知识总结高数范文

2022-06-11

叹岁月流逝太快,转眼间便到了年底,一年的辛苦工作中,我们留下了太多的难忘时刻,也在不断的工作积累中,成长为更好的自己。为了记录这一年的工作成长,我们需要写一份总结,以下是小编收集整理的《知识总结高数范文》,欢迎阅读,希望大家能够喜欢。

第一篇:知识总结高数范文

考研高数知识总结1

考研数学讲座(17)论证不能凭感觉

一元微分学概念众多,非常讲究条件。讨论问题时,要努力从概念出发,积极运用规范的算法与烂熟的基本素材。绝不能凭感觉凭想象就下结论。

1. x趋于∞时,求极限 lim xsin(2x∕(x平方+1) ,你敢不敢作等价无穷小替换?

分析 只凭感觉,多半不敢。依据定义与规则,能换就换。

x 趋于∞时,α = 2x∕(x平方+1)是无穷小,sinα 是无穷小, sinα(x) ~ α(x)且 sinα 处于“因式”地位。可以换。

等价无穷小替换后,有理分式求极限,是“化零项法”处理的标准∞∕∞型,答案为 2

2.设f(x)可导,若f(x)是奇(偶)函数(周期函数,单调函数,有界函数),它的导函数fˊ(x)有什么样的奇偶性(周期性,单调性,有界性) ?

分析 有定义数学式的概念,一定要先写出其定义式。简单一点也行。比如 奇函数 f(-x)= -f(x) 周期为T的函数 f(x+T)= f(x) 等式两端分别求导,得 fˊ(-x) = fˊ(x) fˊ(x+T)= fˊ(x) (实际上,由复合函数求导法则, (f(-x))ˊ= fˊ(-x) (-x)ˊ= -fˊ(-x))

所以,奇函数的导数是偶函数;偶函数的导数是奇函数。(如果高阶可导,还可以逐阶说下去。)周期函数的导数也是周期函数。很有趣的是,因为 (x)ˊ= 1 ,有的非周期函数,比如y = x + sinx ,的导数却是周期函数。

(潜台词:周期函数的原函数不一定是周期函数。)

单调函数定义中没有等式的概念,可以先在基本初等函数中举例观察。

如y = x单增,yˊ = 1不是单调函数。y = sinx在(0,π/2)单增,yˊ = conx 单减,没有确定的结论。

有界性讨论相对较为困难。如果注意到导数的几何意义是函数图形的切线斜率。即切线倾角的正切。就可以想到,在x趋于x0时,要是导数值无限增大,相应的图形切线就趋向于与x轴垂直。显然,圆周上就有具竖直切线的点。

取 y =√(1-x的平方),它在[0,1]有界,但是 x 趋于 1 时,其导数的绝对值趋于正无穷。 这个反例说明有界函数的导数不一定有界。

(画外音:写出来很吓人啊。 x → 1 时 ,lim f (x) = 0 ,而 lim fˊ(x)= -∞ )

3. 连续函数的复合函数一定连续。有间断点的函数的复合函数就一定间断吗?

分析 连续函数的复合,花样更多。原因在于复合函数f(g(x))的定义域,是f(x)的定义域与g(x)值域的交。有“病”的点可能恰好不在“交”内。因而,有间断点的函数的复合函数不一定间断。比如:

取分段函数 g(x)为,x > 0 时 g =1 , x ≤ 0 时 g = -1,0是其间断点。 取 f(u)=√u ,则 f(g(x))= 1 在 x > 0 时有定义且连续。 还有一些原因让“病态点”消失。

如果只图简单,你可以取 f(u)为常函数。以不变应万变。

取 f(u)= u的平方 ,则 f(g(x))= 1 ,显然是个连续函数。

4.设 f (x)可导,若x趋于 +∞ 时 ,lim f (x) = +∞ ,是否必有lim fˊ(x)= +∞ 分析 稍为一想,就知为否。 例如 y = x 更复杂但颇为有趣的是 y = ln x ,x 趋于 +∞ 时 ,它是无穷大。但是 yˊ = 1∕x 趋于0 ,这就是对数函数异常缓慢增长的原因。 5.设f(x)可导,若 x 趋于+∞时,lim fˊ(x) = +∞ , 是否必有 lim f(x) = +∞ 分析 用导数研究函数,这是微积分的正道。首先要体念极限(见指导(3)。): 因为 lim fˊ(x) = +∞,所以当 x 充分大时,不仿设 x > x0 时,总有 fˊ(x)>1 用拉格朗日公式给函数一个新的表达式

f (x)= f (x0)+ fˊ(ξ)(x-x0) , x0 <ξ< x (潜台词: ξ=ξ(x) 。你有这种描述意识吗?) 进而就有, x >x0 时, f (x) >f (x0) + 1(x-x0) (画外音:这一步是高级动作。) 因为 f (x0)是个常数,x0是我们选择的定点,所以上式表明,必有 lim f (x) = +∞ 6 。 设 f (x)可导,若 x 趋于 -∞ 时,lim fˊ(x)=-∞ , 是否必有 lim f (x)= -∞ 分析 否。你如果与上述问题5对比,认为情形相仿,结论必有。那就太想当然了。 请你还是老老实实地象5中那样写出推理吧。结论是

若 x 趋于 -∞ 时,lim fˊ(x)= -∞ , 则必有 lim f (x) = +∞

7.设 f (x)可导,若x 趋于+∞时,lim f (x) = c(常数,)是否必有lim f ˊ(x) = 0 分析 否。lim fˊ(x) 有可能不存在。

这是最容易凭感觉想当然的一个题目。我读本科时,最初的想法就是,“lim f(x) = c 表示函数图形有水平渐近线,函数又可导,当然在 x 趋于+∞时,切线就趋于水平了。”

想当然的原因之一是我们见识太少,脑子里的函数都较简单,图形很光滑漂亮。之二则是对于渐近线的初等理解有惯性。

由极限定义的水平渐近线,并不在乎曲线中途是否与其相交。比如, 曲线可以以渐近线为轴震荡,最终造成 lim fˊ(x) 不存在的后果。 对比条件强化 —— 如果 lim fˊ(x) 存在,则必有 lim fˊ(x) = 0 用反证法证明。且不仿设 x 趋于 +∞ 时 lim fˊ(x) = A >0 与前述5中同样,可以选定充分大的正数 x0,使 x>x0 时,总有 fˊ(x)>A/2 ,然后用拉格朗日公式给函数一个新的表达式,导数条件管住ξ,从而有

f (x) >f (x0) + A(x-x0) /2 —→+∞ 矛盾。

8.函数在一点可导,且导数大于0 ,能说函数在这一点单增吗?

分析 不能。函数的单调性是宏观特征,背景是区间。函数在一点可导,且导数大于0,其间所蕴含的信息只能通过可导的定义去挖掘。即先把条件还原成定义算式,即 x 趋于x0 时,lim ( f (x)-f(x0))/ (x-x0)> 0 如果没有别的条件,下一步就试试体念符号。即在x0邻近,分子分母同号。进而在其右侧邻近,分子分母皆为正,f (x) > f(x0) 。但是,我们不知道函数值相互间的大小。

*9 设f (x)可导,若fˊ(a)·fˊ(b) < 0 ,则(a,b)内必有点c ,fˊ(c) = 0

分析 对。尽管可导函数的导函数不一定连续。但是,导函数天然地满足介值定理。这个结论在微积分中叫“达布定理”。

在本篇问题8中,我们讲了“一点导数大于0”的逻辑推理。现在不仿设 fˊ(a) > 0 而 fˊ(b) < 0 分别在a , b两点处写出导数定义式,体念极限符号,(本篇问题8。)可以综合得到结论:

函数的端值 f (a),f (b) 都不是 f (x)在[a,b] 上的最大值。 最大值只能在(a,b)内一点实现,该点处导数为0 好啊,多少意外有趣事,尽在身边素材中。要的是脚踏实地,切忌空想。 考研数学讲座(18)泰勒公式级数连

中值定理是应用函数的导数研究函数变化特点的桥梁。中值定理运用函数在选定的中心点x0的函数值、导数值以及可能的高阶导数值,把函数表示为一个多项式加尾项的形式。再利用已知导函数的性质来处理尾项,对函数做进一步讨论。

中值定理的公式(可微分条件,有限增量公式,泰勒公式)都是描述型的数学公式。 描述型的数学公式并不难学。什么条件下可以用什么样的公式描述,你记住公式,完整地写出来不就行了。公式中的“点ξ”理解为客观存在的点。

在选定的中心点x0,函数的已知信息越丰富,相应的泰勒多项式与函数越贴近。 1.“微分是个新起点” —— 若函数 f(x)在点x0可微,

Δy = f ′(x0)Δx +ο(Δx) ;其中,ο(Δx)表示“比Δx高阶的无穷小。” 则函数实际上就有了一个新的(微局部的)表达式:

f(x)= f (x0) + f ′(x0)(x-x0) + ο(Δx) ( ο(Δx) 尾项,比Δx高阶的无穷小)

(潜台词:只有|Δx |充分小,“高阶无穷小”才有意义。)

历史上,这个表达式称为,“带皮阿诺余项的一阶泰勒公式”。

2. 拉格郎日公式 —— 若 函数f (x)在闭区间 [a,b] 上连续,在(a,b)内可导,则(a,b)内至少有一点ξ,使得 f (b)-f (a) = f ′(ξ)(b-a)

定理说的是区间,应用时不能太死板。在满足条件的区间内取任意两点,实际上也组成一个(子)区间。比如,在区间内任意选定一点x0,对于区间内任意一点x,(任给一点,相对不变。)也可以有 f (x)-f (x0) = f ′(ξ)(x-x0),ξ 在 x 与 x0之间,

(潜台词:任意一点x,对应着一个客观存在的“点ξ”, ξ=ξ(x) ) 即 f(x)= f(x0)+ f ′(ξ)(x-x0) ,ξ 在 x 与 x0之间, 3. 泰勒公式 —— 如果函数在点x0 邻近有二阶导数

f(x)= f(x0)+ f ′(x0)(x-x0)+ (f ″(ξ) /2)(x-x0)² ,ξ 在x与x0之间 式中的尾项叫拉格郎日尾项。有时也把 ξ 表示为 x0 +θ(x-x0) ,0<θ<1 一般情况下,我们无法知道

ξ=ξ(x)的结构、连续性等,只能依靠已知导函数的性质来限定尾项,实现应用目的。

如果函数仅在点x0二阶可导,我们可以用高阶无穷小尾项(皮阿诺余项)

f(x)= f(x0)+ f ′(x0)(x-x0)+ (f ″(x0) /2)(x-x0)²+ ο(|Δx| ²) 泰勒系数 —— 如果在点x0 邻近f(x)n+1 阶可导,则有泰勒系数 f(x0) ,f ′(x0) , f ″(x0) / 2! ,f ′ ″(x0) / 3! ,„„

可以写出, f(x)= n 次泰勒多项式 + 拉格朗日尾项

4. 泰勒级数 —— 如果在点x0邻近f(x)无穷阶可导,不妨取x0 = 0,则利用泰勒系数可以写出一个幂级数

f(x)= f(0)+ f ′(0) x +(f ″(0) /2)x²+(f ′ ″(0 ) / 3!)x³ + „„ 这个幂级数的和函数是否就是f(x)呢?不一定!

(画外音:太诡异了,f(x)产生了泰勒系数列,由此泰勒系数列生成一个幂级数 ,它的和函数却不一定是 f(x)。就象鸡下的蛋,蛋孵出的却不一定是鸡。)

关键在余项。当且仅当 n → ∞ 时,泰勒公式尾项的极限为 0 ,f(x)一定是它的泰勒系数列生成的幂级数的和函数。称为 f(x)的泰勒展开式。 验证这个条件是否成立,往往十分困难。故通常利用五个常用函数的泰勒展开式,依靠唯一性定理,用间接法求某些别的函数的泰勒展开式。

美国的学生特别轻松,他们的大学数学教材很有创意,早在极限部分就要求他们,当成定义记住指数函数与正弦函数的泰勒展开式。

exp(x)= 1 + x + x²/2!+ x³/3!+ „„ -∞

(逐项求导, cos x = 1- x²/2!+ „„

-∞

泰勒公式基本应用(1)—— 等价无穷小相减产生高阶无穷小。 关键在于低阶项相互抵消。应用泰勒公式直接有 ,x → 0 时, exp(x)- 1 ~ x , exp(x)-1-x ~ x² / 2

sin x ~ x , sin x - x ~ - x³ / 3! , cos x -1 ~ - x²/2 ln(1+x)~ x , ln (1+x)-x ~ -x²/2 (1+x)的μ次方- 1 ~ μ x 例87 已知x→ 1时,lim(√(x³+3) -A-B(x -1)-(x -1) ² )/(x -1) ² = 0 ,试确定常数,A,B,C 分析

已知表明 x → 1 时,分子是较分母高阶的无穷小。

题面已暗示,应将函数y =√(x³+3)在点 x = 1 表示为带皮阿诺余项的泰勒公式,且必有

常数项 = A 一次项系数 = B 二次项系数 = C 这些低阶项相互抵消,分子才能成为高于二次方级的无穷小。

于是 A = y(1) = 2 ,B = y ′(1) = 3/4 , C = y″(1) / 2 = 39/64 (画外音:有的人一遇上这类题就想用洛必达法则,这在逻辑上是错的。不懂得无穷小的变化机理。 如果只有两个参数,可看讲座(9)。)

泰勒公式基本应用(2)—— 带皮阿诺余项的泰勒公式用于求极限

例88 若 x→ 0 时 ,极限 lim ( sin6 x+ f(x))/ x³ = 0 ,则

x→ 0 时,极限 l im ( 6 + f(x))/ x² = ? 分析

分子有两项。决不能把 sin6 x 换为 6x , (潜台词:sin6 x不是分子的因式,是分子的一项。)

这时正好用“带皮阿诺余项的一阶泰勒公式”, sin 6x = 6 x - ( 6x)³/3!+ ο(|Δx| ³) 代入已知极限,移项得 lim ( 6 + f(x))/ x² = 36

例89 设函数 f (x) 在 x = 0 的某邻域内有连续的二阶导数,且 f (0)≠0 ,f ′(0)≠0, 记 F(h) = λ1 f (h) + λ2 f (2h) + λ

f (3h) 一 f (0),

试证,存在唯一的实数组 λ1,λ2,λ3 ,使 h → 0 时,F(h) 是比 h ² 高阶的无穷小。

3 分析 讨论极限问题,有高阶导数信息,先写带皮亚诺余项的泰勒公式 f(x)= f(0)+ f ′(0)x + (f ″(0) /2)x²+ ο(|x| ²)

这是函数 f(x)的一个新的(微局部的)表达式,当然可以表示 f (h) , f (2h), f (3h) f (h) = f(0)+ f ′(0) h + (f ″(0) /2)h ²+ ο(| h | ²)

f (2h) = f(0)+ f ′(0)2 h + (f ″(0) /2)(2h)²+ ο(| h | ²) f (3h) = f(0)+ f ′(0)3 h + (f ″(0) /2)(3h)²+ ο(| h | ²) (潜台词:常数因子不影响尾项。) 将各式代入F(h),整理得

F(h) = ( λ1+λ2+λ3一1) f(0)+ ( λ1+2λ2 + 3λ3) f ′(0) h + ( λ1+ 4λ2 + 9λ3) f ″(0) h ²/2 + ο(| h | ²)

要让 h → 0 时,F(h) 是比 h ²高阶的无穷小。,只需令上式中的常数项及 h 和 h ²项的系数全为 0 ,这就得到未知量

λ1,λ2,λ3 的一个齐次线性方程组,它的系数行列式是三阶的范德蒙行列式,其值不为 0 ,故可以相应算得唯一的一组 λ1,λ2,和 λ3 泰勒公式基本应用(3)——带拉格郎日尾项的泰勒公式用于一般讨论 例90 —— 凸函数不等式

如果函数 f (x) 二阶可导且二阶导数定号,(称为凸函数),则应用泰勒公式可以得到不等式

f (x)≥ f(x0)+ f ′(x0)(x-x0) (或≤)

实际上 f(x)= f(x0 )+ f ′(x0)(x-x0)+ (f ″(ξ) /2 ) (x-x0)² ,ξ 在 x 与 x0之间

设 f ″(x)> 0 ,自然有(f ″(ξ) /2 ) (x-x0)² > 0 ,舍掉此项就得到不等式。

*例91 函数 f (x) 在 [-1,1] 上有连续的三阶导数,且 f (-1) = 0 ,f (1) =1,f ′(0) = 0,试证明在区间 内至少有一点 ξ ,使得 f ″′(ξ) = 3 分析 选中心点 x0 = 0,在区间内讨论,写出带拉格郎日尾项的泰勒公式

f(x)= f(0)+(f ″(0) /2)x²+(f ′ ″(η ) / 3!)x³ , η在0与x之间 既然这是 f (x) 的又一个表达式,当然可以代入x = -1 , 1 ,它们分别相应有 ξ 1,ξ 2 0 = f(-1)= f(0)+(f ″(0) /2)(-1)²+(f ′ ″(ξ 1 ) / 3!)(-1)³ , -1<ξ 1<0 1 = f(1)= f(0)+(f ″(0) /2)1² +(f ′ ″(ξ 2) / 3!)1³ , 0 <ξ 2 < 1 到了这一步,仔细观察发现,两式相减,能得到只剩下有关三阶导数值的表达式。 f ′″(ξ 2) + f ′″(ξ 1 ) = 6 或着两个三阶导数值都等于3 ,本题得证。或者它们一大于3 ,一小于3 ,而函数 f ″′(x) 连续,可以应用介值定理完成本题证明。

第二篇:考研高数知识点总结

综合理解是在基础知识点基础上进行的,加强综合解题能力的训练,熟悉常见的考题的类型,下面是小编为你带来的考研高数知识点总结,希望对你有所帮助。

高等数学是考研数学的重中之重,所占的比重较大,在数学

一、三中占56%,数学二中占78%,重点难点较多。具体说来,大家需要重点掌握的知识点有几以下几点:

1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法

由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。最后凯程考研名师预祝大家都能取得好成绩。

凯程教育张老师整理了几个节约时间的准则:一是要早做决定,趁早备考;二是要有计划,按计划前进;三是要跟时间赛跑,争分夺秒。总之,考研是一场“时间战”,谁懂得抓紧时间,利用好时间,谁就是最后的胜利者。

1.制定详细周密的学习计划。

这里所说的计划,不仅仅包括总的复习计划,还应该包括月计划、周计划,甚至是日计划。努力做到这一点是十分困难的,但却是非常必要的。我们要把学习计划精确到每一天,这样才能利用好每一天的时间。当然,总复习计划是从备考的第一天就应该指定的;月计划可以在每一轮复习开始之前,制定未来三个月的学习计划。以此类推,具体到周计划就是要在每个月的月初安排一月四周的学习进程。那么,具体到每一天,可以在每周的星期一安排好周一到周五的学习内容,或者是在每一天晚上做好第二天的学习计划。并且,要在每一天睡觉之前检查一下是否完成当日的学习任务,时时刻刻督促自己按时完成计划。

方法一:规划进度。分别制定总计划、月计划、周计划、日计划学习时间表,并把它们

贴在最显眼的地方,时刻提醒自己按计划进行。

方法二:互相监督。和身边的同学一起安排计划复习,互相监督,共同进步。

方法三:定期考核。定期对自己复习情况进行考察,灵活运用笔试、背诵等多种形式。

2.分配好各门课程的复习时间。

一天的时间是有限的,同学们应该按照一定的规律安排每天的学习,使时间得到最佳利用。一般来说上午的头脑清醒、状态良好,有利于背诵记忆。除去午休时间,下午的时间相对会少一些,并且下午人的精神状态会相对低落。晚上相对安静的外部环境和较好的大脑记忆状态,将更有利于知识的理解和记忆。据科学证明,晚上特别是九点左右是一个人记忆力最好的时刻,演员们往往利用这段时间来记忆台词。因此,只要掌握了一天当中每个时段的自然规律,再结合个人的生活学习习惯分配好时间,就能让每一分每一秒都得到最佳利用。 方法一:按习惯分配。根据个人生活学习习惯,把专业课和公共课分别安排在一天的不同时段。比如:把英语复习安排在上午,练习听力、培养语感,做英语试题;把政治安排在下午,政治的掌握相对来说利用的时间较少;把专业课安排在晚上,利用最佳时间来理解和记忆。

方法二:按学习进度分配。考生可以根据个人成绩安排学习,把复习时间向比较欠缺的科目上倾斜,有计划地重点复习某一课程。

方法三:交叉分配。在各门课程学习之间可以相互穿插别的科目的学习,因为长时间接受一种知识信息,容易使大脑产生疲劳。另外,也可以把一周每一天的同一时段安排不同的学习内容。

第三篇:大一高数一知识点总结

大一高数一知识点总结有哪些呢?我们一起来看看吧!以下是小编为大家搜集整理提供到的大一高数一知识点总结,希望对您有所帮助。欢迎阅读参考学习!

一、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

即:①任何一个集合是它本身的子集。AA

②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 AB, BC ,那么 AC

④如果AB 同时 BA 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集

二、集合及其表示

1、集合的含义:

“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示

通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作 a∈A ,相反,d不属于集合A ,记作 dA。

有一些特殊的集合需要记忆:

非负整数集(即自然数集) N 正整数集 N*或 N+

整数集Z 有理数集Q 实数集R

集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}

②描述法:将集合中的元素的公共属性描述出来。如{xR| x-3>2} ,{x| x-3>2},{(x,y)|y=x2+1}

③语言描述法:例:{不是直角三角形的三角形}

例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}

强调:描述法表示集合应注意集合的代表元素

A={(x,y)|y= x2+3x+2}与 B={y|y= x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。

3、集合的三个特性

(1)无序性

指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解: ,A=B

注意:该题有两组解。

(2)互异性

指集合中的元素不能重复,A={2,2}只能表示为{2}

(3)确定性

集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

三、集合间的基本关系

1.子集,A包含于B,记为: ,有两种可能

(1)A是B的一部分,

(2)A与B是同一集合,A=B,A、B两集合中元素都相同。

反之: 集合A不包含于集合B,记作 。

如:集合A={1,2,3 },B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为 , ,B=C。A是C的子集,同时A也是C的真子集。

2.真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)

3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。

4、有n个元素的集合,含有2n个子集,2n -1个真子集,含有2n -2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

例:集合 共有 个子集。(13年高考第4题,简单)

练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。

解析:

集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。

集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。

第四篇:高数上册总结知识点修订版

高等数学难点总结(上册)

函数(高等数学的主要研究对象)

要着重掌握的常见函数类型:幂函数、指数函数、对数函数、三角函数、反三角函数

极限:数列的极限(特殊)——函数的极限(一般)

函数极限的可能情况有24种(自变量6种,因变量4种),对于这其中任一种情形,都应该熟练掌握其分析定义(严格的数学表述)

极限的本质是:已知某一个量(自变量)的变化趋势,去考察另外一个量(因变量)的变化趋势

由极限的概念可以推得的一些性质:局部有界性、局部保号性等等,应当注意到,由极限概念所得到的性质通常都是只在局部范围内成立

趋于零的极限称之为无穷小量,不同的无穷小量之间有阶的区别,类似可定义无穷大量 两个判断极限的重要准则:

1、夹逼原理;

2、单调有界数列必有极限。它们分别对应两个重要极限。

各种典型极限的计算

在提出极限概念的时候并未涉及到函数在该点的具体情况,所以函数在某点的极限与函数在该点的取值并无必然联系

连续:函数在某点的极限值 等于 函数在该点的取值 连续的本质:自变量无限接近,因变量无限接近

连续的概念相当于给我们提出了一种求极限的方法:代入法 闭区间上连续函数的性质。

不连续的情形:间断。其分类可根据连续不成立的条件逐一分析

导数的概念

本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限,更简单的说法是变化率

微分的概念:函数增量的线性主要部分,这个说法有两层意思,

一、微分是一个线性近似,

二、这个线性近似带来的误差是足够小的,实际上所有函数在某点的增量我们都可以线性关系去近似它,但并不是任何时候这个近似都足够好,只有当误差足够小时,才能说该函数在该点可微分

对一元函数,连续不一定可导,可导必连续,可导等价于微分 各种典型导数和微分的计算

导数反映了函数在某点附近的变化快慢程度,因此可用来作为研究函数某些性质的工具,尤其是那些涉及讨论函数变化情况的性质。 极值的概念,极值是局部而非整体性质的体现

费尔马定理:一个函数的极值点,要么不可导,要么导数为零

微分中值的三个定理:罗尔定理、拉格朗日定理和柯西定理。它们是同一个数学事实在不同的坐标系中的表达:对一个闭区间连续、开区间可导的函数来说,必存在区间内的一点,该点切线的斜率等于两端点连线的斜率。 用导数研究函数的极值情况

用导数研究函数的增减性和凹凸性

泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑几个问题:

1、一个函数能够用多项式来近似的条件是什么?

二、这个多项式的各系数如何求?

二、即使求出了这个多项式的系数,如何去评估这个多项式逼近连续函数的精确程度,即还需要求出误差(余项),一般来说,余项的选取不同,对函数的要求也不同,常见的有皮亚诺和拉格朗日两种余项

不定积分:导数的逆运算 什么样的函数有不定积分

求不定积分的若干典型方法:凑微分、换元和分部 各种典型不定积分的计算。

定积分:由具体例子引出,本质是先分割、再综合,其中分割的作用是把不规则的整体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确 什么样的函数有定积分 积分上限函数及其导数

微积分基本定理,其最重要的作用是将定积分(一个复杂和式的极限)与不定积分(导数的逆运算)相联系

积分中值定理,其对应的意义是变量的平均值

定积分的几何应用和物理应用

高等数学里最重要的数学思想方法:微元法

第五篇:2018考研数一高数常考4大重要知识点总结(推荐)

凯程考研辅导班,中国最权威的考研辅导机构

2018考研数一高数常考4大重要知识点

总结

常数项级数的敛散性的判别、幂级数的收敛域及和函数、幂级数的展开式及傅里叶的展开式是考研数学一中常考的知识点,需要考生复习时多重视,下面凯程考研就具体和大家来谈谈,且针对这几个难点给大家的复习提点建议。

一、常数项级数的敛散性的判别

十年中2009和2014年考过两次常数项级数的敛散性的判别, 2014年的这个题很多考生基本上得了零分,常数项级数的敛散性的判别是一个难点:这个题考了三角函数的和差化积和比较审敛法。其实若从历年考研数学一的考题中,我们可以归纳总结出对常数项级数的考查,考研考查的方法重点是比较审敛法,而作为基准级数的是P-级数。

二、幂级数的收敛域及和函数

考生可以看到,对级数这一章,数一的同学要将幂级数的和函数作为重点知识来复习,十年中幂级数的和函数的考题最多。幂级数的和函数又分为先导后积、先积后导。两种方法大家都要掌握。

三、幂级数的展开式

考生可以将高数上册的泰勒展开式做一个拓展就是高数下册的幂级数的展开式,考研考查的主要是几何级数展开式。

四、傅里叶的展开式

2008年数学一考了一个傅里叶的展开式,傅里叶的展开式一般对数一的同学来说以小题的形式考的,但2008年出了黑马,这个题提醒考生在数学的学习过程中要复习全面,不可以有所偏颇,但在复习过程中要把握复习深度,对傅里叶级数的掌握只需掌握基础知识即可。

针对高数中的这一难点,2018年的考生在未来的学习过程中应该制定详细的复习规划:

1)、基础过关 Now-6 月,高数:同济六版;线代:同济五版;概率:浙大四版。系统复习,夯实基础:熟练掌握基本概念、基本理论和基本方法

2)、专题训练 7月---9月,针对常考的题型进行大量的练习,归纳题型,总结方法,突破重难点题型、方法和技巧

凯程考研辅导班,中国最权威的考研辅导机构

3)、综合突破 10月---11月,对综合题进行窜讲,形成对考研的整体认识,将知识体系结构搭建起来。

4)、全真模拟 11月---12月,转化为得分,现场模拟考研是什么样子,查漏补缺,实战演练

5)、考前攻坚 12月(考前两周),回归基础、攻克难点

2 页 共 2 页

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:真实教育感悟范文下一篇:正式教案模板范文