企业智能制造规划

2022-07-26

第一篇:企业智能制造规划

公司智能制造规划

智能 制造规划 拟

制:

核:

准:

期:

目录 1.概述..........................................................

2.需求分析......................................................

2.1 仓储 ....................................................

2.2 生产 ....................................................

2.3 其他 ....................................................

3.企业信息化现状分析............................................

4.智能制造方案..................................................

4.1 系统架构 ................................................

4.2 子系统耦合关系分析 ......................................

4.3 工业大数据中心方案 ......................................

4.3.1 工业大数据平台框架 ..................................

4.3.2 工业大数据平台特点 ..................................

4.4 现场层系统 ..............................................

4.4.1 数据采集方案 ........................................

4.4.2 机器视觉检测系统 ....................................

4.4.3 生产测试管理平台 ....................................

4.5 应用层系统 ..............................................

4.5.1 智能仓储系统方案 ....................................

4.5.2 项目管理系统方案 ....................................

4.5.3 设备管理系统方案 ....................................

4.5.4 PLM 系统方案 .........................................

4.5.5 能耗管理系统 ........................................

4.5.6 CRM 系统方案 .........................................

4.5.7 GIS+BIM 构建虚拟车间 .................................

5.系统建设路线..................................................

5.1 实施策略 ................................................

5.2 实施路线(建议)

........................................

版本信息 日期 作者 版本 备注 2016.10.24 蒋中能 PA1 初版方案 2016.10.25 蒋中能 PA2 修改实施路线内容;在第一章前增加“阅读说明”

阅读 说明

1.概述:简述背景和本案的基本内容; 2.需求分析:主要描述现场调研情况及简要分析; 3.企业信息化现状:描述企业现阶段的信息化系统及使用情况,作出简要分析; 4.智能制造方案:描述总体架构;按照三个层级(数据层、现场层、应用层)进行系统方案描述; 5.系统建设路线:阐述天衡电科的智能制造实施策略,针对九州实际情况给出简要的实施路线建议。

1.概述 在工业 4.0、互联网+以及大数据、机器人和人工智能等技术日趋成熟的背景下,智能工厂建设的可能性逐渐明朗。

根据目前的技术成熟度,当前制造业转型的现实目标应当是建设数字化工厂、探索数字化管理和重构优化工作流程以满足数字化的要求。其主要原因有二:

其一:人工智能方法的成熟度上不能完全被可靠的利用到制造过程中,在当前只能通过数据感知获取一些知识,而判断的工作依然需要人来完成。因此,希望一步到位的实现智能工厂还不现实。但实现全数字化的工厂,将所有环节的数据采集和流转全部实现虚拟化并提供交互功能是完全可以做到的,这种形态的工厂即数字化工厂。

其二:数字化工厂是走向智能化工厂的必经道路。目前科学界普遍的共识是通过数据感知是获取智能的途径,因此数据是智能工厂最为核心和关键的部分,也是实现智能的基础。

而数字化工厂建设最为核心的内容是数据平台的建设。包括了数据的采集、传输、预处理、分类、规约、访问控制、相干性保证等诸多方面的内容;需要动用传感器技术、信号处理技术、数据通信技术、分布式计算技术、数据存储技术、软件技术、WEB 技术等众多 ICT 领域的关键技术。

数据平台的建设是一个有意义而又有挑战的工作。

在这一背景下,本案拟对数字化工厂的数据平台建设作一个方案规划。为数据平台建设的实施提供指导和依据。

本案的主要内容包括:

1.数据平台架构介绍:一般意义上的框架性介绍,建立一个基本的广泛适应性的数据平台框架,并标明其关键技术。

2.数据平台的应用背景:针对实际的应用,对企业的规模、业务过程、数据采集的类型和要求、数据量等具体应用相关情况进行描述。

3.数据平台方案规划:依据框架和具体的应用背景,具体给出某企业的数据平台的方案,指明需要的数据类型、数量以及实现方法等。

4.软硬件部署设计:对系统部署实施阶段所需的软件和硬件环境做出规定。

2.需求 分析

2.1 仓储 调研情况 :

1.储藏类型有三种:器件、半成品(原材料)、成品 2.所有三种类型的产品都存在外购和自产。

3.入库流程为:待验——检验——入库。其中待验环节主要是核对物料信息(外包装铭牌)以及抽样检查数量;检验为全检。

4.出库分为领料和销售出库两种。

5.领料流程为:技术中心下发 BOM 清单——PMC 部做计划单,发送领料单——库管发料——生产配套区 6.销售流程为:营销公司——运输中心——库管 7.入库数据为人工在 ERP 软件中录入对应号码。

分析 :

1.出入库数据需人工在 ERP 软件中录入,较繁琐。

2.仓库堆料为人工,存在摆放不合理以及快速查找响应慢等问题。

2.2 生产 调研情况 :

1.有 11 条产线,每条产线独立工作。

2.每条产线的生产情况由人工统计,在现场表现为小黑板展示,在后台为人工输入电脑。

3.华为专线生产线有 MES 系统,并配套扫码枪。

4.PCM 部向生产部门下发总生产计划,生产部门根据实际产线情况制定排产计划。

5.PCM 部下发的 BOM 清单会在生产部做一次比对,如果发现有问题则反追溯;如果没问题,则实施配料。

6.新产线数据目前已做到在上位机进行数据读取,使用的是设备配套的软件,读取的信息类型较丰富;旧产线数据能否读取尚不清楚。

7.新产线设备的数据传递口为 LAN 口。

分析 :

1.PLM 系统产生的 BOM 清单在修改时,由于系统间传递信息的时间不对称,

会造成生产部门的 BOM 清单与最新的 BOM 清单不匹配的问题,使配料环节产生问题。

2.华为专线的 MES 系统据现场工作人员反应,并不好用,原因有几点:

a) 数据统计不准确,主要原因为扫码枪有时读取不到产品信息。

b) MES 系统上线仓促,在流程和功能匹配度上存在问题。

2.3 其他 1.提供制造前端的物理量数据采集;如各类传感器数据。

2.提供制造前端各种设备(装备)的状态数据、过程数据和工艺数据等关心的数据采集(针对现阶段没有的设备)

3.提供制造前端所需的数据录入和搜集所需的人机交互界面,实现人工录入信息的采集。

4.保证数据采集过程中的数据传输安全。

5.保证设备接入网络后的工作状态可靠和信息安全。

6.提供数据存储、查询、分析等所需的软件。

7.提供该数据平台与其他应用系统集成时所需的软件接口。

8.数据采集前端的类型、数量能够在不影响原有数据平台的基础上扩展。

9.数据接口完全开发,具备自生长和可扩展性。

3.企业信息化 现状 分析 现状:

1.具备五个系统,分别是:ERP(金蝶 K3,12.3 版)、OA(大通 2015)、PLM(金蝶 13.1 版)、条形码系统、MES 系统。

2.ERP 系统上线于 2007 年,功能:

a) 供应链 b) 生产制造(生产计划、BOM 清单、车间管理)

c) 财务结算 d) 基础数据(与 PLM 系统的 BOM 清单同步)

3.OA 系统上线于 2015 年,功能:

a) 审批流 b) 财务报销

c) 初步的 BI 分析(财务报表)

d) 集成应用(物资借用、付款申请、基础资料)

4.PLM 系统上线于 2014 年,功能:

a) 资料电子化(审批流程)

b) 资料数据化(BOM)

c) 物料申请(与 ERP 系统同步)

d) 项目管理(下一步目标)

5.条形码系统上线于 2005 年,功能:

a) 成品下线、质检、出入库、售后 b) 物料信息、出入库单与 ERP 系统同步 6.MES 系统上线于 2015 年,功能:

a) SMT 管理(追溯物料,板卡与批次绑定)

b) DIP(插件)追溯 c) 组测包(生产过程管控)

d) 库存发货管理 e) 物料信息、出入库单、BOM 与 ERP 系统同步 分析 :

1.所有系统以 ERP 系统为核心,其余系统与 ERP 系统进行部分数据交互,由于各系统中有自己独立的流程,所以在数据共时性上会存在数据同步的问题。

2.每个系统有独立的数据库和自身的数据格式,在进行系统间数据传递时有报错的风险(目前九州内部采用各系统中加审批流程来进行规避)。

4.智能 制造 方案 4.1 系统 架构

工业人工智能引擎生产计划管理平台集中采购管理平台物料管理平台生产过程管理平台生产质量管理平台生产测试管理平台用电侧能耗管理平台MES系统自动化运维平台……存储服务 计算服务工业大数据中心工业网络安全系统机器视觉检测系统现场电子测量系统智能装备 自动化设备 机器人现场数据采集系统应用层数据层现场层图 4-1 数字化制造系统架构图 按照工业大数据平台构建数字系统的思路,数字化工厂的总体框架和子系统划分定义如下图所示:

图 4-2 数字化工厂的总体框架 上图给出了该车间可能用到的系统模块。按照功能关系划分为三大部分,每一个部分的功能也稍作了细化。

子系统 1.1~1.8 都是部署在现场的各种软硬件系统。

子系统 2.1 是大数据平台。

子系统 3.1~3.7 是应用软件系统。

需要指出:1.1~1.8 之外,还可以扩展其他的现场应用系统,只要其数据接口和通信协议与大数据平台的要求相符即可;3.1~3.7 之外,还可以扩展其他应用管理系统,包括 ERP、OA 等相关功能都可以在这一层实现扩展。

4.2 子系统 耦合关系分析 表 4-1 子系统耦合关系表

从耦合关系可以看出,前端系统(1.x)各个部分之间耦合很小,应用系统(3.x)各个部分之间的耦合也很小。所有的耦合关系都集中在大数据平台,因此大数据平台的建设是最为关键的步骤。

4.3 工业 大数据中心 方案 4.3.1 工业大数据 平台 框架 4.数据中心各类数据库(关系、非关系数据库)网络服务器计算服务器3.数据网1.前端数据采集系统2.工业防火墙1.前端数据采集系统2.工业防火墙1.前端数据采集系统2.工业防火墙1.前端数据采集系统2.工业防火墙 …… …… 企业网其他应用系统(MES、ERP、CRM、PDM、PLM等)图 4-3 工业大数据平台一般性框架 工业大数据平台分为三部分:

1.前端数据采集系统:包括数据采集器、嵌入式软硬件、已经必要的数据调理设备等。实现前端的各种数据提取,并进行传输编码、协议封装等

预处理工作。

2.工业防火墙:实现前端设备与数据网中其他设备之间的隔离,以保护设备本身工作状态稳定可靠,不受威胁。PLC、RTU 等设备在过去一般是不接入网络的,自然也不需要安全防护,但在数字化工厂建设的大背景下,设备接入网络是不可回避的问题,因此安全隔离自然也成为必须要考虑的要素。

3.数据网:指工业现场的各种传输协议,常见的有 RS485、MODBUS 等总线形式,大多数采用通用的协议控制器连接即可,技术很成熟,不再赘述。

4.数据中心:数据中心的主要任务是:1)数据的存储 2)数据计算 3)数据请求服务响应。在数字化工厂建设的背景下,要求各个业务端的数据能够实现实时流转、实时交叉分析,对数据的逻辑关系和时间关系的正确性提出了严格的要求,只有用大数据技术的方法来实现数据的整体统筹才能解决这个问题。同时,鉴于数字化工厂网智能工厂进化的过程中,需要不断的增加各种数据,添加系统功能等,这要求数据平台具有可扩展性,或者称之为自生长性。因此,本案采用大数据架构来搭建数据中心,可以保证系统良好的开放性,为未来扩展做好准备。

4.3.2 工业 大数据平台 特点 该数据平台架构的主要特点有:

1.采用大数据平台架构,保证系统的开放性。如此一来,其他的数据应用系统都可以随时方便的接入到该平台上。同时,也可以保证整个系统的功能可扩展性。因此,这是一个可生长的平台。

2.引入工业防火墙。在保证数据采集全面的情况下,兼顾设备运行的安全性。制造型企业设备运行可靠性一旦受到威胁,其后果和损失十分巨大,因此必须仔细考虑前端的信息安全防护。

3.采用分布式计算架构。有两层含义:1)采集前端部署计算资源,对现场数据采集所需的信号处理、协议封装、数据预处理或必要的实时处理进行直接计算,将结果直接反馈给数据中心;2)数据中心中,采用虚拟化的方法,实现并行的分布式计算,提高系统运行和计算效率。

4.平台软件采用 SOA 架构。以服务为中心,将数据与应用软件剥离开,在

软件功能增加、修改的时候不影响数据;使系统的可维护性和可扩展性大大增强。

4.4 现场层系统 4.4.1 数据 采集方案 4.4.1.1 生产 数据采集 生产数据包括但不限于:

1) 产品型号 2) 产品批次号 3) 产品原料来源 4) 产品数量 5) 产品质检结论 6) 产品生产时间戳 数字化工厂生产数据的采集来源于四种:

1) 设备自读取:具备通信接口的设备有自带软件将产品生产信息导出,该数据的格式存在不确定性,可能需要规约之后放入系统数据库。

2) 传感器采集:在生产关键节点加装传感器进行数据采集,这种方式应科学规划传感器的部署,否则可能会造成数据记录遗漏或错误。

3) 电子计数设备:例如扫码枪等,其原理与(2)类似。

4) 其他系统导入:通过开放的数据接口,从其他系统导入或导出。

4.4.1.2 设备 数据采集 设备数据包括但不限于:

1) 设备运行数据:来源于设备本身,以时间戳来标示 2) 设备状态数据:异常信息记录 3) 设备档案数据:设备 PDM 系统 4) 设备维护数据:设备保养、维修数据记录 4.4.1.3 环境 数据采集 环境数据的采集有三种:

1.无线 传感模块

无线传感模块集成了大量传感器,如:烟雾传感器、灰尘传感器、湿度

传感器、温度传感器、热释电传感器、光线传感器、气体传感器等。其通信方式采用 WIFI、ZigBee、MQTT 等,根据需要也可采用有线以太网通信的方式。

模块由嵌入式处理器控制,尺寸小巧,架设方便。在接入网络后直接将现场环境数据采集上传至数据中心,数据的应用场景不限于安防、环境监控、工厂虚拟再现等。

图 4-4 无线传感器模块 2.生物 识别

生物识别技术,常见的是指纹、虹膜、脸相等一系列生物特征提取和识别方法。本案中,采用人体手掌静脉识别技术作为身份识别和授权依据,具有更高的安全性。

该技术的主要优点如下:

1) 活体识别:掌静脉图像只有活体才有,非活体是得不到掌静脉特征的;因此无法伪造。

2) 无损伤:采用非接触式被动方法获取生物内部特征,对生物体无任何损害。

3) 安全级别高:由于无法伪造,且提取的是生物体的内部特征,其总体安全级别是目前所有生物识别技术中安全级别最高的一种。

生物识别技术可用于车间出入人员管理,设备使用授权等,其授权记录也被纳入大数据平台中。

3.室内 定位

Position 室内定位系统采用超宽带技术,对现场人员动行动轨迹进行记录。其接入点可达上万个,选用多维定位模式,定位精度达到厘米级并提供开放的软件接口。

在车间安防应用中,其采集的数据可用轨迹回溯、互监放单,多样报警等。在保密性较高的场合尤为适用。

4.4.1.4 数据 服务  数据库

制造现场属离散制造,其数据基数适中,可采用 Orale 或 Mssql 数据库

作数据存储。Mssql 可搭建于 Windows Server 操作系统上,便于后期维护管理。

数据库采用主备架构,该架构可提供了一个高效、全面的灾难恢复和高可用性解决方案。自动故障切换和易于管理的转换功能允许主数据库和备用数据库之间的快速角色转换,从而使主数据库因计划中和计划外的中断所导致的停机时间减到最少。主备数据库可在两台服务器上分别布置,见下图:

图 4-5 Oracle Data Guard 系统  工业 防火墙

在工业现场,对智能设备的安全防护是必不可少的,在通信技术高速发展,设备智能化不断提高的同时,也带来了安全隐患。

尤其是在自动化程度较高的制造现场,如果设备受到恶意代码的攻击,其带来的损失将不堪设想。所以,在设备与网络接口之间架设工业防火墙是十分必要的。

工业防火墙的目的是提供一套可控、可靠、可管理的工控网络纵深安全防御体系。工控防火墙可信网络管理平台的功能包括:检测流经的异常数据,收集、管理黑白名单、智能学习、漏洞挖掘和制定相应安全策略。结合监控、审计模块,有效组织恶意攻击的渗透,实现整个工作站的“白环境”。

图 4-6 工业控制系统安全保障体系 4.4.2 机器 视觉检测系统 4.4.2.1 总体 架构 完整的视觉检测系统主要由三部分构成:现场工作站、视觉算法层以及数据中心。

首先是现场工作站,它是视觉检测的一个关键环节,也是整个软件系统的基础。现场工作站主要由一些光学设备及自动化运行系统构成。光学系统一般包括工业相机、光源、棱镜等。工业相机一般采用触发式,由检测平台发出的信号触发拍照。自动化设备主要负责传送带运行和筛选环境,这部分可以根据实际情况简化。光学系统的选型和布置是和待测件密切相关的,应根据待测件的状态选择合适的光学配置,这样就可以减少软件系统在处理过程中的压力,提高系统运行效率。

高性能电脑则是视觉算法的载体,它将负责与现场工业相机通信,获取图片,并执行检测。除此之外,它还负责将检测结果反馈给控制器,并如对实时性要求较高,则可能需要高性能的处理器及 GPU。视觉检测系统总体方案见下图:

图 4-7 视觉检测系统总体方案 4.4.2.2 工作 流程 当物料经过相机时,传感器将触发一个脉冲信号通知相机进行拍照。视觉软件的数据接收线程将通过千兆以太网或 USB 从相机中异步获取图片数据。在实时性要求较高的场合,相机应根据需要慎重选择。图片的分辨率、清晰度、物体在图中的大小、图像曝光度及图像的颜色通道等都应该被综合考虑,拍摄的照片应尽可能的减少图像算法的预处理工作量,以保证对运行时间的优化集中在软件层面,下图为 LED 视觉检测流程示意:

图 4-8 LED 视觉检测软件流程图 软件将在现场终端上实现。在收到图片信息后,接收线程准备异步读取下一张图片,并等待残次检测完毕。同时,缺陷检测线程池内的线程将被激活,开始对图片数据进行分析,图形算法的主体将在此过程中完成。

线程池采用等待句柄保持同步,即当某一线程执行完毕后将结果放入传输队列,随即被挂起,等待其他所有线程进入终止态。当所有检测线程进入终止态后,数据处理线程被激活,同时触发下一次图像采集。

数据处理线程将在第一时间判断是否存在瑕疵,根据瑕疵优先级向 PLC 发出对应 NG 信号,数据同时被送往其他线程。这些数据包括每项检测的基本参数指标、瑕疵品的细节参数、时间戳以及产品批次等信息。这些数据将存放在大数据中心,供其他系统调用,向企业管理者和工艺人员提供产线状态报告。

4.4.2.3 数据 集成 图 4-9 视觉系统在企业生态圈示意图 机器视觉核心是视觉算法,而经过的复杂算法产出的珍贵数据应该被充分的利用起来。将检测结果发给自动化设备完成视觉筛选是视觉系统的主要职责,但是这样并没有对产品出现残次的根源进行进一步的挖掘。所以视觉算法产出的数据应当被放入企业数据中心,从中提取有用数据。

例如,对于每件检测到的残次品,它的批次、产品制造工艺、原料供应商、

缺陷类型、缺陷程度、生产人员等信息都将在数据中心中体现。其中视觉系统提供与缺陷相关的参数,这便和企业原有的产品管理、供应商管理、客户管理、制造执行等系统互联起来。通过分布式计算从中发掘出有用的信息,从而进一步提升产品的质量及生产效率。

4.4.2.4 实际 应用 激光 IO 触发的方式通常要求机械臂在抓取待测件前待测件的姿态保持固定。因为系统中不存在反馈,机械臂只知道有待测件进入测试区域,并不知道待测件的姿态,这就要求在传送带末端设计相应的机械结构是的 IO 触发时被测件处于特定姿态,让机械臂进行准确的抓取和放置。

图 4-10 待测物体识别 图 4-11 抓取位置获取 引入机器视觉系统可以很好的解决这个问题。机器人和工业相机的结合使整套系统形成了一个闭环网络。无论待测件以什么姿态进入,工业相机和机械臂都可形成一条的反馈回路,实时追踪被测件的位置和姿态,从特定的位置抓起被测件并插入测试槽中。即使有多个被测件进入,视觉系统也能从容应对。如有杂物进入识别区,还可将其识别触发报警,避免可能带来的损失。

针对本案,测试平台可采用固定式相机搭配线性光源的结构,易于安装和配置。视觉系统同样采用千兆以太网通信,其数据吞吐量大,不但可以与机械臂协同工作,还可以将出现的异常或测试不过的图像信息经工业以太网发送至云端数据中心。

视觉机器人系统可以充分发挥信息自动化的优势,实现与大数据平台和 MES系统对接,为技术人员提供完备的数据流,从而形成更加系统的测试体系。

4.4.3 生产 测试 管理平台 4.4.3.1 总体 框架 图 4-12 测试互联网架构 从图中可以看到,每个测试台被当做一个数据生产终端,通过互联网进行连接,构成测试互联网。

测试台之间通过通用的工业互联网协议实现数据交互,而每一个测试台内部则采用 VISA(Virtual Instrument Software Architecture)协议实现控制指

令和数据交互,而支持的主要总线形式包括 RS232、RS485、USB、GPIB、TCP/IP等。

系统的功能逻辑关系见下图:

测试台1测试上位机及自动测试软件VISA测试仪器温箱其他测试设备测试台2测试上位机及自动测试软件VISA测试仪器温箱其他测试设备测试台n测试上位机及自动测试软件VISA测试仪器温箱其他测试设备… … 交换机安全隔离数字化工厂数据平台 测试数据库 产品数据库 其他数据库服务器图 4-13 测试互联网功能逻辑框图 4.4.3.2 平台 功能 在数字化工厂的测试管理平台不能单纯的当做一个个独立工作的测试台来考虑,另外,测试管理平台的软件功能也不再只是实现简单的自动化测试和数据采集,而是应当把被测产品的信息、测试工具管理、测试数据管理、测试任务管理等功能进行融合,满足测试工作在数字化工厂运作方式中的要求。

本案的测试管理平台软件的主要功能有:

1.测试任务管理功能:根据生产的需要,对指定型号的产品进行测试任务定义和下发,并跟踪测试过程,检查测试任务进展的状态。

2.被测产品信息管理:将被测产品与测试数据进行融合,便于未来对测试数据与产品之间的交叉分析。如果企业已有 PDM 系统,则可以与之对接,直接使用其提供的产品信息。

3.测试软件工具集成化管理:该软件平台提供一个综合的集成图形界面,将测试过程中需要使用的各种测试工具都“包”在该界面中,类似于一

个软件容器,用户可以通过该用户界面对测试工具进行访问,避免测试工具的碎片化,易于管理。且测试工具的添加和删除可以根据用户的需求进行增减。

4.测试设备状态管理:产线中的测试设备由于使用频率高,维护频率也远高于研发使用场景。该软件同时提供测试设备的健康状态管理,以协助用户对测试设备进行维修、校准等维护。

5.测试数据管理:该软件以大数据架构的工业数据平台作为数据管理支撑,为用户提供数据的存储、查询、导出、计算等功能。

6.测试数据分析功能:为用户提供数据的常见统计、交叉、可视化等处理软件工具。

7.自动报表功能:自动生成用户需要的测试报告,并自动存入数据平台中,便于未来查阅和追溯。

测试数据管理平台软件界面截图如下:

图 4-14 测试数据管理平台软件截图 4.4.3.3 平台 特点 1.是一个完全按照数字化工厂需求设计的基于互联网架构的测试平台。

2.采用 VISA 架构设计测试工具软件,对仪器设备的型号有广泛的支持性。

3.采用分布式部署架构,特别适合生产测试场景。

4.集成化的测试工具和数据管理客户端软件,将生产测试过程中的各种过程数据采集工具都进行了整合,避免了工具的碎片化。

5.以大数据架构的数据平台支撑测试数据的后处理,可以很方便的与工厂的数据平台进行对接和融合。

6.系统架构为开放式。可以不影响原有系统工作的情况下自由的增加测试台或测试软件工具。

7.是一个以测试数据为核心设计的测试管理平台。一开始的时候就是为测试数据的采集和利用设计的,数据的后处理功能和可扩展性好。

8.仪器驱动层为开放式设计。可以很方便的添加新的仪器型号,或利用原有的仪器设备,而不需要对测试流程管理软件进行修改。

9.SOA 软件架构。

4.4.3.4 操作 自动化 方案 操作自动化的主要目标是实现将待测件从传送带入口到测试平台再到传送带出口的过程。整个过程无需人工干预,结合自动化测试设备,最终实现无人测试。

图 4-15 自动测试流程图 当被测件加工完毕后,从传送带上被分配到测试子系统,在进入测试系统范围后通过激光或机器视觉发出一个就位信号。这时机械臂开始动作,将待测件抓起,准确放置到指定地点,测试过程启动。测试完成后将返回测试结果,如果不通过则机械臂将其分配到残次品流水线,合格则分配到良品流水线。在这期间产生的所有流程数据、测试数据都将被记录。

图 4-16 自动测试平台结构示意图 采用工业机器人作为生产与自动测试平台间的桥梁,不仅可以提高效率,还为今后进一步升级改造打下了基础,其带来的优势主要有:

1) 快速、准确、高效; 2) 便于集成,提供以太网口,可与大数据平台及 MES 系统高效融合; 3) 安装角度自定; 4) 编程门槛低,灵活度高,可根据具体需求进行二次开发; 5) 可搭配机器视觉等子系统,持续升级。

工业领域中使用的四轴、六轴的小型机器人已具有很高的灵活性和快速性,同时兼顾了准确性,其重复定位精度通常可达±0.02mm,可满足九州公司中对测试件抓取、放置,甚至接插的需求。

小型机器人的负载通常在 3KG 至 10KG,可根据待测件类型进行考虑,如成品测试通常比板测要求负载量更大。末端的抓取结构可根据被测件选用机器爪或真空气泵,在对空气气体洁净度需求较高的场合,通常选用前者,当然也可以选用实验室级别的机械臂。

4.4.3.5 测试 自动化方案 测试台的自动化主要通过两个渠道来实现:

1.通过矩阵开关和适配器实现被测件和测试设备之间连线关系的自动化切换。

2.通过软件控制被测件、矩阵开关、适配器和测试仪器实现测试流程,完成自动化的测试和数据采集,并通过数据通信接口将测试数据上传到数据中心。

测试台的系统逻辑构成框图如下:

图 4-17 测试台系统构成逻辑框图 测试平台为面向各种不同型号的被测件,需要充分考虑被测信号与测试仪表的连接和路由问题。通常采取通用开关矩阵解决测试信号与仪表的路由问题、采取专用适配器解决被测件信号与通用开关矩阵连接问题。示意图如下:

图 4-18 通用开关矩阵及适配网络路由方式示意图 开关矩阵采用 MxN 的网络形式,可以将开关矩阵两侧的任意两个端口或多个端口进行路由和导通。为控制矩阵规模和可靠性考虑,将测试信号按频率的高低进行划分,高频信号配备高频开关矩阵网络,低频信号配备低频开关矩阵网络。开关一般由 TTL 电平进行控制,而 TTL 电平的产生由控制电路板构成。控制电路板的输入接口是 RS232、GPIB、USB 或 TCP/IP 等常见的 VISA 协议,其输出口是GPIO,可以配置为需要的 TTL 电平输出。

专用适配器作为被测件与通用开关矩阵的接口转换匹配模块,可以将不同被测件的借口类型转换为高频、低频信号连接端口集合,与通用开关矩阵相连。因此,针对不同型号的被测件,需要专门设计专用适配网络,以匹配不同信号被测件的不同接口形式和数目的要求。专用适配网络的设计示意如下:

图 4-19 接插线适配器设计示意图 航空电子设备模块的接口类型和数量较多,更换被测模块时相关的连线操作较为繁琐和浪费时间。适配器的接口设计和特定模块的接头类型、位置、数量相对应的相匹配,将模块的所有接头集成在适配器上,通过操作适配器,一次性完成对整个模块的接插线操作。通过适配器内部的转换,可以将各个信号经由相对比较统一的接线簇与通用开关矩阵相连。同时,可以将各模块测试所需的一些外部配件,如衰减器、功分器、合路器、滤波器等集成在专用适配盒内,最大程度避免接线难度。

4.5 应用层 系统 4.5.1 智能仓储 系统 方案

4.5.1.1 仓储 管理 仓库管理的目标如下:

1.系统联网运行,仓库的库存信息能够实时地、准确地共享,方便各部门、科室、人员的查询和使用。

2.实现仓库对物料的信息化管理,将区位化和等精细化管理思想运用于系统中,相关人员通过对系统的查询,均能够得到所需查询物料准确的数量信息和精确的位置信息。

3.系统的库存信息可以实时反馈给数据流上游的采购部门、财务部门等,具体信息由系统按规范格式自动生成,从而减少相关人员对物料信息的人工输入,大大降低由人工二次输入引起的错误。

4.系统能够保证信息的安全性,区分各类人员对系统的使用范围和操作权限,权责明晰。

仓库管理可分为 5 个主要功能模块:出入库管理、库存管理、盘存管理、库存预警管理。

 出入库管理 主要分为出库管理和入库管理两个部分。入库管理又可以分为入库和入库记录查询。入库是指对库存进行一次增加操作,入库记录查询指的是对历史的入库操作信息进行查询。出库管理与入库管理类似,也包括出库和出库记录查询。

图 4-20 出入库管理用例图  库存 管理 库存管理模块主要是对仓库信息、物料信息的维护,以及库存信息的展示。仓库信息、物料信息的维护主要包括仓库信息和物料信息的添加、删除、修改等功能。库存信息的展示包括当前库存状态以及库存查询统计和各种报表生成。其中当前库存状态能提供即时库存;信息查询要提供对各类信息的综合查询功能,主要包括仓库基本信息查询,物料基本信息查询,库存信息查询以及出入库记录查询。

图 4-21 库存管理用例图 其中信息查询又包括仓库基本信息查询,货物基本信息查询,库存

信息查询以及出入库记录查询。

图 4-22 库存信息查询用例图  盘存管理:

库存盘点是库存管理的日常工作。该模块主要分为库存盘点和物料报损两部分,其中库存盘点又包括冻结盘点和循环盘点两种。库存盘点提供年终、月终结算处理;支持按数量、单价、金额的明细核算及统计分析;完成物料收发存的成本核算,能够正确及时的核算出材料成本;提供暂估入出库成本计算、差异核算、出库差异分摊、凭证生成等业务处理;提供业务和财务的对帐功能能与业务及财务系统实时集成,保证业务财务信息的一致。

图 4-23 盘存管理用例图  库存 预警管理:

适量的库存是保证生产不间断进行的重要保证,随着生产过程的持续进行,物料不断的被消耗。由于物料的采购通常要受到供方生产周期、货运周期等诸多因素的影响,因此从采购指令下达到物料进入库房之间存在着一个提前期。所以,物料补充指令的下达应该在提前期之前做出。因此,为了确保在最合适的时间发出物料补充指令,从而保证供应安全,必须对库存进行监测。另一方面,如果有库存过量,会造成资金的极大占用和浪费,因此在库存管理过程中,一方面要预防缺货的发生,另一方面还要防止出现库存积压状态。

图 4-24 库存预警管理用例图 关于库存的控制有多种方法,其中定期订货法需要对库存进行固定周期的监测,由于这种检测方法的固有周期性,其监测结果经常会出现尚未到达临界订货点即进行补充的状况;MRP 对库存的控制则是基于对物料需求进行统筹、有效的科学分析基础之上的;JIT 则是在库存管理高度有效运转的前提下追求零库存控制策略。

4.5.1.2 备料 辅助 传统的仓库具有空间利用率低、灵活性差、差错率高、扩展性能差、联动性差等缺点。

在数字化仓库建设中,备料辅助系统(可看做是仓储物流系统)的作用是快速存放和取用所需的器件或产品。其结构如下图:

备料辅助系统自动化高架库 自动化输送 自动物料追踪 人机交互 仓储综合管理端拾器具存储 端拾器具输送 端拾器具追踪 人员操作指示仓库管理相关内容图 4-25 备料辅助系统结构图  自动化高架库:用自动化堆垛机、货架系统实现物料存取;  自动化输送系统:用自动化输送装备实现物料的交接和搬运;  自动物料追踪系统:用 RFID 实现物料操作过程的追踪; 下图为一个自动化备料系统仿真设计图:

图 4-26 自动化备料系统仿真示意图 在系统设计中需要考虑的因素有如下:

 托盘物品:存放对象、物料重量、物料尺寸等  空托盘垛:存放位置、顶层高度等  组合式货架:材料、尺寸、间隙等  堆垛机:载荷参数、控制方式、速度  输送机:AGV 小车参数、传送带参数 下图为一个备料系统硬件组成示意图:

图 4-27 自动化备料系统物理组成示意图 自动化备料系统的软件设计以物料管理系统提供的信息为参考,在生产计划阶段,下发命令到仓库,取料,并更新仓储数据;在采购阶段,物料入库数据自动更新,并反馈给生产计划部门以准备生产。

4.5.2 项目 管理 系统 方案 4.5.2.1 项目 管理 项目管理的一般流程见下图:

图 4-28 项目管理一般流程

项目管理包括如下内容:

1.项目任务管理 根据企业情况,项目任务的来源分为订单来源和生产预估计划来源。订单来源指企业接收到新产品订单后,成立项目管理小组,任命项目经理对该项目的全过程进行管理,其过程包括研发规划、设计定型、产品试制、生产准备、小批量生产、批量生产。生产预估计划来源,指企业根据往年情况,能预估其固化产品在今年的需求量,从而指导生产计划的制定,对于这种项目来源,项目流程一般仅为批量生产。

2.项目状态管理 项目立项之后,项目组成员即可根据对应权限对项目状态进行管理。包括项目状态及进度查询、项目状态更新、项目暂停、项目终止、项目内容更改、项目负责人更改、项目合并等。

4.5.2.2 成本 管理 成本控制是企业的一项重要的工作内容。企业通过对成本的计划、控制、监督、考核和分析等来促使企业各单位与部门加强管理,不断优化资源的利用,努力降低成本,提高经济效益。成本管理系统就是通过对于成本的不同方式的确认、计量、分析和比较,确保这种系统控制能最终落实到资源消耗上。使得企业的管理者能够得到更加准确和及时的数据。

成本管理 ER 关系见如下几图:

图 4-29 成本用例示意图 图 4-30 成本核算分析用例示意图 图 4-31 多系统集成管理用例示意图 成本管理系统承担的工作是计算出生产计划中,成本消耗和产品的产出之间的投入产出比。针对产品和项目核算出产品料工费,可以统计出单位产品的材料成本消耗。另外成本管理系统还可以根据采购的原材料而把成本细分,根据产品的工序和结构,对产品进行成本细化分析。

图 4-32 项目成本信息 ER 图 同时,根据产品的常规投入,制定产品的成本标准,这个标准是在一定的物价水平和劳动力价格下制定的成本标准,而根据标准成本,在每一批次的产品中

计算出实际成本在各项之间,计算出实际成本和标准成本之间的数据差额,从而改进成产工序等,从而更好的实现产品成本或者项目成本的更好控制。

图 4-33 产品成本信息 ER 图 在项目的成本核算分析中,根据项目的周期,首先进行事前成本分析,根据项目的程度,对项目进行事前的成本的预估计,对包括劳动力、原材料成本、车床损耗、生产损耗等进行预先的成本估计,以期对项目的成本进行大概的预估计。

然后在项目进行的过程中,分阶段,分周期的对项目成本进行阶段性分析,对之前的成本花费进行汇总,并且根据原先制定的计划,对成本花费与以后的花费进行修正或者调整,以使其按照预先估计的方向进行发展。最后,项目的完成阶段,对成本进行事后分析,对项目成本的事后分析,包括多方面的分析,包括对项目中花费的汇总和总结,对项目进行完整的成本分析。

同时,每一个产品是由多个工序实现的,在计算整体生产成本的同时,还需要对每一步骤,或者分产品进行投入产出分析,以使其达到最高的成本效率控制。同时,对产品成本和项目的成本分析结果都应该在多系统子模块之间进行数据共享。使各个模块都可以对产品或者项目的成本进行更好的把握和掌控,最终实现整个生产效率的完美提高。

4.5.2.3 风险 管理 项目风险管理是指对项目风险从识别到分析乃至采取应对措施等一系列过程,它包括将积极因素所产生项目风险管理流程的影响最大化和使消极因素产生的影响最小化两方面内容。

风险管理的主要内容是风险识别,包含两方面内容:

1.识别哪些风险可能影响项目进展及记录具体风险的各方面特征。风险识别 不是一次性行为,而应有规律的贯穿整个项目中。

2.风险识别包括识别内在风险及外在风险。内在风险指项目工作组能加以控制和影响的风险,如人事任免和成本估计等。外在风险指超出项目工作组控制力和影响力之外的风险,如市场转向或政府行为等。

风险管理的工具和方法如下:

1.核对表一般根据风险要素编纂。包括项目的环境,其它程序的输出,项目产品或技术资料,以及内部因素。

2.流量表能帮助项目组易于理解风险的缘由和影响。

3.风险量化。

风险控制的基本措施为:

1.对风险对策控制的输入项  风险管理方案。?  实际风险事件。有些已识别了的风险事件会发生,有些则不会。发生了的风险事件是实际风险事件或说是风险的起源,而项目管理人员应总结已发生的风险事件以便进行进一步的对策研究。?  附加风险识别。当项目进程受到评价和总结时,事先未被识别的潜在风险事件或风险的起源将会浮出水面。

2.风险对策实施控制的工具和方法  工作区:对消极的风险事件而言,工作区是一种不列入方案的对策。所谓不列入方案是指在感觉上它并未定义在风险事件发生前。?  附加风险策略研究。如果风险事件未被预料到,或后果远大于预料,那么计划的风险策略将会不充分,这时就有必要再次重复进行风险对策研究甚至风险管理程序。

3.风险对策实施控制输出项  校正行为:校正行为首先包括实施已计划的风险对策(比如实施预防性计划或工作区计划)。

实时调整风险管理计划。一个预料之中的风险事件发生或没发生,对实际风险事件后果的评估,对风险系数和风险机率的评估,以及风险管理方案的其它方面,都应进行实时的更新调整。

4.5.3 设备 管理系统方案 设备状态管理主要包括:设备档案管理、运行监控、保养及维修管理等。

 设备档案管理 设备档案管理将基础信息分类与查询-型号,采购价格,供应商信息,设备折旧信息,关键参数信息,产品说明书,维修手册,提供设备档案与之关联,形成数字化模型进行设备的档案管理。同时提供计算设备在其全生命周期过程中发生的采购费用、折旧费用、保险费用、保修费用,

为财务提供全面的成本信息。

 设备运行监控 设备运行监控包括运行相关数据,便于实时掌握各类设备的运行状态,发生故障时及时报警,统计设备运行负荷信息,实现保养提醒。

该功能为一线的生产运行人员提供设备运行情况的数据记录与查询功能,使运行管理人员准确记录设备的运行情况,发现设备故障时及时报修。

其方式包括:

1.调取视频监控画面和现场数据采集 设备运行监控与现场的视频监控集成,同时与众多工程现场的自动控制系统进行集成。视频监控的调取不但可以立体显示标定所有视频监视设备的安装位置,而且可以远程遥控视频设备的云台控制视角和景深,通过网络链接使控制中心能及时了解现场的情况。

2.设备运行数据直观展示与分析 通过对设备运行数据的分析,可以通过相应设备对应的三维模型进行颜色的区分,以及设备运行曲线等直观方式展示设备运行状态,对于处于亚健康以及报警预警设备进行及时的提醒和分析。

3.设备运行健康状态自诊断、自适应 该功能利用设备,环境,操作,维修,保养,供应商等多个类型的数据,准确预测设备故障,提升设备效能,降低维护成本。正是因综合不同数据源的数据,并自动检测故障模式,主动部署维护和维修资源,可大大节省下游成本。

自适应自诊断,包括电子系统自动诊断和模块式置换装置,把远距离设备的传感器数据连续提供给中央工作站。通过这个工作站,维护专家可以得到专家系统和神经网络的智能支持,以完成决策任务。然后将向远方的现场发布命令,开始维护例行程序,这些程序可能涉及调整报警参数值、启动机器上的试验振动装置、驱动备用系统或子系统。

 保养及维修管理 设备保养及维修管理贯彻“预防为主”和“维护与计划检修相结合”

的原则,通过平台设备保养和维修管理,做到正确使用、精心维护,使设备经常处于良好状态,以保证设备的长周期、安全稳定运转,并可通过历史数据对设备进行保养和维修周期提示。

4.5.4 PLM 系统方案 4.5.4.1 数据 关系管理 图 4-34 产品数据 ER 图 产品数据包括:

1.需求数据:主要指产品在设计前期从各渠道得到的技术需求,包括功能及技术指标等。

2.设计数据:产品在实际开发过程中的所有数据。包括文档、图纸、技术参数、BOM 清单等。

3.质量数据:产品在开发完成之后的质检数据,一般以报表的形式展现。

文档 数据 版本 管理规则 文档作为 PLM 系统中最为常见的数据形式,其生命周期管理是最为关键的部分。而实现其生命周期管理的途径是版本管理。

图 4-35 文档版本管理流程 产品 分层编号规则

在常见的 PLM 系统中,为了实现产品的层级管理,一般需要按照一定的规则对本单位所使用的各种产品按照层级编号,这样才能按照 BOM 有序的索引到所有的产品,并进行管理。

一般而做法是通过前缀来实现产品的分级区分,而为了控制系统的复杂度,产品的层级划分一般不超过 4 级。下图是一个 4 级结构的产品层级划分示意图:

图 4-36 产品层级划分 数据 关系管理规则

一般而言,在 PLM 系统中,以产品和项目两种实体作为数据关系实体的纲领,这种方法是十分清晰和易于管理的方式。所有的工程数据以文档的形式体现,因此在 PLM 系统中的 Data 指的就是文档,这一点首先需要明确。至此,已经可以明确的确定 PLM 系统的任务是处理产品、项目和文档三者之间的关系。其逻辑关系见下图:

图 4-37 产品、项目、文档逻辑关系图

PLM 系统中,产品和文档都有版本跟踪,项目需要有状态变化和跟踪;也就是说,产品、项目和文档的状态都随时在发生改变,怎样实现版本关系的跟踪是系统设计中需要考虑的问题。详细的处理过程见下图:

图 4-38 版本跟踪处理 其中的基本原则如下:

 在项目或产品状态开放时间区间内才能建立或修改文档与之对应的关系;  项目或产品状态一旦锁定,关联关系同时被锁定;  只有被批准过的文档才能与项目状态或产品状态相关联; 4.5.4.2 PLM 系统 PLM 系统设计原则包括:功能定制化、开放性、易维护性和可靠性。

产品数据管理系统,主要任务是管理如下数据:

1.产品相关技术文档,包括但不限于:设计需求、CAD 图纸、工艺要求规范、BOM 表、验证规范、验证报告; 2.零部件相关技术文档,包括但不限于:零部件规格资料、零部件图纸; 3.项目文档,包括但不限于:项目预算、项目结算报告、项目时间计划、项目风险管理、项目总结;(该部分主要针对以研发项目进行开发设计的企业)

4.运维文档,包括但不限于:维修记录、产品缺陷报告、产品使用反馈调查表。

顾名思义,该系统的主要任务是管理数据,在实际过程中,数据都是以各种各样的计算机文件的形式进行保存...

第二篇:智能制造、企业互通

------2014年智能制造研讨与创美工业4.0现场体验会

2014年10月31日在苏州白金汉爵大酒店举行了智能制造研讨与创美工业4.0现场体验会。来自全国的300余名制造行业客户莅临现场,热情参与了本次大会。此次大会以智能制造,协同合作这一主题进行研讨,就企业间如何实现共同互联、智能互通以及如何迈向工业4.0来展开,创美集团及用友软件专家一道共同探讨了制造企业的信息化之路。

大会开始大迁总经理回顾了创美集团与用友的合作历史,从与用友王文京董事长缔结战略协议、系统原型客户的确立、NC项目开始到用友集团的大力支持,逐步讲述了创美与用友战略好伙伴的一个个美好瞬间,也为体验会的现场拉开了精彩的序幕。会上由用友集团执行总裁章培林董事长发表致辞,提出在企业互联网化时代制造企业应利用新技术将互联网和工业深度融合,并剖析NC6如何为制造业塑造核心竞争优势。随后金工场长也发表了精彩的演讲。演讲以国际产业转移趋势作为背景,讲述了创美工艺与用友的协同合作来进行管理信息化项目的实施,逐步实现了设计敏捷化、制造智能化、业务过程实时化,客户协同化、集团管控化的智能工厂这一辉煌过程。并分享了制造业生产力发展方向和总体趋势。会上作为特邀嘉宾进行本次发言的还有用友项目经理岳伟龙、创美生产革新部主任金垠博、UAP中心技术支持部总经理彭立东、摩托罗拉制造经验专家等。用友咨询与实施业务部专家岳伟龙先生为大家讲述如何为创美实现信息化价值这一经验分享。生产革新部主任金垠博就创美工业4.0的实践案例进行分享,描述了工厂制造从自动化到智能制造这一改革创新的道路。UAP中心技术支持部彭立东总经理就UAP平台与客户联合创新作为主题,进行了本次演讲。紧接着大会现场体验阶段展示了由我们创美工艺自主研发的工业4.0的原型机。该系统在2014年用友广州展会上第一次以创新的姿态展现给大家。它打穿了从生产执行系统、生产管理系统到生产设备控制系统的隔阂,并同手机移动客户端结合起来,用户只需手机上轻轻一按,就能下发订单,控制生产。会上体验的人群更是络绎不绝将大会的气氛推上了高潮。随后金工场长同用友集团执行总裁章培林董事长参加了用友产业链合作伙伴创美授牌仪式。这是即9月用友广州展会后又一大事件。本次授牌是基于用友公司与创美工艺的专业分工和战略契合。利用双方互补优势,为更多制造类企业提供更多专业类服务。会议现场,用友、创美、新华都、畅通天元领导签署了四方协议,通过四方合作将进一步推动产品伙伴招募和深化合作,标志着创美将与伙伴的形式共同实现合作开发,达成产业链共赢目标。

31日下午还进行了创美工厂车间的现场体验,来自用友的200多名制造行业客户参观了创美工厂。参观团分为4组,分别参观了第一事业部、第三事业部、第三事业部、登车平台、生产革新和新品开发车间以及金牌模具工厂等生产车间。创美向用友参观团全面展示了全自动的冲压生产线、精密的3D模具技术和测控设备、直线式机械手臂和机器点焊机、数据采集系统等等半自动甚至全自动的智能设备,让用友的各界朋友们全面感受到创美工艺正在从传统劳动力密集型向自动智能化的转变。随后的三个小时,开展了创美与用友的交流会,会场主分为:制造、财务供应链、UAP系统等三个个分会,交流会在轻松又包含成长的环境中度过,各个会场中开展了智者与智者的对话,共同体验了一次行业间的深入研讨。

创美工艺与用友集团共同打造了一整套适应于“工业4.0时代的信息化系统。基于UAP平台,创美对28个业务小系统、涉及NC18个核心业务单据的信息进行集成。除了将内部管理数据进行整合之外,通过UAP平台,创美又将智能化管理延伸到了机械设备上。即通过UAP平台,构建了一套物联网中间件,帮助创美实现了设备之间的数据互操作、设备的全面数据分析以及可视化运营,为创美集团的全球化战略奠定了坚实的基础。

未来创美工艺将率先迈入了工业4.0时代,工业4.0的内涵已经远远超越机器的自动化,甚至数字制造本身。它让设备与设备开启对话,产品和生产设备之间相互沟通,建立虚拟世界与现实世界之间的对话窗口。我们让设备开始了愉快的“生产旅行”,即将到来的机械技术与信息化技术高度融合,让机械数据和管理数据全部整合到一个数字化企业平台中,“信息平台”作为企业智能制造的中枢,将成为智能制造体系的核心。

第三篇:长春光电和智能制造装备产业园发展规划

(讨论稿)

光电和智能制造装备产业被国家、省市政府列为战略性新兴产业,是产业升级、技术进步的重要保障,是区域综合实力和技术水平的集中体现,需求前景广阔,发展潜力巨大。经过多年发展,我市光电和智能制造装备产业已具有一定基础,2013年产值达到571亿元、规上企业数量达到93家。但总体看,我市光电和智能制造装备产业仍处于起步阶段,领军企业少、产业规模小,对外依存度高,市场有待培育。为进一步引导我市重点企业向园区集聚,形成拳头力量,培育新的经济增长点。长春高新区联合市工信局、长春光机所经过两年深入论证、广泛调研,拟在高新北区建设长春光电和智能制造装备产业园,制定初步规划如下:

一、 产业发展基础及优势

1、总体情况。高新区自实施新一轮发展战略规划以来,以打造全市、全省战略性新兴产业发展的先行区域和核心载体为目标,以调优产业结构、加快转变经济发展方式为主线,立足产业基础,聚焦发展优势,不断完善产业发展平台,加快配套能力建设,促进高端装备制造、光电信息、生物医药、新材料新能源等战略性新兴产业快速发展,初步形成园区化、基地化、集群化发展格局,高新区被评为国家级光电子产业基地。截至2013年末,

- 1

43%。新产业光电是世界上第一个实现蓝光激光器产业化企业,开发出世界上第一台激光电视,已成为全世界最大的半导体泵浦全固态激光器研发生产商,产品出口率达到95%,占世界同类产品市场的30%以上;禹衡光学是我国第一台光学仪器和第一台光电编码器研制和生产企业,全国同行业生产规模第一,市场占有率达55%。公司拥有110多项自主知识产权专利,所生产的光电编码器曾参与运载火箭和洲际导弹发射;希达电子生产的高清晰LED全彩色显示器,是具有完全自主知识产权的LED显示器高端产品。 “全彩色LED模块三合一显示屏”、“全彩色LED集成三合一显示屏”等系列的LED显示器达到国内领先、国际先进水平;大正博凯是专门从事汽车制造生产线设计、系统集成、安装、调试和陪伴生产,产品主要应用机器人滚边压合技术、自动控制技术、机器人模拟仿真技术、模具设计技术和数字化工厂设计技术。其中机器人滚边技术和数字化工厂设计技术打破了国外公司在汽车行业的垄断,填补了国内空白。

二、指导思想、产业定位及发展目标

1、指导思想

以科学发展、创新发展为主题,以加快转变经济发展方式为主线,以改革开放和体制机制创新为动力,紧紧抓住调结构、促集聚和推动工业转型升级的机遇,坚持“政府引导、企业主导、市场化运作”的原则,统一规划、逐户报建、集中建设、统一管理,分步实施。以集群发展和招商引资为抓手,在我市打造一个重点领域突出、高端要素集聚、龙头企业带动、协作配套紧密、

- 3

育一批等方式,促进产业要素向园区聚集,重点引进优质产业化项目不少于15个。

产业集聚阶段(2017—2019年)。把握国内外产业升级和产业转移趋势,瞄准世界500强、行业龙头企业和国内外领军企业,实施定向招商、精准招商,吸引一批高端项目落户。引进产业化项目不少于25个。

三、产业导向和产业链设计

1、产业导向

(1)以激光技术为核心的激光制造和加工产业。充分发挥我市在激光技术上的优势,加快激光“全产业链”布局。以激光器的研发和生产带动上游激光材料及材料加工设备的发展,拉动下游激光切割设备、激光焊接设备、激光淬火设备、激光精密雕刻设备、激光测距设备、激光打标设备、激光医疗设备等一系列激光器件和设备生产企业的发展,促进激光在工业加工、医疗、军事、显示等方面的应用。

(2)以光传感技术为核心的智能仪器产业。依托光电传感长度、角度测试的核心技术,以及多年来形成的角位移编码器、光栅线位移传感器系列产品的研发和产业化基础,加快绝对编码光栅尺在数控机床上示范应用,推进数控型光栅测量系统国产化进程。通过引进消化和吸收,加快推进CMOS芯片及红外传感器的研制和生产,带动智能仪器产业的快速发展。

(3)以光栅技术为核心的光谱仪器产业。加快红外光栅、中阶梯光栅、大功率激光光栅、IV型全息凹面光栅、平像场全息凹

- 5

智能制造过程中的感知、决策、执行三个关键环节,重点发展新型传感器及系统、智能控制系统、工业机器人与专用机器人、精密传动装置、伺服控制机构、AGV等典型的智能测控装置和部件。推进基于机器人的自动化成型与加工生产线、数字化工厂等标志性重大智能制造成套装备的示范和应用。

2、核心产业链及产品。

(1)激光产业链。按照“芯—器—设备”开展研发和全产业链布局,重点放在产业链的上游产品和技术。以半导体激光器核心材料制备为源头,以大功率激光产业化为重点,以先进激光加工装备等为切入点,尽快突破大功率激光器产业化关键技术和工艺,不断向激光医疗、激光照明和激光军事装备等产业化领域拓展。形成激光器芯片、激光材料、激光光源、激光电源、激光表面处理设备、激光标记设备、激光医疗及美容设备和激光加工设备等众多领域、紧密联系、完整齐全的激光产业链条。

(2)光通信产业链。重点组织实施无线光通信关重元器件研发生产、系列化无线光通信整机开发生产,不断开发市场,扩大无线光通信应用领域。一是发展光通信整机产业工程。围绕光通信不同应用需求,重点突破高速、高功率、高效率激情光通信光源、复杂信道下高灵敏度弱信号探测、高精度视轴稳定、高增益光学天线等核心关键技术,加快空间激光通信技术产业化。二是光通信模块产业工程。围绕光通信整机产业,大力开展核心模块研发和产业化,开展高稳频窄线激光器、高速率调制器、高功率、高效率放大器、高精度稳瞄转台、高带宽带光轴校正振镜、多路

- 7

造装备、锂动力电池化成套设备、滚压分切设备、恒流源设计制造技术等为主导产品。二是开发仓储物流自动化技术及装备。重点开发AGVS、RGVS、堆垛机、码拆垛机器人、物流自动输送和自动作业设备、物流控制与管理系统等产品。应用领域包括自动化立体仓库、仓储中心、配送中心、应用AGV的各种输送线和检测线和汽车的总装生产线,AGV在汽车的总装生产线上的应用,具备为下游企业提供技术解决方案和交钥匙工程的能力。

四、发展空间布局

按照产业链整合延伸、配套分工和价值提升为原则,园区规划占地面积75万平方米,其中一期25万平方米,包括核心产业区、研发拓展区、配套服务区三个部分。

1、核心产业区。规划面积?万平方米,是产业化主导区。主要由光显示产业基地、光通信产业基地、激光装备制造产业基地、光电智能装备产业基地及招商引资重大产业项目组成。

2、研发拓展区。规划面积?万平方米,是新产品、新技术研发及企业孵化集聚区。主要以长春光机所建设包括企业研发中心、科技孵化器、公共技术服务平台(开放实验室)组成。

3、配套服务区。规划面积?万平方米。结合园区产业特点,构建集行政办公、商业服务、会议中心、金融通讯、市政公用等功能为一体的综合配套服务区,通过采取集中且适当分散的布局模式,进一步将城市生活、工作、休闲等多元化活动融入园区,激发园区活力,促进园区的繁荣发展。

五、管理及运营模式

- 9

组 长:白绪贵 长春市副市长

杨俊良 高新区党工委书记

副 组 长:

郝晶祥 市工信局局长 车仁义 市工信局副局长 ****** 市发改局副局长 ****** 市科技局副局长 石 威 高新区管委会副主任 刘成福 高新区管委会副主任 宣 明 中科院长春光机所所长 宋志义 中科院长春光机所副所长

成 员: 王晓东 市工信局光电处处长

柳 涛 高新区招商办(外资一局副局长) 刘 庶 高新区发改工信局局长 周 彬 高新区中元规划设计院院长 李文杰 光机所孵化器管理有限公司总经理 耿 辉 高新区规划局局长 巴贻南 高新区国土分局局长

领导小组办公室设在高新区(设在招商局或组建园区建设推进办公室)。负责园区规划建设方案的研究制定及全面统筹实施。建立领导小组联席会议制度,协调解决产业园规划、建设、招商的具体事宜。

2、强化招商引资,提高项目水平。建立重大项目引进和落位

- 11

宣传,提高新技术、新产品的市场认同度。一是在园区内建立光电和智能制造装备产品展示销售中心,全方位展示区内产业最新研究成果及主要产品。二是充分利用东北亚博览会等各种国内外会议、展会活动,广泛推介园区企业产品。

1、关于地块选择。园区总占地面积75万平方米,出于启用时间和费用的考虑,拟选择光机平台旁38万平方米中的25万平方米作为项目一期,该地块属于国有农用地,征收工作不牵扯农民问题,所以启动较快。38万平方米中的其他13万平方米属于集体农用地,征收较慢,暂作为后期考虑。除38万平方米以外的两个地块,目前都已抵押,其中25万平方米解押时间为2015年6月,抵押金额为5亿元,该地块可作为园区二期考虑;另外11万平方米解押时间为2018年8月,抵押金额为2亿8千万元。

2、一期25万平方米土地存在的问题。一是规划转性问题。该项工作应该于办理土地征收手续前完成,否则土地性质仍然为科研,不能达到工业出让目的。管委会已于2014年4月下发会议纪要,要求高新规划局争取6月底前完成此项工作。经了解,规划转性需提交市规划专家评审会通过,目前正在进行评审前的评估等工作。客观的说,此项工作进展还是相对缓慢,原因是规划部门对该地块土地转性工作存在分歧,一方面认为该地块属于长东北核心区的核心位置,在此位置上搞工业,从规划学院派角度不是很认同。另一方面,怕担责任,由于调整为工业带来的土地出让金减少的责任,或者过几年该地块还得从工业调整回商住的风险责

- 13

的档次,包括园区内的园区路、绿化、配套生活服务等,涉及的资金也较大,不建议分摊到入区企业,但企业自身建设的风格档次要与园区整体相一致。

4、园区企业可享受扶持政策

1、按照购地面积给予280元/平方米的资金扶持,并按建筑面积给予80元/平方米的资金扶持,具体参照长春高新区战略性新兴产业招商引资优惠政策实施办法(长高开字〔2012〕28号)第6条第一款;

2、优先享受长春市人民政府关于加快战略性新兴产业发展的若干政策(长府发〔2013〕2号);

3、符合标准的项目享受《长春高新区关于鼓励投融资发展暂行办法(试行)》(长高开字〔2009〕76号)、《长春高新区“长白慧谷”英才计划实施办法》(长高党字〔2011〕34号)等扶持政策。

5、关于评审机构。建议采用高新区目前采用的专家评审制度,评审专家以市工信局、光机所、高新区相关领导、专家和龙头企业代表为主组成。因该项目政府和高新区都投入较大,建议要严把入园关,全面考察项目的产品、技术、市场、资金、管理团队等要素,务求项目质量高,建设资金有保障。

6、关于园区名称。建议采用长春光电和智能装备产业园区。同时加挂吉林省光电子产业孵化基地牌子。一个园区两个牌子。孵化器可作为园区公共服务平台。

7、关于高新区与光机所历史问题。光机所领导已表示,对原来2009年双方签订的每平方米50元的框架协议不方便实施表示理解,也同意通过专家评审制度积极引进项目入园,同时积极支持园区的

- 15

能产业办公室)正在积极落实招商项目。四是市工信局统筹整个工作进度。

11、关于园区运营。园区建成后以高新中元设计院为主体组建园区运营机构,提供政府管理服务职能与企业经营服务两项内容,经营部分采取市场化,先期可由政府投入一部分必须的启动资金,后期运营市场化,原则上政府财政不再补贴。

12、需解决的问题。一是园区公共设施配套费用。建议市财政和高新区财政承担。市里的政策支持建议通过这种方式体现,可由市政府、高新区、中元国际高新设计院共同出资设立平台公司作为投资主体。二是园区的总体规划和实施方案(主要包括运作模式、入园标准、优惠政策),建议市政府以会议纪要形式下发。为园区工作提供政策保障。三是一期企业集聚积极推进的同时,趁热打铁,建议尽快启动二期项目,瞄准世界500强、行业龙头企业和国内外领军企业,实施定向招商、精准招商,吸引一批高端项目落户。保持园区发展后劲。

第四篇:工业企业工业4.0的“智能制造”“大数据”

北京天拓四方科技有限公司是西门子工业自动化和驱动集团核心分销商一级代理商及系统集成商

工业企业迎战工业4.0的两大利器“智能制造”“大数据”

在德国的工业4.0中,大数据被认为是物理与信息融合中的关键技术。在美国GE提出的工业互联网中,大数据分析作为联机数据处理分析的核心,被认为是重构全球工业、激发生产力的关键技术。在我国提出的《中国制造2025》中,云计算、物联网和大数据作为新一代的信息技术,成为两化融合的关键技术。无论是工业4.0、工业互联网还是《中国制造2025》,智能制造是共同目标,工业互联网是基石,大数据是引擎。

制造业迈入了大数据时代,2012年,GE公司率先明确了“工业大数据”的概念。在制造业,产品的全生命周期从市场规划、设计、制造、销售、维护等过程都会产生大量的结构化和非结构化数据,形成制造业大数据,而这些数据符合大数据的三“V”的特征:规模性、多样性以及高速性。除此以外,制造业大数据还具有多源异构、多尺度、不确定、高噪声等特征。因此,研究和应用制造大数据更具有挑战性,主要体现在制造大数据的存储、管理、分析和展示方面。如何充分挖掘工厂中数据的价值,通过对制造大数据进行分析,提升数字化工厂运行效率,已成为制约数字化工厂向智慧工厂发展的瓶颈。

大数据可能带来的巨大价值正在被传统产业认可,它通过技术创新与发展,以及数据的全面感知、收集、分析、共享,为企业管理者和参与者呈现出看待制造业价值链的全新视角。

基于云平台构建的制造企业的大数据的意义

产品营销:大数据分析结果为制造企业提供针对性推销、定向研发、北京天拓四方科技有限公司是西门子工业自动化和驱动集团核心分销商一级代理商及系统集成商

智能维保等服务。

设备远程故障诊断分析:大数据预测设备未来可能出现故障的时间,提供避免风险的解决方案,消除设备故障停机给客户带来的损失。

客户体验:在移动端建立企业宣传平台,以场景化方式让客户参与产品的认知,增加品牌的传播效果。

技术创新:借助平台的专家经验共享、智能决策库的建立,提高运维领域的装备管理水平,降低行业运营成本。

节约效能:通过数据集的切分和规律查找,帮助找到最优化的数据集,实现人员投入及控制过程的节能提效。

数网星-短期收益

省钱、省事、省心

集中化管理 实时监控 远程运维

数网星-长期收益

精益数据、智胜未来

售后服务快速响应产品预测性维护。

实现多层次产品设计,加速改进产品更迭。

设备运行过程中节约能耗,提高能效。

远程访问安全简便

一、实现智能生产

在德国“工业4.0”中,通过信息物理系统(CPS)实现工厂/车间的设备传感和控制层的数据与企业信息系统融合,使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导生产。

具体而言,生产线、生产设备都将配备传感器,抓取数据,然后经北京天拓四方科技有限公司是西门子工业自动化和驱动集团核心分销商一级代理商及系统集成商

过无线通信连接互联网,传输数据,对生产本身进行实时监控。而生产所产生的数据同样经过快速处理、传递,反馈至生产过程中,将工厂升级成为可以被管理和被自适应调整的智能网络,使得工业控制和管理最优化,对有限资源进行最大限度使用,从而降低工业和资源的配置成本,使得生产过程能够高效地进行。

过去,设备运行过程中,其自然磨损本身会使产品的品质发生一定的变化。而由于信息技术、物联网技术的发展,现在可以通过传感技术,实时感知数据,知道产品出了什么故障,哪里需要配件,使得生产过程中的这些因素能够被精确控制,真正实现生产智能化。因此,在一定程度上,工厂/车间的传感器所产生的大数据直接决定了“工业4.0”所要求的智能化设备的智能水平。

此外,从生产能耗角度看,设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情况,由此能够在生产过程中不断实时优化能源消耗。同时,对所有流程的大数据进行分析,也将会整体上大幅降低生产能耗。

二、实现大规模定制

大数据是制造业智能化的基础,其在制造业大规模定制中的应用包括数据采集、数据管理、订单管理、智能化制造、定制平台等,核心是定制平台。定制数据达到一定的数量级,就可以实现大数据应用。通过对大数据的挖掘,实现流行预测、精准匹配、时尚管理、社交应用、营销推送等更多的应用。同时,大数据能够帮助制造业企业提升营销的针对性,降低物流和库存的成本,减少生产资源投入的风险。 北京天拓四方科技有限公司是西门子工业自动化和驱动集团核心分销商一级代理商及系统集成商

利用这些大数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降,并将极大地减少库存,优化供应链。同时,利用销售数据、产品的传感器数据和供应商数据库的数据等大数据,制造业企业可以准确地预测全球不同市场区域的商品需求。由于可以跟踪库存和销售价格,所以制造业企业便可节约大量的成本。

“工业4.0”本质是基于信息物理系统(CPS)实现“智能工厂”,使智能设备根据处理后的信息,进行判断、分析、自我调整、自动驱动生产加工,直至最后的产品完成等步骤。可以说,智能工厂已经为最终制造业大规模定制生产做好了准备。

实现消费者个性化需求,一方面需要制造业企业能够生产提供符合消费者个性偏好的产品或服务,一方面需要互联网提供消费者的个性化定制需求。由于消费者人数众多,每个人需求不同,导致需求的具体信息也不同,加上需求不断变化,就构成了产品需求的大数据。

消费者与制造业企业之间的交互和交易行为也将产生大量数据,挖掘和分析这些消费者动态数据,能够帮助消费者参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。制造业企业对这些数据进行处理,进而传递给智能设备,进行数据挖掘,设备调整,原材料准备等步骤,才能生产出符合个性化需求的定制产品。

消费需求的个性化,要求传统制造业突破现有生产方式与制造模式,对消费需求所产生的海量数据与信息进行大数据处理与挖掘。同时,在进行这些非标准化产品生产过程中,产生的生产信息与数据也是大量的,需要及时收集、处理和分析,以反过来指导生产。 北京天拓四方科技有限公司是西门子工业自动化和驱动集团核心分销商一级代理商及系统集成商

这两方面大数据信息流最终通过互联网在智能设备之间传递,由智能设备进行分析、判断、决策、调整、控制并继续开展智能生产,生产出高品质的个性化产品。可以说,大数据构成新一代智能工厂。

智能工厂中的大数据,是“信息”与“物理”世界彼此交互与融合所产生的大数据。大数据应用将带来制造业企业创新和变革的新时代。在以往传统的制造业生产管理的信息数据基础上,通过物联网等带来的物理数据感知,形成“工业4.0”时代的生产数据的私有云,创新了制造业企业的研发、生产、运营、营销和管理方式。这些创新,给制造业企业带来了更快的速度、更高的效率和更敏锐的洞察力。

北京天拓四方科技有限公司

第五篇:西门子数字化企业平台方案与智能制造

生产规划和生产工程

西门子致力于成为面向整个产品开发与生产过程的整合型供应商 – 覆盖从产品设计和生产规划直至生产工程、生产实施以及后续服务的整个过程。这便是智能制造与数字化企业平台。对于制造业的未来,我们展示了我们如何通过众多的产品、解决方案、服务和全面的纵向市场专业知识为客户提供支持,助其提高生产率和效率。我们为所有客户统一部署智能制造与数字化企业平台技术。我们凭借广泛的产品组合,深厚的纵向市场专业知识 – 在这一次再次得到证明,并且再度覆盖全球 – 以及对客户的极大重视,确保带来最佳的工业产品和解决方案,满足不同客户的需求。我们拥有广泛的自动化技术、工业控制及驱动技术、工业信息技术与软件以及行业服务,为世界各地的客户提供覆盖整个价值链的全面支持 – 包括从产品设计到生产规划,从过程工程一直延伸至生产实施和后续服务。

利用虚拟机工具进行生产规划

现代化机床耗资不菲,而且必须充分发挥其能力才能让企业获得最大的投资回报。如果将机器闲置不用,将是很大的损失。当机器投入运转时,要确保其各项功能发挥稳定,并尽可能提高运作效率。如果在生产中需要不断重复设置机床,或将其改装用于培训用途,将会产生机器被白白闲置的时间。然而,这种情况只要借助虚拟机工具即可避免,它像实体机床一样运转,但完全是通过工业信息技术与软件程序来模拟的。西门子就有这样一款解决方案,其名称很贴切地被称为虚拟机工具,是智能制造与数字化企业平台的重要组成部分。它可被用于设定机床设置,还可供培训和验证子程序之用,大大节省使用实体机床的时间。虚拟机工具可缩短机床的非生产性操作时间,其仿真度很高,可减少对实体机床的非生产性利用,进而显著提高生产效率和能源效率。它为制造业的未来提供了卓越的范例。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:全季酒店工作总结下一篇:期末考试出题要求