移动网络的演进

2022-09-12

3 GP

P组织于2004年12月正式成立了LT E (Long Term Evolution) 研究项目。LTE的制定出发点是保证3GPP未来十年的竞争力, 从性能、功能、成本上得到全面提升。相对于3GPP R6, 其下行频谱效率将提高3~4倍, 上行2~3倍;峰值速率下行达到100Mbps, 上行50Mbps;网络结构简化为E-UTRAN (EvolvedUTRAN) 和AGW两级;协议栈大幅度简化。

LTE研究项目工作分为LTE SI (Study Item) 和WI (Work Item) 阶段。LTE SI目标符合移动通信发展趋势并具有较好的可行性, 提出后很快得到了标准参与方的支持, 并成为标准最高优先级的工作, LTE相关提案占据了60%以上的比例, 这为LTE的顺利完成奠定了基础。目前, 3GPP组织的参与方非常广泛, 计划2 0 0 7年9月完成W I (Work Item) 。

L TE采用两层扁平网络结构, 其中MME (Mobility Management Entity) 管理控制面限额协议, 如UE ID的分配、安全性、鉴权和漫游控制等;UPE (User Plane Entity) 管理用户面的协议, 如储存UE上下文、终止L E T_IDL E状态用户面、加密上下文等;3GPP Anchor管理2G/3G接入和LTE接入间的移动;SAE Anchor管理3GPP接入和非3 G P P接入 (如W L A N、W i M A X) 间的移动。M M E和UPE是否分离目前仍然没有确定, 这更多是一个实现上的问题。在E-U T R A N的结构中, N o d e B之间采用X 2接口, 在Node B和接入网关 (a GW) 之间采用S1接口, 目前关于X2、S1接口的传递的详细内容正在制定当中。

由于OFDM (OrthogonalFrequency Division Multiplexing) 具备许多能很好满足E-U T R A N下行需求的优点, 使其成为一个具有压倒性优势的技术, 在E-U T R A N下行中得到采用。受手机电池容量和成本的限制, 上行应尽可能采用PAPR比较低的调制技术, 以提高功放效率。E-U T R A N采用能够灵活实现动态频带分配的S C-FDMA (Single Carrier Frequency Division Multiple Accessing) , 与传统单载波技术不同的是, 不同用户占用互相正交的子载波, 用户之间不需要保护频带, 具有更高的频谱效率

多天线技术可以用来改善系统的性能, 比如多天线发送分集以及智能天线技术已经在实际系统中获得了广泛的应用, E-U T R A N的上下行都将采用多天线技术来提升系统性能。此外当发射天线超过2个的时候, 可以考虑CSD (PSD) 和正交空时编码相结合的方法来达到优化分集性能的目的。MIMO (Multiple Input Multiple Output) 空间复用的作用, 是把一个原来SINR较高的信道, 分成若干个SINR较低的信道。而在高SINR时, SINR的改善对频谱效率的改善越来越弱。

高性能的O F D M以及S C-F D M A、MIMO、HARQ、调度等数据面算法, 有助于获得高性能接收机灵敏度, 提高系统容量和覆盖能力, 能够自适应移动速度的变化, 在350km/h的移动速度下尽量减小性能损失。E-U T R A N的多业务支持以及简化了的物理信道结构, 要求RRM算法能够识别并满足不同Qo S的需要, 针对实时、流媒体、BE业务采取不同的准入、拥塞、调度方案。端到端时延是一项重要的性能指标, 在整个信令和数据处理通道中尽量减少中转、交互和冗余。T D D双工方式在提高频谱效率、频谱灵活、降低系统和终端成本方面具有明显的优势, 是LTE产品化过程中非常重要的方向。

无线通信市场正面临着越来越激烈的市场竞争, 如何降低CAPEX和OPEX正成为运营商们保持竞争力的关键。

相对于W C D M A, L T E在带宽和频谱效率方面都有了大幅度提高, 并对平台技术提出了新的要求:高处理能力即从信令面和数据面的角度能够处理十倍于WCDMA平台的容量;Multi-RAT Support即多种制式共存;平滑演进即前后向兼容能力;节能能够降低运营成本, 而且可以延长平均无故障时间, 降低散热需求, 从而减小设备尺寸。Site friendliness的含义是平台能够适应不同的站点条件, 包括有无机房、是否与现有系统共天馈、室内覆盖一般无法提供MIMO技术所需要的多天线等。

在将来部署E-UTRAN时, 运营商可能面临着多个网络 (GSM、WCDMA、HSPA和LTE) 同时运营的情况。另外即使是同一种制式, 也可能有多个载波。那么, 用户服务如何在多种制式、多载波之间分布?WCDM A业务分层重点在接入态和连接态, 它的主要问题是对目标网络及频点和本网络有较严格的同覆盖要求。这容易导致呼叫失败、掉话等用户比较敏感的问题;而LTE可以在空闲态业务分层技术方面寻找方案, 网络侧广播采用当前系统可用资源和使用规则, 终端根据其能力和使用规则进行接入网络。网络自组织包括自动配置和自动优化, 在W C D M A、H S D P A网络建设过程中有大量的工程师在进行着简单的参数配置, 网络优化则需要进行大量路测, 不仅提高了技术门槛, 效率比较低, 而且拖延了上市时间。自组织首先从O M C的角度定义新的功能实体, 提供一套自动配置流程, 使得系统启动、重新配置、重要告警恢复、掉电重启时, 能够完成注册、参数获取、配置;其次从传输、RRM、网规角度提出需要配置的参数及配置方式;最后需要更新OMC工具。

LTE项目是近两年来3GPP框架内为了应对Wi MAX等通信技术的挑战于2005年年底紧急启动的规模庞大的新技术研发项目。作为3G向后的演进, LTE得到了各大通信企业、高校和通信研究机构的广泛关注与参与。它采用O F D M和M I M O作为无线网络演进的唯一标准, 大大改进并增强了3G的空中接入技术。数据传输能力方面, 在20MHz频谱带宽下能够提供下行100Mbit/s与上行50Mbit/s的峰值速率, 同时, 改善了小区边缘用户的性能, 提高小区容量和降低系统延迟。与3G甚至HSPA相比, LTE在高数据速率、分组传送、延迟降低、广域覆盖和向下兼容等方面都更具技术优势。

3 G技术实现了移动通信梦想, 如今人

们已经提出B3G, 即3G之后的移动通信网络, 定位在2020年实用, 当前正处在概念形成和技术评估阶段, 各方力量正积极参与相关研究, 共同塑造移动通信的未来。

摘要:随着智能手机日渐成为消费者的首选, 3G用户持续增长, 传统的384kbit/s的数据传输速率已经不能满足日益增长的数据业务需求, 所以, 向具有更高数据传输速率的下一代移动通信技术演进是发展的必然。WCDMA-HSPA-LTE的发展便是3GPP框架内一个具有渐进性、延续性的发展过程。

关键词:3GPP,LTE,WCDMA

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:关于加快彭水县龙溪乡人力资本形成的思考下一篇:职业技术学校计算机专业教学研究