超声c扫描应用范文

2022-06-13

第一篇:超声c扫描应用范文

超声C扫描喷水检测系统在复合材料检测中的应用

众所周知,波音787飞机是世界上第一款全复合材料的民用大客机。2006年底,哈尔滨飞机工业 ( 集团 )有限责任公司(哈飞)被正式确认为波音787翼身整流罩全球唯一供应商,承担2007~2021年这一产品的全部交付任务。

2007年,亚洲最大的复合材料生产基地在哈飞建成,随着该基地的建成,哈飞也陆续采购了一批国内外最先进的设备,其中包括英国超声波科学有限公司(USL)生产的超声波 C扫描喷水复合材料检测系统,系统有效扫描范围为 8m×1.5m×3m。

目前,该设备已经通过了哈飞最终验收。近期,波音负责该设备认证的人员对该设备的主体认证也基本结束,并对该设备给予了很高的评价。USL喷水C扫描系统的顺利完成,为波音787复合材料零件生产提供了保障,也将为未来中国大飞机的制造提供帮助。

哈飞 C扫描喷水系统的优势 (1)检测速度快。

现场扫描一个长2.7m,宽1.4m的曲面零件,US L系统在步进2.0mm 条件下,扫描速度为700mm/s,用时1h15min。

(2)系统自动化程度高。

系统共有17轴,包括10个探头运动轴,5个夹持工装轴及2个水泵驱动轴。 (3)USL独有的PM30超声发射接收板卡。

可同时进行对数放大和线性放大,穿透传输和脉冲回波扫描可同时进行,使仿形和探伤一次完成,而无需进行第2次扫描。

(4)特制的探头连接线及其他抗干扰措施。

USL拥有专利技术的导线及许多其他配置,可有效屏蔽外界信号干扰。 (5)水平双扫查臂。

可进行双曲面(二维方向曲面)扫描检测。如果加装特殊扫查臂,可进行“C型”零件的扫查。

(6)加装除气泡功能。使喷射出的水柱更加均匀,声波传输更稳定。

(7)加装紫外线杀菌系统。能够对循环水进行杀菌净化。 (8)计算机控制水流速。

对水流速度进行实时控制,对于不断变化的水流喷射角度和高度的改变进行补偿。 (9)“教与学”功能。

扫描轨迹可由CATIA数据产生,也可以利用超声波测量建立的坐标进行“教与学”。 (10)C扫描图像的三维成像。

(11)表面跟踪测量缺陷的真实尺寸(不是二维投影测量)。

哈飞的C扫描系统

哈飞喷水 C 扫描系统组成 1 机械扫描系统 (1)基座结构。

该系统放置在一个槽式基座上,其基底可与工厂周围的地板相平行,哈飞仅需制作该水泥槽,无需其他特殊要求。

上部、下部及垂直结构均由挤出成型铝合金制成,在保证强度的基础上,尽可能减重,以使系统能够高速运行。

(2)X、Y、Z 及探头角度轴 A、B。

X、Y、Z 及探头角度轴 A、B 均由直流伺服电机驱动。高品质的线性轴承在恶劣条件下具备较长的使用寿命。精密光学编码器适用于长轴线型测量,具有较高的分辨率和可重复性。

U S L通过将垂直的机械臂改为水平的机械臂,并将发射和接收探头安装在机械臂的末端,这解决 了检测凹陷较深零件的需要。U S L同时还设计了一种独特的可移动喷水总成,使其能够进入半径很小的曲面内进行检测。而在过去,通过穿透式还无法检测内径很小的“C”型零件,伴随着USL新的设计出现,使其成为可能。

(3)装有电机驱动的可编程的零件定位工装。 提供一套完整的零件定位工装用于对被检测零件的支撑和定位。该工装有 5 根可编程的运动轴——这些轴移动到为每一个部件预先编好的位置,以提供一个固定的并且可重复的零件夹持位置。该工装是扫描系统一部分,但也可以缩回,以使“滚入”工装能够完全进入。

(4)水泵系统。

扫描系统下方装有一个储水槽——由喷水器喷出的水流进该储水槽。2个独立的直流电机驱动水泵,装在该储水槽中——这2个水泵能提供独立的 2 股水流分别到各自的喷水嘴。水泵速度由电机驱动器和计算机系统控制,可通过运转水泵,在需要时提高水流速。

2 电子系统 (1)计算机系统。

一个19英寸(48.28cm)电器箱安装有工业电脑,用来控制整个系统、数据收集、C扫描图像显示和图像/数据处理。

(2)直流电机电力供应和运动控制。

电脑控制所有的17个轴运动,包括控制10轴扫描运动的伺服控制板卡,控制5轴工装定位的步进控制板卡,及控制2轴水泵的伺服控制板卡。

为了运动的手动控制,提供一个遥控(操纵杆)器,带有开关和按钮来选择想要控制的轴。操纵杆的运动是渐进的,轴的速度依操纵杆的动作而定。在电脑显示器上,所有轴的位置信息都被不间断地实时更新。

(3)超声波扩展板卡。

USL的超声波系统与电脑相结合。系统的所有参数都从屏幕菜单上由电脑控制。这些参数都可以储存并自动装载,这样就不需要手工设置这样的重复工作。

这个系统可以多闸门同时获取脉冲回波 (线性放大器)和穿透传输(对数放大器)数据,同时还可采集振幅和声时数据。

这些板卡包括:

·PM30脉冲收发器:这是低噪音的脉冲收发器, 带有一个对数放大器,提供高达 95dB的瞬间动态范围和带有 DAC及类似功能的一个高增益线性放大器。这个对数检测功能意味着可达 95dB的信号变化能够一次采集得到。

·ADC100 模拟-数字转换器:该转换器将从脉冲收发器得到的 A扫描波形数字化,并在电脑屏幕上显示出数字A扫 描。ADC100以100MHz 单发射状态将信号数字化,数字化的数据被传送到一个DSP板来处理。相同时间采样,其取样率增加到>1GHz。 ·DSP100 数字信号处理板:该板卡提供达8个监控闸门,可在最大扫描速度及脉冲重复频率下操作。可由软件来选择闸门,来提供振幅、声时或相监控能力。例如可设置 2个振幅闸门和 1个声时闸门,1个振幅闸门监控不显眼的缺陷,1个作为底面监视,声时闸门用于监控壁厚 /材料速度。在扫描时,每个闸门都储存一个C扫描图像,所有闸门都能实时地被同时成像。

(4)噪音处理单元。

USL的系统另一个设计上的特点就是通过消除内部和外部噪音源,使其更好地达到客户的要求,提高缺陷判断的精确性,减少误判。

众所周知,由于复合材料的结构特性,如果采用较高频率的超声波,其信号将由于衰减和噪音干扰严重,使检测信号无法识别;而如果采用低频超声波,又无法满足检测缺陷精度的要求。因而为了平衡两者的矛盾,USL从软件和硬件几个方面入手,降低噪音,提高信噪比,从而得到了令客户满意的结果。

哈飞USL系统操作台

3 软件功能

USL公司积累20年的设计经验,集合了丰富的软件功能,得到了各大中国飞机制造商的认可。

(1)A扫描显示。

A扫描以数字形式显示在电脑屏幕上,刷新率约40Hz。闸门位置也被显示出来,不同闸门的颜色不同。

(2)实时C扫描显示。 实时C扫描显示是以穿透传输和脉冲回波模式里的闸门峰值振幅和 / 或声时为基础的。菜单允许操作员选择用于显示/存储图像的不同通道和模式。通常地,一个图像实时显示,同时其他图象被存储作为稍后的显示和分析。

具有调色板功能,可对显示的颜色进行调色,还可以进行图像缩放、平移、滚动等操作。 (3)“教与学”功能。

通过这种方法,零件的形状由操作员在零件上的不同点“教授”正确的操纵器位置。 教授点数量依零件的复杂性、弯曲的程度及曲面的明显变化的程度而定。当教授位置已输入后,“扫描计划”保留在存储器中留作后用。在扫描时,教授点之间轴的位置随着系统的移动被实时插入。

(4)导入CATIACAD文件。

复杂的扫描轮廓可由CATIACAD文件生成。这个轮廓是由系统中10个以上的具有相同设置的同步运动轴实现的。这个扫描平面图是由MFFROG的APT文件生成的,MFPROG是一个CATIA模块。基本的CATIA数据首先用于生成零件表面的三维轮廓——接着这个会转化为真正的轴的位置。这个软件还包括图像显示模块,它允许操作人员在三维的空间使零件的位置在扫描体积内可视化,操作人员还可以调节图像以便从不同的方向来观察。

(5)图像分析。

软件用来分析图像或者图像的几个部分。包括:

·柱状图计量。图像中选择的区域可被勾勒出以显示柱状图,从而根据振幅或声时测量来显示图像像素的百分比分布

·缺陷的尺寸测量和其他功能。这个可以通过屏幕上的鼠标箭头来实现。对于弯曲的零件,相对于二维平面上的投影尺寸而言,真正的表面尺寸可以计算出来。(一个二维投影的尺寸可能低估了缺陷的实际尺寸)。这个功能也能用来测量缺陷之间的距离。

·能把2个被选的图像结合一起,应用数学函数来突出可能的缺陷区域。 (6)打印报告。

检测报告格式可根据客户需要进行修改。 (7)远程分析与诊断。

通过 Internet 与英国总部连线,远程操控计算机来进行分析与诊断。 (8)升级服务。

USL还可以提供完备的软件及电子部分硬件升级服务,使客户的设备始终处于世界领先地位。甚至客户使用的许多其他厂家制造的设备,如 Staveley,SI,Automation Industries,Krautkramer,Meccasonics,Midas Inspection Systems 等都由USL为其提供升级服务。因而,完善的升级服务也解除了客户担心设备需要频繁更新换代的顾虑。 (责编依然)

第二篇:扫描电化学显微镜的发展及应用

浅谈电化学扫描显微镜的发展与应用

一、 电化学扫描显微镜简介

1984年,Engstrom 把生理学上的离子电渗技术引入化学领域,研究了固体电极表面微区电化学活性,达到10µm的分辨率[1];1986年,Engstrom小组利用微电极探针监测扩散层内毫秒级寿命反应中间体NAD等电极产物的空间分布,可达2µm分辨率[2];同年,电分析化学家Bard小组在使用扫描隧道显微镜(STM)首次进行溶液中导体表面研究时,为了弥补STM不能提供电化学信息的不足,明确提出了扫描电化学显微镜的概念并予实验实现[3]。

扫描电化学显微镜(SECM)是80年代末由A.J.Bard的小组提出和发展起来的一种扫描探针显微镜技术。它是基于70年代末超微电极(UME)及80代初扫描隧道显微镜(STM)的发展而产生出来的一种分辨率介于普通光学显微镜与STM之间的电化学现场检测新技术。

与STM和AFM技术不同,扫描电化学显微镜基于电化学原理工作,可测量微区内物质氧化或还原所给出的电化学电流。该技术驱动一支超微电极(探针)在离固相基底表面很近的位置进行扫描,从而获得对应的微区电化学和相关信息。可用于研究:

(1)导体和绝缘体基底表面的几何形貌; (2)固/液、液/液界面的氧化还原活性; (3)分辨不均匀电极表面的电化学活性; (4)微区电化学动力学;

(5)生物过程及对材料进行微加工。

SEME装置由电化学部分(电解池、探头、基底、各种电极和双恒电位仪)、压电驱动器(用来精确地控制操作探针和基底位置)以及计算机(用来控制操作、获取和分析数据)组成,实验装置如图1。

二、 工作模式及原理

2.1 工作模式

SECM是以电化学原理为基础的一种扫描探针新技术,有多种不同的操作模式,见图2。

(1) 反馈模式Feedback Mode(SECM试验中最常用) (2) 收集模式(Generation/collection Mode) (3) 穿透模式(Penetration Mode)

(4) 离子转移反馈模式(Ion transfer Mode) (5) 平衡扰动模式(Equilibrium perturbation Mode) (6) 电位测定模式(Potentionmetric detect Mode)

图2. SECM几种操作模式的原理示意图 2.2 工作原理

SECM的工作原理一般是:当探针(常为超微圆盘电极,UMDE)与基底同时浸入电活性物质O的溶液中,在探针上施加电位(ET)使O发生还原反应,

OneR

当探针靠近导电基底时,其电位控制在R氧化电位,则基底产物O可扩散回探针表面使探针电流iT就越大。这个过程则被称为“正反馈”。当探针靠近绝缘基底表面时,本体溶液中O组分向探针的扩散受到基底的阻碍,故探针电流iT减小;且越接近样品,iT越小。这个过程被称作“负反馈”。当探针原理基底时,正负反馈均可忽略,此时微探针电流(iT)为常规微电极稳态电流,

iT,4nfDOCOa

式中F为法拉第常数,CO为O的本体浓度,DO为O的扩散系数,a为探针电极半径,为电极反应转移的电子数。通常SECM工作时采用电流法。SECM也可工作于“恒电流”状态,即恒定探针电流,检测探针z向位置变化以实现成像过程。也可采用离子选择性电极进行电位法实验。

三、 研究与应用

3.1 SECM探头的研制 3.1.1 探头

SECM的分辨率主要取决于所选用的探头大小、形状和类型有光。最常用的探头是外部包着绝缘玻璃的萎靡圆盘电极,有时根据实验需要还选用纳米电极、圆锥形及球形电极。

3.1.2 用作SECM探头要求

(1)电极的导电部分应在电极的最下端;

(2)对圆盘电极来说,RG≤10(RG=b/a,b探头绝缘层半径和电极半径之和,a探头半径)。

一般来说,探头的半径越小,SECM的分辨率越高,越适于研究快速反应动力学。 3.1.3 SECM探头制备

制作时把清洗过得微电极丝放入除氧毛细玻璃管内,两端加热封口,然后打磨至电极部分露出,由粗到细用抛光布依次抛光至探针尖端为平面。也少量涉及到半球面电极。为锥形的电极尖端因探针电流不随d而变化,故很少使用。再小心地把绝缘层打磨成锥形,以在试验中获得尽可能小的探针-基底间距(d)[4]。 3.1.4 探头的质量

SECM的分辨率主要取决于探头的尺寸、形状及探头-基底间距(d)。能够做出小而平的超微圆盘电极是提高分辨率的关键所在,且足够小的d与a能够较快获得探头稳态电流。同时要求绝缘层要薄,减少探头周围的归一化屏蔽层尺寸RG(RG=r/a,r为探头尖端半径)值,以获得更大的探头电流响应尽可能保持探头断面与基底的平行,以正确反映基底形貌信息。 3.2 SECM的应用

随着SECM技术的进一步成熟,SECM在生物分析、均相化学反应动力学研究、异相电荷转移反应研究、样品表面扫描、液/液界面研究和薄膜表征等方面有很广泛的应用。

3.2.1 在生物分析中的应用

主要包括DNA的测定、活细胞中酶的测定及抗原的测定。最早的是1999年,Bard小组用信号灵敏度小于0.05pA的SECM/STM仪,把未绝缘的纳米电极插入置于潮湿空气的云母片表面的超薄液层里,进行涂形扫描,得到了包括酶、DNA、抗原在内的生物大分子的图像,其分辨率可达几个纳米。这是首次利用SECM得到分子的图像[5]。

3.2.2 均相化学反应动力学研究

基于SECM的收集模式、反馈模式及其计时安培法、快扫描循环伏安法等电化学方法的联用,已用于测定均相化学反应动力学和其他类型的与电极过程耦联的化学反应动力学[6]

3.2.3 样品表面扫描成像

探针在靠近样品表面扫描并记录作为X-Y-Z坐标位置函数的探针电流,可以得到三维的SECM图像。SECM已用于导体或绝缘体等各种样品表面的成像,得到表面化学或生物活性分布图及表征纳米孔中的扩散传质[7]。图3为SECM的表面扫描成像图[8]。

图3. SECM表面扫描成像图

四、 前景展望

(1) 从SECM仪器本身来看,可以通过提高检测灵敏度;提高空间分辨率及更精确地控制探头的位置等进一步完善SECM技术。

(2) 为了解决生物学、医学、材料科学等领域内的问题,SECM将更侧重于研究较为复杂的体系,譬如,对生物膜的检测、对单细胞、单分子的检测、金属的腐蚀与防护以及晶体的溶解等。

(3) SECM将不断向现场化、微型化(纳米级微电极)、自动化的方向发展。 (4) SECM与其他技术的联用将成为一种趋势。

参考文献

[1] Enstrom R C.Anal.Chem.[J],1984,56(6):890.

[2] Enstrom R C, Weber M, Wunder D J, Burgess R, Winquist S. Anal.Chem.[J],1986,58(4):844. [3] Liu H Y, Fan F F, Lin C W, Bard A J.J.Am. Chem.Soc.[J],1986,108(13):3838. [4] Bard, A.J., Denuault, Lee, C.M., Mandler, D., Wipf, D.O.Acc.Chem.Res.1990,23,357-363. [5] Cai C, Liu B, Mirkin M.V, Frank H.A.Anal.Chem.[J],2002,74(1):114. [6] 杨晓辉,赵瑜,谢青季,姚守拙,分析科学学报.[J],2004,20(2). [7] Wei C, Bard A J, Kapul I, Nagy G, Touth K, Anal.Chem.[J], 1996,68(15):2651.

[8] 骆鸿,魏丹,等.金属腐蚀微区电化学研究进展(1)扫描电化学显微镜技术.[J],腐蚀与防护,2009,30(7):437-441.

第三篇:扫描电镜及其在储层研究中的应用分析

扫描电镜测试技术原理及其在储层研究中的应用

1、扫描电镜的结构和工作原理

扫描电镜的主要构成分为四部分:镜筒、电子信号的显示与记录系统、电子信号的收集与处理系统、真空系统及电源系统(图 1)。以下是各部分的简介和工作原理。 1.1 扫描电镜结构 1.1.1镜筒

镜筒包括电子枪、聚光镜、物镜及扫描系统,其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面进行扫描,同时激发出各种信号。 1.1.2电子信号的收集与处理系统

在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm 至几十nm 的区域,其产生率主要取决于样品的形貌和成份。通常所说的扫描电镜图像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。检测二次电子的检测器的探头是一个闪烁体,当电子打到闪烁体上时,就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,将电流信号转变成电压信号,最后被送到显像管的栅极。

1.1.3电子信号的显示与记录系统

扫描电镜的图像显示在阴极射线管(显像管)上,并由照相机拍照记录。显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。 1.1.4真空系统及电源系统

扫描电镜的真空系统由机械泵和油扩散泵组成,其作用是使镜筒内达到 10 托的真空度。电源系统则供给各部件所需的特定电源。

图1 扫描电镜结构图

1.2扫描电镜的基本原理

扫描电镜的电子枪发射出电子束,电子在电场的作用下加速,经过两次电磁透镜的作用后在样品表而聚焦成极细的电子束。该细小的电子束在末透镜的上方的双偏转线圈作用下在样品表而进行扫描,被加速的电子与样品相互作用,激发出各种信号,如二次电子,背散射电子,吸收电子、X射线、俄歇电子、阴极发光等。这些信号被按顺序、成比例的交换成视频信号、检测放大处理成像,从而在荧光屏上观察到样品表而的各种特征图像。

2、扫描电镜在矿物岩石学领域的应用 2.1矿物研究

不同矿物在扫描电镜中会呈现出其特征的形貌,这是在扫描电镜中鉴定矿物的重要依据。如高岭石在扫描电镜中常呈假六方片状、假六方板状、假六方似板状;埃洛石常呈管状、长管状、圆球状;蒙脱石为卷曲的薄片状;绿泥石单晶呈六角板状,集合体呈叶片状堆积或定向排列等。王宗霞等在扫描电镜下观察了硅藻上的形貌,硅藻上多呈圆盘状、板状,根据这一特征即可将它鉴定出来。

矿物特征及残余结构可以推断其成岩环境和搬运演化历史,扫描电镜可对矿物的结构和成分进行分析,为推断矿物的成岩环境和搬运演化历史提供基础资料。矿物颗粒脱离母岩后,在搬运和沉积的过程中必然会受到外界环境的影响。不同的搬运介质、搬运形式以及不同的沉积环境常会在矿物颗粒表而留下反映搬运和沉积的痕迹,因而矿物表而就会具有不同的形状及外貌特征。光学显微镜、差热、化学分析等传统分析方法往往无法将其加以识别,而配接有X射线的能谱仪的扫描电镜能直接观察到矿物变化过程中所发生的结构、形貌等微观现象的变化和形成新矿物的特点,并且可以同时确定其化学元素组成及相对含量的变化,为研究矿物的变化提供了良好的途径。 2. 2包裹体研究

包裹体是成矿时留在矿物中的遗迹化石,其物质组成反映了成岩成矿时期的介质环境,扫描电镜为分析包裹体物质提供了良好条件。首先,扫描电镜的形貌分析使我们能准确观察包裹体;其次,扫描电镜的能谱分析可以直接对已经打开的包裹体进行分析,从而确定了包裹体的物质组成。单强等利用扫描电镜对四川冕宁稀土矿床早期萤石的单个流体—熔融包裹体进行研究,为进一步证实四川冕宁稀土矿床是一个与盐熔体有关的热液矿床打下坚实的基础。谢玉玲等利用扫描电镜对铜官山铜矿床矽卡岩矿物中的包裹体进行研究,发现其中的石榴石存在二相包裹体,并在透辉石中发现流体包裹体及子矿物。

3、扫描电镜在粘土矿物方面的研究

由于粘上矿物在石油生成、运移、聚集及油气勘探开发研究中的重要作用,利用扫描电镜研究粘上矿物的优越性尤其明显。以往对粘土矿物的分析手段着重于精确分析粘上矿物的成分和晶体结构(如X粉晶衍射等),但对其形态特征及分布研究不多,而粘上矿物在储层中的分布及存在状态、成岩作用的影响、油气运移及开发的影响,使得粘上矿物的形态、分布及其变化的研究更加深入。粘上矿物是以微米为计量单位的质点,一般粘上矿物仅为几个微米,用普通的光学显微镜已经很难区分粘上矿物的成分、形态及分布特征,利用扫描电镜完全可以弥补这一不足。

(1)研究粘上矿物的形态及分布,确定成岩作用过程、成岩阶段及次生变化;

(2)研究粘上矿物的共生组合及变化,确定成岩环境及地球化学背景,如温度、压力、酸碱度; (3)对粘上矿物的成分分析(结合X衍射分析),确定埋藏深度、恢复盆地埋藏史及热演化史、反映油气成熟度。 3.1粘土矿物的显微形貌特征

一般来说,在碎屑岩储层中常见的粘土矿物主要有高岭石、伊利石、绿泥石及伊蒙混层等粘土。根据粘土矿物分析结果,24-3构造韩江组和珠江组储层中的粘土矿物主要以伊利石和高岭石为主(图2)。

伊利石:伊利石在24-3构造韩江组和珠江组储层中是较为常见的粘土矿物。在电镜扫描下,其单晶形态呈丝带状,其集合体呈丝缕状(图2-A ),通常包裹在颗粒的表面,形成粘土薄膜。

高岭石:高岭石晶体呈假六角片状、假六角板状、假六角似板状,它们依次具有良好的假六角薄片状晶形,部分完整假六角形晶形和表面稍弯曲的较差六角晶形,它们大小约为1-5µm,个别见团粒状,高岭石团粒大小不一,约为0.2-0.7 µm,为细小高岭石晶粒集合体。但西江24-3构造韩江组和珠江组储层中的高岭石,在电镜扫描下常见的单体形态呈假六角片状、假六角板状和微晶粒状(图2-B),集合体形态呈叠片状和扇状、叠板状、蠕虫状。高岭石往往在孔隙中形成定向排列或者杂乱堆积状态充填或半充填着储集层的孔隙。

图2颗粒表面贴附和粒间充填的粘土矿物

3.2粘土矿物在储层中产状特征

电镜扫描下可以直观地看到,粘土矿物的空间分布特征,24-3构造韩江组和珠江组砂岩储层中粘土矿物的产状主要有:孔隙衬垫式、孔隙充填式及粘土桥式。 (1)孔隙衬垫式

这种产状是指粘土矿物在碎屑岩颗粒表面呈定向排列,组成连续的贴附于孔隙壁上的薄膜。在镜下看,粘土矿物在颗粒表面排列具明显的方向性,根据其排列方向与颗粒表面夹角的关系,可分为两种:一种是其排列与颗粒表面近于平行另一种是垂直于颗粒表面向孔隙内生长,即栉壳状。

在24-3构造韩江组和珠江组砂岩储层中,具有此类产状的代表性粘土矿物为皱晶状高岭石(图3)和丝缕状伊利石(图2-A)。在镜下,可以观察到高岭石和伊利石主要覆于颗粒表面,在粒间孔隙边缘形成孔隙衬边(图3)。但是由于没有完全把孔隙充填,还保留了一定量的粒间孔隙。

图3高岭石、伊利石在粒间孔隙边缘形成孔隙衬边

(2)孔隙充填式

孔隙充填式是指粘土矿物以分散质点形式充填于孔隙之中。在镜下可以观察到粘土矿物往往以集合体形态充填于孔隙内,按其充填的程度可分为完全充填与不完全充填。在24-3构造韩江组和珠江组砂岩储层中,具有此类产状的较为常见的粘土矿物为高岭石(图4)。在24-3构造中,粘土矿物充填孔隙较为严重,对该区块的储层物性有一定的影响。 (3)搭桥式

搭桥式产状是指粘土矿物晶体自孔隙壁向孔隙空间内生长,并在孔隙内形成粘土桥。通过电镜扫描可以看到,在24-3构造韩江和珠江组储层中,粘土薄膜具有明显的由孔隙边缘向孔隙中央生长的特征,有的已形成网格状或桥接型胶结(图5)。

图4 24-3油田中的粘土矿物充填孔隙

图5粘土薄膜及形成的“粘土桥”

4、扫描电镜在储层研究中的应用

扫描电镜在碎屑岩及碳酸盐岩储层研究中具非常广泛的应用。扫描电镜研究储层结构,评价储层质量。它可以对储集岩的矿物成分、结构构造、孔隙类型及成因、胶结程度及次生变化作深入系统的研究,并对储层优劣提供评价,其应用主要包括如下几个方面:

(1)研究分析储层的胶结类型,胶结物种类及次生变化;

(2)研究储层的孔隙结构,分析孔隙成因类型及成岩作用和胶结作用对孔隙度、渗透率变化的影响,预测孔隙演化方向;

(3)利用图像分析软件测量孔隙、喉道大小,综合评价储集性能;

(4)扫描电镜在微孔隙、微裂隙发育的储集岩研究中得到广泛应用。微孔隙、微裂隙在油气运移、聚集中起很大作用,微孔隙的发育与连通常形成良好的油气储集层,扫描电镜微观分析,可以非常直观、有效地对微孔、微隙进行分析;

(5)扫描电镜对储层岩石铸体的分析研究,运用扫描电镜背散射电子成分图像,可以决速、直观地反映孔隙喉道分布情况,精确计算而孔隙,对酸溶孔隙铸体的二次电子形貌图像分析,可以综合评价储层质量;

(6)扫描电镜分析在储层岩石物理流动单元研究中的应用,同一岩石物理流动单元具有相对一致的(相似的)孔隙喉道分布及相似的性质,储层岩石物理流动单元的研究在油藏描述及油田开发中具有重要的意义。运用扫描电镜对储层结构的分析,通过对岩石微观分析结果的综合,结合测井等资料,可以在宏观上将储层划分为性质相对独立的多个流动单元组合。

5、扫描电镜在油气层保护研究中的应用

保护油气层是石油勘探开发过程中的重要技术措施,保护油气层技术立足于预防为主,解堵为辅的原则。岩心分析是认识油气层地质的基础,油气层敏感性评价、损害机理的研究、保护油气层技术方案的设计都必须建立在岩心分析基础上。而储层岩石微观特征分析又是油气层保护研究的重点,因此扫描电镜微区分析在油气层保护研究之中具有非常重要的作用。

(1)利用扫描电镜研究储层岩石学特征,从微观形态及微区成分上对储层岩石进行岩石矿物成分及结构分析,胶结特征及充填作用分析,孔隙及喉道连通性分析等,并预测储层敏感性;

(2)储层敏感性扫描电镜分析,通过酸、水、速、碱、盐及温度敏感性试验,利用扫描电镜分析储层样品敏感性试验前后的变化,分析储层样品的粘上矿物的变化,胶结物及储层格架的变化,孔隙及喉道的变化,确定储层敏感性发生的类型和程度,并采取预防措施;

(3)在油气田开发过程中,对储层岩心样品进行开发前后的微观分析,可以判断储层损害程度,提出改进措施,提高产量。特别是注水、注气开发中,运用扫描电镜的分析,可以观察到粘土矿物的膨胀,粘土矿物及其它微粒的迁移,水岩反应形成新矿物等各种现象,而使孔隙喉道变小或堵塞而造成储层的损害,进而研究采用添加降粘剂,防膨胀剂及控制温度、酸碱度等措施,而使储层损害的程度降到最低。扫描电镜在油气层保护研究上具有重要作用,应用前景十分广阔,能够解释油气开采中遇到的诸如引起孔喉堵塞、渗透率降低等原因,进而提出油气层保护措施,提高采收率,降低成本,增加产量。

6、小结

扫描电镜可以直观再现有机质富集的显微组分、干酪根、煤及富含有机质的全岩样品在地层条件下的动态生气过程,对于评价不同地质样品的产气潜力提供了一种行之有效的新手段。另外,扫描电镜在矿物岩石学、粘土矿物分析、储层研究、油气层保护等方面已经发挥了重要作用。扫描电镜在反映物质微区信息方面具有分辨高、放大倍数大、景深大、立体感强、样品制备简单的优点,因而广泛应用于不同领域的研究,在地学微区信息提取方面有不可代替的优势。随着扫描电镜性能的提高,扫描电镜高温热台及微注入系统的使用,环境扫描电镜出现,使扫描电镜在油气领域中的应用进一步扩大。

参考文献:

[1] 刘伟新, 史志华, 朱樱, 等. 扫描电镜/能谱分析在油气勘探开发中的应用. 石油实验地质,2001, 23(3): 341-343. [2] 张新言, 李荣玉. 扫描电镜的原理及TFT-LCD生产中的应用[J]. 现代显示, 2010, 108: 10-14. [3] 于丽芳, 杨志军, 周永章, 等. 扫描电镜和环境扫描电镜在地学领域的应用综述. 中山大学研究生学刊(自然科学、医学版), 2008, 29(1): 54-60. [4] 胡圆圆, 胡再元. 扫描电镜在碎屑岩储层粘土矿物研究中的应用. 四川地质学报, 2012, 32(1): 25-28.

[5] 严启团, 马成华, 单秀琴, 等. 环境扫描电镜在我国油气工业中的应用研究. 电子显微学报, 2001, 20(3): 224-231. [6] 谢增业, 严启团, 卢新卫, 等. 环境扫描电镜技术在气源岩评价中的应用. 天然气工业, 2003, 23(4): 27-30. [7] 焦淑静, 韩辉, 翁庆萍, 等. 页岩孔隙结构扫描电镜分析方法研究. 电子显微学报, 2012, 31(5): 432-436. [8] 刘伟新, 承秋泉, 王延斌, 等. 油气储层特征微观分析技术及其应用. 石油实验地质,2006, 28(5): 489-492.

第四篇:扫描电镜的发展特点及在纺织材料研究中的应用

0 前言

当今,随着电子源、扫描以及图像采集和处理系统等的发展,扫描电子显微镜(ScanningElectronMicroscope,简写为SEM)已成为纺织、生物学、医学、冶金、机械加工、材料、半导体制造、微电路检查,甚至月球岩石样品分析等领域的主要研究手段。同时它还在向复合型方向发展,即和X射线能谱分析技术(简称EDS)进行结合,成为研究分析物品表面结构与微区化学成分的最有效的工具。

当前产业用纺织品已广泛应用于工业、农业、环境保护、生物工程、化学化工、医疗卫生以及汽车等领域,其应用范围不断扩大,大大拓展了新的应用领域,开拓出新的市场和高新技术的特殊产品,如电子纺织材料、智能纺织材料、细胞组织支架材料和纤维织物柔性[1]显示器等。因此,利用先进的扫描电镜等工具研究纺织产品极其材料的化学与机械物理性能创造产业用纺织品材料就显得至关重要。可以说,扫描电镜的未来有着广阔的发展与应用前景。 1 扫描电镜和X射线能谱仪原理

扫描电镜:其场深大约三百倍于光学显微镜,适用于表面形貌观察,特别是粗糙表面的观察和分析,图像富有立体感、真实感、易于识别和解释。放大倍数范围大,一般为50~20000倍,对于相组成的非均匀材料便于低倍下的普查和高倍下的观察分析。它具有相当的分辨率,可达2~6nm。扫描电子显微镜主要是利用二次电子成像,由聚光镜和物镜构成的电子光学系统[2],把电子枪发射出来的电子聚集成为一束极细的电子束,并聚焦于样品的表面,同时按顺序对样品表面进行逐行扫描[3]。用检测器收集从样品表面发射出来的二次电子,经视频放大形成图像信号,再经显像管显示。所获得的图像可以直接进行观察,也可以照相或者存储记录,它还可对试样进行成分、晶格、阴极发光、感应电导等多方面分析。

X射线能谱仪:电子束轰击样品时,产生弹性散射和非弹性散射两类物理过程,当两者相互作用发生具有能量交换的非弹性散射时会产生二次电子、俄歇电子、特征X射线、连续X射线,以及在可见光和紫外、红外波段的长波长电磁辐射。X射线能谱分析就是取出样品所产生的X射线作为信号进行分析的。分析这些X射线的能量就可知道组成样品的元素,即可实现对样品的定性分析;根据X射线能量不同的强度就可知道各种非导体与半导体的含量,即实现对样品的定量分析。由于电子显微镜具有很高的空间分辨率,它可以捕捉能谱分析仪在微米和亚微米尺度下的粒子,同时在与计算计配合后,通过线扫描也就可以获得直观的微区元素分布数据。

2 扫描电镜和X射线能谱仪的发展特点

扫描电镜的设计思想早在1935年便已提出,但受各种技术条件的限制,进展一直很慢。只是在近20年,扫描电镜才在提高分辨率方面取得了较大进展。现在,使用最常规扫描电镜分辨率可达3.5nm左右。上世纪90年代中期,它与高速发展的计算机技术对接,实现了电脑控制和信息处理。之后,扫描电镜在二次电子像分辨率、非导体与半导体的扫描成像上取得了突破。特别是针对过去非导体与半导体材料需喷金后才能电描的技术改进

为在低真空和低电压下的电镜扫描,为产业用纺织品的出新提供了良好的检测手段与保证。

目前,使用最广的常规钨丝阴极扫描电镜的分辨率为3.5nm左右,加速电压范围为0.2~30kV。扫描电镜配备X射线能谱仪后发展成分析扫描电镜。它比X射线波谱仪分析速度快、灵敏度高、还可进行定性和无标样定量分析。但是,这种分析型扫描电镜也存在不足之处,如能量分辨率低,一般为129—155eV,以及Si(Li)晶体需在低温下使用(液氮冷却)等。所以未来的扫描电镜发展主要在:

(1)高分辨率和分析型两类电镜的合并,同时实现用计算机控制,发展成多功能高分辨率的分析电镜。

(2)更大限度地满足大量多元素试样的超轻元素,低含量,高速定性、定量常规分析的需求。提高常规加速电压时的分辨本领,改善低压性能,减少直至消除对样品的破坏、损伤。无需先喷涂导电层或冷冻干燥处理,保持样品的原样进行观察。

(3)研制新的综合型的电镜附件设备,以便取得更多的试样信息。

国内中国科学院北京科学仪器研制中心生产的X射线能谱分析系统Finder-1000,已经开发出自己的图形化能谱分析系统程序,分析元素从铍Be(4)元素到铀U(92)元素,实现了高精度的无标样及全标样定量分析。其分析速度极快,10种元素分析时间不足1秒钟。目前,国际最先进的采用超导材料生产的能谱仪,分辨率业已高达5~15eV,已超过了25eV分辨率的波谱仪。

3 扫描电镜和X射线能谱仪在纺织材料研究中的应用 3.1纤维表面形貌观察和元素成分分析

纤维材料的表面物理形态和化学结构是决定材料性能的基本因素,也是影响纤维材料的表面的摩擦性能、光学性能、吸水性和生物相容性等性能的主要因素。用扫描电镜观察、分析纤维表面形貌特征,如图

1、图2所示。样品喷金后可直接放入样品室进行观察。根据纤维的微观结构不同,即细度不同,鳞片不同等形态特征区分各种纤维,同时纤维表面的各种元素产生具有不同能量的特征X射线,分析这些X射线的能量就可知道组成的元素,可看出各种纤维微量元素成分的差别,从这两方面对纤维进行种属鉴定和纤维鉴别,在鉴别基础上可通过荧光屏准确地测定各类纤维的直径和根数,得出各类纤维的定量分析。还可应用电镜观察织物结构特征、纱线中纤维排列形态、纤维径向分布等项目来分析纱线的物理机械性质、耐磨、染色性能。

3.2纺织材料失效分析

纺织材料失效分析主要包括磨损、腐蚀和断口分析[5],利用SEM主要对磨损表面及磨损产物等进行分析,磨损、腐蚀的表面携带了最主要的信息,可利用SEM结合EDS进行表面形貌分析和微区成分定性、半定量分析(如图4所示),可以优先了解腐蚀的因素(如夹杂物类型、材料缺陷等),由此鉴别材料失效的形成原因;利用扫描电镜观察、分析材料的断口特征(如图3所示,针毛尖部3~4mm鳞片破损严重),对断裂机理分析归类,明确断裂类型,其次是对裂纹源位置和扩展方向的判定,可根据断口学原理判断断裂性质,追溯断裂原因,调查断裂是跟原材料质量有关还是跟后续加工或使用情况有关等等。减少缺陷数目和尺寸,改善织物性能。

3.3超微尺寸材料的研究

扫描电镜可以在比微米尺寸更小的范围内获得高倍率、立体感强、直观的二次电子图像。纳米材料又称为超微颗粒材料,由纳米粒子组成,一般是指尺寸在1~100nm间的粒子。应用在纺织品上具有拒水、拒油、防静电、防污、抗菌、柔软等功能。通过扫描电镜,可以较直观地观察到超微纳米材料的表面形貌,可以看到纳米结构、看出颗粒的均匀度(例如图5,为纳米SiO2粉体小颗粒分散情况),也可以用这种方法来改变颗粒的孔分布,解决颗粒的团聚问题等。

而研发功能性纺织材料是未来发展趋势,所以扫描电镜的作用在这个领域会越来越突显出来。 3.4表面整理剂研究

使用各种表面整理剂可以提高织物的耐磨、耐洗、抗皱、抗静电、防水拒油等性能,对于它的研究也越来越重要。而在研究纤维的表面性能和表面结构,以及分析整理剂在纤维表面的结合状态,研究它的分散情况与纤维性能之间的关系,探讨特色整理剂的作用机理,以及开发新型整理剂等方面,扫描电镜起着越来越重要的作用。尤其是能谱技术,它可以对整理剂处理过的纤维表面元素成分进行定性和半定量分析,给出该元素浓度分布的扫描图像,并对其中所含元素浓度进行定量分析。

例如:图

6、图7所示,这是涤纶纤维表面经防油剂改性后的电镜照片,可以看出防油改性丝的表面已经发生了根本性的变化。

3.5表面改性处理的研究

表面改性处理的手段主要包括化学氧化法、低温等离子体改性、辐射接枝法等。经过改性处理的纤维可用SEM和EDS来观察其微观结构组成以及表面化学成分、浓度分布,这样就可以用它测定纱线接触表面上的沉积物以及由于磨损、刻蚀、沉淀、辐射等而导致的表面性质的变化。还可以为评定材料表面性质的专家提供相关的技术支持。对研究改性的生产工艺,开发新用途都具有重要的意义。 3.6显微组织研究

在扫描电镜的高倍观察条件下,材料的显微组织十分清晰。可用来观察纤维的孔洞结构,分析不同的孔洞结构与纤维性能之间的关系。或在多相结构材料[4]中,特别是在某些共晶材料和复合材料的显微组织和分析方面,由于可以借助于扫描电镜景深大的特点,所以完全可以采用深浸蚀[4]的方法,把基体相溶去一定的深度,使得欲观察和研究的相显露出来,这样就可以在扫描电镜下观察到该相的三维立体的形态,这是光学显微镜和透射电镜无法做到的。 3.7断裂过程的动态研究

扫描电镜的大场深和大视场可清晰显示纤维断裂的三维形貌,而在较高放大倍数下又能观察断裂面局部区域的微细结构,这种图像有助于研究裂缝的产生、发展以及寻找裂缝源。有的型号的扫描电镜带有较大拉力的拉伸台装置,这就为研究纤维断裂过程的动态过程提供了很大的方便。可用来研究纤维的机械力学性能等。在试样拉伸的同时既可以直接观察裂纹的萌生及扩展与纤维显微组织之间的关系,又可以连续记录下来,为纺织材料研究提供最直接的证据。 4 结束语

进入90年代以来,世界纺织工业和纺织品市场发生了深刻变化,纺织工业作为传统的劳动密集型加工产业,在信息产业的推动下,正向技术密集型、知识密集型产业发展。为了研究高技术含量、信息含量和高附加值的纺织产品,就需要结合高科技的检测分析手段,新型扫描电镜和X射线能谱仪及其附件设备在新型纺织材料的研究和开发中有着广阔的应用前景。

第五篇:超声波检测技术及应用

刘赣

(青岛滨海学院,山东省青岛市经济开发区266000)

摘 要:无损检测(nondestructive test)简称 NDT。无损检测就是不破坏和不损伤受检物体,对它的性能、质量、有无内部缺陷进行检测的一种技术。本文主要讲的是超声波检测(UT)的工作原理以及在现在工业中的应用和发展。

关键词:超声波检测;纵波;工业应用;无损检测

1.超声波检测介绍 1.1超声波的发展史

声学作为物理学的一个分支, 是研究声波的发生、传播、接收和效应的一门科学。在1940 年以前只有单晶压电材料, 使得超声波未能得到广泛应用。20 世纪70 年代, 人们又研制出了PLZT 透明压电陶瓷, 压电材料的发展大大地促进了超声波领域的发展。声波的全部频率为10- 4Hz~1014Hz, 通常把频率为2×104Hz~2×109Hz 的声波称为超声波。超声波作为声波的一部分, 遵循声波传播的基本定律, 1.2超声波的性质

1)超声波在液体介质中传播时,达到一定程度的声功率就可在液体中的物体界面上产生强烈的冲击(基于“空化现象”)。从而引出了“功率超声应用技术“例如“超声波清洗”、“超声波钻孔”、“超声波去毛刺”(统称“超声波加工”)等。

2)超声波具有良好的指向性

3)超声波只能在弹性介质中传播,不能再真空中传播。一般检测中通常把空气介质作为真空处理,所以认为超声波也不能通过空气进行传播。 4)超声波可以在异质界面透射、反射、折射和波型转化。 5)超声波具有可穿透物质和在物质中衰减的特性。

6)利用强功率超声波的振动作用,还可用于例如塑料等材料的“超声波焊接”。 1.2超声波的产生与接收

超声波的产生和接收是利用超声波探头中压电晶体片的压电效应来说实现的。由超声波探伤仪产生的电振荡,以高频电压形式加载于探头中压电晶体片的两面电极上时,由于逆压电效应的结果,压电晶体片会在厚度方向上产生持续的伸缩变形,形成了机械振动。弱压电晶体片与焊件表面有良好的耦合时,机械振动就以超声波形式传播进入被检工件,这就是超声波的产生。反之,当压电晶体片收到超声波作用而发生伸缩变形时,正压电效应的结果会使压电晶体片两面产生不同极性的电荷,形成超声频率的高频电压,以回波电信号的形势经探伤仪显示,这就是超声波的接收。 1.3超声波无损检测的原理

超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪就是根据这个原理设计的。

目前便携式的脉冲反射式超声波探伤仪大部分是A扫描方式的,所谓A扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射,反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。 1.4超声波无损检测的优缺点 优点:

1)探伤速度快,效率高

2)设备简单轻巧,机动性强,野外及高空作业方便,实用

3)探测结果不受焊接接头形式的影响,除对焊接缝外,还能检查T形接头及所有角焊缝。

4)对焊缝内危险性缺陷(包括裂缝、未焊透、未熔合)检测灵敏度高 5)易耗品极少,检查成本低 缺点:

1)若工件表面粗糙,需磨平,人工多

2)探测结果判定困难,操作人员需经专门培训并经考核几个 3)缺陷定型及定量困难

4)探测结果的正确评定收人为思想束缚的影响较大 5)探测结果不能直接记录存档

6)对于形状复杂、表面粗糙、内部存在粗晶组织与奥氏体焊缝,探伤困难

2.超声波检测的应用 2.1陶瓷的无损检测 2.1.1陶瓷气孔率的检测

陶瓷的强度、弹性模量、密度等直接和气孔率有关, 有些构件的气孔率决定了它能否使用。陶瓷中超声波的传递速度v和气孔率(或密度) 之间也存在某种关系, 可以通过实测得到v, 再利用式(1)、式(2) 求出陶瓷的气孔率: vv0(1p)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1) v0E0(1v)⋯⋯⋯⋯⋯⋯⋯⋯(2)

0(1v)(12v)式中:

v0——陶瓷的气孔率为零时的理论声速; p——陶瓷的气孔率; E0——陶瓷的弹性模量; 0 ——陶瓷的密度。

将气孔简化为随机取向的椭球, 均匀分布在各向同性的基体中, 用复合微观力学模型计算声速并和实测值进行比较, 由式(1)计算得到气孔率。

当陶瓷材料的理论密度已知时, 气孔率可由体密度计算而来。体密度的测量方法很多, 常用的有阿基米德法。陶瓷的内部缺陷也可以采用水浸探伤法来检测, 以水浸纵波垂直探伤法检测缺陷时, 波束路程可以直接读出。要检出微小缺陷时, 可以改用较低频率的探头。 2.1.2陶瓷表面缺陷检测

对于陶瓷而言, 同一形状和尺寸的表面缺陷比内部缺陷更容易引起破坏, 因此表面缺陷的检测特别重要。通常用水浸表面波法检测陶瓷的表面缺陷, 其原理见图1。将超声波( 纵波) 倾斜入射到浸入水中的被检物表面, 当入射角c大于第二临界角n时, 折射声波全部沿着工件表面传播, 形成表面波, 表示为: carcsin(Cl1/Cr2)n⋯⋯⋯⋯⋯⋯⋯(3) 式中:

Cl1——水中的纵波声速; Cr2——工件水浸表面波声速。

图1 水浸表面波法原理

表面波波长比横波波长短, 衰减也大于横波。同时, 它仅沿表面传播, 遇到尖锐转角或棱角时将有强烈反射回波, 曲率越大反射越强。水浸表面波在试块表面传播时, 能量可泄漏到水中, 故仅仅传播数毫米后, 水浸表面波的反射波高度就显著降低。鉴于反射波传递距离较小的振幅特性, 应尽可能使探头靠近缺陷处。

2.2钻孔灌注桩的无损检测 2.2.1检测原理

采用超声脉冲检测混凝土缺陷的基本依据是,利用脉冲波在技术条件相同 (指混凝土的原材料、配合比、龄期和测试距离一致) 的混凝土中传播的时间 (或速度)、接收波的振幅和频率等声学参数的相对变化来判定混凝土的缺陷。

超声脉冲波在混凝土中传播速度的快慢,与混凝土的密实度有直接关系,对于原材料、配合比、龄期及测试距离一定的混凝土来说,声速高则混凝土密实,相反则混凝土不密实。当有空洞或裂缝存在时,便破坏了混凝土的整体性,超声脉冲波只能绕过空洞或裂缝传播到接收换能器,因此传播的路程增大,测得的声时必然偏长或声速降低。另外,由于空气的声阻抗率远小于混凝土的声阻抗率,脉冲波在混凝土中传播时,遇到蜂窝、空洞或裂缝等缺陷,便在缺陷界面发生反射和散射,声能被衰减,其中频率较高的成分衰减更快,因此接收信号的波幅明显降低,频率明显减小或频率谱中高频成分明显减少。再者经过缺陷反射或绕过缺陷传播的脉冲波信号与直达波信号之间存在声程和相位差,叠加后互相干扰,致使接收信号的波形发生畸变。

根据上述原理,可以利用混凝土声学参数测量值和相对变化综合分析,判别其缺陷的位置和范围,或估算缺陷的尺寸。 2.2.2适用范围

基桩超声波检测法是一种检测混凝土灌注桩完整性的有效手段,它是利用声波的透射原理对桩身混凝土介质状况进行检测,因此仅适用于在灌注成型过程中已经埋了两根或两根以上声测管的基桩。

在桩身预埋一定数量的声测管,通过水的耦合,超声波从一根声测管中发射,在另一根声测管中接收,可以测出被测混凝土介质的声学参数。由于超声波在混凝土中遇到缺陷时会产生绕射、反射和折射,因而到达接收换能器的声时、波幅及主频发生改变。超声波法就是利用这些声波特征参数来判别桩身的完整性。

对跨孔透射法,当桩径较小时,声测管间距也较小,其测试误差相对较大,同时预埋声测管可能引起附加的灌注桩施工质量问题。因此,超声波检测方法适用于检测直径不小于 800mm 的混凝土灌注桩的完整性。

3.超声波检测的发展前景

无损检测与评价技术在我国日常产品质量检验和大量在用工业和民用设备的检验中发挥了十分重要的作用。从统计结果看,我国拥有近17万无损检测人员和2000多家无损检测机构,2007年无损检测仪器的销售额达10亿元人民币左右,大专院校每年培养近千名无损检测专业的大专、本科和研究生。我国不仅对常规无损检测设备、器材和服务有着巨大的需求,而且对先进的无损检测仪器、技术和服务也有大量的需求。我国已成为一个无损检测仪器、技术和服务的巨大市场。我国的无损检测工作者已经在许多技术和领域进行了大量的研究、开发和成功的应用。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:pk员工承诺书范文下一篇:榜样2思想汇报范文