定积分与不等式的证明

2023-01-06

第一篇:定积分与不等式的证明

证明数列前n项和 不等式的定积分 放缩法

摘要:本文深入分析数列与函数之间的联系,结合高等数学中数项级数[4]的观点研究高考证明数列前n项和不等式的相关问题。本着“数形结合”的重要数学思想,抓住数列的本质是数值函数这一特点,另辟蹊径,利用分析学“定积分”这一工具,探究对数列前n项和不等式进行放缩的方法。关键词:数列;不等式;定积分;数形结合。

数列,高考的重中之重。而对于数列前n项和不等式的证明更是天津高考的难点。这类问题大致可以分为两种:如果这样简单分类的话,那么显然第二种题型会比第一种更复杂[2]。对于第一种题型,题目中已然给出了我们要证明的“对象”,即便我们对原数列“无从下手”,也可以根据“式”的偶性,将不等号右边的式子也看作是某一数列的“和”,再通过“和转项”的方式找到其对应的“项”,从而我们不妨逐项比较,最后累加达到目的。此外,山穷水复之时,数学归纳法也是个不错的选择。所以,对于第一种题型来说,有多种比较成熟的应对方法,这里就不逐一列举。然而,对于第二种题型,“和转项”与归纳法则不再适用。题目中要求寻找的,类似于这个数列前n项和的“极限”,而这个“极限”则是一个常数。在处理这一类问题时,我们通常要将原数列的通项进行一定程度的放缩与变形,处理成为一个能够求和的数列,并且由变形后数列的“和”可以进一步证明我们想要的结论(如果将变形后数列的前n项和看作一个函数,那么待证明的常数C通常是这个函数的极限)。显然,这执行起来十分困难,要求学生有足够的“数学远见”,并且要记一些常用的方法和结论,无疑是“雾里看花”。因为,即使在这些结论上下了很大功夫,题目稍加变化后,学生们仍是感到“无从下手”。况且,即便命题人不改变题目的结构,仅仅是将不等式的强度加大,学生在解题时,还是会陷入漫无目的“尝试”。所以,数列前n项和不等式的证明一直以来都是高考的难点,而那些尽可能巧妙地解决这类问题的方法大多都指向“构造”的思想。而“构造”需要“数学远见”,要求学生具备极好的“数学素养”,非一日之功。况且,想要通过做题、总结的方式培养这种“素养”,绝非易事。为解决这一瓶颈,笔者尝试从高中数学内部寻找一种容易为高中生理解,又不会涉及“知识超纲”问题,且尽可能普遍适用的方法和视角来解决这一类问题,并试图探究其内在“本原”。于是,笔者发现了——定积分。对照以上两种方法,不难发现利用定积分放缩的方法十分优美、简洁,并且在很大意义上揭示了级数不等式的本质。下面以天津市近两年高考与模拟的压轴题为例深刻体会定积分放缩法的优越性。由例1.及其变式不难看出,利用定积分放缩法往往并不是直接放缩至待证“对象”本身,而是构造了一个比待证不等式强度更大的不等式,然后再次放缩到需要的“对象”。综述:定积分放缩法作为一种简洁、优美的解题方法,在解决由“数项级数”所引申出的“证明数列前n项和不等式”的问题中有相当广泛的应用,具有一定程度的普适性。无疑为学生遇到问题“无从下手”时,提供了一套系统的构思程序。定积分放缩法中处处渗透了“数形结合”的数学思想,并将数列与函数联系起来,使学生深刻地认识到数列是离散的数值函数这一本质,有机地反映了将“代数-几何-分析”综合起来的“数学美”,有助于提高学生对数学的学习兴趣。定积分放缩法是建立在常规放缩法基础之上的拓展,二者地位等同,相互依存。和一切的数学模型一样,我们希望但永远不能将所有问题都用一个“统一的方法”来解决。数学的灵魂,在于各分支间的融会贯通,“统一的方法”和“永动机”一样是不存在的。数学本身的“包罗万象”,足以从其自身内部酝酿出千变万化的解题方法。由此可见,数学的精神在于各个数学分支的互相穿插与多种解法间内在紧密联系的数学逻辑。这就是“数学素养”。参考文献[1].《浅谈高等数学在中学数学中的应用》[M].广东石油化工学院,22-24[2].李广修.证明不等式的定积分放缩法[J].数学通报,2008,47(7):55-57[3].意琦行,数海拾贝.证明级数不等式的积分放缩法[J].光量子,2015;10;29[4].《高等数学》[M].同济大学数学系,2014第7版:251-327致谢感谢天津市第一〇二中学数学组:马萍,严虹,纪洪伟,张倩老师对我研究的帮助与支持。感谢“高中数学解题研究会”杜巍老师给予的帮助。感谢“高中数学解题研究会”提供优良的研究平台及学术氛围。感谢周围对我研究的支持和认可。

第二篇:2016考研数学:定积分的证明

定积分及其应用这部分内容在历年真题的考察中形式多样,是考试的重点内容。启航考研龙腾网校老师希望同学们要加以重视!

定积分的证明是指证明题目中出现积分符号的一类题目,一般的解题思路和常见的证明题大同小异,但是由于积分符号的出现,往往使得同学们有这样那样的不适应,在这里呢,和同学们一起总结下关于这类题目的一般解题思路。常见的关于定积分的证明,主要包括以下几

2、定积分中值定理命题的证明。一般利用连续函数的介值定理、微分中值定理、积分中值定理等来证明,其关键是构造辅助函数。

3、定积分不等式的证明。一般有三种方法。 ①利用被积函数的单调性、定积分的保序性和估值定理证明。

②将定积分的上(下)限改为变量,从而将定积分不等式化为函数不等式,再用微分学方法证明。

③利用微分中值定理、积分中值定理(适用于已知条件中有连续性和一阶可导性)与泰勒公式(适用于题设中有二阶以上可导性)。

第三篇:Minkowski不等式的证明(积分形式)

闵可夫斯基不等式

在数学中,闵可夫斯基不等式(Minkowski不等式)表明Lp空间是一个赋范向量空间

。设是一个 度量空间

,那么

如果,等号成立

当且仅当,

或者

,我们有:

闵可夫斯基不等式是中的三角不等式。它可以用赫尔德不等式来证明。和赫尔德不等式一样,闵可夫斯基不等式取可数测度可以写成序列或向量的特殊形式:

对所有

实数 ,这里

是的维数;改成复数同样成立,没有任何难处。

值得指出的是,如果以变为。

积分形式的证明 ,

,则可

我们考虑

的次幂:

(用三角形不等式展开

)

用 赫尔德不等式(见下文) 继续运算可得

(利用

,因为)

现在我们考虑这个不等式序列的首尾两项,除以最后那个表达式的后面那个因子,我们得到

:

因为,我们最终得出:

这就是我们所要的结论。

对于序列的情况,证明是完全类似的。

赫尔德(Holder)不等式

设ai,bi1in是2n个正实数,

0,0,1,

n

a则

i1

i

bi



aibii1i1

n

n

i

n

n

.

[证明] 令Aa

i1

,B

b

i1

i

那么

n

A



B



a

i1

i

bi

aibi

i1AB

n

lg

aiA

lg

biB

lg

ailg

bi

lg

ai

bi



aibi

利用Jensen不等式有AB

n



aiA



bi

B成立

i1

aibi

AB

n



n

i

aA

i1

n

i

bB

i1

1

a

i1

i

bi

AB



aibi

,得证。

i1i1

n

n

易知积分形式也成立

第四篇:关于定积分、曲线积分与二重积分的简单总结

***

(吉首大学数学与计算机科学学院,湖南 吉首 416000)

摘要:微积分的内容主要包括极限、微分学、积分学及其应用.在此主要讨论和简单总结一些有关定积分、曲线积分与二重积分的问题.

关键词:定积分 曲线积分 二重积分

英文部分

引言:

微积分是一套关于变化率的理论.积分学包括求积分运算,为定义和计算面积、体积提供了一套通用的方法.通常积分计算问题都涉及到天文、力学、几何学等.这里主要通过有关定积分、曲线积分与二重积分的一些实例来对这些知识作一个回顾性总结.

1、 定积分

1(12333n3); 4nn

1、1利用定积分求极限:lim

解:lim1333(123n) nn4

112n=lim()3()3()3 nnnnn

i1=lim()3 nni1nn

设f(x)x3,则f(x)在[0,1]上连续且可积.取xi1i,i为区间nn

i1ixi1,xi,的右端点,i=1,2…,n.所以上式为函数f(x)x3在区间[0,1]nn

上的一个积分的极限,从而有

111411333lim4(12n)xdxx. 0nn40

4回顾分析:由定积分的定义知,若f(x)在[a,b]上可积,则可对[a,b]用某种特定的方法,并可取特殊的点,此时所得积分的极限就是f(x)在[a,b]上的定积分,因此本题可将和式化为某个可积函数的积分和,然后用定积分求此极限.定积分在物理中的某些应用

1、2 有一等腰梯形闸门,它的上、下两条边各长为10米和6米,高为20米,计算当水面与上底边相齐时闸门一侧所受的静压力.

解:考虑建立直角坐标系,这里B(0,5),C(20,3).

1则BC的方程为:x+20y-50=0.即y=5-x. 10

由于在相同深度处水的静压力相同gx,故当x很小时,闸门上从深度x到x+x 这一狭条A上受的静压力为

1x)xxgdx. 10

20202011pdp2(5x)xxgdx(10x2x3)dx 000105

=14373.33(kN).

1、3 设有半径为r的半圆形导线,均匀带点电荷密度为,在圆心处有一单位E电荷,试求它们之间作用力的大小.

解:同样考虑坐标,取所对应的一段导线,电荷电量为drd.,它圆心处电荷E在垂直方向上的引力为

srsinksFksin rr2pdp2yxdxxg2(5

则导线与电荷作用力为

0ksin2k rr

回顾分析:据以上例题可知,在解决积分实际问题中,确定积分区域是解决问题的关键,

另外对于定积分我们还应注意以下几点:

⑴周期函数的定积分,其积分上下限可任意改变,只要积分区间的长度始终等于周期,则定积分的值不变。

⑵定积分存在的两个条件:

①积分区间有限;②被积函数有界

⑶对于定积分f(x)可积,则加上绝对值也一定可积,若其绝对值可积,但去掉绝对值却不一定可积.

2、 曲线积分

2、1第一型曲线积分

2、

1、1证明:若函数f(x,y)在光滑曲线L:x=x(t),y=y(t),t[,]上连续,则存在点((x0,y0)L使得f(x,y)dsf(x0,y0)L l

其中L为L的弧长 证明:因为f(x,y)dsf(x(t),y(t))x(t)2y(t)2dt l

记F(t)f(x(t),y(t)),G(t)x(t)2y(t)2

由已知条件知F(t)在,上连续,G(t)在,上连续且非负(不变号),则根据推广的定积分第一中值定理知,存在t0,,对应点(x0,y0)(x(t0),y(t0)), 使f(x,y)dsf(x(t0),y(t0))lx(t)2y(t)2dtf(x0,y0)L

回顾分析:运用推广的定积分第一中值定理是证明此题的关键.2、2第二型曲线积分

2.2.1求y2dxz2dyx2dz ,其中,L是维维安尼曲线x2y2z2a2,L

x2y2ax(z0,a0)若从轴正向看去,L是沿逆时针方向进行的.

解:选择好参数方程确定好积分区域正是解此题的关键.

将 x2y2z2a2表示为 2a2 ,x2y2ax

表示为r2ax 或 rax

令 xacos2 则 yasincos,zacos2asin ,

于是L:xacos2,yasincos,zacos2



2

2,所以

Ly2dxz2dyx2dz

2[a2sin2cos2(2acossin)a2(1cos2)a(cos22

sin)acosacossin(1cos)]d

224212

2a32(sin2cos2sin4)d0

3351a3[(,)(,)]2222



4a

3通过以上实例分析可知,曲线积分有着较为广泛和重要的作用.因此对于曲线积分,我们应注意以下几点:

⑴第一型曲线积分:第一型曲线积分上限、一定要大于积分下限; ⑵第二型曲线积分:

①曲线和有方向,方向改变后第二型曲线积分二值就要反向,即变号;

②第二型曲线积分的计算,在化为定积分时,积分上限可以小于积分下限,起点即为下限,终点即为上限.

⑶曲线积分是定积分的推广.

⑷对ds,即表示L的弧长,即f(x,y)=1. l

3.二重积分

3、1计算(xy)2d,其中D0,10,1.,

D

解:应用定理即:设f(x,y)在矩形区域Da,bc,d.上可积,且对每个xa,b积分d

cf(x,y)dy存在,则累次积分

bdbadxf(x,y)dy也存在,且cdf(x,y)ddxDacf(x,y)dy 有f(x,y)ddx(xy)2dx

D00117 6

回顾分析:对于一般区域,通常可以分解为如下两类区域来进行计算. 称平面点集D{(x,y)y1(x)yy2(x),axb}为x型区域

称平面点集D{(x,y)x1(y)xx2(y),cyd}为y型区域.

3、2关于x型区域的实例

3、

2、1计算二重积分d,其中D为由直线y=2x,x=2y及x+y=3所围的三角

D

形区域.

解:把D看作x型区域时,相应的

2x,0x1x ,y1(x), y2(x)23x,1x2

dxdddxxdydxxdy DD1D2021212x23x

12xx(2x)dx(3x)dx0122

333x23xx2412401

23、

2、2关于x,y混合型区域的实例

求由坐标平面x=2,y=3,x+y+z=4所围二角柱体的体积.

解:

Vzdxdy(4xy)dxdy

DD

dx(4xy)dydx0011324x0(4xy)dy

55

6回顾分析:

对于二重积分应注意以下几点:

⑴ 二重积分化为累次积分,积分上限一定要大于积分下限.

⑵ 二重积分的许多性质与定积分的几乎完全相同.

⑶ n(n2)重积分的计算都是转化为定积分的计算.

⑷ 掌握型区域和型区域的二重积分的计算是计算一般平面上二重积分的基础. ⑸ 解决了x型区域或y型区域上二重积分的计算问题,那么一般区域上二重积分的计算问题也就得到了解决.参考文献:

【1】 华东师范大学数学系编. 数学分析(上、下) [M]. 第三版.北京:高等教育出版社.2001

【1】 林益等编数学分析习题详解(上、下)[M].武汉 华中科技大学出版社.2005

第五篇:放缩法与数列不等式的证明

2017高三复习灵中黄老师的专题

放缩法证明数列不等式

编号:001 引子:放缩法证明数列不等式历来是高中数学的难点,在高考数列试题中经常扮演压轴的角色。由于放缩法灵活多变,技巧性要求较高,所谓“放大一点点太大,缩小一点点太小”。为了揭开放缩法的神秘面纱,黄老师特开设这一专题,带领大家走近“放缩法”。 一.放缩法证明不等式的理论依据: 1.不等式的传递性:

2.同向不等式的可加性:

3.同向的正数不等式的可乘性:

二.常见的数列求和的方法及公式特点: 1.等差数列的和;an_____sn______(nN) 2.等比数列的和:ankqn,sn3.错位相减法:等差×等比

4.裂项相消法:若anan1d(d为常数)在三.常见题型分析:

1.放缩目标模型:可求和 1.1等差模型

1111()(nN)

anan1dan1ana1(1qn)(q1)(nN) 1qn(n1)n(n2)1223...n(n1)例1.(1985全国卷)求证:(nN) 22

n(n1)n(n3)1223...n(n1)变式:(nN) 22

1.2等比模型

1111例2.求证:23....n1(nN) 2222

变式.求证:1121112231......2n11(nN21)

例3.(2014全国卷Ⅱ1an满足a11,an13an1,1)证明:a1n2是等比数列.并求an的通項公式 2)证明:1a113a.......12an2

变式:求证:1211211152231......2n13(nN)

例4.(2002全国卷理22题7题)第2问已知数已知数列

列(()an满足an1an2nan1,n1,2,3.......当a13时,证明对所有的n1,nN(1)ann2(2)证明:1a11a.......11121an12

1.3错位相减模型

例5.求证:12123n222233.......2nn2(nN)

1.4裂项相消模型

例2(2013广东文19第(3)问)求证:11313515711(2n1)(2n1)2

11111例6.证明:n12n12232......n2n(nN)

(nN)

111变式1.证明:122......22(nN)

变式2.证明:

变式3.证明:

变式4.证明:

变式5.证明:

23n 111172232......n24(nN) 112115232......n24(nN)1213......1n2n(nN)1113252......(2n1)232

11

1115变式6.证明:122......235(2n1)4

常见的放缩技巧总结:

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:党建会议精神落实情况下一篇:冬季防火主题班会免费