通信系统课程设计

2022-08-02

第一篇:通信系统课程设计

通信系统课程设计教学大纲(范文)

通信系统课程设计教学大纲

课程名称:通信系统课程设计

英文名称:Course Design of Communication System 学 时:2周 学 分:2 适用专业:电子信息工程、通信工程专业本科生

课程类别:必修 课程性质:集中实践环节 先修课程:数字信号处理、信号与系统、高频电路、通信原理

一、制定本大纲的依据

根据本校《2004级本科专业培养计划》和通信原理等专业课程教学大纲制定。

二、课程性质与任务

通信系统课程设计是电子信息、通信类专业通信原理后续实践环节。通过本课程设计,帮助学生进一步领会和深化课堂上学到的有关通信系统的基本概念、基本原理和通信技术特点。本课程设计通过集中的理论和实践相结合的环节,使学生在认真消化通信基本理论的基础上,对信息产生、变化和传输有进一步的了解,是通信专业学生必修的一门综合实践性课程。通过本课程设计,加强学生的实际动手能力、分析问题与解决问题能力, 培养学生创新意识,为毕业后从事通信系统设计方面的工作打下坚实的实践基础。

三、课程教学的基本要求

通过本课程设计巩固并扩展通信原理课程的基本概念、基本理论、分析方法和实现方法。结合EDA技术、数字通信技术和DSP技术和程控交换技术等,使学生能有效地将理论和实际紧密结合,培养创新思维和设计能力,增强软件编程实现能力和解决实际问题的能力。经过实验,学生应达到下列要求:

l、进一步巩固和加深通信原理和系统知识的理解,提高综合运用所学知识来验证通信原理的能力。

2、能根据需要选学参考书,查阅手册,通过独立思考,深入钻研有关问题,学会自己独立分析问题、解决问题,具有一定的创新能力。

3、能正确使用仪器设备,掌握测试原理,熟练运用有关仿真软件、单片机或DSP开发环境。

4、能独立撰写设计说明,准确分析实验结果,正确绘制课程设计得出的各类图形。

5、课前做好预习,准确分析实验结果,正确绘制通信原理的验证图形。通过课程设计使学生能把理论和实践结合起来,增强对通信理论的感性认识,进一步提高学生的专业实践技能。

四、本实验课程的具体安排

学生可从下列题目中任选一个作为嵌入式课程设计题目,也可以根据个人兴趣及实验室现有条件,自己确定题目经教师审核后作为课程设计题目。

(一)双音多频信号检测芯片和单片机的接口设计

教学要求:本题目要求学生了解单片机的工作原理及接口,重点掌握单片机对用户线接口芯片的控制,并在教师的指导下编写程序,实现用户线接口电路的设计。

重点:1. 用户线接口电路芯片的工作原理及使用方法 2.单片机对摘机信号的检测及振铃信号的产生 难点:单片机对被叫号码的识别或通话 安排时间: 安排一周

(二)DSP与串行A/D或D/A芯片的接口设计

教学要求:本题目要求学生了解DSP的工作原理及接口,重点掌握DSP与串行A/D或D/A芯片接口电路的设计。

重点:1. 串行A/D或D/A芯片工作原理及使用方法 2.DSP与串行A/D或D/A芯片接口电路的设计 难点:DSP与串行A/D或D/A芯片接口电路的设计 安排时间: 安排一周

(三)计算机通信

教学要求:本题目要求学生了解掌握基于DSP+FPGA的计算机RS232通信原理;掌握用DSP编写程序和FPGA的RS232通信的方法。

重点:1. 在现有的实验平台上添加必要的外围设备,并正确连线,实现计算机通信。 2.掌握DSP程序的编写、下载及固化的过程。 难点:DSP+FPGA的计算机RS232通信设计

安排时间: 安排一周

五、考核方式

以实验报告和学生实际操作能力为主,参考提问和出勤情况等,综合评定给出成绩。

六、课程设计参考资料

1.《现代通信原理》,国防工业出版社,沈保锁等编2002年8月

2 2.《数字通信系统建模与设计》,电子工业出版社,段吉海主编

制定人:王秀清

审定: 批准:

2005年 12 月

第二篇:MatlabSimulink通信系统建模与仿真课程设计

电子信息课程设计

题目:

Matlab/Simulink通信

系统建模与仿真

班级:

2008级电子(X)班

学号:

姓名:

电子信息课程设计

Matlab/Simulink通信系统建模与仿真

一、设计目的:学习Matlab/Simulink的功能及基本用法,对给定系统进行建模与仿真。

二、基本知识:Simulink是用来对动态系统进行建模、仿真和分析的软件包,依托于MATLAB丰富的仿真资源,可应用于任何使用数学方式进行描述的动态系统,其最大优点是易学、易用,只需用鼠标拖动模块框图就能迅速建立起系统的框图模型。

三、设计内容:

1、基本练习:

(1)

启动SIMULINK:先启动MATLAB,在命令窗口中键入:simulink,回车;或点击窗口上的SIMULINK图标按钮。

图(1)建立simulink

(2)

点击FileewModel或白纸图标,打开一个创建新模型的窗口。

(3)

移动模块到新建的窗口,并按需要排布。

(4)

连接模块:将光标指向起始模块的输出口,光标变为“+”,然后拖动鼠标到目标模块的输入口;或者,先单击起始模块,按下Ctrl键再单击目标模块。

(5)

在连线中插入模块:只需将模块拖动到连线上。

(6)

连线的分支与改变:用鼠标单击要分支的连线,光标变为“+”,然后拖动到目标模块;单击并拖动连线可改变连线的路径。

(7)

信号的组合:用Mux模块可将多个标量信号组合成一个失量信号,送到另一模块(如示波器Scope)。

(8)

生成标签信号:双击需要加入标签的信号线,会出现标签编辑框,键入标签文本即可。或点击EditSignal

Properties。传递:选择信号线并双击,在标签编辑框中键入<>,并在该尖括号内键入信号标签即可。

四、建立模型

1.

建立仿真模型

(1)在simulink

library

browser中查找元器件,并放置在创建的新模型的窗口中,连接元器件,得到如下的仿真模型。

图(2)调幅解调器性能测试仿真模型

(2)分别双击双边带相干解调模块和低通滤波器模块,弹出如下的对话框

,进行相应的参数设置。

(3)相干解调模块载波设置为1MHZ,初相位为-pi/2,低通滤波器截止频率为6000HZ。

图(3)双边带相干解调模块及低通滤波器的设置对话框

(4)在MATLAB中输入如下程序进行仿真。

%

ch5problem1.m

SNR_in_dB=-10:2:30;

SNR_in=10.^(SNR_in_dB./10);

%

信道信噪比

m_a=0.3;

%

调制度

P=0.5+(m_a^2)/4;

%

信号功率

for

k=1:length(SNR_in)

sigma2=P/SNR_in(k);

%

计算信道噪声方差并送入仿真模型

sim('ch5problem1.mdl')

;

%

执行仿真

SNRdemod(k,:)=SNR_out;

%

记录仿真结果

end

plot(SNR_in_dB,

SNRdemod);

xlabel('输入信噪比

dB');

ylabel('解调输出信噪比

dB');

legend('包络检波','相干解调');

执行程序之后,得出仿真结果如下图所示。图中给出了不同输入信噪比下两种解调器输出的信噪比曲线。从图中可见,高输入信噪比情况下,相干解调方法下的输出解调信噪比大致比包络检波法好3dB左右,但是在低输入信噪比情况下,包络检波输出信号质量急剧下降,这样我们就通过仿真验证了包络检波的门限效应。

图(4)解调信噪比仿真结果

同时在仿真中给出了三路解调输出信号的波形,如下,从解调输出的波形上也可以看出,在相同噪声传输条件下,包络检波输出的正弦波幅度较小,也即包络检波的解调增益较相干解调要小。

图(5)仿真输出的解调信号波形

2建立另一个仿真模型

(1)

在图(2)的基础上加上一个锁相环,构成锁相环相干解调器模型,如下。

图(6)锁相环提取载波的相干解调仿真模型

(2)

用类似于对图(2)进行仿真的程序进行仿真,程序如下

%

ch5problem1progB.m

SNR_in_dB=-10:2:30;

SNR_in=10.^(SNR_in_dB./10);

%

信道信噪比

m_a=0.3;

%

调制度

P=0.5+(m_a^2)/4;

%

信号功率

for

k=1:length(SNR_in)

sigma2=P/SNR_in(k);

%

计算信道噪声方差并送入仿真模型

sim('

ch5problem1progB.mdl');

%

执行仿真

SNRdemod(k,:)=SNR_out;

%

记录仿真结果

end

plot(SNR_in_dB,

SNRdemod);

xlabel('输入信噪比

dB');

ylabel('解调输出信噪比

dB');

legend('包络检波','相干解调');

(3)

仿真的波形如下,从结果中可以看出,在低信噪比下,锁相环相干解调器的性能比理想解调模块要差一些,但在实际中由于PLL的门限效应,一般不能达到这里仿真出来的性能曲线。

图(7)锁相环相干解调器的输出信噪比性能对比

(4)

同时给出仿真输出的解调信号波形如下

五.设计总结

借由此次模拟通信系统的建模仿真设计,基本熟悉了调制解调的原理和借条性能的测试方法,通过仿真实验进一步深入理解超外差接收机的工作原理。设计过程中由于对软件的不熟悉遇到了很多的问题,例如,元器件的正确查找,参数设置,等等,在老师的指导下,参照参考书目,及与同学们讨论摸索,及上网搜索,此次学到了很多东西。做完这次课设,对matlab软件也进一步熟悉,真正把理论与实践联系起来,使我所学的专业知识得到了的运用,更深刻的理解了理论知识,理论联系实际的实践操作能力也进一步提高。这次的课程设计,学要我们更进一步的掌握学到的基础知识,加深对软件的掌握,应用,为下一次课程设计打好基础。

【参考文献】

绍玉斌

仿真实例分析学习辅导和习题详解.清华大学出版社

第三篇:通信原理课程设计

AM超外差收音机仿真

院系: 班级:

姓名: 学号:

指导老师: 完成日期:

(一)课程设计目的:

为了将理论应用到实践,我们进行了在整整半个月的课程设计,我学到很多很多的东西,不仅巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的内容。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才是真正的知识,才能提高自己的实际动手能力和独立思考的能力。在设计的过程遇到了各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,通过这次课程设计,把以前所学过的知识重新温故,巩固了所学的知识。

(二)课程设计内容:

超外差的特点是:被选择的高频信号的载波频率,变为较低的固定不变的中频(465KHz),再利用中频放大器放大,满足检波的要求,然后才进行检波。在超外差接收机中,为了产生变频作用,还要有一个外加的正弦信号,这个信号通常叫外差信号,产生外差信号的电路,习惯叫本地振荡。在收音机本振频率和被接收信号的频率相差一个中频,因此在混频器之前的选择电路,和本振采用统一调谐线,如用同轴的双联电容器(PVC)进行调谐,使之差保持固定的中频数值。由于中频固定,且频率比高频已调信号低,中放的增益可以做得较大,工作也比较稳定,通频带特性也可做得比较理想,这样可以使检波器获得足够大的信号,从而使整机输出音质较好的音频信号。实验的目的就是用Systemview软件来演示收音机的工作原理!

(三)设计原理:

原理图为图1:

图1

这次实验为了说明超外差AM收音机的工作原理及信号解调过程,为了节省仿真时间没有按实际540-1700KHz的频率覆盖范围和455KHz中频频率设计,而采用了20KHz作为IF.另外设了30KHz,40KHz和50KHz三个载波频率的发射信号,模拟调制信号的带宽为5KHz以下.并希望接收到40KHz的电台频率。收音机使用高边调谐,本振应为40+20=60KHz,且存在一个镜像干扰频率为40+2*20=80KHz。整个混频输入与混频输出的频谱图搬移过程可以用下图2表示:

图2

(四)SystemView仿真设计:

图3

图3为SystemView仿真设计原理图

主要图符参数在下团中标出:

图4

仿真结果:

SystemView仿真设计原理图(图3)接收器22的输出波形如图5:

图5

SystemView仿真设计原理图(图3)接收器23的输出波形如下图6:

图6

SystemView仿真设计原理图(图3)接收器23的输出波形如图7

图7

SystemView仿真设计原理图(图3)接收器25的输出波形如图8:

图8

SystemView仿真设计原理图(图3)接收器25的输出波形如下图9

图9

SystemView仿真设计原理图(图3)接收器23的输出波形的频谱图如图10

图10

(五)结果分析

系统采样频率设置为200KHz,在原理图3的左边对应的是3个AM信号发生器用来模拟3个电台,调制信号采用了扫频信号,分别采用了不同的扫频带宽和调制度。中频滤波器采用1个5个极点3db带宽为10KHz的切比契夫滤波器。接收到的RF信号(图符23)频谱如图10.在40KHz频率的信号具有最大的调制度(设为1)信息带宽的中心信号是所希望接收的信号。输出的差频项频谱成分通过一个5极点切比契夫带同滤波器后,得到如图9所示的频谱,期中希望的20KHz载波信号比10KHz和30KHz的信号大了约15db,所以通过一个简单的二极管包络检波器可以将原调制信号解调。解调后的时域信号波形如图5所示。

(六)总结及心得:

两周的课程设计结束了,在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。在设计过程中,和同学们相互探讨,相互学习,相互监督。学会了合作,学会了运筹帷幄,学会了宽容,学会了理解,也学会了做人与处世。

课程设计是我们专业课程知识综合应用的实践训练,这是我们迈向社会,从事职业工作前一个必不少的过程.”千里之行始于足下”,通过这次课程设计,我深深体会到这句千古名言的真正含义.我今天认真的进行课程设计,学会脚踏实地迈开这一步,就是为明天能稳健地在社会大潮中奔跑打下坚实的基础.

通过这次Systemview模拟仿真,本人在多方面都有所提高。通过这次课程设计,综合运用本专业所学课程的理论和生产实际知识进行一次模拟仿真训练从而培养和提高自己独立工作能力,巩固与扩充了课程所学的内容,同时各科相关的课程都有了全面的复习,独立思考的能力也有了提高。

在此感谢我们的两位指导老师,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的每个实验细节和每个数据,都离不开老师您的细心指导。而老师开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。同时感谢对我帮助过的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊.由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教。

(七)参考文献

[1] 樊昌信,曹丽娜.通信原理(第六版).北京:国防工业出版社,2007

[2]罗卫兵. Systemview 动态系统分析及通信系统仿真设计 西安:西安电子科技大学出版社

[3]张辉,曹丽娜.通信原理学习辅导 西安:西安电子科技大学出版社,2003

[4]孙屹 .SystemView通信仿真开发手册 北京:国防工业出版社,2004

第四篇:通信原理课程设计2

电子设计自动化

时间:12周周三第四大节

地点:s5207 姓名:王艳香

学号:201215903

实验二 数控分频器

一、 实验目的

1设计实现一个根据不同的输入,将时钟信号进行分频 2掌握分频计数器类型模块的Verilog描述方法 3学习设计仿真工具的使用方法

二、 实验原理:

数控分频器的功能就是当在输入端给定不同输入数据时,将对输入的时钟信号有不同的分频比,数控分频器就是用计数值可并行预置的加法计数器设计完成的,方法是将计数溢出位与预置数加载输入信号相接即可。

三、实验器材:MagicSOPC实验箱,电脑,QutersII软件、

四、实验内容:

1、步骤1.新建一个文件夹打开vhdl文件

步骤2:编写源程序并保存

module Dvf(clko,clki,data); input[7:0] data; input clki; output clko; reg clko; 电子设计自动化

时间:12周周三第四大节

地点:s5207 姓名:王艳香

学号:201215903 reg [7:0] cnt; reg full; always @ (posedge clki) begin

if(cnt==255) begin

cnt<=~data;

full<=1;

end else begin

cnt<=cnt+1;

full<=0; end end always @ (posedge full) begin clko=~clko; end endmodule 3.新建一个工程及进行工程设置

电子设计自动化

时间:12周周三第四大节

地点:s5207 姓名:王艳香

学号:201215903 4.打开并建立新工程管理窗口。选择File——>New Project Wizard命令

5.将设计文件加入工程

6.选择目标芯片 电子设计自动化

时间:12周周三第四大节

地点:s5207 姓名:王艳香

学号:201215903

7.结束设置

8.全程综合与编译

电子设计自动化

时间:12周周三第四大节

地点:s5207 姓名:王艳香

学号:201215903 数控分频计的设计电路图:

9.仿真测试,打开波形编译器。选择File—>New在new窗口中选择Vector Waveform Flie选项,单击OK按钮。

10.将端口节点选入波形编译器

11.仿真:输入不同的CLK频率和预置数D,给出时序波形。 电子设计自动化

时间:12周周三第四大节

地点:s5207 姓名:王艳香

学号:201215903 数控分频计的仿真图:

12.引脚锁定图:

13.编译文件下载。

电子设计自动化

时间:12周周三第四大节

地点:s5207 姓名:王艳香

学号:201215903

五、实验心得体会:

这一次在Quartus II软件的操作上已基本上没有错误,而且更为熟练了一些,但在编写verilog代码时还是有很多问题,这点仍需要继续努力。不过这次之所以能这么顺利还是要感谢老师和搭档的帮助,在困扰时给予提点。还有感受最深的是要理解实验原理才能更好进行实验操作。

第五篇:通信专业课程设计

课程设计任务书

题目:低频功率放大器 课程:电子设计与制作

学院:通信与信息工程学院

专业:通信工程

班级:通信0802

姓名: 学号:

设计期限:

一、 设计实验目的

1、能够较全面的巩固和应用“模拟电子技术”课程中所学的基本理论和基本方法,并初步掌握电路设计的全过程。

2、能较合理的、灵活的应用分立件或者标准集成电路芯片实现功率放大的功能。

3、培养独立思考,独立准备材料,独立设计规定功能的模拟电子系统的能力。

4、培养独立设计能力,熟悉EDA工具的应用,比如Multisim。

5、培养熟悉综合设计实验报告的能力。

二、实验原理

功率放大器的作用是向负载提供一定的输出功率,所以功率放大器不仅考虑输出电压的大小,

而且要考虑输出电流。功率放大器从电路形式上可分为:变压器耦合的功率放大器和互补的对称

的放大器,由于互补对称功率放大器具有效率高、体积小、重量轻、成本低的特点,所以目前大

多采用沪部队琛的功率放大器,互不对称的功率放大器又分为OTL 功率放大器(单点源)和OTL 功率放大器(双电源)。功率放大器按输出管的工作状态又可分为甲类、甲乙类、和乙类。本实验

采用的是OTL 互补对称的功率放大器,工作在甲乙类接近乙类。 在模拟电子线路中,电信号经过放大之后,往往要去推动执行机构完成人们所预期的功能,例如推动喇叭发声,推动继电器实现控制等。执行机构要正常工作都需要从电路中获取较大的电能。因此,放大电路的末级均由功率放大器组成。

功放(功率放大器)的原理就是利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。 因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。 而场效应管则是用栅极电压来控制源极与漏极的电流,其控制作用用跨导表示,即栅极变化一毫伏,源极电流变化一安,就称跨导为1,功率放大器就是利用这些作用来实现小信号控制大信号,从而使多级放大器实现了大功率的输出,并非真的将功率放大了!

了解电路原理以及对改善互补对称功率放大器的性能所起的作用。

三、 实验内容

1 、实验电路

2、静态分析

3、动态分析

4、计算

放大器的输出功率为:

电源提供的功率为:

四、 总结体会

通过这次实习,让我认识了解了Multisim软件的实用方法和功能,并意识到自己在学习方面的不足和在实践方面的欠缺,只有通过多次练习,实验,学习,然后才能对知识有所吸收和消化。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:图文小班蒙氏数学下一篇:退休教师事迹材料