万有引力定律综合应用

2023-04-21

第一篇:万有引力定律综合应用

《万有引力定律应用》教案

【教学目标】 1. 知识与技能

(1) 会计算天体的质量. (2) 会计算人造卫星的环绕速度. (3) 知道第二宇宙速度和第三宇宙速度. 2. 过程与方法

(1) 通过自主思考和讨论与交流,认识计算天体质量的思路和方法

(2) 预测未知天体是万有引力定律最辉煌的成就之一.引导学生让学生经历科学探究的过程,体会科学探究需要极大的毅力和勇气. (3) 通过对海王星发现过程的了解,体会科学理论对未知世界探索的指导作用. (4) 由牛顿曾设想的人造卫星原理图,结合万有引力定律和匀速圆周运动的知识推出第一宇宙速度. (5) 从卫星要摆脱地球或太阳的引力而需要更大的发射速度出发,引出第二宇宙速度和第三宇宙速度. 3. 情感、态度与价值观

(1) 体会和认识发现万有引力定律的重要意义. (2) 体会科学定律对人类探索未知世界的作用. 【教材分析】

这节课通过对一些天体运动的实例分析,使学生了解:通常物体之间的万有引力很小,常常觉察不出来,但在天体运动中,由于天体的质量很大,万有引力将起决定性作用,对天 体质量的计算,对天文学的发展起了方大的推动作用,其中一个重要的应用就是计算天体的质量. 在讲课时,应用万有引力定律有三条思路要交待清楚。

1.从天体质量的计算,是发现海王星的成功事例,注意对学生研究问题的方法教育,即提出问题,然后猜想与假设,接着制定计划,应按计划计算出结果,最后将计算结果同实际结合对照....直到使问题得到解决. 2.把天体(或卫星)的运动看成是匀速圆周运动,即F引=F向,用于计算天体(中心体)的质量,讨论卫星的速度、角速度、周期及半径等问题。

3.在地面附近把万有引力看成物体的重力,即F引=mg.主要用于计算涉及重力加速 的问题。 【教学重点】

1. 人造卫星、月球绕地球的运动;行星绕太阳的运动的向心力是由万有引力提供的 2. 会用已知条件求中心天体的质量 【教学难点】

根据已有条件求天体的质量和人造卫星的应用. 【教学过程及师生互动分析】

自从卡文迪许测出了万有引力常量,万有引力定律就对天文学的发展起了很大的推动作用,这节课我们来学习万有引力定律在天文学上的应用. (一) 天体质量的计算

提出问题引导学生思考:在天文学上,天体的质量无法直接测量,能否利用万有引定 律和前面学过的知识找到计算天体质量的方法呢?

1.基本思路:在研究天体的运动问题中,我们近似地把一个天体绕另一个天体的运动 看作匀速圆周运动,万有引力提供天体作圆周运动的向心力. 2.计算表达式:

例如:已知某一行星到太阳的距离为r,公转周期为T,太阳质量为多少?

分析:设太阳质量为M,行星质量为m,由万有引力提供行星公转的向心力得:

, ∴

提出问题引导学生思考:如何计算地球的质量?学生讨论后自己解决

分析:应选定一颗绕地球转动的卫星,测定卫星的轨道半径和周期,利用上式求出地球质量。因此上式是用测定环绕天体的轨道半径和周期方法测被环绕天体的质量,不能测环 绕天体自身质量. 对于一个天体,M是一个定值.所以,绕太阳做圆周运动的行星都有第三定律。

.即开普勒老师总结:应用万有引力定律计算天体质量的基本思路是:根据行星(或卫星)运动的情况,求出行星(或卫星)的向心力,而F向=F万有引力。根据这个关系列方程即可.

(二)预测未知天体:利用教材和动画模型,讲述自1781年天王星的发现后,人们发现天王星的实际轨道与由万有引力定律计算出的理论轨道存在较大的误差,进而提出猜想...然后收集证据提出问题的焦点所在---还有一颗未知的行星影响了天王星的运行,最后亚当斯和勒维烈争得在计算出来的位置上发现了海王星. (此部分内容,让学生看教材看动画,然后学生畅所欲言,也可以让学生课后找资料写一个科普小论文,阐述一下科学的研究方法. 三)人造卫星和宇宙速度 人造卫星:

问题一:1.有1kg的物体在北京的重力大还是在上海的重力大?

问题二:卫星为什么不会掉下来呢?

问题三:

1、地球在作什么运动?人造地球卫星在作什么运动?

通过展示图片为学生建立清晰的图景.

2、作匀速圆周运动的向心力是谁提供的?

回答:地球与卫星间的万有引力即由牛顿第二定律得:

3、由以上可求出什么?

①卫星绕地球的线速度:

②卫星绕地球的周期:

③卫星绕地球的角速度:

教师可带领学生分析上面的公式得:

当轨道半径不变时,则卫星的周期不变、卫星的线速度不变、卫星的角速度也不变.

当卫星的角速度不变时,则卫星的轨道半径不变. 宇宙速度:当卫星轨道最低—贴近地球表面运动的时候呢?

上式中将R替换r,即可得到第一宇宙速度. 注意:让学生亲自计算一下第一宇宙速度的大小,并帮助学生分析出来,第一宇宙速度就是最大的运行速度和最小的发射速度. 引出第二宇宙速度和第三宇宙速度.指明应用的状况. 【课堂例题及练习】

例1.木星的一个卫星运行一周需要时间1.5×104s,其轨道半径为9.2×107m,求木星的质量为多少千克?

解:木星对卫星的万有引力提供卫星公转的向心力:

例2.地球绕太阳公转,轨道半径为R,周期为T。月球绕地球运行轨道半径为r,周

期为t,则太阳与地球质量之比为多少?

解:⑴地球绕太阳公转,太阳对地球的引力提供向心力

则, 得:

⑵月球绕地球公转,地球对月球的引力提供向心力 则 ,得:

⑶太阳与地球的质量之比

例3.一探空箭进入绕太阳的近乎圆形的轨道运行,轨道半径是地球绕太阳公转半径的9倍,则探空火箭使太阳公转周期为多少年?

解:方法一:设火箭质量为m1,轨道半径R,太阳质量为M,地球质量为m2,轨道半

径为r.

⑴火箭绕太阳公转, 则

得:………………①

⑵地球绕太阳公转,

得:………………②

∴ ∴火箭的公转周期为27年.

方法二:要题可直接采用开普勒第三定律求解,更为方便. 【课后作业及练习】

1. 已知月球到地球的球心距离为r=4×10m,月亮绕地球运行的周期为30天,求地球 的质量.

82.将一物体挂在一弹簧秤上,在地球表面某处伸长30mm,而在月球表面某处伸长5mm.如果在地球表面该处的重力加速度为9.84 m/s,那么月球表面测量处相应的重力加速度为

A.1.64 m/s2

B.3.28 m/s2

C.4.92 m/s

D.6.56 m/s

 2

2

23.地球是一个不规则的椭球,它的极半径为6357km,赤道半径为6378km,物体在两极所受的引力与在赤道所受的引力之比为

第二篇:3.3万有引力定律的应用教案2(教科版必修2)

第3节

万有引力定律的应用

一、知识目标

1.会利用万有引力定律计算天体的质量。 2.理解并能够计算卫星的环绕速度。

3.知道第二宇宙速度和第三宇宙速度及其含义。

二、情感、态度与价值观:

1.了解万有引力定律在探索宇宙奥秘中的重要作用,感受科学定律的巨大魅力。 2.体会科学探索中,理论和实践的关系。 3.体验自然科学中的人文精神。

三、能力目标

培养学生对万有引力定律的理解和利用有限的已知条件进行近似计算的能力。

四、教学重点:

1.利用万有引力定律计算天体质量的思路和方法 2.发现海王星和冥王星的科学案例 3.计算环绕速度的方法和意义

4.第二宇宙速度和第三宇宙速度及其含义

五、教学难点:

天体质量计算 教学方法:

自主讨论思考、推导、引导分析 课时安排:1课时

教学步骤:

一、导入新课

牛顿通过对前人研究结果的总结和假设、推理、类比、归纳,提出了万有引力定律

FGm1m2 2r在一百多年后,由英国科学家卡文迪许精确测定了万有引力常数G,从那时候起,万有引力才表现出巨大的威力。尤其在天体物理学计算、天文观测、卫星发射和回收等天文活动中,万有引力定律可称为最有力的工具。

二、新课教学

投影月球绕地转动的动画演示,

提出问题:若月球绕地球做匀速圆周运动,其周期为T,已知月球到地心距离为r,如何通过这些条件,应用万有引力定律计算地球质量?(要求学生以讨论小组为单位就此问题展开6分钟讨论,讨论出结果后,提供计算基本思路、计算过程和结果、并总结万有引力定律计算天体质量的方法,教师在教室巡回,找出两个结果比较完整,讨论思路清晰但计算过程略有不同的组,要求其对所讨论的问题进行回答。)

显示:匀速圆周运动,周期T、月球到地心距离r,求:地球质量M 教师总结两组的讨论过程和结果,比较后,对所讨论的问题得出一个更加完善的答案。板书演示,重现这一完整过程,并对问题的答案做出总结。要求各小组将这个结果和自己小组的结果进行两分钟比较讨论。(总用时约6分钟)

提出问题:利用这种方法,是否可以计算不带卫星的天体的质量?为什么? 学生回答,教师总结。

讲解例题(课本练习1):已知地球绕太阳做匀速圆周运动的周期为365天,地球到太阳的距离为1.5×10m,取G=6.67×101

1-11

N·m/km,求太阳的质量。

2提问学生,将学生的思路地月系扩展到太阳系。提问学生太阳系目前观测到有多少颗行星?他们分别是哪些呢?

学生回答后,投影出太阳系九大行星运行图,并展示部分行星的照片。

提出:引入美国天文学家发现的可能的太阳系的第十颗行星,及海王星和冥王星发现的故事,要求学生就这些案例,联系认识宇宙范围越大,所需探索时间越长这个事实,经过三分钟讨论,谈谈自身获得什么启示。并鼓励学生查阅相关资料,了解更多的关于行星的知识,激发学生对这一问题的兴趣,鼓励学生利用已有条件,探索宇宙的奥秘。

将课堂引回地月系,从地月系的环绕关系,引入地球卫星。提问有关卫星的一些问题。 例如:卫星发射速度、卫星轨道形状、卫星运行速度等等。

讲述卫星的理论模型在牛顿年代已经出现,并演示这一模型。让学生接受环绕速度的概念。通过万有引力定律和向心力公式联系,解出地球附近的环绕速度的值,板书这一题设和计算推理过程。

提出问题:如果发射速度大于环绕速度会有什么结果?提醒学生结合卫星的椭圆形轨道,作出讨论猜想,学生讨论出结果之后,提供不同情况下的卫星运行演示。

引入大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度。再用演示和计算结合的方法引导学生得到环绕速度是卫星运行的最大速度,也是最小发射速度这一结论。

教师总结指出这里学生常常出现的错误,并加以强调。

提供地球上不同纬度地区单位质量物体所受重力的值(相当于提供重力加速度),和地球表面单位质量物体所受地球的万有引力的值,要求学生作出比较,讨论,学生可以得到两者近似相等的结论:地面附近mg=GMm/R,即gR=GM这一结论。

例题(课本练习3)如果近似地认为地球对地面物体地引力等于其重力mg,你能否据此推出环绕速度?提问后,再讲解。

2

2三、小结:本节课的重点问题:

1.利用万有引力定律计算天体质量的思路和方法 2.了解发现海王星和冥王星的科学案例 3.计算环绕速度的方法和意义

4.知道第二宇宙速度和第三宇宙速度及其含义 课后作业:本节课后练习

1、3两道题。

教学总结

本节课主要通过万有引力定律在三个方面的重要应用,让学生看到理论和实际之间的重要联系,体会理论与实践的关系。一方面培养学生逻辑思维能力和人文精神,另一方面培养学生对天体物理学的兴趣。

第三篇:6.4第四节 万有引力定律在天文学上的应用

新沂市瓦窑中学

何小孔

编号:

第四节

万有引力定律在天文学上的应用

教学目的:

1、进一步掌握万有引力定律的内容

2、能应用这个定律进行计算一些比较简单的天体问题 教学重点:

巩固万有引力定律的内容

教学难点:

应用万有引力定律解决实际问题

教学方法:

启发、讲练

教学过程:

一、复习提问:

1、什么叫万有引力?

2、万有引力定律的内容如何?公式如何表示?

二、引入新课:

万有引力定律揭示了天体运动的规律, 是研究天体运动的重要理论基础.万有引力定律的发现对天文学的发展起了很大的推动作用,取得了重大的成就. 下面我们举例来说明万有引力定律在天文学上的应用.

三、讲授新课:

1、太阳和行星的质量:

应用万有引力定律,可以计算太阳和行星的质量,行星围绕太阳的运动,可以近似地看作匀速圆周运动,具体如下:

设M为太阳(或某一天体)的质量,m是行星(或某一卫星)的质量, r是行星(或卫星)的轨道半径,T是行星(或卫星)绕太阳(或天体)公转的周期.那么太阳(或这个天体)对行星(或卫星)的引力就是行星(或卫星)绕太阳(或天体)运动的向心力:

GmM/r2=ma=4π2mr/T2

由上式可得太阳(或天体)的质量为:

M=4π2r3/GT2

测出r和T,就可以算出太阳(或天体)质量M的大小.例如:

地球绕太阳公转时r=1.49×1011m,T=3.16×107s, 所以太阳的质量为:

M=1.96×1030kg.

同理根据月球绕地球运动的r和T,可以计算地球的质量:

M=5.98×1024kg

2、海王星、冥王星的发现: 共2页

第1页

新沂市瓦窑中学

何小孔

编号:

海王星、冥王星的发现,进一步地证明了万有引力定律的正确性,显示了它对研究天体运动的重要意义.

四、小结、巩固练习:

例一.当通讯卫星以3.1km/s的速率在离地面3.6×104km的高空轨道上作匀速圆周运动时,可与地球自转同步.试求地球的质量. 地球的半径取6.4×103km.

例二.两颗靠得很近的恒星称为双星,这两颗星必须各以一定速率绕某一中心转动,才不致于由于万有引力的作用而吸引在一起.已知两恒星质量分别为m1和m2,两星相距为L. 求这两星转动的中心位置和这两星的转动周期.

例三.已知火星的半径是地球的半径的一半,火星的质量是地球的质量的1/10.如果在地球上质量为60kg的人到火星上去,问:

⑴在火星表面上人的质量多大?重量多少?

⑵火星表面的重力加速度多大?

⑶设此人在地面上能跳起的高度为1.6m,则他在火星上能跳多高?

⑷这个人在地面上能举起质量为60kg的物体, 他在火星上可举多重的物体?

六.布置作业:

1.书面作业:

2.家庭作业:

板书设计:

教学效果分析:

共2页

第2页

第四篇:高一物理高一全部教案(共52个)06.4.万有引力定律在天文学上的应用

万有引力定律在天文学上的应用人造卫星

一、教学目标

1.通过对行星绕恒星的运动及卫星绕行星的运动的研究,使学生初步掌握研究此类问题的基本方法:万有引力作为物体做圆周运动的向心力。 2.使学生对人造地球卫星的发射、运行等状况有初步了解,使多数学生在头脑中建立起较正确的图景。

二、重点、难点分析

1.天体运动的向心力是由万有引力提供的,这一思路是本节课的重点。 2.第一宇宙速度是卫星发射的最小速度,是卫星运行的最大速度,它们的统一是本节课的难点。

三、教具

自制同步卫星模型。

四、教学过程 (一)引入新课 1.复习提问:

(1)物体做圆周运动的向心力公式是什么?分别写出向心力与线速

(2)万有引力定律的内容是什么?如何用公式表示?(对学生的回答予以纠正或肯定。)

(3)万有引力和重力的关系是什么?重力加速度的决定式是什么?(学生回答:地球表面物体受到的重力是物体受到地球万有引力的一个分力,但这个分力的大小基本等于物体受到地球的万有引力。如不全面,教师予以补充。)

2.引课提问:根据前面我们所学习的知识,我们知道了所有物体之间都存在着相互作用的万有引力,而且这种万有引力在天体这类质量很大的物体之间是非常巨大的。那么为什么这样巨大的引力没有把天体拉到一起呢?(可由学生讨论,教师归纳总结。)

因为天体都是运动的,比如恒星附近有一颗行星,它具有一定的速度,根据牛顿第一定律,如果不受外力,它将做匀速直线运动。现在它受到恒星对它的万有引力,将偏离原来的运动方向。这样,它既不能摆脱恒星的控制远离恒星,也不会被恒星吸引到一起,将围绕恒星做圆周运动。此时,行星做圆周运动的向心力由恒星对它的万有引力提供。(教师边讲解,边画板图。) 可见万有引力与天体的运动密切联系,我们这节课就要研究万有引力定律在天文学上的应用。

板书:万有引力定律在天文学上的应用人造卫星 (二)教学过程

1.研究天体运动的基本方法

刚才我们分析了行星的运动,发现行星绕恒星做圆周运动,此时,恒星对行星的万有引力是行星做圆周运动的向心力。其实,所有行星绕恒星或卫星绕行星的运动都可以基本上看成是匀速圆周运动。这时运动的行星或卫星的受力情况也非常简单:它不可能受到弹力或摩擦力,所受到的力只有一种——万有引力。万有引力作为其做圆周运动的向心力。

板书:F万=F向

下面我们根据这一基本方法,研究几个天文学的问题。 (1)天体质量的计算

如果我们知道了一个卫星绕行星运动的周期,知道了卫星运动的轨道半径,能否求出行星的质量呢?根据研究天体运动的基本方法:万有引力做向心力,F万=F向

(指副板书)此时知道卫星的圆周运动周期,其向心力公式用哪个好呢?

等式两边都有m,可以约去,说明与卫星质量无关。我们就可以得

(2)卫星运行速度的比较

下面我们再来看一个问题:某行星有两颗卫星,这两颗卫星的质量和轨道半径都不相同,哪颗卫星运动的速度快呢?我们仍然利用研究天体运动的基本方法:以万有引力做向心力

F万=F向

设行星质量为M,某颗卫星运动的轨道半径为r,此卫星质量为m,它受到行星对它的万有引力为

(指副板书)于是我们得到

等式两边都有m,可以约去,说明与卫星质量无关。于是我们得到

从公式可以看出,卫星的运行速度与其本身质量无关,与其轨道半径的平方根成反比。轨道半径越大,运行速度越小;轨道半径越小,运行速度越大。换句话说,离行星越近的卫星运动速度越大。这是一个非常有用的结论,希望同学能够给予重视。

(3)海王星、冥王星的发现

刚才我们研究的问题只是实际问题的一种近似,实际问题要复杂一些。比如,行星绕太阳的运动轨道并不是正圆,而是椭圆;每颗行星受到的引力也不仅由太阳提供,除太阳的引力最大外,还要受到其他行星的引力。这就需要更复杂一些的运算,而这种运算,导致了海王星、冥王星的发现。

200年前,人们认识的太阳系有7大行星:水星、金星、地球、火星、土星、木星和天王星,后来,人们发现最外面的行星——天王星的运行轨道与用万有引

力定律计算出的有较大的偏差。于是,有人推测,在天王星的轨道外侧可能还有一颗行星,它对天王星的引力使天王星的轨道发生偏离。而且人们计算出这颗行星的可能轨道,并且在计算出的位置终于观测到了这颗新的行星,将它命名为海王星。再后,又发现海王星的轨道也与计算值有偏差,人们进一步推测,海王星轨道外侧还有一颗行星,于是用同样的方法发现了冥王星。可见万有引力定律在天文学中的应用价值。

2.人造地球卫星

下面我们再来研究一下人造地球卫星的发射及运行情况。 (1)卫星的发射与运行

最早研究人造卫星问题的是牛顿,他设想了这样一个问题:在地面某一高处平抛一个物体,物体将走一条抛物线落回地面。物体初速度越大,飞行距离越远。考虑到地球是圆形的,应该是这样的图景:(板图) 当抛出物体沿曲线轨道下落时,地面也沿球面向下弯曲,物体所受重力的方向也改变了。当物体初速度足够大时,物体总要落向地面,总也落不到地面,就成为地球的卫星了。

从刚才的分析我们知道,要想使物体成为地球的卫星,物体需要一个最小的发射速度,物体以这个速度发射时,能够刚好贴着地面绕地球飞行,此时其重力提供了向心力。

其中,g为地球表面的重力加速度,约9.8m/s2。R为地球的半径,约为6.4×106m。代入数据我们可以算出速度为7.9×103m/s,也就是7.9km/s。这个速度称为第一宇宙速度。

板书:第一宇宙速度v=7.9km/s 第一宇宙速度是发射一个物体,使其成为地球卫星的最小速度。若以第一宇宙速度发射一个物体,物体将在贴着地球表面的轨道上做匀速圆周运动。若发射速度大于第一宇宙速度,物体将在离地面远些的轨道上做圆周运动。

现在同学思考一个问题:刚才我们分析卫星绕行星运行时得到一个结论:卫星轨道离行星越远,其运动速度越小。现在我们又得到一个结论:卫星的发射速度越大,其运行轨道离地面越远。这两者是否矛盾呢?

其实,它们并不矛盾,关键是我们要分清发射速度和运行速度是两个不同的速度:比如我们以10km/s的速度发射一颗卫星,由于发射速度大于7.9km/s,卫星不可能在地球表面飞行,将会远离地球表面。而卫星远离地球表面的过程中,其在垂直地面方向的运动,相当于竖直上抛运动,卫星速度将变小。当卫星速度减小到7.9km/s时,由于此时卫星离地球的距离比刚才大,根据万有引力定律,此时受到的引力比刚才小,仍不能使卫星在此高度绕地球运动,卫星还会继续远离地球。卫星离地面更远了,速度也进一步减小,当速度减小到某一数值时,比如说5km/s时,卫星在这个位置受到的地球引力刚好满足卫星在这个轨道以这个速度运动所需向心力,卫星将在这个轨道上运动。而此时的运行速度小于第一宇宙速度。所以,第一宇宙速度是发射地球卫星的最小速度,是卫星地球运行的最大速度。

板书:第一宇宙速度是发射地球卫星的最小速度,是卫星绕地球运行的最大速度。

如果物体发射的速度更大,达到或超过11.2km/s时,物体将能够摆脱地球引力的束缚,成为绕太阳运动的行星或飞到其他行星上去。11.2km/s这个速度称为第二宇宙速度。

板书:第二宇宙速度v=11.2km/s 如果物体的发射速度再大,达到或超过16.7km/s时,物体将能够摆脱太阳引力的束缚,飞到太阳系外。16.7km/s这个速度称为第三宇宙速度。

板书:第三宇宙速度v=16.7km/s (2)同步通讯卫星

下面我们再来研究一种卫星——同步通信卫星。这种卫星绕地球运动的角速度与地球自转的速度相同,所以从地面上看,它总在某地的正上方,因此叫同步卫星。这种卫星一般用于通讯,又叫同步通讯卫星。我们平时看电视实况转播时总听到解说员讲:正在通过太平洋上空或印度洋上空的通讯卫星转播电视实况,为什么北京上空没有同步卫星呢?大家来看一下模型(出示模型):

若在北纬或南纬某地上空真有一颗同步卫星,那么这颗卫星轨道平面的中心应是地轴上的某点,而不是地心,其需要的向心力也指向这一点。而地球所能够提供的引力只能指向地心,所以北纬或南纬某地上空是不可能有同步卫星的。另外由于同步卫星的周期与地球自转周期相同,所以此卫星离地球的距离只能是一个定值。换句话说,所有地球的同步卫星只能分布在赤道正上方的一条圆弧上,而为了卫星之间不相互干扰,大约3度角左右才能放置一颗卫星,地球的同步通讯卫星只能有120颗。可见,空间位置也是一种资源。(可视时间让学生推导同步卫星的高度)

五、课堂小结

本节课我们学习了如何用万有引力定律来研究天体运动的问题;掌握了万有引力是向心力这一研究天体运动的基本方法;了解了卫星的发射与运行的一些情况;知道了第一宇宙速度是卫星发射的最小速度,是卫星绕地球运行的最大速度。最后我们还了解了通讯卫星的有关情况,本节课我们学习的内容较多,希望及时复习。

六、说明

1.设计思路:本节课是一节知识应用与扩展的课程,所以设计时注意加大知识含量,引起学生兴趣。同时注意方法的培养,让学生养成用万有引力是天体运动的向心力这一基本方法研究问题的习惯,避免套公式的不良习惯。围绕第一宇宙速度的讨论,让学生形成较正确的卫星运动图景。

2.同步卫星模型是用一地球仪改制而成,用一个小球当卫星,小球与地球仪用细线相连,细线的一端可在地球仪的不同纬度处固定。

第五篇:牛顿万有引力定律与库仑定律分析的论文[本站推荐]

牛顿万有引力定律:“万有引力是存在于任何物体之间的一种吸引力。万有引力定律表明,两个质点之间万有引力的大小,与它们质量的乘积成正比,与它们距离的平方成反比。”

在定律中“物体”的概念,物体是由原子、分子、质子、中子、电子、夸克等基本粒子构成的,构成物体的基本粒子就有基本粒子的数量及排列方式、位置共同存在的事实。还有绝对化的“任何物体”这几个字,可以认为,任何物体就是基本粒子的任何数量及任何排列方式、位置。在定律中所讲到的“质量”,对于“质量”来说,也有基本粒子的数量及排列方式、位置共同存在的事实。还有与距离的平方成反比。总结:两个质点之间万有引力的大小:与基本粒子的数量及排列方式、位置有联系。而且与距离的平方成反比。

库仑定律:“两个磁极间的引力或斥力的方向在两个磁极的连线上,大小跟它们的磁极强度的乘积成正比,跟它们之间距离的平方成反比。”在定律中“磁极”的概念,磁极是由原子、分子、质子、中子、电子、夸克等基本粒子构成的,构成磁极的基本粒子就有基本粒子的数量及排列方式、位置共同存在的事实。

在定律中所讲到的“磁极强度”,对“磁极强度”来说,也有基本粒子的的数量及排列方式、位置共同存在的事实。还有与距离的平方成反比。

总结:两个磁极间的引力或斥力的大小:与基本粒子的数量及排列方式、位置有联系。而且与距离的平方成反比。通过以上总结,证明了影响万有引力大小与影响磁力的大小的因素是同样的:与基本粒子的数量及排列方式、位置有联系。而且与距离的平方成反比。由此证明,万有引力与磁力可以转换,物体间是万有引力或是磁力是由基本粒子的排列方式、位置所决定。电埸同样也用以上的理由。关于电与磁的互相转换,网友们是很清楚的,没有必要多讲了。

当然,有的网友不同意用原子、分子的排列来统一牛顿万有引力定律与库仑定律,但是,你无法否认:“两个质点之间万有引力的大小:与基本粒子的数量及排列方式、位置有联系。而且与距离的平方成反比。”,“两个磁极间的引力或斥力的大小:与基本粒子的数量及排列方式、位置有联系。而且与距离的平方成反比。”这样的客观存在的事实。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:物资出门审批管理流程下一篇:握住父亲的手阅读答案