点与圆的位置关系教案

2023-01-14

教案是有效实施课堂教学的基础,在教案中构建各部分、各环节的练习次数、练习组数、预计练习密度、预计心率和心率曲线图等,严格把握、调控运动负荷,形成适宜的运动负荷,真正提升课堂的实效性。下面是小编为大家整理的《点与圆的位置关系教案》,供大家参考借鉴,希望可以帮助到有需要的朋友。

第一篇:点与圆的位置关系教案

点与圆的位置关系教案

第23章《圆》

第5课时 点与圆的位置关系

初三( )班 学号 姓名年月日

学习目标:

1、理解点与圆的位置关系由点到圆心的距离决定;

2、理解不在同一条直线上的三个点确定一个圆;

3、会画三角形的外接圆,熟识相关概念

学习过程

一、点与圆的位置三种位置关系

生活现象:阅读课本P53页,这一现象体现了平面内点与圆的位置关系. ...如图1所示,设⊙O的半径为r, A点在圆内,OAr B点在圆上,OBr C点在圆外,OCr

图1 反之,在同一平面上,已知的半径为r⊙O,和A,B,C三点: .....若OA>r,则A点在圆; 若OB

二、多少个点可以确定一个圆

问题:在圆上的点有多个,那么究竟多少个点就可以确定一个圆呢? 试一试 画图准备:

1、圆的确定圆的大小,圆确定圆的位置; 也就是说,若如果圆的和确定了, 那么,这个圆就确定了。

2、如图2,点O是线段AB的垂直平分线

上的任意一点,则有OAOB

图2

1 / 4

ABo画图:

1、画过一个点的圆。

右图,已知一个点A,画过A点的圆.

小结:经过一定点的圆可以画个。

2、画过两个点的圆。

右图,已知两个点A、B,画过同时经过A、B两点的圆. 提示:画这个圆的关键是找到圆心,

画出来的圆要同时经过A、B两点, 那么圆心到这两点距离,可见, 圆心在线段AB的上。

小结:经过两定点的圆可以画个,但这些圆的圆心在线段的上

3、画过三个点(不在同一直线)的圆。

提示:如果A、B、C三点不在一条直线上,那么经过A、B两点所画的圆的圆心在线段AB的垂直平分线上, 而经过B、C两点所画的圆的圆心在 线段BC的垂直平分线上,此时,这 两条垂直平分线一定相交,设交点为O, 则OA=OB=OC,于是以O为圆心, OA为半径画圆,便可画出经过A、B、C 三点的圆.

小结:不在同一条直线上的三个点确定个圆. .....

三、概括

我们已经知道,经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆(circumcircle).三角形外接圆的圆心叫做这个三角形的外心(circumcenter).这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点.

2 / 4

BAAABCA如图:如果⊙O经过△ABC的三个顶点, 则⊙O叫做△ABC的,圆心O叫

O做△ABC的,反过来,△ABC叫做 ⊙O的。

△ABC的外心就是AC、BC、AB边的交点。

四、分组练习 (A组)

CB

1、已知⊙O的半径为4,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为(

)

A.在圆上

B.在圆外

C.在圆内

D.不确定

2、任意画一个三角形,然后再画这个三角形的外接圆.

3、判断题:

① 三角形的外心到三边的距离相等………………(

) ② 三角形的外心到三个顶点的距离相等。…………(

)

4、三角形的外心在这个三角形的(

)

A.内部

B.外部

C.在其中一边上

D.以上三种都可能

5、能过画图的方法来解释上题。

在下列三个圆中,分别画出内接三角形(锐角,直角,钝角三种三角形)

3 / 4

6、直角三角形的两条直角边分别为5和12,则其外接圆半径的长为

7、若点O是△ABC的外心,∠A=70°,则∠BOC=

(B组)

8、一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是( ) A.2.5cm或6.5cm B.2.5cm C. 6.5cm D.5cm或13cm

9、随意画出四点,其中任何三点都不在同一条直线上,是否一定可以画一个圆经过这四点?请试画图说明.

4 / 4

第二篇:点与圆、直线与圆以及圆与圆的位置关系

一、教学目标 (一)知识教学点

使学生掌握点与圆、直线与圆以及圆与圆的位置关系;过圆上一点的圆的切线方程,判断直线与圆相交、相切、相离的代数方法与几何方法;两圆位置关系的几何特征和代数特征.

(二)能力训练点

通过点与圆、直线与圆以及圆与圆位置关系的教学,培养学生综合运用圆有关方面知识的能力.

(三)学科渗透点

点与圆、直线与圆以及圆与圆的位置关系在初中平面几何已进行了分析,现在是用代数方法来分析几何问题,是平面几何问题的深化.

二、教材分析

1.重点:(1)直线和圆的相切(圆的切线方程)、相交(弦长问题);(2)圆系方程应用.

(解决办法:(1)使学生掌握相切的几何特征和代数特征,过圆上一点的圆的代线方程,弦长计算问题;(2)给学生介绍圆与圆相交的圆系方程以及直线与圆相交的圆系方程.) 2.难点:圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程的证明. (解决办法:仿照课本上圆x2+y2=r2上一点(x0,y0)切线方程的证明.)

三、活动设计

归纳讲授、学生演板、重点讲解、巩固练习.

四、教学过程 (一)知识准备

我们今天研究的课题是“点与圆、直线与圆以及圆与圆的位置关系”,为了更好地讲解这个课题,我们先复习归纳一下点与圆、直线与圆以及圆与圆的位置关系中的一些知识.

第 1 页 共 8 页 1.点与圆的位置关系

设圆C∶(x-a)2+(y-b)2=r2,点M(x0,y0)到圆心的距离为d,则有: (1)d>r (2)d=r (3)d

2.直线与圆的位置关系

设圆 C∶(x-a)2+(y-b)=r2,直线l的方程为Ax+By+C=0,圆心(a,

判别式为△,则有: (1)d

直线与圆相离,即几何特征;

直线与圆相交; 或(1)△>0 (2)△=0 (3)△<0 直线与圆相切;

直线与圆相离,即代数特征,

3.圆与圆的位置关系

设圆C1:(x-a)2+(y-b)2=r2和圆C2:(x-m)2+(y-n)2=k2(k≥r),且设两圆圆心距为d,则有:

(1)d=k+r (2)d=k-r (3)d>k+r (4)d

两圆相交.

第 2 页 共 8 页 (5)k-r

(1)过圆上一点的切线方程:

①圆x2+y2=r2,圆上一点为(x0,y0),则此点的切线方程为x0x+y0y=r2(课本命题).

②圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2(课本命题的推广).

(2)相交两圆的公共弦所在直线方程:

设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0,若两圆相交,则过两圆交点的直线方程为(D1-D2)x+(E1-E2)y+(F1-F2)=0.

(3)圆系方程:

①设圆C1∶x2+y2+D1x+E1y+F1=0和圆C2∶x2+y2+D2x+E2y+F2=0.若两圆相交,则过交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程).

②设圆C∶x2+y2+Dx+Ey+F=0与直线l:Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ为参数).

(二)应用举例

和切点坐标.

分析:求已知圆的切线问题,基本思路一般有两个方面:(1)从代数特征分析;(2)从几何特征分析.一般来说,从几何特征分析计算量要小些.该例题由学生演板完成.

∵圆心O(0,0)到切线的距离为4,

第 3 页 共 8 页 把这两个切线方程写成

注意到过圆x2+y2=r2上的一点P(x0,y0)的切线的方程为x0x+y0y=r2,

2已知实数A、B、C满足A2+B2=2C2≠0,求证直线Ax+By+C=0与圆x2+y2=1交于不同的两点P、Q,并求弦PQ的长.

分析:证明直线与圆相交既可以用代数方法列方程组、消元、证明△>0,又可以用几何方法证明圆心到直线的距离小于圆半径,由教师完成.

证:设圆心O(0,0)到直线Ax+By+C=0的距离为d,则d=

∴直线Ax+By+C=0与圆x2+y1=1相交于两个不同点P、Q.

3求以圆C1∶x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程.

解法一:

第 4 页 共 8 页

相减得公共弦所在直线方程为4x+3y-2=0.

∵所求圆以AB为直径,

于是圆的方程为(x-2)2+(y+2)2=25. 解法二:

设所求圆的方程为:

x2+y2-12x-2y-13+λ(x2+y2+12x+16y-25)=0(λ为参数)

∵圆心C应在公共弦AB所在直线上,

∴ 所求圆的方程为x2+y2-4x+4y-17=0. 小结:

解法一体现了求圆的相交弦所在直线方程的方法;解法二采取了圆系方程求待定系数,解法比较简练.

(三)巩固练习

1.已知圆的方程是x2+y2=1,求:

第 5 页 共 8 页 (1)斜率为1的切线方程;

2.(1)圆(x-1)2+(y+2)2=4上的点到直线2x-y+1=0的最短距离是

(2)两圆C1∶x2+y2-4x+2y+4=0与C2∶x2+y2+2x-6y-26=0的位置关系是______.(内切) 由学生口答.

3.未经过原点,且过圆x2+y2+8x-6y+21=0和直线x-y+5=0的两个交点的圆的方程.

分析:若要先求出直线和圆的交点,根据圆的一般方程,由三点可求得圆的方程;若没过交点的圆系方程,由此圆系过原点可确定参数λ,从而求得圆的方程.由两个同学演板给出两种解法:

解法一:

设所求圆的方程为x2+y2+Dx+Ey+F=0. ∵(0,0),(-2,3),(-4,1)三点在圆上,

第 6 页 共 8 页 解法二:

设过交点的圆系方程为:

x2+y2+8x-6y+21+λ(x-y+5)=0.

五、布置作业

2.求证:两圆x2+y2-4x-6y+9=0和x2+y2+12x+6y-19=0相外切. 3.求经过两圆x2+y2+6x-4=0和x2+y2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.

4.由圆外一点Q(a,b)向圆x2+y2=r2作割线交圆于A、 B两点,向圆x2+y2=r2作切线QC、QD,求:

(1)切线长;

(2)AB中点P的轨迹方程. 作业答案:

2.证明两圆连心线的长等于两圆半径之和 3.x2+y2-x+7y-32=0

六、板书设计

第 7 页 共 8 页

第 8 页 共 8 页

第三篇:《直线与圆的位置关系》教案

教学目标:

根据学过的直线与圆的位置关系的知识,组织学生对编出的有关题目进行讨论.讨论中引导学生体会

(1)如何从解决过的问题中生发出新问题.

(2)新问题的解决方案与原有旧方法之间的联系与区别.

通过编解题的过程,使学生基本了解、把握有关直线与圆的位置关系的知识可解决的基本问题,并初步体验数学问题变化、发展的过程,探索其解法.

重点及难点:

从学生所编出的具体问题出发,适时适度地引导学生关注问题发展及解决的一般策略.

教学过程

一、引入:

1、判断直线与圆的位置关系的基本方法:

(1)圆心到直线的距离

(2)判别式法

2、回顾予留问题:

要求学生由学过知识编出有关直线与圆位置关系的新题目,并考虑下面问题:

(1)为何这样编题.

(2)能否解决自编题目.

(3)分析解题方法及步骤与已学过的基本方法、步骤的联系与区别.

二、探讨过程:

教师引导学生要注重的几个基本问题:

1、位置关系判定方法与求曲线方程问题的结合.

2、位置关系判定方法与函数或不等式的结合.

3、将圆变为相关曲线.

备选题

1、求过点P(-3,-2)且与圆x2+y2+2x-4y+1=0相切的直线方程.

备选题

2、已知P(x, y)为圆(x+2)2+y2=1上任意一点,求(1)(2)2x+3y=b的取值范围.

备选题

3、实数k取何值时,直线L:y=kx+2k-1与曲线: y=两个公共点;没有公共点.

三、小结:

1、问题变化、发展的一些常见方法,如:

(1)变常数为常数,改系数.

(2)变曲线整体为部分.

有一个公共点;=m的最大、最小值.

(3)变定曲线为动曲线.

2、理解与体会解决问题的一般策略,重视“新”与“旧”的联系与区别,并注意哪些可化归为“旧”的方法去解决.

自编题目:

下面是四中学生在课堂上自己编的题目,这些题目由学生自己亲自编的或是自学中从课外书上找来的题目,这些题目都与本节课内容有关.

①已知圆方程为(x-a)2+(y-b)2=r2,P(x0, y0)是圆外一点,求过P点的圆的两切线的夹角如何计算?

②P(x0, y0)是圆x2+(y-1)2=1上一点,求x0+y0+c≥0中c的范围.

③圆过A点(4,1),且与y=x相切,求切线方程.

④直线x+2y-3=0与x2+y2+x-2ay+a=0相交于A、B两点,且OA⊥OB,求圆方程?

⑤P是x2+y2=25上一点,A(5,5),B(2,4),求|AP|2+|BP|2最小值.

⑥圆方程x2+y2=4,直线过点(-3,-1),且与圆相交分得弦长为3∶1,求直线方程.

⑦圆方程x2+y2=9,x-y+m=0,弦长为

2,求m.

⑧圆O (x-a)2+(y-b)2=r2,P(x0, y0)圆一点,求过P点弦长最短的直线方程?

⑨求y=的最值.

圆锥曲线的定义及其应用

[教学内容]

圆锥曲线的定义及其应用。

[教学目标]

通过本课的教学,让学生较深刻地了解三种圆锥的定义是对圆锥曲线本质的刻画,它决定了曲线的形状和几何性质,因此在圆锥曲线的应用中,定义本身就是最重要的性质。

1.利用圆锥曲线的定义,确定点与圆锥曲线位置关系的表达式,体现用二元不等式表示平面区域的研究方法。

2.根据圆锥曲线定义建立焦半径的表达式求解有关问题,培养寻求联系定义的能力。

3.探讨使用圆锥曲线定义,用几何法作出过圆锥曲线上一点的切线,激发学生探索的兴趣。

4.掌握用定义判断圆锥曲线类型及求解与圆锥曲线相关的动点轨迹,提高学生分析、识别曲线,解决问题的综合能力。

[教学重点]

寻找所解问题与圆锥曲线定义的联系。

[教学过程]

一、回顾圆锥曲线定义,确定点、直线(切线)与曲线的位置关系。

1.由定义确定的圆锥曲线标准方程。

2.点与圆锥曲线的位置关系。

3.过圆锥曲线上一点作切线的几何画法。

二、圆锥曲线定义在焦半径、焦点弦等问题中的应用。

例1.设椭圆+=1(a>b>0),F

1、F2是其左、右焦点,P(x0, y0)是椭圆上任意一点。

(1)写出|PF1|、|PF2|的表达式,求|PF1|、|PF1|·|PF2|的最大最小值及对应的P点位置。

(2)过F1作不与x轴重合的直线L,判断椭圆上是否存在两个不同的点关于L对称。

(3)P1(x1,y1)、P2(x2,y2)、P3(x3, y3)是椭圆上三点,且x1, x2, x3成等差,求证|PF1|、|PF2|、|PF3|成等差。

(4)若∠F1PF2=2,求证:ΔPF1F2的面积S=btg

(5)当a=2, b=最小值。

时,定点A(1,1),求|PF1|+|PA|的最大最小值及|PA|+2|PF2|的

2例2.已知双曲线-=1,F

1、F2是其左、右焦点。

(1)设P(x0, y0)是双曲线上一点,求|PF1|、|PF2|的表达式。

(2)设P(x0, y0)在双曲线右支上,求证以|PF1|为直径的圆必与实轴为直径的圆内切。

(3)当b=1时,椭圆求ΔQF1F2的面积。

+y=1 恰与双曲线有共同的焦点,Q是两曲线的一个公共点,

2例3.已知AB是过抛物线y=2px(p>0)焦点的弦,A(x1, y1), B(x2, y2)、F为焦点,求证:

(1)以|AB|为直径的圆必与抛物线的准线相切。

(2)|AB|=x1+x2+p

(3)若弦CD长4p, 则CD弦中点到y轴的最小距离为

2(4)+为定值。

(5)当p=2时,|AF|+|BF|=|AF|·|BF|

三、利用定义判断曲线类型,确定动点轨迹。

例4.判断方程=1表示的曲线类型。

例5.以点F(1,0)和直线x=-1为对应的焦点和准线的椭圆,它的一个短轴端点为B,点P是BF的中点,求动点P的轨迹方程。

备用题:双曲线实轴平行x轴,离心率e=

,它的左分支经过圆x+y+4x-10y+20=0的

2

2圆心M,双曲线左焦点在此圆上,求双曲线右顶点的轨迹方程。

第四篇:优质课教案直线与圆的位置关系

《直线与圆的位置关系》

教材:华东师大版实验教材九年级上册

一、教材分析: 教材的地位和作用 圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容紧接点与圆的位置关系,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。 教学目标 知识目标:使学生从具体的事例中认知和理解直线与圆的三种位置关系并能概括其定义,会用定义来判断直线与圆的位置关系,通过类比点与圆的位置关系及观察、实验等活动探究直线与圆的位置关系的数量关系及其运用。

过程与方法:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。

情感态度与价值观:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。 教学重、难点

重点:理解直线与圆的相交、相离、相切三种位置关系;

难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。

二、教法与学法分析

教无定法,教学有法,贵在得法。数学是一门培养人的思维、发展人的思维的基础学科。在教学过程中,不仅要对学生传授数学知识,更重要的应该是对他们传授数学思想、数学方法。初三学生虽然有一定的理解力,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象,所以我以参与式探究教学法为主,整堂课紧紧围绕“情景问题——学生体验——合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。这样,一方面可激发学生学习的兴趣,提高学生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。

三、教学过程:

我的教学流程设计是:

创设情景、孕育新知;

2、启发诱导、探索新知;

3、讲练结合、巩固新知;

4、知识拓展、深化提高

5、小结新知,画龙点睛

6、布置作业,复习巩固 教学环节

教学过程

教师活动

学生活动 设计意图

(一)

创设情景,孕育新知,引入新课

1、微机演示唐朝诗人王维《使至塞上》: 单车欲问边,属国过居延。 征蓬出汉塞,归雁入胡天。 大漠孤烟直,长河落日圆。 萧关逢候骑,都护在燕然。

第三句以出色的描写,道出了边塞之景的奇特壮丽和作者的孤寂之感。“荒芜人烟的戈壁滩上只有烽火台的浓烟直冲天空”,如果我们从数学的角度看到的将是这样一幅几何图形:一条直线垂直于一个平面。那么“圆圆的落日慢慢地沉入黄河之中”又是怎样的几何图形呢?请同学们猜想并动手画一画。 借助微机展示“圆圆的落日慢慢地沉入黄河之中”的动画图片从而展现直线与圆的三种位置关系。

3、引入课题——直线与圆的位置关系

提出问题,引导学生思考和探索;深入学生,了解学生探究情况 展示动画但不明示学生三种位置关系的名称 教师板书题目

观察思考,动手探究,交流发现

通过直观画面展示问题情景,学生大胆猜想,激发学生学习兴趣,营造探索问题的氛围。同时让学生体会到数学知识无处不在,应用数学无处不有。符合“数学教学应从生活经验出发”的新课程标准要求。

(二)

启发诱导、讲解新知,探索结论;

1、提出问题(让学生带着问题去学习): (1)、概括直线与圆的有哪几种位置关系,你是怎样区分这几种位置关系的? (2)如何用语言描述三种位置关系? (3)回顾点与圆的位置关系,你能不能探索圆心到直线的距离与圆的半径之间的数量关系。(小组交流合作)

2、讲解新知:利用直线与圆的交点情况,引导学生分析、小结三种位置关系:(1)直线与圆没有交点,称为直线与圆相离

(2)直线与圆只有一个交点,称为直线与圆相切,此时这条直线叫做圆的切线,这个公共点叫切点。

(3)直线与圆有两个交点,称为直线与圆相交。此时这条直线叫做圆的割线。 大胆猜想,探索结论:

微机演示三个图形,观察圆心到直线的距离d与圆半径r之间的大小关系。 (当d›r时,直线在圆的外部,与圆没有交点,因此此时直线与圆相离; 当d=r时,直线与圆只有一个交点,此时直线与圆相切; 当d‹r时,直线与圆有两个交点,此时直线与圆相交) 即:d›r

直线与圆相离

d=r

直线与圆相切 d‹r

直线与圆相交

反之:若直线与圆相离,有d›r吗? 若直线与圆相切,有d=r吗? 若直线与圆相交,有d‹r吗? 总结:

d›r

直线与圆相离

d=r

直线与圆相切 d‹r

直线与圆相交

教师层层设问,让学生思维自然发展,教学有序的进入实质部分。在第(1)个问题中,学生如果回答“从直线与圆的交点个数上来进行区分”,则顺利地进行后面的学习;如果回答“类比点与圆的位置关系比较圆半径r与圆心到直线的距离d的大小进行区分”,则在补充交点个数多少的区分方法。

教师引导小组合作、组织学生完成 教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调“只有一个交点”的含义

教师重复演示引导学生探索,学生归纳总结之后教师对提出的问题给予肯定回答,并强调:利用圆心到直线的距离d与圆半径r之间的大小关系也可以判断直线与圆的三种位置关系。

观察、思考、猜测、概括 学生回答问题,概括定义

学生观察图形,积极思考,归纳总结,获得直线与圆的位置关系的两种判断方法

通过学生概括定义,培养学生归纳概括能力。由点与圆的位置关系的性质与判定,迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导,探索圆心到直线的距离与圆的半径之间的数量关系。

在本环节中教师应关注如下几点:

1、学生是否有独自的见解;

2、学生能否理解“互逆”的关系。如有需要,教师应在课中或课后加以解释。

(三)

讲练结合,应用新知,巩固新知

已知圆的直径为10cm,圆心到直线l的距离是:(1)3cm ;(2)5cm ;(3)7cm。直线和圆有几个公共点?为什么?

已知Rt△ABC的斜AB=6cm,直角边AC=3cm。圆心为A,半径分别为2cm、4cm的两个圆与直线BC有怎样的位置关系?半径r多长时,BC与⊙A相切? 变式训练

1、在上题中,“圆心为C,半径分别为2cm、4cm的两个圆与直线AB有怎样的位置关系?半径r多长时,直线AB与⊙C相切?

变式训练

2、在上题中,若将直线AB改为边AB,⊙C与边AB相交,则圆半径r应取怎样的值?

组织学生完成,引导学生探索

教师加强个别指导,收集信息评估回授,充分发挥教学评价的激励、调控功能,及时采取补救措施,使全体学生即使是学习有困难的学生都达到基本的学习目标,获得成功感。

观察分析,独立完成,同桌点评,自我修正 观察分析 积极思考, 小组交流 合作

本环节的练习难度层层加大,其目的是让学生加强对新知的理解和应用,培养学生解决问题的能力;基础题目和变式题目的结合既面向全体学生,也考虑到了学有余力的学生的学习,体现了因材施教的教学原则。

在本环节中,一定要充分教师的主导作用,发挥教学评价的激励、调控功能。

(四)

知识拓展、深化提高

在某张航海图上,标明了三个观测点的坐标,如图,O(0,0),B(6,0),C(6,8),由三个观测点确定的圆形区域是海洋生物保护区。 求 圆形区域的面积(取3.14)

某时刻海面上出现一渔船A,在观察点O测得A位于北偏东45,同时在观测点B测得A位于北偏东30,那么当渔船A向正西方向航行时,是否会进入海洋生物保护区?

帮助学生理清思路,规范解题格式;让学生明白解此题的关键是:圆半径的大小、点A的坐标。学会将实际问题转化为数学问题,把“渔船A向正西方向航行时,是否会进入海洋生物保护区”的问题转化为直线与圆的位置关系的几何问题。

分组讨论,理解数学建模思想和转化化归思想。

这一阶段是学生形成技能、技巧,发展智力的重要阶段,但也是学生因疲劳而注意力易分散的时期。如果教师此时教学设计得当、选题新颖,由于学生前面已尝到成功的甜蜜,则会乘胜追击,破解难题;否则学生会就此罢休,无法达到预期目的。同时向学生渗透数学建模思想和转化化归的数学思想,也适时进行环保教育。

(五) 小结新知,画龙点睛

一、填表:直线与圆的三种位置关系 直线与圆的位置

相交

相切

相离

公共点的个数

圆心到直线距离d与半径r的关系

直线名称

二、直线与圆的位置关系的两种判断方法: 直线与圆的交点个数的多少

圆心到直线距离d与半径r的大小关系

教师提问,注意数学语言的简洁、准确

学生回答,同时反思不足

通过提问方式进行小结,交流收获与不足,让学生养成学习——总结——再学习的良好学习习惯,有利于帮助学生理清知识脉络,同时明确本节课的学习目标,巩固学习效果。

(六)

布置作业,复习巩固

阅读教材

55、56页 P56练习1.2.3 提高练习:台风是一种在沿海地区较为常见的自然灾害,它在以台风中心为圆心的数十千米乃至数百千米范围内肆虐,房屋、庄稼、汽车等将遭到极强破坏。2006年8月7日,台湾省的东南方向距台湾省500公里处有一名叫“桑美”的台风中心形成。其中心最大风力为14级,每离开台风中心30km风力将降低一级。若此台风中心沿着北偏西15的方向以15km/h的速度移动,且台风中心风力不变。若城市所受到的台风风力为不小于4级,则称为受台风影响

台湾省会受到“桑美”台风的影响吗?

若会受影响,那会台风将会影响台湾省多长时间呢?最大风力将会是几级呢?

本环节的设计:一方面让学生养成课后复习阅读的良好习惯并通过适量的练习复习巩固课堂知识,另一方面设计提高练习,旨在培优,体现了分层教学的原则和因材施教的原则,同时渗透爱国注意教育。

教案设计说明:

本节课的设计体现了“学会学习,为终身学习作准备”的理念,让学生在“数学活动”中获得学习的方法、能力和数学的思想,同时获得对数学学习的积极情感。

教师是教学工作的服务者,教师的责任是为学生的发展创造一个和谐、开放、富有情趣的学习新知识的探究氛围。本课引用唐朝诗人王维的千古绝唱“大漠孤烟直,长河落日圆”配以美伦美奂的景色,营造了探索问题的氛围;例题和提高练习的选用,让学生体会到数学知识无处不在,应用数学无处不有,让学生感受到“生活处处不数学”,从而在生活中主动发觉问题加以解决,达到“乐学”的目的;把实际问题与数学知识紧密联系,逐步渗透数学建模的思想方法,让学生掌握到更多的技能技巧。

课前设问,呈现本课知识目标。课前的3个设问,直奔主题,学生对本课应掌握的知识一目了然,重点分明。

变式训练,把学生置于创新思维的深入培养过程之中。众所周知,实施素质教育的突破口是创新教育,要培养学生的创新能力,就要有让学生进行创新思维的问题,而变式训练就是让学生展开创新思维的主阵地。教师在教学活动中应努力的去挖掘教材,有意识的去训练学生的思维,从而使学生逐渐形成良好的个性思维品质和良好的数学学习习惯。

第五篇:《圆与圆的位置关系》教学反思

汪明静

这节课的内容与 “直线和圆的位置关系”有密切的联系,但这节课的两圆位置关系远比直线与圆的位置关系复杂。 因此,为了调动学生对本节课的学习兴趣,我在黑板上举了日月食的形成过程引入新课。让学生类比直线与圆的位置关系,猜测两圆可能存在的位置关系,然后讨论,归纳确定两圆位置关系的各种情况。学生热情高涨都积极参与。

在与两圆位置关系相应的数量关系的研究中,鉴于学生已有直线与圆的位置关系中两量(半径、圆心到直线的距离)的数量关系的认知基础,就只运用了类比迁移的方法。这些方法的运用,都是为了充分发挥学生在探求新知过程中的主体作用。 其次,与五种位置关系相应的数量关系的研究中,我采用“先易后难,突破关键”的教学策略。先让学生解决易于解决的“外离”、“外切”、“内切”时的三量的数量关系,再解决“内含”时的三量的数量关系,最后突破相交时三量的数量关系:R-r

通过这节课的教学,我觉得课堂就应该交给学生,而不是一味的填鸭式灌输给学生,这样反而达不到预期的效果出来。 而判断圆与圆的位置关系,体现的是解析几何的思想:用方程处理几何问题,用几何方法研究方程性质。所以我在教材处理上,两种方法贯穿始终,使学生对解析几何的本质有所了解。

下面是我在设计这掌课时的一点想法。

一、学生学习新知识必须在学生已有知识和经验的基础上自主建构与形成。所以,我一开始复习此节相关的知识点,通过问题解决,以旧引新,提出新的问题,以类比的方法研究圆与圆的位置关系。启发学生思考当初是怎样研究判断直线与圆的位置关系的方法?这种方法是否同样可以运用到研究圆与圆的位置关系上来?能否用来判断圆与圆的位置关系?使学生很自然的从直线与圆的位置关系的判断方法类比到圆与圆的位置关系的判断方法。

第二、教学的过程就是在教师控制下的学生自主学习和探究合作学习的过程,这个过程中的关键点是怎么样有效的控制学生自主学习和合作探究学习的时间和空间,在教学的过程中,我较好的处理了学生学习的空间与时间,既留给学生充分思考与探索的时间与空间,又严格限定时间。

第三、把解决问题步骤算法化,提前介入算法的思想,有利于后续学习,也有利于学生理清解决问题的思路和规化解决问题的程序。

对于问题探究的题型选择的一些思考:第一,侧重点之一是必须注意到相切的两种位置关系:内切与外切;侧重点之二在于如何找到这两个圆的圆心,是为了让学生回顾两相切圆心与切点在同一直线上这一性质,由此得到圆心坐标。第二研究一个半径变化的圆与定圆相切,求题中参数变化的问题,同样要注意是相切的两种情况。

上完这掌课有几个值得反思的问题:

1.设计思路。圆与圆的位置关系在教材中不如之前直线与圆位置关系的应用性广,有关它的题型受教学要求的局限,使教学设计增加了难度,但是运用已学的直线与圆的位置关系,用类比的方法去处理圆与圆的位置关系又是一个很好的材料,所以我采用了类比的思想,让学生自主探讨出圆与圆位置关系的判断方法,这也比再次独立研究圆与圆位置关系大大的缩短了时间,为后面节省了时间,这种思路是否可行? 2.时间把握。课前复习是有必要的,是为了学生类比旧知识,联想新知识,但复习旧知的时间应该限定在三分钟以内,复习时间长导致巩固练习的时间不足和问题展开不够充分。 3.限时训练。为了让学生更有效率的做题,限定时间过长或是过短都是不利于学生提高数学能力.这点还有待研究。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:党员主题当日活动方案下一篇:党员义务劳动心得体会