代就被用于火箭,而随着80年代高性能复合材料的发展,碳纤维复合材料的应用更加广泛。不仅在火箭、宇航、航空等领域发挥着重要作用,而且广泛应用于体育器械,纺织、化工机械及医学领域。 2碳纤维复合材料在商用飞机上的应用 复合材料诞生之时,就由于其质轻高强的性能而与航空航天器结下了不解之缘。上世纪40年代开始,复合材料就被用于军用飞机的修补。上世纪80年代,复合材料在商用飞机上得到逐步应用。随之而来的碳纤维革命,尤其是中模量碳纤维性能的提高﹑技术的稳定,使得碳纤维复合材料最终被用于大型商用飞机的主结构。以B787 和A350 为代表的大型商用飞机,其复合材料在飞机结构重量中的占比已经达到或超过了50%,最大的商用飞机A380 的中央翼也完全使用复合材料,这些都是复合材料在大型商用飞机上使用的里程碑。 2.1商用飞机上主要的CFRP构件[1] 目前,商用飞机上使用的复合材料大部分是碳纤维环氧复合材料,也包括一些玻璃纤维环氧复合材料,以及少量的特种基体树脂复合材料。其应用分为三个大类,即一级结构材料、二级结构材料和内装饰材料。如图所示:

2.2主要的纤维和基体类型

在选用的纤维方面,通用级 T300 碳纤维 CFRP 可用来制造飞机的二次结构部件。 例如, T300/ 5208用来制造B7

57、B767 和B777的二次结构部件。 但因T300的抗拉强度仅为 3.53 GPa, 抗拉模量为 231 GPa, 特别是断后延长仅有 1.5 %, 满足不了制造一次结构件的要求。随后开发成功的高强中模型碳纤维在上述 3 项质量指标有了大幅度提高, 再配套韧性环氧树脂所制高性能CFRP 就可用来制造大飞机的一次结构件。主要的高强中模碳纤维品牌及性能如下表所示:

由表中数据可知,这类高强中模碳纤维的性能比通用级 T300 有了大幅度提高。我国目前还不能生产这类高性能碳纤维, 处于实验室研制阶段,有望在“十一五”期间有所突破。 通用型环氧树脂固化后属于脆性材料,需增韧改性为韧性基体树脂。高强中模碳纤维与韧性基体树脂复合后所制韧性CFRP可用来制造大飞机的一次和二次结构件。其中,具有代表性的是T800H/3900-2(P2302)和 IM7/8551-7。热固性树脂 (TS) 为母相, 热塑性树脂 (TP) 为分散相, 两者均匀混合固化成型。在热固化成型过程中,TS 成为三维交联体,TP 仍保持线性特性, 赋予CFRP韧性。 这样可制得韧性CFRP。T800H/3900-2(P2302)是典型的用来制造大飞机一次和二次结构件的韧性复合材料。

2.3韧性 CFRP 在大飞机上应用需关注的技术关键[2] 随着碳纤维性能的不断提高,增韧改性基体树脂的不断深入和复合技术的日趋完善,韧性CFRP 在大飞机上的应用逐步拓宽。未来500~600座的大飞机将成为航空客运的主力机型。为此,需要解决好以下几方面的问题:

(1)设计允许应变达到0.6%,可用冲击后抗压缩强度(CAI)来评价。这就需用高强度、大伸长碳纤维与韧性基体树脂来复合。例如,T800H/3900-2 或 IMT/8551-7 的韧性预浸料,可达到上述指标。

(2)提高抗 CFRP 的抗冲击强度,需采用高强度、大伸长碳纤维。例如,T700S 断后延长高达 2.1 %。上浆剂中可含有热塑性塑料微粒,提高其韧性。

(3)提高冲击损伤后的抗压缩强度(CAI),需采用高强度、大伸长碳纤维与韧性环氧树脂复合。控制碳纤维石墨微晶尺寸,也可提高抗压缩强度。同时,研究韧性耐热的热可塑性树脂,作为新一代韧性基体树脂。

(4)提高抗层间剪切强度(ILSS),改善两相界面粘接强度,有效传递载荷。同时,采用三维编织物和 RTM 成型技术,也可有效提高 ILSS 和防止层间剥落现象。

(5)提高CFRP的耐热性,以适应超音速飞行。除提高基体树脂的耐热性外,也应关注碳纤维表面上浆剂的湿热性能。吸湿会降底 CFRP 性能。

(6)采用整体成型的先进复合技术来制造大型构件,如体翼一次成型技术。这不仅提高整体复合件的性能,而且可大幅度减少零件数目和紧固件数目,有利于降低生产成本。 3碳纤维复合材料在发动机和短舱上的应用[1] 复合材料在商用飞机上的另一个主要应用领域是在发动机和短舱,而发动机叶片,例如,GE90 的发动机叶片,则是这种应用的典范。GE90叶片使用的是8551-7/IM7预浸料,通过热压罐工艺成型获得,这种环氧中模量碳纤维预浸料具有极高的韧性和损伤容限,可以满足叶片苛刻的性能要求。

发动机复合材料叶片的另一种制作工艺是使用3D碳纤维织物,用环氧树脂灌注而成。这种技术充分利用了3D织物的特点,用其制得的复合材料具有低裂纹扩展性、高能量吸收性以及耐冲击、抗分层性能。即将用于C919客机的Leap -X1C即使用这种技术。

复合材料除了提供结构贡献以外,在发动机和短舱上的另一个贡献是降噪。在B787的发动机和短舱上使用了一种降噪蜂窝,用其作为芯材、环氧预浸料作为蒙皮的夹层结构起到了良好的降噪效果,使B787被誉为最安静的飞机,这也是B787的亮点之一。 4碳纤维复合材料在飞机上的其他应用 通用小飞机的结构简单,有的小飞机机身甚至甚至可以使用玻璃纤维预浸料为蒙皮的蜂窝夹层结构,而外翼的翼樑则可以使用单向碳纤维复合材料制造。生产工艺上,从节约成本考虑,较为普遍采用的是非热压罐工艺。 碳纤维复合材料在直升机上的应用也十分广泛,除机身、尾樑等结构件以外,还包括桨叶、传动轴、高温整流罩等对疲劳、湿热性能有更高要求的部件。特别是复合材料桨叶的使用,把桨叶的使用寿命从金属的2000小时提高到了复合材料的6000小时以上,甚至是无限寿命,并且两者的制造成本几乎相当,因此使用复合材料取代金属材料也成为必然。

碳/碳(C/C)复合材料则是制造飞机刹车装置的优异材料。例如著名的B-2战略轰炸机、空客A320均采用C/C复合材料刹车装置。这些先进的 C/C刹车装置可有效地把飞机降落过程中的动能转化为热能,不仅刹车制动的安全性高,而且可有效减轻质量。例如160 座的空客 A320,采用的C/C刹车装置可减质量140 kg。这种 C/C 刹车装置已在战机和客机上得到广泛应用。[3] CFRP 还可用来制造隐身飞机。B-2 战略轰炸机属于隐身飞机,其雷达散射截面积

(RCS) 仅有0.1 ㎡,不易被对方雷达发现,大大增加了突防能力和生存概率。B-2 轰炸机大量采用先进的特种 CFRP,所用碳纤维的截面积不是圆形,而是异型截面,如方形截面,且在表面沉积 1 层多孔碳粒或附着1 层多孔微球,实施对雷达波的散射和吸收,赋予其吸波功能。 这种结构吸波和涂层吸波相叠加,大大增强了综合吸波动功能。这也就是说,特种 CFRP 不仅是结构材料,而且也是结构吸波材料。[3] 5我国碳纤维复合材料发展现状 我国较早地意识到碳纤维的研制和生产对军事工业发展和国民经济具有重要作用,早在20 世纪60 年代末就开始研制碳纤维,经过 40 余年的发展,碳纤维从无到有,从研制到生产取得了一定的成绩。但总的来说,国内碳纤维的研制与生产水平还较低,一直没有在高标号碳纤维研究上取得突破性进展。我国碳纤维产业未实现大规模工业化生产,产品规格单一。近些年来,由于我国对碳纤维需求量的日益增加,碳纤维又成为国内新材料业研发的热点。但是,除极个别企业外,大多数引进项目的技术和设备水平属国际中下等,生产的碳纤维产品也未达到高端水平。引进后的消化、吸收与创新是碳纤维行业面临的重大课题。[4] 我国碳纤维工业与先进国家相比存在15 年左右的差距,我们还不能生产高强中模碳纤维,T300仍处于产业化阶段。实验室研制高强中模碳纤维虽然取得长足进步,但产业化仍有一段路要走。在国家大力支持和有实力民营企业的介入,缩短产业化时间已具备条件,高强中模碳纤维指日可待。[5] 参考文献

[1] 吴一波. 碳纤维复合材料在航空工业中的应用技术(上). 玻璃钢, 2003, (2): 14-21. [2] 贺福, 孙微. 碳纤维复合材料在大飞机上的应用. 高科技纤维与应用, 2007, 32(6): 5-8, 17. [3王春净, 代云霏. 碳纤维复合材料在航空领域的应用. 机电产品开发与创新, 2010, 23(2): 14-15. [4] 顾超英. 碳纤维复合材料在航空航天领域的开发与应用. 化工文摘, 2009, (1): 17-21. [5] 刘志强. 碳纤维复合材料在航空领域的应用. 黑龙江科技信息, 2013: 62.

第三篇:纤维支气管镜在ICU的应用与护理

纤维支气管镜检查技术(纤支镜检查)是呼吸系统疾病诊疗的重要专科技术;近年来,纤支镜检查在危重病监护和抢救过程中正发挥着愈来愈重要的作用,尤其是在ICU的人工气道建立、气道管理等发挥关键作用,因而有人把机械通气、纤支镜检查和血液净化称之为ICU的三大技术。虽然纤支镜检查属有创检查技术,但若能把握其适应症和禁忌症,熟炼掌握操作技术和护理及其护理配合,它仍是一项较安全的手段。下面结合工作实际就纤支镜检查及其在ICU中的应用和护理作一简要介绍:

一、纤支镜检查的主要适应症

(一)诊断性检查的适应症:

1、可疑症状:一般情况下,主要适用于可能存在肺癌的可疑症状,如不明原因的呛咳、咯血或痰中带血、声音嘶哑,尤其是出现於存在肺癌高危因素患者,男性>40岁,吸烟指数达400年支者;在ICU诊疗中或气管插管时,出现不明原因的呼吸困难、咳血。

2、可疑体征:具有是局限性哮鸣音体征;在ICU诊疗中或气管插管时,出现可疑气道阻塞样体征,如突发“三凹样”呼吸困难、躁动、发绀。

3、可疑细胞学:痰中找到癌细胞或可疑异形细胞而无其它肿瘤征象者;

4、可疑影象学异常:出现肺门肿大、肺不张、肺野肿块影等可疑肺癌而需明确性质者,或肿块为肺癌需判断其病理类型和分期者;肺实质弥散性病变,如弥散性结节或纤维条索;怀疑肺泡病变,如肺泡蛋白积症、肺泡癌肺泡间质纤维化等;在ICU诊疗、人工气道或机械通气过程中,出现肺实变、不张,肺实质弥散性病变。

5、难治性下呼吸道感染:需明确病原及其药敏情况,可行肺泡灌洗术;

6、介入性诊断:近年开展的介入性诊断如支管内B超、经气管支气管淋结活检术等;

7、胸膜疾病:胸膜疾病原因难明者,可利用纤维镜代胸腔镜检查。临床上最常应用于胸 片发现异常而需明确其病理性质者,但晚近对病原诊断的应用有增加超势。

(二)、治疗应用的适应症:

1、气道建立,对於各种原因所致的呼衰等需要行机械通气的病人,通气纤支镜引导下经鼻插管是简便易行而快捷的方法;心肺和中枢神经围手术期支持。

2、气道管理,广泛应用於ICU或RICU。老年脑卒中假性球麻痹----进入增加、咳出困难需要清除;气管插管、切开或应用侵入性辅助机械通气,由於湿化不足常出现分泌物咳出或吸出困难,

1 甚至结痂、肺不张而需要清除或灌出;或并发机械通气相关肺炎,皆可应用纤支镜进行灌洗,清除分泌物局部适当应用抗生素;

3、气道再通,因不同原因所致叶、主支气管以上气道狭窄而出现阻塞症状的患者可应用气道内激光治疗疤痕性病变,囊球扩张和支架置入术而使气道再通;

4、异物取出术,通过纤支镜我们取出过外伤后吸入的牙齿,花生米,断入的吸痰管等;

5、大咯血,可应用硬支气管镜或在咯血间歇纤支镜下局部应用止血药,如凝血酶,或 放置球囊压道止血;(6)其它,局部放疗等。

二、禁忌症:

禁忌症源於检查过程中可能的并发症,自八十年代初至今我科完成纤支镜检查3千余例,共死亡3人,其中2人为操作过程中心跳聚停所致,提示心血管基础疾病是检查严重并发症的主要原因,其它最常见的并发症有术中出血、术后发热,当然禁忌症的把握也与操作熟练程度相关。

检查的禁忌症包括:

(1)无法耐受检查者,如全身衰竭、严重呼衰、肺动脉高压或上腔静脉阻塞者;

(2)伴有严重心血管疾病者,包括不稳定心绞痛、近期心梗、严重心律失常或主动脉瘤有破裂危险者;

(3)具有严重出血可能者,如出、凝血障碍,尿毒症者; (4)有加重感染可能者,如肺感染伴高热者等。

四、纤支镜检查的基本过程与护理配合

(一)、术前护理及准备

1、术前操作护士应了解的基本情况

详细了解病史(包括药物过敏史)和体格检查,通过胸片及CT检查尽可能明确病变部位和性质,检查肝功能及出凝血时间、血小板等,必要时做心电图和血气分析。

2、术前操作护士应进行的对患者及其家属心理准备

操作前向神志清楚的患者及家属说明纤支镜检查的必要性和操作程序,介绍此项技术的先进性、科学性及其优良效果(有效性),消除患者或家属的紧张和顾虑;知情同意(安全性),消除手术者的紧张和顾虑;取得患者的主动配合。

3、术前操作护士应准备、检查:

备好:纤支镜、气管导管,消毒液、生理盐水或注射用水;局麻药、黏膜收敛剂、止血药,润

2 滑油、纱布,抢救器械与药品等;建立静脉通路。

检查:纤支镜、冷光源是否正常,协助观察气管导管注射空气后气囊压力是否漏气;插管前患者供氧和静脉通路建立情况;连接和显示床旁监护仪进行心电、呼吸、氧饱和度和血压监护;并检查所备抢救药品及按正规安装呼吸机,开机观察运转及性能是否良好。

4、术前操作护士执行的用药

一般检查术前4~6小时禁食,半小时口服阿托品0.3mg,鲁米那0.03g;对于既有气管插管或气管切开的患者一般无须应用镇静剂,除非患者明显紧张者;而经鼻插管时即应有充分的镇静,如安定、吗啡或者得普利麻。局麻可采用喷雾吸入、超声雾化和环甲膜穿刺给药。

(二)、术中护理及配合

1、术中手术护士应熟悉操作步骤,对于术中医师的进一步处理应有充分的预见性。

2、帮助患者取舒适体位:患者取仰卧位,肩部垫一枕头略抬高,头部摆正、略后仰、鼻孔朝上。用棉签清洁鼻腔并局部应用药物收敛鼻腔黏膜;操作过程中经常安慰患者,让患者放松,随时提醒如何配合;

3、一般操作中的配合:插管方法纤支镜的镜体分为目镜、控制器和可曲插入部3部分,口咽部充分表面麻醉后操作者站在患者头侧,左手握住控制器,右手夹住插入部,依解剖进入,在此过程中,依次在声门、气管、主支气管和操作部位内给予2%利多卡因2ml滴入。

配合操作者实施气管插管、气道内分泌物清除、灌洗和活检以及标本留取等所需的用药及物品传递;并协助清除口腔分泌物和必要的给氧(如老年人及有心肺疾病的患者术中吸氧3~5L/min)。当患者发生呛咳时,给予2%利多卡因2ml气管内滴入;活检出血时可遵嘱给予止血药。

4、特定操作中的配合:配合操作者实施气管插管时,首先应检测气管导管(直径7.0~7.5~8.0mm)气囊的完整性;插管时将内外涂有石蜡油的气管导管套在纤支镜插入部外,当操作者纤支镜顶端插入声门之下隆突之上时协助其将气管导管插入、调整位置和打上气囊并固定气管外导管,清理气道内积血、分泌物;气管导管外露约3~4cm,导管插入的深度一般为25~28cm。对于气道内分泌物清除、灌洗和活检以及标本留取等都有特定的护理配合和物品准备内容。

5、操作过程中的监测:严密观察患者面色、呼吸、脉搏等生命体征及神志的变化,床旁监护血压、心率、心律、血氧饱和度;若有异常及时报告和处置。

(三)、术后护理

1、观察

术后应观察至少30min,尤其是创伤性检查;观察的主要内容包括症状、呼吸、心率、心律和肺部体征等,必要时拍胸片。

2、指导:向患者及其家属交代清楚

向患者及其家属交代清楚术后2小时内不能进食或饮水以免检查后出现误吸。 可能出现的“正常”问题:鼻咽喉部不适、疼痛,痰中带血等。

可能出现的“医疗”问题:较大量的咳血、气胸和感染应注意的事项和处置

3、标本处理和送检以及器械的清洁和消毒。

三、检查过程中可能出现的副作用和护理问题

1、检查前准备时:纤支镜检查前准备过程中可能存在的副作用主要为:药物过敏和镇静过度

药物过敏:常见于局麻药应用时出现循环、呼吸衰竭;尤其是地卡因。护理中,应问清局麻药过敏史和备好急救药物;应用中应掌握好用药浓度和剂量;试用(2~3min)观察无反应后继续局麻。

镇静过度:因镇静过度可导致呼吸抑制和低血压;护理中,应问清有无引起二氧化碳潴留的状态和基础用药情况;准备好气管插管和静脉通路。

2、检查时:检查过程中可能存在的副作用主要为:呼吸道的刺激和损伤所致的各种临床表现。

检查过程中所致的损伤原因包括:操作者技术的熟炼程度较低或粗暴,致进而通道黏膜触碰而出血,某些操作,如活检或TBLB所致的出血、气胸;护理中,应注意生命体征、氧合等,并备好止血药物。

检查过程中,对气道过度刺激的原因包括:局麻不充分,操作者技术的熟炼程度较低或粗暴,纤支镜顶端触碰可致喉头水肿,声门、气道痉挛、低氧和心律紊乱。护理中,应注意局麻要充分,必要时手术前给予基础用药;加强术中与操作者的配合;严密观察生命体征、氧合和心电情况等,并备好解痉平喘和抗心律失常药物。

3、检查后:检查后可能存在的副作用主要为误吸、感染(浸润)。

检查后出现误吸的主要原因是局麻药物作用尚未消失;护理中,应向患者及其家属交代清楚术后2小时内不能进食或饮水。

检查后出现感染的主要原因是原有肺内感染病灶播散或操作过程的交叉感染;护理中,应注意规范化消毒和清洁;术中尽可能无菌操作。

纤支镜检查已广泛应用于ICU的日常抢救和气道管理中,ICU护士应对纤支镜检查的主要适应症和禁忌症、操作基本过程及其护理配合、可能并发症及其护理观察和防治,尤其是纤支镜引导下的气管插管及纤支镜在气道管理中的应用与配合更应有充分的认识。

第四篇:纤维复合材料在航空工业中的应用及特点

摘要

近年来,飞机制造技术整体朝着结构轻量化、隐身、高可靠性、长寿命、短周期、低成本、及绿色先进制造技术方向发展,纤维增强复合材料的独有特性能能很好满足这个需求,因此复合材料在航空工业中的应用越来越广泛,本文从军用飞机和民用飞机两个方面介绍了纤维增强复合材料在航空工业中的应用,并分析了纤维增强复合材料的相关特性。文章的最后对复合材料料在未来飞行器的应用做了初步的展望。

关键词:纤维增强复合材料,航空工业,应用,特点,展望

1 概述

由于现代先进飞机性能的高要求,使得复合材料的发展突飞猛进,飞机结构的复合材料化已成为必然的发展趋势,这一趋势将从根本上改变传统的飞机结构设计和制造工艺,也将改变航天工业供应链重组进程,能否适应这一重大变革,势必影响一个国家航空制造业的成败兴衰,如今复合材料已经广泛应用于航空工业,小到飞机上的受力较小的前缘,口盖大到飞机尾翼机身,复合材料正在不断快速的替代金属材料。

先进复合材料诞生于20世纪60年代末,70年代初即应用于飞机结构。先进复合材料指的是性能和功能上远远超出其单体组分性能和功能的一大类新材料,他们通常都是在不同尺度,不同层次上结构设计、结构优化的结果,融会贯通了各种单质材料发展的最新成果,甚至产生了原单质根本不具备的全新的高性能与新功能,是可以替代金属的结构材料[1]。先进复合材料的增强材料最普遍采用的是碳纤维,石墨纤维,芳纶纤维,硼纤维。其中的碳纤维是先进加强件上最通用的纤维材料,而且被飞机和航天飞机最广泛的应用着。按照基体材料的不同,先进复合材料分为树脂基,金属基和陶瓷基复合材料,当前树脂基复合材料技术基本成熟,已经广泛应用于军用飞机和民用飞机。以其为基体的纤维增强复合材料自20世纪80年代以来受到重视,在航空航天工业中有了越来越广泛的应用。

2 纤维增强复合材料在航空工业上的应用

复合材料在飞机上的应用大致可以分为三个阶段:第一阶段:是应用于受载不大的简单零件部件,如各类口盖、舵面阻力板、起落架舱门等;第二阶段:是应用于承力较大的尾翼等次级主承力结构,如垂直安定面、水平安定面、全动平尾、鸭翼等;第三阶段:是应用于主承力结构,如机翼盒段、机身等[2]。

这三个阶段所涉及的复合材料制造技术,是3个不同层次,在载荷水平上是完全不同的,对构件制造技术的要求也不同,构件的尺寸和结构的复杂程度,也有大幅度的提高。国内目前的技术水平,处于第2阶段的水平。而美国已经到第三阶段而且规模很大。

2.1军用飞机

2.1.1 美国军用战机

美国在复合材料方面具有强大的,全面的研究和生产基地,综合实力最强。在战机用复合材料方面,其规模和技术都走在世界前列。早在1974年美国的F-15A战斗机就使用了复合材料,使用复合材料比例为2%。1995年首飞的F/A-18E/F战机,复合材料的比例达到了22%,襟翼采用碳碳复合材料,机翼蒙皮也采用碳纤维-环氧复合材料。这时复合材料在飞机中的使用已经到了第二阶段,复合材料开始应用于承力较大的部件。

1982年,美国陆军提出LHX(实验轻型直升机计划),为响应这个计划同时为了减少雷达反射截面积, RAH-66科曼奇直升机广泛应用了复合材料,其所用复合材料占整个直升机结构重量的51%,RAH-66是目前世界上使用复合材料最多的实用直升机。在基体结构中使用复合材料的有蒙皮、舱门、桁条、隔框、中央龙骨盒梁结构,炮塔整流罩、涵道尾桨护罩、垂直尾翼和水平安定面。在旋翼系统中使用复合材料的有挠性梁、桨叶、扭力管、扭力臂、旋转倾斜盘、套管轴和旋翼整流罩。传动系统使用复合材料的有传动轴和主减速器箱。所用复合材料有韧化环氧树脂,双马来酰亚胺树脂、石墨纤维、玻璃纤维和Kevlar纤维等。在战斗机和直升机上,先进复合材料不仅是轻质高强的结构材料,经过研究改性后还具有一定的隐身功能。造价超过2亿美元的B-2“幽灵”重型隐形轰炸机,于1978年开始研制,1993年12月交付使用,它的整个机身除主梁和发动机机舱采用了钛复合材料外,其它部分均由不易反射雷达波的碳纤维和石墨等非金属复合材料构成,机翼蒙皮是六角形蜂窝状夹芯碳/环氧吸波结构材料,该材料的面板为非圆Kevlar49增韧环氧,夹芯为表面经过特殊处理的六角蜂窝状Nomex,底板为非圆石墨增韧环氧[3]。 2.1.2 国内战机

与国外先进战机相比,国产战机的复合材料的用量较少,在直升机领域复合材料的使用比例较大,直-3直升机中复合材料的使用率约为23%,歼

8、强5战机的垂直尾翼壁板及垂直尾翼使用了碳纤维树脂基复合材料。高级教练机I-15“猎鹰”06的机头罩和方向舵大部件都是由国产高性能碳纤维复合材料制造的[4]。

2.2在民用飞机上的应用

民用飞机不同于军机,军机的复合材料应用上完尾翼马上上机翼、机身。而民机飞机要求安全性、可靠性、舒适性和经济性等[5],因此相隔了20年后才出现大型飞机的复合材料机翼和机身,这一段时间一是在发展相关技术,二是在努力降低成本,使之能与对应的金属结构竞争,条件具备了才有第二阶段迈进第三阶段的应用[6]。在民用运输类飞机中,波音777的垂尾,平尾、后气密框、客舱地板梁、襟翼、副翼、发动机整流罩和各种舱门等均使用了飞虎材料,总质量达9.9t,占结构总重的25%。新研制的波音787,机翼、机身等主承力结构均有复合材料制成,复合材料用量达全机结构总重的50%以上,其中约45%为碳纤维复合材料,5%为玻璃纤维复合材料,是世界时第一架采用复合材料机身,机翼的大型商用飞机。空客A320,A330等机型也大量采用了复合材料,用量占结构总质量的13%,A380更是达到了22%[6]。

我国民机复合材料结构应用技术研究起步较晚,在已经取证的民机中,复合材料结构使用有限。20世纪九十年代中期研制了Y7-100复合材料垂尾,并通过了试验验证和适航审查,在新支线客机ARJ21-700中,复合材料用量不到2%,主要应用于非结构件、次承力件、根据专家估计,在已经立项研发的国产大型客机结构中,先进复合材料用量将达到20%~50%,并将首次用于机翼级主承力构件,原材料也将努力实现国产化。随着ARJ21-700的后续机型的研发,代表先进技术的复合材料用量会进一步增多,并将逐渐应用到主要结构上[6]。

纤维增强复合材料之所以能在军用,民用飞机上的应用如此广泛,主要是因为纤维增强复合材料的优异特性。

3.纤维增强复合材料的特点

纤维增强复合材料是由基体和增强纤维组成。在纤维增强复合材料中,纤维比较均匀地分散在基体之中,纤维增强基体,其最主要的承载作用。基体的作用是把纤维粘结成一个整体,保持纤维间的相对位置,是纤维能协同作用,保护纤维免受化学腐蚀和机械损伤。纤维增强复合材料不仅具有本身独特的优点,同时也具有一般复合材料的性能和优点。 3.1 比强度和比模量高

单位质量的强度和模量分别称为比强度和比模量,比强度和比模量高对于实现飞机结构的轻质化具有至关重要的作用,材料的比强度和比模量高,构件可以做的小巧,重量可减轻,而且质量不会受到影响。当材料的强度和刚度相同时,纤维增强复合材料构件的重量可比钢构件重量减轻70%左右、航天工业的成本与航天器的质量是息息相关的,对于航天卫星来说每减少一公斤的质量,将减少15-20万美元的制造发射成本。 3.2 抗疲劳和破损安全性好

疲劳破坏是材料在交变载荷作用下,由于裂纹的形成和扩展而造成的低应力破坏,是飞机坠毁的主要原理之一。与金属材料相比,纤维复合材料特别是纤维增强树脂基复合材料对缺口。应力集中敏感性小,而且纤维和基体的界面可以是扩展的裂纹间断变钝或改变方向,即阻止了裂纹的迅速扩展,从而具有较高的疲劳强度。

在纤维增强复合材料中,每平方厘米上的纤维数量少则几千根,多则几万根,由具有韧性基体把它们连结成整体。当这类材料制成的构件遇到超负荷而又少量纤维断裂时,构件上的负荷能迅速地重新分配到未断裂的纤维上,从而使整个构件在短期内不致丧失工作能力,所以纤维增强复合材料的破损安全性好。 3.3 减振性能好

以聚合物为基体的纤维增强复合材料,基体具有弹性。在基体和界面上有裂纹和脱粘的地方,还存在着摩擦力。在振动过程中,粘弹性和摩擦力使一部分动能转换成了热能。而且因为纤维增强复合材料的比模量高,其自振频率也很高,所以可以避免构件在作业是产生共振,纤维与机体界面间具有吸收振动能量的作用,即使产生了振动也会很快的衰减下来。故这类材料构件不容易产生振动破坏。 3.4 高温性能好

复合材料的高温性能好,纤维增强复合材料的结构部件在大幅度温度变化的环境下,具有非常微小的热变形。一般铝合金在400℃时,其强度和弹性模量显著下降,而用碳纤维或硼纤维增强的铝合金在此温度下强度和模量基本不变。 3.5 制造流程短,具有可设计性

对于连续纤维增强复合材料,可用手糊法、模压成型法、缠绕成型法和拉拔成型法等制造工艺,复合材料的一次成型技术可以缩短飞机构件的制造流程,实现飞机模块化,减少飞机整体的连结点,往往这些点的应力集中现象比较严重,一次成型技术可以有效解决这些问题,增强飞机抗冲击能力,延长使用寿命,降低成本。复合材料的可设计性更多的是指功能或性能上的设计,比如可以通过特定方法制造出适用于航空航天工业零膨胀系数的材料等等。

此外复合材料还具有其他一些方面的优越性能:如损伤容限高,尤其是玻璃纤维层压板表现出了极高的切口强度;具有突出的气动弹性剪裁好,当改变纤维的组成、排列方向和铺层厚度,就可以改变复合材料的强度和弹性,以达到设计者对设计对象的需求等等。 4.展望

航空工业对所需材料的要求是轻质、高强、高可靠。当前,飞行器上采用复合材料结构的主要目的是减轻机体结构重量和改善气动弹性和隐身性能等。但随着未来飞行器的发展需求不断提升,在未来复合材料结构设计上可能会出现诸多挑战如未来的飞行器可能需要具有变体的能力[1];未来飞行器必须满足在极端环境下的飞行等等。

代表着最高端科学结晶的未来飞行器与先进复合材料科学技术的发展,必然推动整个航空航天工业乃至全人类的科学技术的进步。

参考文献

[1] 郑锡涛,陈浩远,李泽江,李光亮.先进复合材料在未来飞行器中的应用.航空工程进展,2011,2(2):181-187 [2] 李映红,赵智姝,韩勐.复合材料在飞机结构上的广泛应用.装备制造技术,2011,4:138-140 [3] 黄晓艳,刘波.战机用先进树脂基复合材料的应用现状.材料研究与应用,2011,5(4):243-248 [4] 彭永超,张惠萍,崔建伟,晏雄.浅谈纤维增强复合材料在航空工业中的应用.产业用纺织品,2006,10:1-5 [5] 陈绍杰.大型飞机与复合材料.航空制造技术,2008,15:31-37 [6] 邹田春,冯振宇,陈兆晨,杨倩.民机复合材料结构适航审定现状.材料导报,2010,24(11):94-96 [7] 廖子龙. 芳纶及其复合材料在航空结构中的应用.高科技纤维与应用,2008,33(4):25-29 [8] 季光明.大型商用飞机炭刹车盘材料的应用进展.民用飞机设计与研究,2011,3:45-47 [9] 陈绍杰.先进复合材料的民用研究与发展.材料导报,2000,14(11):8-10 [10] 丁新波,晏雄.碳纤维的生产及应用现状.纺织导报,2004,6:69-73 [11] 贺福,李润民.碳纤维在国防军工领域中的应用.高科技纤维与应用,2007,32(1):8-13 [12] 石霞琳.民用飞机先进制造技术的发展趋势.科技信息,348-349 [13] 杜善义.先进复合材料与航空航天.复合材料学报,2007,24(1):1-12 [14] 赵稼祥.东丽公司碳纤维及其复合材料的进展.宇航材料工艺,2000,6:53-56 [15] 益小苏,张明,安学锋,刘立朋.先进航空树脂基复合材料研究与应用进展.工程塑料应用,2009,37(10):72-76 [16] 冯伟泉.航天器材料空间环境适应性评价与认定准则研究.航天器环境工程,2010,27(2):139-143

第五篇:碳纤维增强复合材料在汽车上的应用终结版综述

碳纤维增强复合材料在汽车中的应用

摘要

随着汽车工业的飞速发展,减少燃料消耗和降低对环境的污染已成为汽车工业发展和社会可持续发展急需解决的关键问题。汽车的燃料消耗和二氧化碳废气的排放量与汽车重量存在密切的关系,寻找较轻且性能良好的材料代替钢制汽车零件成为一个重要的研究方向。碳纤维增强复合材料具有强度高、重量轻、耐高温、耐腐蚀、热力学性能优良等特点,碳纤维增强复合材料用于制造汽车车身、发动机零件等,可有效降低汽车自重并提高汽车性能,是当前汽车材料轻量化的重要研究发展方向之一。本文介绍了碳纤维增强复合材料的特点、成型工艺及在汽车行业的应用情况,以及碳纤维增强复合材料在汽车应用中存在的问题。

关键词:碳纤维 增强 汽车 应用

1 前言

现在社会汽车已成为人民出行必不可少的交通工具,在汽车给人类带来方便的同时也给环境带来了污染,汽车的燃料消耗和二氧化碳废气的排放量与汽车重量存在密切的关系,美国能源部相关研究表明,美国现有的汽车,如减重25%,每天可节省750,000桶燃油,每年二氧化碳的排放量可减少1.01亿吨,因此汽车轻量化已成为汽车工业技术发展的重要方向。除了对汽车各种零部件结构进行优化设计和改进外,采用高性能轻质材料是实现汽车轻量化的一条重要途径。如选用铝、镁、钛、高强度钢、工程塑料和复合材料等,用以制造汽车车身、底盘、发动机等零部件,可以有效的减轻汽车自重,提高发动机效率。

碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料,是目前最先进的复合材料之一。它以其质量轻、强度高 、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗腐蚀材料,是其它纤维增强复合材料所无法比拟的。纤维增强复合材料具有高强度、高模量,已在航天航空等领域广泛使用,是制造卫星、导弹、飞机的重要结构零部件的关键结构材料,同时也受到汽车工业广泛重视,碳纤维增强复合材料在汽车方面主要是汽车骨架、缓冲器、弹簧片、引擎零件等,早在1979年,福特汽车公司就在实验车上作了试验,将其车身、框架等160个部件用碳纤维复合材料制造,结果整车减重33%,汽油的利用率提高了44%,同时大大降低了振动和噪音。

碳纤维具有比重小、强度高、模量高、耐腐蚀等特点,可用于制造碳纤维增强聚合物、金属、陶瓷基复合材料,是先进复合材料最重要的增强体。碳纤维增强复合材料用于制造汽车车身、发动机零件等,可有效降低汽车自重并提高汽车性能。本文将简述碳纤维增强复合材料的性能特点,及其在汽车工业应用的前景和存在的问题。由于碳纤维增强复合材料的价格昂贵,严重影响其在汽车工业中的应用。因此,发展廉价的碳纤维和高效率碳纤维增强复合材料的生产方法和工艺已成为汽车轻量化材料研究中的关键课题,美国、日本等已将其列为汽车轻量化材料的研究计划。

2 碳纤维增强复合材料的特性

碳纤维增强复合材料以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。

碳纤维增强复合材料的成型加工技术包括碳纤维的坯体制造、碳基体的制造和基体与纤维的复合。首先,将碳纤维或碳纤维织物制成坯体,根据原料形式不同分为:长纤维缠绕法;碳毡短纤维模压或喷射成型;石墨布叠层。目前,其坯体研制以三向织物为主,三向织物以X、Y、Z方向互成90度正交排列,各方向的碳纤维在织物中保持准直,因此能较好的发挥纤维的力学性能。其次,制作复合材料的基体。碳-碳复合材料的基体有树脂碳和热解碳两种,树脂碳是由合成树脂或沥青经碳化和石墨化获得,热解碳是由烃类气体的气相沉积获得。最后,把坯体与基体复合成型。

碳纤维增强复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。

(1)具有很高的强度和弹性模量(刚性)。它的比重一般为1.70~1.80g/cm3,密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度,强度为1200~7000MPa,;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料。纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现“假塑性效应”即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。

(2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异

(3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部。

3 碳纤维增强复合材料在汽车行业的应用情况

碳纤维增强复合材料具有高强度、高模量,已在航天航空等领域广泛使用,是制造卫星、导弹、飞机的重要结构零部件的关键结构材料。由于碳纤维增强聚合物基复合材料有足够的强度和刚度,它也是适用于制造汽车主结构――车身、底盘最轻的材料,受到汽车工业广泛重视。主要的应用有:发动机系统中的推杆、连杆、摇杆、水泵叶轮,传动系统中的传动轴、离合器片、加速装置及其罩等,底盘系统中的悬置件、弹簧片、框架、散热器等,车体上的车顶内外衬、地板、侧门等。自从1953年第一辆全复合材料车身的汽车问世以来,复合材料在汽车上的应用不断增多。如今在汽车车身、尾翼、汽车底盘,发动机罩、汽车内饰等各个地方我们都能够发现碳纤维复合材料的身影。

碳纤维增强复合材料的应用可使汽车车身、底盘减轻重量40~60%,相当于钢结构重量的1/3~1/6。英国材料系统实验室曾对碳纤维复合材料减重效果进行研究,结果表明碳纤维增强聚合物材料车身重172kg,而钢制车身重量为368kg,减重约50%。但由于碳纤维成本过高,碳纤维增强复合材料在汽车中的应用有限,仅在一些F1赛车、高级轿车、小批量车型上有所应用,如BMW公司的Z-22的车身,福特公司的GT40车身、保时捷GT3承载式车身等,碳纤维增强复合材料以其优异的性能取得了飞速发展并且在社会各领域得到了越来越广泛的应用.增强纤维作为纤维增强复合材料的一个重要组分,其性能如何将直接影响着复合材料的应用层次,而且高性能增强纤维作为高竞争性、高赢利性品种一直是世界各大生产商乐于巨额投资的研发项目品种,它的发展及其在先进复合材料中的适应程度在目前乃至将来都有许多值得探索的地方.在先进复合材料中, 碳纤维增强复合材料是目前最常应用的高性能增强纤维之一,碳纤维复合材料具有足够的强度和刚度以及优良的综合性能,它的应用将可大幅度降低汽车自重达40~60%,对汽车轻量化具有十分重要的意义,已成为汽车轻量化材料的重要发展方向。为提高碳纤维增强复合材料的用量,美国、欧洲、日本等通过加紧研究廉价碳纤维的原丝(高品级聚丙烯晴丝)和碳纤维的低成本、高速率的生产工艺,使碳纤维的价格降低到约3美元/磅。目前碳纤维增强复合材料已用于赛车、重卡、混合动力车的各种零部件的生产。

碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,抗拉强度却达到钢的7-9倍,以其制造的汽车可以节约燃油30%。碳纤维最初只应用于军事、航空航天等高科技领域,随着近年来碳纤维行业的逐步发展,才慢慢向汽车以及其他民用领域扩展。

1992年通用汽车公司介绍了超轻概念车(Ultralite Concept Car),该车的车身采用碳纤维复合材料,由手铺碳纤维预浸料工艺制造,整体车身的质量为191kg。用碳纤维取代钢材制造车身和底盘构件,可减轻质量 68%,从而节约汽油消耗40%。

丰田设计的“1/X”混合动力车,由于车身骨架采用碳纤维材料,创造出百公里耗油仅2.7升的超低燃耗记录。此外,三菱EVO X极致轻量化的车身改造,均缘于大量碳纤维套件的使用,如牌照框、导风罩、散热孔罩等构件均采用碳纤维材料。

卓尔泰克(Zoltek),是美国碳纤维领先制造商,已成立一个新的子公司,称为 Zoltek Automotive(卓尔泰克汽车公司),加快对轻质碳纤维在汽车业大幅应用的领域。这个新子公司将由两位在汽车复合材料应用方面德高望重的专家领导,并有超过12名来自卓尔泰克已有业务中的工程技术人员及其面向全球的销售人员加盟。

卓尔泰克公司董事长兼首席执行官Zsolt Rumy表示:“我们一直把汽车行业看作是我们的低成本、高性能碳纤维的最大的一个潜在市场。虽然我们已积极开发车用碳纤维很多年了,Zoltek Automotive的成立则是我们将产品开发与潜在市场需求更紧密联系的一个新的开始。我们将通过Zoltek Automotive的专业技术,开发新的生产方式,帮汽车行业客户制造性价比更高的碳纤维加工产品,使碳纤维技术的应用和流程更简易高效。”

日本帝人集团的总裁,也同样对进军碳纤维市场充满信心,认为通过未来几年在车辆中使用碳纤维增强塑料(CFRP),能够帮助电动汽车车身减重一半以上。

碳纤维复合材料具有比金属材料更高的刚性和抗冲击性能,还具有极佳的能量吸收能力,进一步保证了碳纤维复合材料汽车的安全性。据介绍,碳纤维复合材料的能量吸收能力比金属材料高4-5倍左右。数年来,F1车队一直采用碳纤维复合材料制造其赛车的碰撞缓冲构件,从而显着减少了这顶级汽车运动项目中的重伤事故。

4 碳纤维增强复合材料在汽车中的应用存在的问题

虽然碳纤维增强复合材料具有高强度、高模量、比重小、耐腐蚀且具有较高的强度和硬度,但碳纤维增强复合材料的价格昂贵,大批量、高效率生产汽车零部件的工艺方法仍需要进一步发展、完善,严重影响其在汽车工业中的应用。除了价格因素之外,碳纤维增强复合材料在汽车中的应用还存着在一些问题需要解决。存在的问题如下:

1. 成本问题。碳纤维增强复合材料所用的纤维和基体材料价格高,是该材料在汽车工业广泛使用最大的障碍。生产碳纤维的原丝――聚丙烯晴丝较贵,美国正在研究以纺织商品级的聚丙烯晴丝为原丝并能够快速生产廉价碳纤维的工艺,可望将碳纤维的价格降至3美元/磅。

2. 缺乏大批量、高生产效率的碳纤维复合材料汽车零部件的生产方法。

需研究能够生产多种形状和性能的汽车零部件工艺方法,由于汽车行业特点,要求工艺成本要低,生产率要高。研究发展高效、低成本的复合材料零件生产工艺意义重大。

3. 缺乏复合材料的快速、大批量连接技术。 4. 复合材料汽车零部件的回收再利用问题。

5. 碳纤维增强热固性树脂基复合材料的回收尚存在一定问题,有待解决。 6. 复合材料汽车零件的设计数据、试验方法、分析工具、碰撞模型等尚不完善。

结束语

碳纤维增强复合材料如此昂贵,还有发展空间吗?答案是肯定的。目前碳纤维增强复合材料在技术等各方面都取得了长足的进展,应用领域也在不断扩展,从以前主要集中在航空航天及代表科技前沿的军事领域,逐步拓展到工业应用领域,特别是近几年以来,碳纤维增强复合材料在土木工程、交通运输、纺织机械等方面的应用大幅增长,尤其在汽车上的应用大幅增加,据相关部门预测,世界碳纤维需求每年将以大约13%的速度飞速增长。谁先掌握先机的技术,研究出高效率,成本低的生产先进工艺就能占领整个市场,因此而获得巨大的经济效益。目前我们需要做的是研究高效、低成本的生产工艺,研究快速、大批量的链接技术,研究回收复合材料的回收再利用技术,完善复合材料汽车零件的设计数据、实验方法、分析工具、碰撞模型等,从这几个方面入手,碳纤维增强复合材料的成本会大大降低。

目前碳纤维材料在民用量产汽车,尤其是中档产品应用也十分广泛,很多厂商也已经开始提供碳纤维材料的小组件,如后视镜壳、内饰门板、门把手、排挡杆、赛车座椅、空气套件等,同时可以原装位安装到发动机舱的风箱、进气歧管等碳纤维改装件也是品种繁多。碳纤维材料在汽车领域的应用越来越多也越来越广泛,相信在不久的未来,汽车排放越来越“低碳”,而汽车本身则会越来越“高碳”。随着碳纤维行业的不断成熟与发展,以及节能减排和汽车轻量化大方向的指引,碳纤维材料或成汽车界“瘦身革命”的领导者。可以预见,碳纤维轻量车身必将掀起一股新的变革潮流,一个新的市场突破点正在形成。

国际上已将碳纤维复合材料在汽车中的应用列为汽车轻量化材料发展计划的关键内容,并取得了重大进展国际碳纤维市场发展迅速,需求量的不断增长也给中国碳纤维行业提供了难得的发展机遇。随着应用研究的进一步深入,未来碳纤维产品将趋向于高性能化,民用、工业用量将继续保持大幅增长趋势。受益于庞大的内需市场,碳纤维增强材料汽车零部件这一细分市场必将有巨大的增长空间。

参考文献

[1]翟国华,候培民.新世纪中国汽车工业用纤维的发展.合成纤维工业,2003,26(3):l一4

[2]贺福. 汽车工业的新型材料——碳纤维增强复合材料[J];世界汽车;1979年05期 [3]陈光大.碳纤维的应用前景.中国投资,2002.3:24~25 [4]冯美斌.汽车轻量化技术中新材料的发展及应用[J];汽车工程;2006年03期

[5]敖辽辉.高精度碳纤维复合材料模具制造技术[A];中国硅酸盐学会2003年学术年会论文摘要集[C];2003年

[6]张鹏.碳纤维的应用及市场.Advanced Materials Industry,2001,(7):27~29. [7]张西奎,王成国,王海庆;碳纤维增强汽车摩擦材料的研究[J];汽车工艺与材料;2003年04期

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:学校项目申请报告下一篇:学校维修申请报告