继电保护题库问答

2022-07-17

第一篇:继电保护题库问答

电力系统继电保护题库_第二部分 线路保护

第二部分 线路保护

2.1选择题①

1. 110kV某一条线路发生两相接地故障,该线路保护所测的正序和零序功率的方向是(C)。

A.均指向线路 B.零序指向线路,正序指向母线 C.正序指向线路,零序指向母线 D.均指向母线 2.系统发生振荡时,(C)最可能发生误动作。 A.电流差动保护 B.零序电流保护 C.相电流保护 D.暂态方向纵联保护 3.原理上不受电力系统振荡影响的保护有:(C)。 A.电流保护 B.距离保护

C.电流差动纵联保护和相差保护 D.电压保护 4.发生交流电压二次回路断线后不可能误动的保护为(B)。 A.距离保护 B.差动保护 C.零序电流方向保护 5.在大接地电流系统中,线路始端发生两相金属性接地短路,零序方向电流保护中的方向元件将(B)。

A.因短路相电压为零而拒动 B.因感受零序电压最大而灵敏动作 C.因零序电压为零而拒动

6.在电路中某测试点的功率P和标准比较功率P0=1mW之比取常用对数的10倍,称为该点的(C)。

A.电压电平 B.功率电平 C.功率绝对电平 7.功率绝对电平LPX与电压绝对电平LUX之间的换算关系为(A)。(其中Z为被测处的阻抗值)

600600 B. LPX =LUX -101g ZZZC. LPX =LUX +101g

600A. LPX =LUX +101g8.电路中某点功率为Px,该点的功率绝对电平LPX=(c)dB。 A.20lgppxp B.20lg0 C.10lgx

pxp0p09.电路中某点电压为UX,该点的电压绝对电平LUX=(B)dB。 A.10lgUUxU B.20lgx C .10lg0

U0UxU0 10.当负荷阻抗等于(C)11寸,功率电平和电压电平相等。 A.400Ω B.300Ω C.600Ω

11.当Z=600Ω时,功率电平为13dBm,那么该处对应的电压电平为(A)。

A.13dB B.4dB C.3dB D.10dB 12.设电路中某一点的阻抗为60Ω,该点的电压为U=7.75V,那么,该点的电压绝对电平和功率绝对电平分别为(A)。

A.20dBV,30dBm., B.10dBV。,20dBm C.10dBV,30dBm. D.20dBV,20dBm

13.使用电平表进行跨接测量时,选择电平表的内阻为(B)。 A.75Ω档 B.高阻档 C.600Ω档

14.用电平表测得400Ω电阻上的电压电平为LU,而计算出的功率绝对电平为LP,则LU (B)LP。 A.大于 B.小于 C.等于

15.在特性阻抗为75Ω的高频电缆上,使用电平表进行跨接测量时,选择电平表的内阻为(C)。

A.75Ω档 B.600Ω档 C.高阻档

16.对于长距离线路,高频信号主要是以(A)的形式传输到对端。 A.混合波 B.地返波 c.相间波 D.空间电磁波 17.高频保护载波频率过低,如低于50kHz,其缺点是(A)。

A.受工频干扰大,加工设备制造困难 B.受高频干扰: C.通道衰耗大

18.高频通道中最大传输衰耗,建仪此值不大于(B)dB。 A..+20dB B.+21dB C.+15dB 19.高频通道中一侧的终端衰耗约(B)dB。 A.3dB B.4dB C.5dB 20.高频通道衰耗增加3dB,对应的接收侧的电压下降到原来收信电压的(A)倍。(已知1g2=0.3010) A.12倍 B.倍 C.

1213倍

21.当收发信机利用相—地通道传输高频信号时,如果加工相的高压输电线对地短路,则(B)。

A.信号电平将下降很多,以至于本侧收不到对侧发出的信号 B.本侧有可能收得到,也有可能收不到对侧发出的信号 C.由于高频信号能耦合到另外两相进行传输,所以信号电平不会下降很多,本侧收信不会受影响

22.单分裂导线的高频特性阻抗为(B)。 A.300Ω B.400Ω C.500Ω 23.高频阻波器能起到(A)的作用。 A.阻止高频信号由母线方向进入通道 B.阻止工频信号进入通信设备 C.限制短路电流水平

24.用测量跨越衰耗检查某一运行线路的阻波器,这种方法适用于相邻线路挂(A)阻波器的情况。 A.单频 B.宽频 C.各种

25.相一地制高频通道组成元件中,阻止高频信号外流的元件是(A)。

A.高频阻波器 B.耦合电容器 C.结合滤波器 26.继电保护高频通道对阻波器接入后的(C)衰耗在阻塞频带内一般要求不大于2dB。

A.跨越 B.反射 C.分流

27.继电保护高频通道对阻波器接入后的分流衰耗在阻带内要求不大于(A)dB。

A.2 B.1.5 C.3 28.高频通道中结合滤波器与耦合电容器共同组成带通滤波器,其在通道中的作用是(B)。

A.使输电线路和高频电缆的连接成为匹配连接 B.使输电线路和高频电缆的连接成为匹配连接,同时使高频收发信机和高压线路隔离

C.阻止高频电流流到相邻线路上去

29.在高频保护的通道加工设备中的(C)主要是起到阻抗匹配的作用,防止反射,以减少衰耗。

A.阻波器 B.耦合电容器 c.结合滤波器 30.高频保护的同轴电缆外皮应(A)。 A.两端接地 B.一端接地 C.不接地 31.高频同轴电缆的接地方式为(A)。

A.应在两端分别可靠接地 B.应在开关场可靠接地 C.应在控制室可靠接地

32.线路分相电流差动保护采用(B)通道最优。 A.数字载波 B.光纤 C.数字微波 33.纵联保护相地制电力载波通道由(c)部件组成。 A.输电线路,高频阻波器,连接滤波器,高频电缆

B.高频电缆,连接滤波器,耦合电容器,高频阻波器,输电线路

C.收发信机,高频电缆,连接滤波器,保护间隙,接地刀闸,耦合电容器,高频阻波器,输电线路

34.能切除线路区内任一点故障的主保护是(B)。

A.相问距离 B.纵联保护 C.零序电流保护 D.接地距离 35.超范围式纵联保护可保护本线路全长的(B)。

A.80%~85% B.100% C.115%~120% D.180%~185%

36.超范围允许式纵联保护,本侧判断为正方向故障时,则向对侧发送(C)信号。

A.跳闸 B.闭锁 C.允许跳闸

37.闭锁式纵联保护跳闸的必要条件是:高值启动元件启动后,(B)。

A.正方向元件动作,反方向元件不动作,没有收到过闭锁信号 B.正方向元件动作,反方向元件不动作,收到闭锁信号而后信号又消失

C.正、反方向元件均动作,没有收到过闭锁信号 D.正方向元件不动作,收到闭锁信号而后信号又消失

38.下面高频保护在电压二次回路断线时可不退出工作的是(B)。 A.高频闭锁距离保护 B.相差高频保护 C.高频闭锁负序方向保护

39.高频闭锁方向保护发信机起动后当判断为外部故障时(D)。 A.两侧立即停信 B.两侧继续发信

C.正方向一侧发信,反方向一侧停信 D.正方向一侧停信,反方向一侧继续发信

40.采用分时接收法的收发信机当两侧同时发信时其收信回路(B)。

A.只接收对侧信号 B.只接收本侧信号 C.交替接收两侧信号

41.已知一条高频通道发信侧收发信机输送到高频通道的功率是10W,收信侧收发信机入口接收到的电压电平为15dBV(设收发信机的内阻为75Ω),则该通道的传输衰耗为(C)。

A.25dBm B.19d Bm C.16d Bm D.16d Bm

42.一台收发信机的发信功率为10W,输出阻抗为75Ω,当其接入通道后,测得电压电平为30dB,则通道的输入阻抗(B)。 A.大于75Ω B.小于75Ω C.等于75Ω

43.对于专用高频通道,在新投入运行及在通道中更换了(或增加了)个别加工设备后,所进行的传输衰耗试验的结果,应保证收发信机接受对端信号时的通道裕量不低于(C),否则不允许将保护投入运行。

A.25dB B.1.5dB C.8.686dB 44.在运行中的高频通道上进行工作时,(B)才能进行工作。 A.相关的高频保护停用

B.确认耦合电容器低压侧接地绝对可靠 C.结合滤波器二次侧短路并接地

45.已知一条高频通道发信侧收发信机输送到高频通道的功率是20W,收信侧收发信机入口接收到的电压电平为20d BV (设收发信机的内阻为75Ω),则该通道的传输衰耗为(c)。 A.20d Bm B.18d Bm C.14d Bm D.16d Bm

46.高频收发信机投产时要求收信电平不低于16dB,此电平是(A)。

A.功率电平 B.相对电平 C.电压电平

47.为保证允许式纵联保护能够正确动作,要求收信侧的通信设备在收到允许信号时(C)。

A.须将其展宽至200~500ms B.须将其展宽至100~200ms C.不需要展宽 D.将信号脉宽固定为100ms 48.高频方向保护中(A)。

A.本侧启动元件(或反向元件)的灵敏度一定要高于对侧正向测量元件

B.本侧正向测量元件的灵敏度一定要高于对侧启动元件(或反向元件) C.本侧正向测量元件的灵敏度与对侧无关

D.两侧启动元件(或反向元件)的灵敏度必须一致,且与正向测量元件无关

49.线路断相运行时,高频零序、负序方向保护的动作行为与电压互感器的所接位置有关,在(A)时且接在线路电压互感器的不会动作。

A.本侧一相断路器在断开位置 B.对侧一相断路器在断开位置 C.两侧同名相断路器均在断开位置 50.在高频闭锁零序距离保护中,保护停信需带一短延时,这是为了(C)。

A.防止外部故障时的暂态过程而误动 B.防止外部故障时功率倒向而误动

C.与远方启动相结合,等待对端闭锁信号的到来,防止区外故障时误动

D.防止内部故障时高频保护拒动

51.高频闭锁零序保护中,保护发信10ms再停信,这是为了(B)。 A.防止外部故障时的暂态干扰而引起误动 B.等待对端闭锁信号到来,防止区外故障误动 C.防止外部故障时功率倒向而误动

52.纵联保护的通道异常时,其后备保护中的距离、零序电流保护应(A)。

A.继续运行 B.同时停用 C.只允许零序电流保护运行 53.闭锁式纵联零序方向保护在一次停电状态下,模拟正向故障试验。试验时,两侧收发信机投入直流与远方启信回路,高频通道接线完整,且通道指标正常;(A)。

A.通道不加衰耗,通入试验电气量,保护不出口跳闸 B.与通道衰耗无关,通入试验电气量,保护均出口跳闸 C.通道加入10dB衰耗,通入试验电气量,保护才出口跳闸 D.通道加入3dB衰耗,通入试验电气量,保护能出口跳闸 54.加到阻抗继电器的电压电流的比值是该继电器的(A)。 A.测量阻抗 B.整定阻抗 C.动作阻抗

55.如果用z,表示测量阻抗,乙表示整定阻抗,Z3表示动作阻抗。线路发生短路,不带偏移的圆特性距离保护动作,则说明(B)。

A.Z3Z2;Z2Z1 B. Z3Z2;Z1Z2 C. Z3Z2;Z2Z1 D. Z3Z2;Z2Z1

56.如图2-1所示:由于电源S2的存在,线路L2发生故障时,N点该线路的距离保护所测的测量距离和从N到故障点的实际距离关系是(B)。(距离为电气距离) A.相等 B.测量距离大于实际距离 C.测量距离小于实际距离 D.不能比较

图2-l 57.对于国产微机型距离保护,如果定值整定为I、II段经振荡闭锁,III段不经振荡闭锁,则当在I段保护范围内发生单相故障,且0.3s之后,发展成三相故障,此时将由距离保护(A)切除故障。 A.I段 B.II段 C.III段

58.在振荡中,线路发生B、C两相金属性接地短路。如果从短路点F到保护安装处M的正序阻抗为ZK,零序电流补偿系数为K,M到F之间的A、B、C相电流及零序电流分别是IA、IB、Ic和I0,则保护安装处B相电压的表达式为(B)。

A.(IB+Ic+3KI0)ZK B.(IB+3KI0)ZK C.IBZK

59.电力系统振荡时,若振荡中心在本线内,三段阻抗元件的工作状态是(A)。

A.周期性地动作及返回 B.不会动作 C.一直处于动作状态

60.按照我国的技术要求,距离保护振荡闭锁使用(B)方法。 A.由大阻抗圆至小阻抗圆的动作时差大于设定时间值即进行闭锁

B.由故障起动对I、II段短时开放,之后发生故障需经振荡闭锁判别后动作

C.整组靠负序与零序电流分量起动

61.下列对线路距离保护振荡闭锁控制原则的描述错误的是(A)。 A.单侧电源线路的距离保护不应经振荡闭锁 B.双侧电源线路的距离保护必须经振荡闭锁

C.35kV及以下的线路距离保护不考虑系统振荡误动问题 62.我国防止距离保护因电压互感器二次失压误动作的有效措施是(c)。 A.电流启动 B.电压断线闭锁

C.电流启动和电压断线闭锁保护并延时发信号 63.国产距离保护使用的防失压误动方法通常为:(C)。 A.断线闭锁装置切断操作正电源  B.装设快速开关,并联切操作电源

C.整组以电流起动、发生电压断线时闭锁出口回路

64.运行中的距离保护装置发生交流电压断线故障且信号不能复归时,应要求运行人员首先(B)。

A.通知并等候保护人员现场处理,值班人员不必采取任何措施 B.停用保护并向调度汇报 C.汇报调度等候调度命令

65.模拟型方向阻抗继电器受电网频率变化影响较大的回路是(C)。

A.幅值比较回路 B.相位比较回路 C.记忆回路 D.执行元件回路

66.某一非平行线路与两条平行线相邻,该线路的距离保护正方向在相邻平行线中点故障时不会动作,在相邻平行线末端故障时(A)。 A.可能动可能不动 B.能动 C.不动

67.保护线路发生三相短路,相间距离保护感受的阻抗(B)接地距离保护感受的阻抗。

A.大于 B.等于 C.小于

68.接地阻抗继电器接线方式输入电压U、输入电流I分别是(B)。 A.UΦ ,IΦ B.UΦ ,IΦ+K3Io

C.UΦΦ ,IΦΦ D.UΦΦ,IΦ+K3Io 69.接地距离保护的相阻抗继电器接线为(c)。 A.UΦ /IΦ B.UΦΦ/IΦΦ C.UΦ/( IΦ+K3Io) D.UΦΦ/(IΦΦ+K3Io) 70.以下(C)项定义不是接地距离保护的优点。 A.接地距离保护的I段范围固定

B.接地距离保护比较容易获得有较短延时和足够灵敏度的II段 C.接地距离保护三段受过渡电阻影响小,可作为经高阻接地故障的可靠的后备保护

71.方向圆特性阻抗元件整定时,应该以(A)角度通入电流电压。 A.以给定的线路阻抗角 B.以通过试验得到的阻抗灵敏角

C.因阻抗定值由电抗值决定,因此固定90 °角

72.工频变化量阻抗继电器与纵差保护相比较最显著的优点是(B)。

A.反应过渡电阻能力强 B.出口故障时高速动作

C.出口故障时高速动作,反应过渡电阻能力强

73.零序电流保护在常见运行方式下,在220~500kv的205km线路末段金属性短路时的灵敏度应大于(C)。 A.1.5 B.1.4 C.1.3 74.如果躲不开在一侧断路器合闸时三相不同步产生的零序电流,则两侧的零序后加速保护在整个重合闸周期中均应带(A)s延时。 A.0.1 B.0.2 C.0.5 75.在大接地电流系统中,线路始端发生两相金属性接地短路时。零序方向电流保护中的方向元件将(B)。 A.因短路相电压为零而拒动 B.因感受零序电压最大而灵敏动作 C.因零序电压为零而拒动

76.零序方向继电器最大灵敏角为70°,动作方向指向线路。如图2—2模拟3玩电压,分别对继电器通入Ia、Ib、Ic。电流测定其方向正确性,其动作情况应为(C)。 A.Ia不动、Ib动、Ic不动 B.Ia不动、,Ib不动、Ic动

C.Ia动、Ib可能不动、Ic不动 . 

图2—2 77.220kV采用单相重合闸的线路使用母线电压互感器。事故前负衙电流700A,单相故障双侧选跳故障相后,按保证100Ω过渡电阻整定的方向零序Ⅳ段在此非全相过程中(C ) A.虽零序方向继电器动作,但零序电流继电器不可能动作,IV段不出口

B.零序方向继电器会动作,零序电流继电器也动作,IV段可出口

C.零序方向继电器动作,零序电流继电器也可能动作,但Ⅳ段不会出口

78.突变量方向元件的原理是利用(C ) A.正向故障时 B.正向故障时C.正向故障时 D.正向故障时

UIUIUIZLZSN,反向故障时ZLZSN,反向故障时

UIUIZSM ZSM

ZSM,反向故障时

UIZLZSN

UIZSM,反向故障时

UIZLZSN

79.按躲负荷电流整定的线路过流保护,在正常负荷电流下,由于电流互感器的极性接反而可能误动的接线方式为(C)。 A.三相三继电器式完全星形接线 B.两相两继电器式不完全星形接线 C.两相三继电器式不完全星形接线

80.配有重合闸后加速的线路,当重合到永久性故障时(A)。 A.能瞬时切除故障 B.不能瞬时切除故障

C.具体情况具体分析,故障点在I段保护范围内时,可以瞬时切除故障;故障点在II段保护范围内时,则需带延时切除

81.当单相故障,单跳故障相,故障相单相重合;当相间故障,三跳,不重合。是指:(A)。

A.单重方式 B.三重方式 C.综重方式

82.对采用单相重合闸的线路,当发生永久性单相接地故障时,保护及重合闸的动作顺序为(B)。 A.三相跳闸不重合

B.单相跳闸,重合单相,后加速跳三相 C.三相跳闸,重合三相,后加速跳三相 D.选跳故障相,瞬时重合单相,后加速跳三相

83. 单侧电源线路的自动重合闸必须在故障切除后,经一定时间间隔才允许发出合闸脉冲,这是因为(C)。

A.需与保护配合 B.防止多次重合 C.故障点去游离需一定时间

84. 超高压输电线路单相接地故障跳闸后,熄弧较慢是由于(A)。

A.潜供电流的影响 B.单相故障跳闸慢 C.短路阻抗小 D.短路阻抗大

85. 传统的综合重合闸与线路保护接口分N、M、R、Q等端子,其中M端子(B)。

A.供能躲非全相运行不误动保护接入 B.供非全相运行时会误动的保护接入 C.供直接三相跳闸不重合的保护接入

86.双重化两套保护均有重合闸,当重合闸停用一套时(C)。

A.另一套保护装置的重合闸也必须停用,否则两套保护装置的动作行为可能不一致

B.对应的保护装置也必须退出,否则两套保护装置的动作行为可能不一致

C.对保护的动作行为无影响,断路器仍可按照预定方式实现重合

87.

线路发生单相接地故障,保护启动至发出跳闸脉冲40ms,断路器的灭弧60ms,重合闸时间继电器整定0.8s,断路器合闸时间100ms,从事故发生至故障相恢复电压的时间为(B)。

A.0.94s

B.1.Os

C.0.96s

88.*对于高频闭锁式保护,如果由于某种原因使高频通道不通。则(A、B、c)。

A.区内故障时能够正确动作

B.功率倒向时可能误动作

C.区外故障时可能误动作

D.区内故障时可能拒动

89.*高频阻波器能起到(A、D)的作用。

A.阻止高频信号由母线方向进入通道

B.阻止工频信号进入通信设备

C.限制短路电流水平

D.阻止高频信号由线路方向进入母线

90.’目前纵联电流差动保护应用的通道形式有:(A、B、D)。

A.光纤通道

B.微波通道

C.载波通道

D.导引线

91.’继电保护装置中采用正序电压做极化电压有以下优点(A、B)。

A.故障后各相正序电压的相位与故障前的相位基本不变,与故障类型无关,易取得稳定的动作特性

B.除了出口三相短路以外,正序电压幅值不为零

C.可提高保护动作时间

92.*不需要考虑振荡闭锁的继电器有(B、C)。

A.极化量带记忆的阻抗继电器

B.工频变化量距离继电器

C.多相补偿距离继电器

93.*过渡电阻对单相阻抗继电器(I类)的影响有(A、B)。

A.稳态超越

B.失去方向性

C.暂态超越

D.振荡时易发生误动

94.*电力系统发生全相振荡时,(B、D)不会发生误动。

A.阻抗元件

B.分相电流差动元件

C.电流速断元件

D.零序电流速断元件

95.*在检定同期、检定无压重合闸装置中。下列的做法正确的是(B、D)。

A.只能投入检定无压或检定同期继电器的一种

B.两侧都要投入检定同期继电器

C.两侧都要投入检定无压和检定同期的继电器

D.只允许有一侧投入检定无压的继电器

96.*线路上发生B相单相接地时,故障点正、负、零序电流分别通过线路M侧的正、负、零序分流系数C1M

、C2M

、C0M被分到了线路M侧,形成了M侧各相全电流中的故障分量△IΦ(Φ=A、B、C)。若(B)成立,则A,A=A,C≠0;若(C)成立,则ΔIA=ΔIC≠0;若(C)成立,则ΔIA≠0,ΔIC≠0, ΔIA≠ΔIC;若(A)成立,则ΔIA=ΔIC=0。

A.C1M=C2M=C0M

B.C1M=C2M≠C0M

C.C1M≠C2M≠C0M

97.*如果线路上装有具有方向阻抗继电器动作特性的接地阻抗继电器,当正方向发生经大接地电阻的单相接地短路时,一般地讲装于送电端的阻抗继电器可能会

(A);装于受电端的阻抗继电器可能会(B),当正方向发生经大接地电阻的两相接地短路时,两个故障相中的超前相阻抗继电器可能会(A);落后相的阻抗继电器可能会(B)。

A.区外短路超越;正向近处故障(含出口)拒动

B.区内短路拒动

98.*工频变化量阻抗继电器是(B);工频变化量方向继电器是(A)。

A.比相式继电器

B.比幅式继电器

99.*同属区内短路,故障点越近,工频变化量阻抗继电器的距离测量电压的突变量便(D),为满足动作判据所需的数据窗便(B),动作便(C)。

A.越慢

B.越短

C.越快

D.越大

E.越长

100.*一般220kV线路保护,当断路器在分闸状态,控制电源投入时,用万用表测量主保护跳闸出口连接片,其上端头对地为(A)V,下端头对地(C)V;上下端头之间为(C)V。

A.+110

B.一110

C.0

101.按照双重化原则配置的两套线路保护均有重合闸,当其中一套重合闸停用时(A)。

A.对应保护装置的勾通三跳功能不应投入

B.对应保护装置的勾通三跳功能需投入

C.上述两种状态均可

102.高频信号起闭锁保护作用的高频保护中,母差跳闸停信和断路器单跳位置停信的意图显然都是想让对侧的高频保护得以跳闸。但前者针对的是(A)。而后者针对的是(C)。

A.故障点在本侧流变与断路器之间

B.故障点在本侧母线上

C.故障点在本侧线路出口

2.2判断题

1.线路保护四边形阻抗特性中的电阻线,其动作与否虽不反映什么“距离”,但就动作原理而论,与距离测量电压u:是相似的,仅仅是将互改用为电阻性的尺。而已。(√)

2.某线路的正序阻抗为0.2D,/km,零序阻抗为0.6DJkm,它的接地距离保护的零序补偿系数为0.5。(×)

3.过渡电阻对距离继电器工作的影响,视条件可能失去方向性,也可能使保护区缩短,还可能发生超越及拒动。(√)

4.反射衰耗是根据负载阻抗不等于电源内阻抗时所引起的能量损耗确定的衰耗。(√)

5.工作衰耗是当信号接入四端网络后输入端和输出端的相对电平。(×)

6.当负载阻抗与线路波阻抗相等时,功率电平与电压电平相等。(×)

7.当负载阻抗等于600Ω,功率电平与电压电平相等。(√)

8.

当Z=600Ω,该处功率电平等于电压电平;当Z=75Ω,功率电平等于电压电平加9dB。(√)

9.

在电路中某测试点的电压以和标准比较电压(10=0.7。75V之比取常用对数的20倍,称为该点的电压绝对电平。(√)

10.本侧收发信机的发信功率为20W,如对侧收信功率为5W,则通道衰耗为6dB。(√)

11.某收发信机在其所带75Q负载不变的情况下发信电压电平由34dB下降至3ldB,此时,该收发信机的输出功率减少了一半。(√)

12.已知一条纵联保护通道发信侧收发信机输送到高频通道的功率是10W,收信侧收发信机入口接受到的电压电平为15dBV(设收发信机的内阻为75Ω),则该通道的传输衰耗为25dBm。(×)

13.通道的传输衰耗即为发信侧与收信侧收发信机之间相对功率电平。(√)

14.如果两测量点的阻抗相同,则该两点间的电压相对电平和功率相对电平相等。(√)

15.相同长度和结构的输电线传输高频信号时,传输频率越高则衰耗越大。(√)

16.高频保护通道输电线衰耗与它的电压等级,线路长度及使用频率有关,使用频率愈高,线路每单位长度衰耗愈小。(×)

17.高频保护采用相一地制高频通道是因为相一地制通道衰耗小。(×)

18.所谓相一地制通道,就是利用输电线的某一相作为高频通道加工相。(√)

19.当带频阻波器损坏后,分流衰耗一定会增加。(×)

20.耦合电容器对工频电流具有很大的阻抗,可防止工频高压侵入高频收发信机。(√)

21.结合滤波器和耦合电容器组成一个带通滤波器。(√)

22.耦合电容器与连接滤过器(结合滤波器)共同完成输电线路与高频电缆波阻抗匹配的任务。(√)

23.在高频通道中连接滤波器与耦合电容器共同组成带通滤波器,其在通道中的作用是使输电线路和高频电缆的连接成为匹配连接,同时使高频收发信机和高压线路隔离。(√)

24.结合滤波器和耦合电容器组成的带通滤波器对50周工频应呈现极大的衰耗,以阻止工频串入高频装置。(√)

25.为保证高频保护可靠动作,通道裕度应尽可能大。(×)

26.利用电力线载波通道的纵联保护应保证有足够的通道裕度,只要发信端的功放元件允许,接收端的接收电平越高越好。(×)

27.只要测得收发信机发送到高频电缆的电压电平,即可知道发送到高频电缆的功率电平。(×)

28.允许式高频保护必须使用双频制,而不能使用单频制。(√)

29.高频收发信机分时接收法是指当对侧发信时,本侧收发信机只收对侧信号,而当对侧不发信时,本侧收发信机才收本侧信号。(×)

30.高频收发信机的内阻是指从收发信机的通道入口处加高频信号,在通道入口处所测得的输入阻抗。(×)

31.若线路保护装置和收发信机均有远方起动回路时,应将两套远方起动回路均投入运行。(×)

32.一台功率为10W、额定阻抗为75Ω的收发信机,当其接入通道后侧得的电压电平为30dBV时,则通道的输入阻抗小于75Ω。(√)

33.对于专用高频通道,在新投入运行及在通道中更换了(或增加了)个别加工设备后,所进行的传输衰耗试验的结果,应保证收发信机接收对端信号时的通道裕量不低于8.686dB,否则,不允许将保护投入运行。(√)

34.为保证高频收发信机能可靠接收对端的闭锁信号,要求其通道裕度不得小于16dBm。(×)

35.部分检验测定高频通道传输衰耗时,可以简单地以测量接收电平的方法代 替,当接收电平与最近一次通道传输衰耗试验中所测得的接收电平相比较,其差不大于2.5dB时,则不必进行细致的检验。(√)

36.已知一条高频通道发讯侧收发信机输送到高频通道的功率是10W,收信侧收发信机入口接收到的电压电平为15dBv(设收发信机的内阻为75Ω),则该通道的传输衰耗为25dBm .(×)

37.高频保护不仅作为本线路的全线速动保护,还可作为相邻线路的后备保护。 (×)

38.对于闭锁式高频保护,判断故障为区内故障发跳闸令的条件为:本侧停信元件在动作状态及此时通道无高频信号(即收信元件在不动作状态)。(×)

39.一侧高频保护定期检验时,应同时退出两侧的高频保护。(√)

40.闭锁式高频保护为了保证足够的通道裕量,只要发信端的功放元件允许,收信端的收信电平越高越好。(×)

41-高频保护中,在选择高频电缆长度时要避开电缆长度接近1,8波长或1,8波长整数倍的情况。(×)

42.对于纵联保护,在被保护范围末端发生金属性故障时,应有足够的灵敏度。(√)

43.运行中的高频保护,两侧交换高频信号试验时,保护装置需要断开跳闸连接片。(×)

44.用电力线载波通道的允许式纵联保护比用同一通道的闭锁式纵联保护安全性更好。(√)

45.线路允许式纵联保护较闭锁式纵联保护易拒动,但不易误动。(√)

46.高频闭锁保护一侧发信机损坏,无法发信,当反方向发生故障时,对侧的高频闭锁保护会误动作。(√)

47.高频距离保护不受线路分布电容的影响。(√)

48.允许式保护控制载波机发信的接点为闭锁式保护停信的接点,该接点只有在正方向发生故障时才可能动作。(√)

49.闭锁式纵联保护跳闸的必要条件是高值启动元件动作,正方向元件动作,反方向元件不动作,收到过闭锁信号而后信号又消失。(√)

50.对闭锁式高频保护而言,断路器“位置停信”均应采用三相’TWJ触点并联实现。(×)

51.闭锁式纵联保护在系统发生区外故障时靠近故障点一侧的保护将作用收发信机停信。(×)

52.双侧电源线路两侧装有闭锁式纵联保护,在相邻线路出口故障,若靠近故障点的阻波器调谐电容击穿,该线路两侧闭锁式纵联保护会同时误动作跳闸。(×)

53.高频闭锁负序方向保护在电压二次回路断线时,可不退出工作。(×)

54.高频闭锁负序功率方向保护,当被保护线路上出现非全相运行时,只有电压取至线路电压互感器时,保护装置不会误动。(√)

55.高频保护中母差跳闸停信,主要防止故障发生在电流互感器和断路器之间,需要通过远方跳闸来切除故障点。(√)

56.高频保护中母差跳闸停信的作用是当故障发生在电流互感器与断路器之间时,母线保护虽然动作,但故障点依然存在,依靠母线保护出口继电器动作停止该线路高频保护停信,让对侧断路器跳闸切除故障。(√)

57.当线路断路器与电流互感器之间发生故障时,本侧母差保护动作三跳。为使线路对侧的高频保护快速跳闸,采用母差保护动作三跳停信措施。(√)

58.国产距离保护使用的防失压误动方法为:整组以电流起动及断线闭锁起动总闭锁。(√)

59.阻抗保护动作区末端相间短路的最小短路电流应大于相应段最小精工电流的两倍。(√)

60.在被保护线路上发生直接短路时,距离继电器的测量阻抗应反比于母线与短路点间的距离。(×)

61.距离保护是保护本线路正方向故障和与本线路串联的下一条线路上故障的保护,它具有明显的方向性,因此,即使作为距离保护第1II段的测量元件,也不能用具有偏移特性的阻抗继电器。(×)

62.距离保护是保护本线路和相邻线正方向故障的保护,它具有明显的方向性,因此,距离保护第1II段的测量元件,也不能用具有偏移特性的阻抗继电器。(×)

63.不论是单侧电源线路,还是双侧电源的网络上,发生短路故障时短路点的过渡电阻总是使距离保护的测量阻抗增大。(×)

64.短路初始时,一次短路电流中存在的直流分量与高频分量是造成距离保护暂态超越的因素之一。(√)

65.外部故障转换时的过渡过程是造成距离保护暂态超越的因素之一。(√)

66.与电流电压保护相比,距离保护主要优点在于完全不受运行方式影响。(×)

67.距离保护中,故障点过渡电阻的存在,有时会使阻抗继电器的测量阻抗增大,也就是说保护范围会伸长。(×)

68.躲过振荡中心的距离保护瞬时段,应经振荡闭锁控制。(×)

69.解列点上的距离保护不应经振荡闭锁控制。(√)

70.距离保护原理上受振荡的影响,因此距离保护必须经振荡闭锁。(×)

71.动作时间大于振荡周期的距离保护亦应经振荡闭锁控制。(×)

72.当系统最大振荡周期为1.5s时,动作时间不小0.5s的距离I段,不小于ls的距离保护II段和不小于1.5s的距离保护ⅡI段不应经振荡闭锁控制。(√)

73.距离保护的振荡闭锁,是在系统发生振荡时才启动去闭锁保护的。(×)

74.一般距离保护振荡闭锁工作情况是正常与振荡时不动作、闭锁保护,系统故障时开放保护。(√)

75.在系统发生故障而振荡时,只要距离保护的整定值大于保护安装点至振荡中心之间的阻抗值就不会误动作。(×)

76.距离保护受系统振荡的影响与保护安装位置有关,当振荡中心在保护范围外或位于保护的反方向时,距离保护会因系统振荡而误动作。(×)

77.阻抗保护受系统振荡的影响与保护的安装地点有关,当振荡中心在保护范围之外或反方向时,方向阻抗保护就不会因系统振荡而误动。(√)

78.在微机保护装置中,距离保护II段可以不经振荡闭锁控制。(×)

79.电力系统发生振荡时,可能会导致阻抗元件误动作,因此突变量阻抗元件动作出口时,同样需经振荡闭锁元件控制。(×)

80.工频变化量原理的阻抗元件不反映系统振荡,但构成继电器时如不采取措施,在振荡中区外故障切除时可能误动,(√)。

81.方向阻抗保护受系统振荡影响与保护的安装位置有关,当振荡中心在保护范围外或位于保护的反方向时,阻抗保护不会因系统振荡而误动作。(√)

82.接地距离保护在受端母线经电阻三相短路时,不会失去方向性。(×)

83.接地距离保护的测量元件接线采用60o。接线。(×)

84.接地距离保护的相阻抗继电器的正确接线为

U。(√)

IK3IZ0Z1计算3Z

185.接地距离保护的零序电流补偿系数K应按式K获得,线路的正序阻抗z。、零序阻抗乙参数需进行实测,装置整定值应大于或接近计算值。(×)

86.为使接地距离保护的测量阻抗能正确反映故障点到保护安装处的距离应引入补偿系数KZ0Z1 3Z0

87.某线路的正序阻抗为0.2Ω/km,零序阻抗为0.6Ω/km,它的接地距离保护的零序补偿系数为0.5。(×)

88.接地距离保护只在线路发生单相接地路障时动作,相间距离保护只在线路发生相问短路故障时动作。(×)

89.在双侧电源线路上发生接地短路故障,考虑负荷电流情况下,线路接地距离保护由于故障短路点的接地过渡电阻的影响使其测量阻抗增大。(×)

90.零序电流保护Ⅳ段定值一般整定较小,线路重合过程非全相运行时,可能误动,因此在重合闸周期内应闭锁,暂时退出运行。(×)

91.

零序电流保护灵敏I段在重合在永久故障时将瞬时跳闸。(×)

92.

某35kV线路发生两相接地短路,则其零序电流保护和距离保护都应动作。(×)

93.

220kV线路一般都配置了两套微机保护,每套保护设有重合闸,为了保证重合闸的可靠性,两套重合闸的合闸连接片都必须投入运行。(×)

94.

自动重合闸有两种起动方式:保护启动方式;断路器操作把手与断路器位置不对应启动方式(√)

95.

配有两套重合闸的220k"V线路,如果仅投入其中一套重合闸,另一套重合闸切换把手可以放在任意位置。(×)

96.

单侧电源线路所采用的三相重合闸时间,除应大于故障点熄弧时间及周围介质去游离时间外,还应大于断路器及操动机构复归原状准备好再次动作的时间。(√)

97.

自动重合闸时限的选择与电弧熄灭时间无关。(×)

98.

对采用单相重合闸的线路,当发生永久性单相接地故障时,保护及重合闸的动作顺序是:先跳故障相,重合单相,后加速跳单相。(×)

99.

单相重合闸时间的整定,主要是以保证第1I段保护能可靠动作来考虑的。(×)

100.三相重合闸后加速和单相重合闸的后加速,应加速对线路末端故障有足够灵敏度的保护段。如果躲不开后合侧断路器合闸时三相不同期产生的零序电流,则两侧的后加速保护在整个重合闸周期中均应带0.1s延时。(√)

101.综合重合闸装置在保护启动前及启动后断路器发合闸压力闭锁信号时均闭锁重合闸。(×)

102.断路器合闸后加速与重合闸后加速共用一个加速继电器。(√)

103.检同期重合闸的启动回路中,同期继电器的常闭触点应串联检定线路有压的常开触点。(√)

104.采用检无压、同期重合闸方式的线路,检无压侧不用重合闸后加速回路。(×)

105.采用检无压、检同期重合闸方式的线路,投检同期的一侧,还要投检无压。(×)

106.采用检同期,检无压重合闸方式的线路,投检无压的一侧,还要投检同期。(√)

107..采用检无压、检同期重合闸方式的线路,投检无压的一侧,仍需投检同期,其主要目的是为了解决检无压侧单侧掉闸时无法重合的问题。(√)

108.采用检无压、检同期重合闸方式的线路,投检同期的一侧,仍需投检无压,其主要目的是为了当线路无压时可靠闭锁检同期重合闸。(×)

109.在线路三相跳闸后,采用三相重合闸的线路在重合前经常需要在一侧检查无压;另一侧检查同期。在检查无压侧同时投入检查同期功能的目的在于断路器偷跳后可以用重合闸进行补救。(√)

110.为了防止断路器在正常运行情况下由于某种原因(如误碰、保护误动等)而跳闸时,由于对侧并未动作,线路上有电压而不能重合,通常是在鉴定无压的一侧同时投入同期鉴定重合闸,两者的逻辑是与门关系(两者的触点串联工作),这样就可将误动跳闸的断路器重新投入。(×)

111.采用检无压、检同期重合闸的线路,投检无压的一侧,没有必要投检同期。(×)

112.三相重合闸启动回路中的同期继电器常闭触点回路,没有必要串接检定线路有电压的常开触点。(×)

113.为提高重合闸成功率,对于采用检无压、同期重合闸方式的线路,一般仅在检同期侧投入重合闸的后加速回路。(×)

114.对于仅使用三相重合闸的线路而言,潜供电流是不存在的。(×)

115.为保证在电流互感器和断路器之间发生故障时,母差保护动作跳开本侧断路器的同时对侧闭锁式纵联保护能快速动作,应采取的措施是母差保护动作停信。(√)

2.3填空题

1.对于距离保护后备段,为了防止距离保护超越,应取常见运行方式下(最小)的助增系数进行计算。

2.对于零序电流保护后备段,为了防止零序电流保护越级,应取常见运行方式下(最大)的分支系数进行计算。

3.如图2—3所示电力系统,各线路均配置阶段式零序电流保护,当保护I和保护II进行配合时,为求得最大分支系数,应考虑的方式为(线路PN)停运。

4.如图2—4所示电力系统,已知线路MN的阻抗为10Q,线路NP的阻抗为20Ω;当P点三相短路时,电源A提供的短路电流为100A,电源B提供的短路电流为150A,此时M点保护安装处的测量阻抗为(60Ω)。

5.高频振荡器中采用的石英晶体具有(压电)效应,当外加电压的频率与石英切片的固有谐振频率(相同),就引起共振。

6.电平表实际上也是电压表,但它不是以“V”为单位而刻度的,而是以(Np或dB)为单位而刻度的。一般电平表均以(1mW)在600Ω上的电压(0.775)v为基准值而刻度的。

7.电力线高频保护投入运行时,以能开始保证保护可靠工作的收信电平值为基值,保护的收信电平裕量不得低于(8.686)dB,运行中发现收信电平裕量低于(8.686)dB时,应向相应调度机构请求停用该高频保护。

8.传输音频信号的电缆应选用(双绞)屏蔽电缆,(屏蔽层)两端接地,同时应考虑外界高电压侵入的防护措施。

9.

在大接地电流系统中,双侧电源线路发生接地故障,对侧断路器单相先跳闸时,本侧零序电流可能增大或减小,对侧断路器三相跳开后,线路零序电流(有较大增长)。

10.在大接地电流系统中,能够对线路接地故障进行保护的主要有:(纵联)保护、(接地距离)保护和(零序)保护。

11.纵联保护的通道主要有以下几种类型(电力线载波)、(微波)、(光纤)、和(导引线)。

12.线路纵联保护载波通道的构成部件包括:(输电线路)、(高频阻波器)、(耦合电容器)、(结合滤波器)、(高频电缆)、(保护间隙)、(接地刀闸)和(收发信机)。

13.高频保护通道设备主要指:高频电缆、结合滤波器、(耦合电容器)、(阻波器)。

14.把需要传送的信号加到高频载波上的过程称为(调制),可分为(调频)和(调幅)两种;它的反过程是(解调)。

15.电力载波高频通道有相一相制通道和(相一地制通道)两种构成方式。

16.闭锁式高频保护的通道一般选用(相一地)耦合方式,如果线路内部故障时(通道中断),保护也不会拒动。

17.分相电流差动保护是通过架空地线复合光缆(OPGW)经光电转换,比较线路两侧电流的(相位)和(幅值),来判别故障点范围的。

18.通信系统中通常以(dB)作为电平的计量单位。

19.高频信号传输用到的计量单位奈培Np与分贝dB的换算关系是1Np=(8.686)dB。

20.在电路中某测试点的电压和标准比较电压(Uo=0.775V)之比取(常用对数的20倍),称为该点的电压绝对电平。

21.在绝对功率电平计算中,标准比较功率Po=(1mW),当负载电阻取600Ω时,标准比较电压Uo=(0.775V)。

22.当负载电阻Z=600Ω时,该处的功率电平(等于)电压电平。当Z=75Ω时,功率电平Lpx与电压电平Lux。的关系为(Lpx=lun+9)dB。

23.当阻抗Z=600Ω时,功率电平PM与电压电平PU数值(相等)。

24.载波通道的跨越衰耗是指(相邻通道之间)的衰耗,其大小等于相邻通道间的(相对)电平值。

25.某高频通道的输入功率为P

1、输出功率为P2则该高频通道传输衰耗为(101gp1)。 p

226.某收发信机的收信功率为16dBm,所接高频电缆的特性阻抗为75Ω,则该收发信机收到的电压电平应为(7)dB,。

27.某收发信机的发信功率为43dBm,所接高频电缆的特性阻抗为75 Ω,测得的收发信机发信电压电平应为(34)dBv。

28.电力架空线路的波阻抗约为(300或400) Ω,高频电缆的波阻抗约为(75或lOO) Ω,结合滤波器的主要作用是(阻抗匹配)和(高低压隔离)。

29.高频阻波器是由(电感线圈)和(调谐电容)组成的(并联谐振电路)。对载波电流呈现(很大的)阻抗,在(800) Ω以上。

30.目前应用的结合滤过器在工作频段下,从电缆侧看,它的输入阻抗为(75或100) Ω,从结合电容器侧看,它的输入阻抗为(300或400) Ω。

3l.在选择高频电缆长度时应考虑在现场放高频电缆时,要避开电缆长度接近(1/4波长或1,4波长的整数倍)的情况。

32.高频通道中的保护间隙用来保护(收发信机)和(高频电缆)免受过电压袭击。

33.为解决收发同频率而产生的频拍问题,大部分收发信机都采用(超外差式)接收方式和(时分门控)技术。

34.在高频通道交换过程中,按下通道试验按钮,本侧发信,(200ms)后本侧停信,连续收对侧信号5s后,本侧启动发信(10s)。

35.如果以本侧发信作为起始零时刻,专用收发信机的通道试验逻辑如下:本侧收发信机0s发信,大约(200)IllS后停信,间隔(5)s后本侧再次发信大约(10)s:对侧收发信机在收到信号大约后(2ms)后发信约(10)s。

36.为保证高频保护收发信机能可靠地接收到对端信号,要求通道裕度不低于(8.686)dB,即(1)Np。

37.某收发信机(内阻75Ω)收信灵敏启动电平为+4dBm,为了保证15d8的高频通道裕度,当收到对侧电平为20dBv时,装置应投入(10)dB衰耗。

38.运行中高频通道传输衰耗超过投运时的3dB。时,相当于收信功率降低(一半)。

39.闭锁式纵联保护进行通道交换信号时,出现(3dB)信号告警,应立即向调度申请将两侧纵联保护(停用),并通知有关人员处理。

40.在大量采用纵差保护之前,我国的线路纵联保护信号大致有三种:分别是①(闭锁)信号;②(允许)信号;③(命令)信号。

41.闭锁式纵联保护跳闸的必要条件是高值起动元件动作且正方向元件(动作),反方向元件(不动作),收到过闭锁信号而后信号又消失。

42.闭锁式高频方向保护在故障时启动发信,而(正向元件动作)时停止发信。其动作掉闸的基本条件是(正向元件动作且收不到闭锁信号)。

43.闭锁式高频保护在区外故障时,两侧都先(启动发信)。一侧正方向元件动作使高频信号停止;另一侧正方向元件不动作,通道上(高频信号)不会消失,故线路不会跳闸。

44.高压线路的纵联方向保护中通常采用任一反方向元件动作,立即闭锁正方向元件的停信回路,目的是防止故障(功率倒向)时保护误动作。

45.现代微机式高频方向保护中普遍采用正、反两个方向元件,其中反方向元件动作要比正方向元件动作(灵敏)。

46.方向高频保护是比较线路两端(功率方向),当满足(功率方向同时指向线路)条件时,方向高频保护动作。

47.故障时发信的闭锁式方向高频保护(不受)振荡影响,区内故障伴随高频通道破坏,保护(可以)动作。

48.负序方向高频保护(不受)振荡影响,在线路发生对称三相短路时(不会)动作。

49.线路闭锁式纵联保护启动发信方式有:(保护)启动、(远方)启动和手动启动。

50.220kV线路闭锁式纵联保护的停信回路有(本保护停信)、(断路器跳闸位置停信)和(其他保护停信)。

51.为了保证在电流互感器和断路器之间发生故障时,本侧断路器跳开后,对侧(高频保护)能快速动作切除故障点,对于闭锁式的高频保护应采取(母差)跳闸停信的措施。

52.环网中(区外故障)切除后,为防止功率倒向时高频保护误动,都采取了区外转区内时,(延时)开放保护的措施。

53.线路纵联保护的弱馈逻辑应满足以下三个条件:(弱电源侧故障检测元件动作)、(弱电源侧反方向闭锁元件不动作)、收到强电源侧发来的允许信号(允许式)或强电源侧发来的高频停信(闭锁式)。

54.相差高频保护是比较线路两端(电流的相位),当满足(电流相位同向)条件时,相差高频保护动作。

55.对阻抗继电器的接线方式的基本要求有(继电器测量阻抗正比于短路点到保护安装地点之间的距离)和(与故障类型无关即不随故障类型而改变)。

56.距离保护装置一般由(测量)部分、(启动)部分、(振荡闭锁)部分、(二次电压回路断线失压闭锁)部分、(逻辑)部分组成。

57.影响阻抗继电器正确测量的因素有:①(故障点的过渡电阻);②保护安装

处与故障点之问的助增电流和汲出电流;③测量互感器的误差;④电压回路断线;

⑤电力系统振荡;⑥被保护线路的串联补偿电容器。

58.正常运行时,阻抗继电器感受的阻抗为(负荷阻抗)。

59.距离I段是靠(定值大小)满足选择性要求的,距离III段是靠(时间定值)满足选择性要求的。

60.接地距离保护中相阻抗继电器的正确接线为(

UphIphK3I0)。

61.为防止失压误动作,距离保护通常经由(电流)或(电流差突变量)构成的启动元件控制,以防止正常过负荷误动作。

62.阻抗保护应用(电流启动)和(电压断线闭锁)共同来防止失压误动。

63.距离保护方向阻抗继电器引入第三相电压的作用是为了(防止正方向出口相间短路拒动)及(反方向两相短路时误动)。

64.方向阻抗继电器中,为了消除正方向出口三相短路死区采取的措施是(记忆功能)。

65.距离保护克服“死区”的方法有(记忆回路)和(引入非故障相电压)。

66.距离继电器的极化电压带记忆可(消除动作死区),还可显著改善(方向距离继电器的运行性能)。

67.与圆特性相比,四边形阻抗继电器的特点是能较好地符合短路时的测量阻抗的性质,(反应故障过渡电阻能力强)、(避越负荷阻抗能力好)。

68.电力系统振荡时,随着振荡电流增大,而母线电压(降低),阻抗元件的测量阻抗(减小),当测量阻抗落入(继电器动作特性以内)时,距离保护将发生误动作。

69.I、II、III段阻抗元件中,(III)段阻抗元件可不考虑受振荡的影响,其原因是(靠时间整定躲过振荡周期)。

70.某断路器距离保护I段二次定值整定1Ω,由于电流互感器变比由原来的600/5改为750/5,其距离保护I段二次定值应整定为(1.25) Ω。

71.线路保护中的阻抗元件试验时,应按线路阻抗角通入电压、电流,实测动作阻抗和整定值的偏差应小于(±3%)。

72.在整定整流型阻抗元件时,应使其(补偿阻抗)角等于线路阻抗角。

73.电抗变压器DKB的转移阻抗为z,为克服小电流时z下降,应采用(铍镆合金),阻抗z的阻抗角的调整一般采用(二次线圈上的电阻)。

74.距离保护的末端最小短路电流应(大于)其最小精工电流的2倍,否则可造成保护范围(缩短)。

75.阻抗继电器的最小精确工作电流是由于机电型的(机械阻力、剩磁)或静态型的门槛电压引起的,它的最大精确工作电流是由于(输入变的饱和,A/D的最大转换值)引起的。

76.当阻抗继电器的动作阻抗等于(0.9)倍整定阻抗时,流入继电器的最小电流称之为最小精工电流,精工电流与(整定阻抗)的乘积称之为精工电压。

77.工频变化量阻抗元件主要具体反映(故障分量),它一般用于保护的(快速)段,及纵联保护中的(方向比较)元件。

78.助增电流一般使测量阻抗(增大),汲出电流一般使测量阻抗(减小)。

79.复合电压过电流保护的电压元件两个继电器只要有一个动作,同时(过电流继电器)动作,整套装置即能启动。

80.为了确保方向过流保护在反向两相短路时不受(非故障)相电流的影响,保护装置应采用(按相)起动的接线方式。

81.零序电流方向保护是反应线路发生接地故障时零序电流分量和(零序电压分量)的多段式零序电流方向保护装置。

82.常规零序电流保护主要由零序电流或电压滤过器、电流继电器和(零序方向继电器)三部分组成。

83.3U0突变量闭锁零序保护的功能是(防止电流互感器二次回路断线)导致零序保护误动作。

84.90。接线功率方向元件在(出口)附近发生(三相)短路时存在“死区”。

85.功率方向继电器采用90。接线的优点在于(两相短路时无死区)。

86.零序功率方向继电器靠比较(零序)电流与(零序)电压之间相位关系来判断。

87.直接接入电压互感器第三绕组的电磁型零序功率方向元件,

约70o;微机保护多采用保护装置自产其动作灵敏角为3I0 (滞后)3U0约110o。3U0接线的零序功率方向元件,动作灵敏角为3I0 (超前) 3U 0

88.综合重合闸一般有4种工作方式,即:(综合)重合闸方式、(单相)重合闸方式、(三相)重合闸方式、(停用)重合闸方式。

89.重合闸的启动方式有(保护)启动和(断路器和把手位置不对应)启动两种方式。

90.自动重合闸装置可按断路器位置的(不对应)的原理起动,对综合重合闸装置,尚宜实现由保护同时启动的方式。

91.采用单相重合闸的线路,当断路器单相偷跳时,可通过(重合闸的不对应启动方式)将断路器合上。

92.继电保护常用的选相元件有:(阻抗)选相元件、(突变量差电流)选相元件、(电流相位比较)选相元件、相电流辅助选相元件和低电压辅助选相元件等。

93.对于采用单相重合闸的线路,潜供电流的消弧时间决定于多种因素:它除了与故障电流的大小及持续时问、线路的绝缘条件、风速、空气湿度或雾的影响等有关以外,主要决定于(潜供电流的大小)和(潜供电流与恢复电压)的相位关系。

94.某高压线路保护总动作时间0.08s,重合闸时间1s,断路器动作时间0.06s,则故障切除时间为(0.14s)。

95.线路两端配有同期无压检定的重合闸,若线路一端的重合闸检定方式为(同期检定),另一端的重合闸检定方式为(无压检定和同期检定)。

96.

重合闸检无压侧应同时投(检同期)。

97.

备自投装置的低电压元件,为了在所接母线失压后,能可靠工作,其低电压定值整定较低,一般为(0.15~0.3)倍的额定电压。

98.

微机线路保护中,起动元件起动后才(开放)出口继电器的正电源,以提高保护装置的抗干扰能力。

2.4简答题

1. 影响传输衰耗大小的因素有哪些?

答:线路长度、工作频率、线路的终端衰耗、阻波器分流衰耗、结合滤波器的介入衰耗(包括耦合电容器)、高频电缆的介入衰耗、高频通道匹配情况、输电线路的换位情况等。

2.

什么是远端跨越衰耗,其数值是否可能为负值?

答:如一线路A相发信,其对端A相收到的电压电平与c相上收到的电压电平之差(A相为工作频率)即为远端跨越衰耗。其数值有可能出现负值。

3.

阻波器所引起的通道衰耗称什么衰耗?

答:称为分流衰耗。

4.

试解释高频通道中阻波器的作用是什么?

答:阻波器的作用是将高频信号限制在被保护输电线路以内(两侧高频阻波器之内),而不至于流到相邻线路上。一可以防止对邻线产生干扰,二可以减少高频信号的分流衰耗。

5.

高频保护的工作频率为54kHz时,宽带阻波器的电感量应选为1mH还是2mH?

答:2mH。

6.

为什么要求阻波器的阻抗其电阻分量要不小于800f~?

答:母线对地等值可能是感性或容性阻抗,防止和阻波器的阻抗相互抵消,使阻波器对高频失去阻碍作用。

7.

宽频阻波器(40~500kHz),在运行中对其阻抗有何要求?

答:对40~500kHz的高频电流呈现很大的阻抗(大于1000Ω),而对50Hz的工频电流呈现很小的阻抗。 8. 单频阻波器的常见故障有哪些?

答:调谐电容击穿;调谐盒引出线受外力作用断线;避雷器损坏。

9.

阻波器为什么要装在隔离开关的线路侧?

答:变电站的运行方式可有多种形式的变化,将阻波器安装在隔离开关的线路侧,可使高频通道受变电站运行方式变化的影响降到最低,特别是在专用旁路(或母联兼旁路)断路器转代线路断路器运行时,仍然能够保证高频通道的完整。

10.在做阻波器的阻抗测量时,为什么要求测量到的阻波器阻抗中电阻分量满足要求?

答:阻波器阻抗中的电抗分量与母线电容可能出现串联诣振,使阻波器的阻塞阻抗呈电阻性。当阻波器的阻抗中电阻分量满足规定要求时,分流衰耗就不会超出规定范围。

11.结合滤波器的作用是什么?

答:

1)与耦合电容器组成阻抗匹配器,使架空线路和高频电缆达到匹配连接,减少高频信号的传输衰耗;

2)使高频收发信机与高压线路进一步隔离,以保证收发信机及人身安全。

12.一只电缆侧额定阻抗为75Ω的结合滤波器,其回波衰耗指标≥12dB,问输入阻抗的范围在多少时即可满足指标。

答:根据回波衰耗公式,计算可得输入阻抗范围在45~125Ω。

13.目前使用分频滤波器有哪些种类?

答:两端网络式,高、低通式,带通带阻式和差桥式4种。

14.母线上并联很多设备如变压器、电压互感器等都是电感设备,而且感抗都有比较大,母线对地也存在电容,但电容量都比较小,但我们在分析高频保护的频带内的高频传输时,反而把母线看成电容负载。这是为什么?

答:因高频保护范围内的高频电压(电流)频率很高(一般在50~500kHz范围内),母线上的容抗显得较小,高频电量就容易通过,而感抗就显得特别大,相当于开路,所以把母线看成电容负载。

15.线路重合成功率和重合闸装置重合成功率有什么区别?哪种重合成功率高?

答:线路重合成功率是指线路两侧都重合成功恢复线路送电的成功率:重合闸装置重合成功率是指重合闸装置本身的重合成功率。重合闸装置重合成功率高。

16.纵联保护在电网中的重要作用是什么?

答:由于纵联保护可以实现全线速动,因此它可以保证电力系统并列运行的稳定性和提高输送功率、减小故障造成的损坏程度、改善与后备保护的配合性能。

17.纵联保护按通道类型可分为几种?

答:可以分为以下几种类型:

1)电力线载波纵联保护;

2)微波纵联保护;

3)光纤纵联保护;

4)导引线纵联保护。

18.纵联保护的通道有哪几种类型?

答:①电力载波;②微波;③光纤;④导引线。

19.请问由输电线路构成的高频通道,有哪两种构成方式?

答:①相一相耦合;②相一地耦合。

20.高频收发信机可分为哪几个主要部分?

答:发信部分;收信部分;接口和逻辑回路;电源部分。

21.为什么高频保护的频率定为40~400kHz之间?

答:

1)频率太低了受工频电压的干扰太大。

2)频率太高,则它在通道中的衰耗太大。

22.当我们确定了电磁波在高频电缆里的传播速度和工作频率后,应该如何选择高频电缆的长度?

答:在选择高频电缆长度时,应选择避免电缆的长度为波长的四分之一或波长的四分之一的整数倍。

23.为什么在高频保护测量中必须用无感电阻?

答:在高频率信号作用下,如电阻含有电感分量,其阻值将随频率而变化。即与标称不符。

24.什么是超外差接收方式?

答:外差接收方式即把不同工作频率的高频信号.扁经过频率变换,成为固定频率的中频信号(12kHz)再进行放大。优点在于容易获得稳定的高增益,有利于提高防卫度,电平整定方便等。

25.何谓收发信机的分时接收法?

答:经分时开关,使本侧与对侧信号轮流送入收信回路,即当本侧发信时只收本侧信号,当本侧停信时只收对侧信号,两侧信号永远不迭加。

26.何谓频拍?新型收发信机是如何解决频拍的?

答:来自不同信号源、幅值近似相等、频率相近的两个信号在通道中某点叠加,当两信号相位相反时所出现的相互抵消现象称之为频拍。对于单频制的收发信机,若收信端出现频拍,将使得收信输出出现缺口。

新型收发信机是用分时接收法来解决频拍问题的。

27.当收发信机所接负载越接近于其内阻时,收发信机的回波衰耗越小,这种说法是否正确?正确的说法是什么?

答:不正确。回波衰耗越大。

28.收发信机的输入阻抗为75Ω,灵敏度起动电平整定为+5dB。,试验时要在收发信机的通道入口处加多少电压电平。

答:应加-4dB。。

29.规程规定保证收发信机可靠工作的最小裕量是多少?

答:8.68dB。

30.请问什么是跨越衰耗?

答:跨越衰耗是指相邻通道之间的衰耗,它的大小等于相邻通道间的相对电平值。

31.何谓高频保护的远方启动发信?

答:高频保护的远方启动发信是指每侧的收发信机,不但可以由本侧的启动发信元件启动发信,而且还可以由对侧的启动发信元件借助高频通道实现本侧发信。

32.请简述利用远方起信功能进行高频通道检查的交换信号过程?

答:

第一个5s:对侧发信;

第二个5s:两侧发信;

第三个5s:本侧发信。

33.请问什么叫作高频闭锁距离保护?

答:利用距离保护的启动元件和距离方向元件控制收发信机发出高频闭锁信号,闭锁两侧保护的原理而构成的高频保护,称为高频闭锁距离保护。

34.简述“母差停信”的作用。

答:当故障发生在电流互感器与断路器之间时,由母差停信使对侧高频保护快速 跳闸,切除故障。

35.高频保护中跳闸位置停信的作用是什么?

答:跳闸位置停信,是考虑当故障发生在本侧出口时,由接地或距离保护快速动作跳闸,而高频保护还未来得及动作,故障已被切除,并发出连续高频信号,闭锁了对侧高频保护,只能由二段带延时跳闸。为了克服此缺点,采用由跳闸位置继电器停信,使对侧自发自收,实现无延时跳闸。

36.如何在T接线路中实现瞬时速动保护功能?可以采用哪些保护形式?

答:采用多端纵联保护,包括电流差动、纵联方向、纵联距离等。

37.哪些保护动作后会启动500kV线路的“远方直跳”保护?

答:失灵、过电压、线路电抗器保护。

38.闭锁式高频保护在区外故障时,故障反方向侧的保护启动发信元件损坏,请问该保护是否会动作?为什么?

答:不会误动作,因为有远方启动起信功能。

39.闭锁式纵联方向保护动作跳闸的条件是什么?以图2—5为例,简述保护1至保护6的行为。

答:闭锁式纵联方向保护动作跳闸的条件为:高定值启动元件动作;保护启动发信;正向元件动作停信;无闭锁信号构成其动作条件。

图中k点故障:

3、4侧保护启动发信一正向元作动作停信,且无闭锁信号,于是跳闸;

2、5感受到反向故障发信,闭锁两侧保护,不跳闸;

1、6正方向元件动作,收到对侧闭锁信号,不跳闸。

40.某阻抗III段继电器向第三象限带有偏移特性,能否用它与收发信机配合构成高频闭锁距离保护?为什么?

答:不行。反方向故障时可能误动。

41.为保证继电保护安全运行,高频通道需进行哪些检验项目?

答:

1)分别测量结合滤波器二次侧(包括高频电缆)及一次对地的绝缘电阻:

2)测定高频通道的传输衰耗(与最近一次测量值之差不大于2.5dB):

3)对于专用高频通道,新投运或更换加工设备后,应保证收发信机的通道裕量不低于8.68dB。

42.在做阻波器试验时,对阻波器的试验环境有何要求?

答:为消除各种物体对阻波器的杂散电容的影响,要将阻波器吊离四周物体和距离地面1m,并应避开强电场。

43.为什么不允许用电缆并接在收发信机通道入口引出高频信号进行录波?

答:

1)通道入口具有许多干扰信号而线滤之后是比较单纯的高频信号。

2)通道入口可收到邻相的高频信号,造成对本相高频保护的误判断。所以应取线滤之后的信号。

3)到录波器高频电缆如并于通道入口,会导致阻抗匹配变坏,同时也可能将干扰信号引入调频收发信机。

44.为什么高频同轴电缆的屏蔽层要两端接地,且需辅以100mm2并联接地铜导线?

第二篇:继电保护

1. 何谓功率方向元件的90°接线?采用90°接线的功率方向元件在正方向三相和两相短路

时正确动作的条件是什么?采用90°接线的功率方向元件在相间短路时会不会有死区?为什么?

答:所谓90°接线方式是指在三相对称的情况下,当cosφ=1时,加入继电器的电流和电压相位相差90°。正确动作条件:30°

2. 后备保护的作用是什么?何谓近后备保护和远后备保护?

答:后备保护的作用是电力系统发生故障时,当主保护或断路器拒动,由后备保护以较长的时间切除故障,从而保证非故障部分继续运行。近后备保护是在保护范围内故障主保护拒动时,首先动作的后备保护。远后备保护是保护或断路器拒动时,靠近电源侧的相邻线路保护实现后备作用的保护。

3. 什么是电力系统继电保护装置? 三段式零序电流保护由哪些保护组成?

答:继电保护装置,就是指能反应电力系统中元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种装置。三段式零序电流保护由哪些保护组成?

三段式零序电流保护由(1)无时限零序电流速断保护(2)限时零序电流速断保护(3)零序过电流保护组成。

4. 什么是距离纵联保护?其与方向纵联保护有何异同?

答:各种方向比较式纵联保护都是以只反应短路点方向的方向元件为基础构成。这些方向元件的动作范围都必须超过线路全长并留有相当的裕度,称为超范围整定。因为方向元件没有固定的动作范围,故所有用于方向比较式纵联保护的方向元件,都只能是超范围整定。然而距离元件则不然,它不但带有方向性,能够判别故障的方向,而且还有固定的动作范围,可以实现超范围整定,也可以实现欠范围整定。

第三篇:继电保护装置

悬赏分:45|解决时间:2009-3-1 23:53|提问者:Wuli一枝梅

最近在做一个有关继电保护的课题,想问一下继电保护的销售流程大概是什么样子的,从生产商到最终用户,经过了几个流通环节?其中,电力设计院又起什么作用?在继电保护采购中,最终用户、系统集成商、设计院,那一个是关键决策人?急需回答,请各个专家不吝赐教,谢谢啊

问题补充:

最好是能把外资企业和国有企业流程给分开,因为很多外资企业没有自己的工程公司和设计院,他们到最终用户的环节和南瑞、南自这样的企业可能不一样,谢谢!!

最佳答案

比如某地要搞一个输变电工程,由该省电力设计院设计出图纸和方案,其中继电保护装置需求数量和类型已经确定。

然后是买方(比如国家电网公司或五大发电集团)招标,然后是南瑞、南自这种企业竞标,然后买方决定谁中标,然后双方签合同,然后中标的厂家开始生产继电保护装置,然后上门安装设备,直至并网送电,并且负责以后的维修。

最终用户、系统集成商、设计院,那一个是关键决策人?

对于这一问题,用户就是供电局,他和电力设计院是一家的,都属于国家电网公司,而南瑞又是国家电网公司开的,所以关键决策人就是国家电网公司。

外资企业也是和南瑞、南自这样的企业一样的竞争,他们在国内有许多分公司和研发机构,只有规模小的公司没有

第四篇:继电保护考核

为保证龙南电网安全运行,激发各级继电保护专业管理人员、技术人员的工作积极性,加大继电保护工作的管理力度,实现继电保护工作的可控在控,特制定本奖励考核办法:

一、奖惩人员范围

检修公司及调度所有关继电保护人员(包括主任、分管副主任、分管专工、检修公司继电保护班全体人员、调度所整定计算人员),实行年度考核。

二、奖惩细则

1、公司所属变电站内全部继电保护装置正确动作率99.6%以上,每升高一个千分点奖励上述人员人均200元,正确动作率低于99.6%,一次性扣罚上述人员人均200元。

2、全年内不发生继电保护“三误”事故,奖励检修分公司8000元,奖励调度所2000元,奖励变电运行工区2000元。若发生继电保护“三误”事故,按公司“安全生产奖惩细则”等有关文件进行考核。

3、全年继电保护装置正确动作率99.8%以上,不发生继电保护“三误”事故,一次性奖励生技部2000元。

4、新建、扩建、改造工程项目,充分考虑继电保护及安全自动装置的完善,工作有遗漏或完成不好,扣责任部门500元。

5、所购置的继电保护及安全自动装置,生产厂家必须有上级部门颁发的三证,并经生技部及运行、检修单位认可。如有不按规定购置而进入电网者,发现一次扣有关责任单位500元。

6、各部门上报的各项继电保护资料,必须在规定期限内统计上报,每延迟一天,扣责任单位100元,以此类推。

三、本办法由生产技术部负责检查并考核。

四、本办法由公司考评委员会负责解释。

第五篇:继电保护实验报告

第一章电力自动化及继电保护实验装置交流及直流电源操作说明

一、实验中开启及关闭交流或直流电源都在控制屏上操作。

1、开启三相交流电源的步骤为:

1)开启电源前,要检查控制屏下面“直流操作电源”的“可调电压输出”开关(右下角)及“固定电压输出”开关(左下角)都须在“关”断的位置。控制屏左侧面上安装的自耦调压器必须调在零位,即必须将调节手柄沿逆时针方向旋转到底。 2)检查无误后开启“电源总开关”,“停止”按钮指示灯亮,表示实验装置的进线已接通电源,但还不能输出电压。此时在电源输出端进行实验电路接线操作是安全的。 3)按下“启动”按钮,“启动”按钮指示灯亮,只要调节自耦调压器的手柄,在输出口u、v、w处可得到0~450v的线电压输出,并可由控制屏上方的三只交流电压表指示。当屏上的“电压指示切换”开关拨向“三相电网输入电压”时,三只电压表指示三相电网进线的线电压值;当“指示切换”开关拨向“三相调压输出电压”时,三表指示三相调压输出之值。 4)实验中如果需要改接线路,必须按下“停止”按钮以切断交流电源,保证实验操作的安全。实验完毕,须将自耦调压器调回到零位,将“直流操作电源”的两个电源开关置于“关”断位置,最后,需关断“电源总开关”。

2、开启单相交流电源的步骤为:

1)开启电源前,检查控制屏下面“单相自耦调压器”电源开关须在“关”位置,调压器必须调至零位。 2)打开“电源总开关”,按下“启动”按钮,并将“单相自耦调压器” 开关 拨到“开”位置,通过手动调节,在输出口a、x两端,可获得所需的单相交流电压。 3)实验中如果需要改接线路,必须将开关拨到“关”位置,保证操作安全。实验完毕,将调压器旋钮调回到零位,并把“直流操作电源”的开关拨回“关”位置,最后,还需关断“电源总开关”。

3、开启直流操作电源的步骤为:

1)在交流电源启动后,接通“固定直流电压输出”开关,可获得220v、1.5a不可调的直流电压输出。接通“可调直流电压输出”开关,可获得40~220v、3a可调节的直流电压输出。固定电压及可调电压值可由控制屏下方中间的直流电压表指示。当将该表下方的“电压指示切换”开关拨向“可调电压”时,指示可调电源电压的输出值,当将它拨向“固定电压”时,指示输出固定的电源电压值。 2)“可调直流电源”是采用脉宽调制型开关稳压电源,输入端接有滤波用的大电容,为了不使过大的充电电流损坏电源电路,采用了限流延时保护电路。所以本电源在开机时,约需有3~4秒钟的延时后,进入正常的输出。

3)可调直流稳压输出设有过压和过流保护告警指示电路。当输出电压调得过高时(超过240v),会自动切断电路,使输出为零,并告警指示。只有将电压调低(约240v以下),并按“过压复位”按钮后,能自动恢复正常输出。当负载电流过大(即负载电阻过小),超过3a时,也会自动切断电路,并告警指示,此时若要恢复输出,只要调小负载电流(即调大负载电阻)即可。有时候在开机时出现过流告警,这说明在开机时负载电流太大,需要降低负载电流。若在空载下开机,发生过流告警,这是由于气温或湿度明显变化,造成光电耦合器til117漏电使过流保护起控点改变所致,一般经过空载开机(即开启交流电源后,再开启“可调直流电源”开关)预热几十分钟,即可停止告警,恢复正常。

第二章、电力自动化及继电保护实验的基本要求和安全操作规程

一、实验的基本要求

电力自动化及继电保护实验的目的在于培养学生掌握基本的实验方法与操作技能。培养学生学会根据实验目的,实验内容及实验设备拟定实验线路,选择所需仪表,确定实验步骤,测取所需数据,进行电路工作状态的分析研究,得出必要结论,从而完成实验报告。在整个实验过程中,必须集中精力,及时认真做好实验。现按实验过程提出下列基本要求。

1、实验前的准备

实验前应复习教科书有关章节内容,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题(有些内容可到实验室对照实验设备进行预习,熟悉组件的编号,使用及其规定值等)。

实验前应写好预习报告,经教师检查认为确实做好了实验前的准备,方可开始实验。

认真作好实验前的准备工作,对于培养学生独立工作能力,提高实验质量和保护实验设备、人身的安全等都具有相当重要的作用。

2、实验的进行 1)建立小组,合理分工

每次实验都以小组为单位进行,每组由2~3人组成,实验进行中的接线、负载、电压或电流调节、记录数据等工作每人应有明确的分工,以保证实验操作的协调,使记录的数据准确可靠。 2)选择组件和仪表

实验前先熟悉该次实验所用的组件,记录继电器铭牌数据和选择合适的仪表量程,然后依次排列组件和仪表,便于测取数据。 3)按图接线

根据实验线路图及所选组件、仪表,按图接线,接线要力求简单明了,接线原则应是先接串联主回路,再接并联支路。为方便检查线路的正确性,实验线路图中的直流回路、交流回路、控制回路等应分别用不同颜色的导线连接。 4)试运行

在正式实验开始之前,先熟悉仪表,然后按一定规范起动继电保护电路,观察所有仪表是否正常。如果出现异常,应立即切断电源,并排除故障;如果一切正常,即可正式开始实验。 5)测取数据

预习时对继电器及其保护装置的试验方法及所测数据的大小作到心中有数。正式实验时,根据实验步骤逐次测取数据。 6)认真负责,实验有始有终

实验完毕,须将数据交指导老师审阅。经指导老师认可后,才允许拆线,并把实验所用的组件、导线及仪器等物品整理好,放至原位。

3、实验报告

实验报告是根据实测数据和在实验中观察发现的问题,经过自己分析研究或分析讨论后写出的实验总结和心得体会。实验报告要简明扼要、字迹清楚、图表整洁、结论明确。实验报告包括以下内容: 1)实验名称、专业班级、学号、姓名、实验日期。 2)列出实验中所用组件的名称及编号,继电器铭牌数据等。

3)列出实验项目并绘出实验时所用的线路图,并注明仪表量程,电阻器阻值。 4)数据的整理和计算

5)解答各个实验的思考题,部分思考题在实验前要进行抽查提问,作为学生实验预习成绩中的一部分。 6)根据数据说明实验结果与理论是否符合,可对某些问题提出一些自己的见解并最后写出结论。实验报告应写在一定规格的报告纸上,保持整洁。 7)每次实验每人独立完成一份报告,按时送交指导老师批阅。

二、 实验安全操作规程

为了按时完成电力自动化及继电保护实验,确保实验时人身安全与设备安全,要严格遵守如下规定的安全操作规程:

1、实验时,人体不可接触带电线路。

2、接线或拆线都必须在切断电源的情况下进行。

3、学生独立完成接线或改接线路后必须经指导老师检查和允许,并使组内其它同学引起注意后方可接通电源。实验中如发生事故,应立即切断电源,经查清问题和妥善处理故障后,才能继续进行实验。

4、通电前应先检查所有仪表量程是否符合要求,是否有短路回路存在,以免损坏仪表或电源。

5、总电源或实验台控制屏上的电源应由实验指导教师来控制,其他人员只能经指导教师允许后方可操作,不得自行合闸。 第三章电力自动化及继电保护实验与考核内容(必做部分)

实验一 电磁型电流继电器实验

一、实验目的

熟悉dl型电流继电器的实际结构、工作原理、基本特性;掌握动作电流值及其相关参数的整定方法。掌握实验用相关设备。

二、预习与思考

1、电流继电器的返回系数为什么恒小于1?

2、动作电流、返回电流和返回系数的定义是什么?

3、实验结果如返回系数不符合要求,你能正确地进行调整吗?

4、返回系数在设计继电保护装置中有何重要用途?

三、原理说明 dl—20c系列电流继电器用于反映发电机、变压器及输电线路短路和过负荷的继电保护装置中。dl—20c系列继电器的内部接线图见图1一1。继电器是瞬时动作的电磁式继电器,当电磁铁线圈中通过的电流达到或超过整定值时,衔铁克服反作用力矩而动作,且保持在动作状态。过电流继电器:当电流升高至整定值(或大于整定值)时,继电器立即动作,其常开触点闭合,常闭触点断开。继电器的铭牌刻度值是按电流继电器两线圈串联时标注的指示值等于整定值;若上继电器两线圈作并联则整定值为指示值的2倍。转动刻度盘上指针,以改变游丝的作用力矩,从而改变继电器动作值。

图1一1电流继电器内部接线图

四、实验设备

1、绝缘测试

五、验步骤和要求

单个继电器在新安装投入使用前或经过解体检修后,必须进行绝缘测试,对于额定电压为100伏及以上者,应用1000伏兆欧表测定绝缘电阻;对于额定电压为100 伏以下者,则应用500伏兆欧表测定绝缘电阻。测定绝缘电阻时,应根据继电器的具体接线情况,注意把不能承受高压的元件(如半导体元件、电容器等)从回路中断开或将其短路。本实验是用1000伏兆欧表测定导电回路对铁芯的绝缘电阻及不连接的两回路间的绝缘电阻,要求如下: 1)全部端子对铁芯或底座的绝缘电阻应不小于50兆欧。 2)各线圈对触点及各触点间的绝缘电阻应不小于50兆欧。 3)各线圈间绝缘电阻应不小于50兆欧。

4)将测得的数据记入表1—1,并做出绝缘测试结论。 表1—1 绝缘电阻测定记录表

注:上表①③⑤⑥为继电器引出的接线端号码,铁芯指继电器内部的导磁体。

2、整定点的动作值、返回值及返回系数测试

实验接线图1-2为电流继电器实验接线, 实验参数电流值可用单相自耦调压器、变流器、变阻器等设备进行调节。实验中每位学生要注意培养自己的实践操作能力,调节中要注意使参数平滑变化。

图1-2电流继电器实验接线图

3、电流继电器的动作电流和返回电流测试

a、选择zb11继电器组件中的dl—24c/6型电流继电器,确定动作值并进行初步整定。本实验整定值为2a及

4a的两种工作状态见表1-2。

b、根据整定值要求对继电器线圈确定接线方式(串联或并联);查表1-5。 c、按图1--2接线,检查无误后,调节自耦调压器及变阻器,增大输出电流,使继电器动作。读取能使继电器动作的最小电流值,即使常开触点由断开变成闭合的最小电流,记入表1-2;动作电流用idj表示。继电器动作后,反向调节自耦调压器及变阻器降低输出电流,使触点开始返回至原来位置时的最大电流称为返回电流,用ifj表示,读取此值并记入表1--2,并计算返回系数;继电器的返回系数是返回电流与动作电流的比值,用kf 表示。kf=ifj/idj 过电流继电器的返回系数在0.85~0.9之间。当小于0.85或大于0.9时,应进行调整。 表1-2电流继电器实验结果记录表

2、继电器技术数据:电流继电器见表1-4

3、动作时间:过电流继电器在1.2倍整定值时,动作时间不大于0.15秒;在3倍整定值时,动作时间不大于0.03秒。低电压继电器在0.5倍整定值时,动作时间不大于0.15秒。

4、接点断开容量:在电压不大于250伏,电流不大于2安时的直流有感负荷电路(时间常数不大于53103秒)中断开容量为40瓦;在交流电路中为200伏安。

5、重量:约为0.5公斤。

七、实验报告

实验结束后,针对过电流继电器实验要求及相应动作值、返回值、返回系数的具体整定方法,按实验报告编写的格式和要求及时写出电流继电器、电压继电器实验报告和本次实验的体会,并书面解答本实验思考题。 表1--4

实验二 电磁型电流继电器和电压继电器实验

一、实验目的

dy型电压继电器的实际结构、工作原理、基本特性;掌握动作电流值、动作电压值及其相关参数的整定方法。

二、预习与思考

1、电压继电器的返回系数的范围是多少?

2、动作电流(压)、返回电流(压)和返回系数的定义是什么?

3、实验结果如返回系数不符合要求,你能正确地进行调整吗?

4、返回系数在设计继电保护装置中有何重要用途?

三、原理说明

dy—20c系列电压继电器用于反映发电机、变压器及输电线路的电压升高(过电压保护)或电压降低(低电压起动)的继电保护装置中。dy—20c系列继电器的内部接线图见图2一1。上述继电器是瞬时动作的电磁式继电器,当电磁铁线圈中通过的电流达到或超过整定值时,衔铁克服反作用力矩而动作,且保持在动作状态。 过电压继电器:当电压升高至整定值(或大于整定值)时,继电器立即动作,其常开触点闭合,常闭触点断开。 低电压继电器:当电压降低至整定电压时,继电器立即动作,常开触点断开,常闭触点闭合。

继电器的铭牌刻度值是按电压继电器两线圈并联时标注的指示值等于整定值;若上述串联时,则整定值为指示值的2倍。转动刻度盘上指针,以改变游丝的作用力矩,从而改变继电器动作值。

图2一1电流继电器内部接线图

四、实验设备

五、验步骤和要求

1、绝缘测试

单个继电器在新安装投入使用前或经过解体检修后,必须进行绝缘测试,对于额定电压为100伏及以上者,应用1000伏兆欧表测定绝缘电阻;对于额定电压为100 伏以下者,则应用500伏兆欧表测定绝缘电阻。 测定绝缘电阻时,应根据继电器的具体接线情况,注意把不能承受高压的元件(如半导体元件、电容器等)从回路中断开或将其短路。本实验是用1000伏兆欧表测定导电回路对铁芯的绝缘电阻及不连接的两回路间的绝缘电阻,要求如下: 1)全部端子对铁芯或底座的绝缘电阻应不小于50兆欧。 2)各线圈对触点及各触点间的绝缘电阻应不小于50兆欧。 3)各线圈间绝缘电阻应不小于50兆欧。

4)将测得的数据记入表2—1,并做出绝缘测试结论。 表2—1 绝缘电阻测定记录表

注:上表①③⑤⑥为继电器引出的接线端号码,铁芯指继电器内部的导磁体。

2、整定点的动作值、返回值、返回系数测试及过压继电器的动作电压、返回电压测试 a、选择zb15型继电器组件中的dy—28c/160型过电压继电器,确定动作值为1.5倍的额定电压,即实验参数取150v并进行初步整定。

b、根据整定值要求确定继电器线圈的接线方式,查表1-6。

c、按图2--2接线。检查无误后,调节自耦调压器,分别读取能使继电器动作的最小电压udj及使继电器返回的最高电压ufj,记入表1-3并计算返回系数kf。返回系数的含义与电流继电器的相同。返回系数不应小于0.85,当大于0.9时,也应进行调整。

图2--2过电压继电器实验接线图

低电压继电器的动作电压和返回电压测试 a、选择zb15继电器组件中的dy—28c/160型低电压继电器,确定动作值为0.7倍的额定电压,即实验参数取70v并进行初步整定。

b、根据整定值要求确定继电器线圈的接线方式,查表2-5。

c、按图2--3接线,调节自耦调压器,增大输出电压,先对继电器加100伏电压,然后逐步降低电压,至继电器舌片开始跌落时的电压称为动作电压udj,再升高电压至舌片开始被吸上时的电压称为返回电压ufj,将所取得的数值记入表1-3并计算返回系数。返回系数kf为: udj 图2-3 低电压继电器实验接线图

低电压继电器的返回系数不大于1.2,用于强行励磁时不应大于1.06。

以上实验,要求平稳单方向地调节电流或电压实验参数值,并应注意舌片转动情况。如遇到舌片有中途停顿或其他不正常现象时,应检查轴承有无污垢、触点位置是否正常、舌片与电磁铁有无相碰等现象存在。

动作值与返回值的测量应重复三次,每次测量值与整定值的误差不应大于±3%。否则应检查轴承和轴尖。在实验中,除了测试整定点的技术参数外,还应进行刻度检验。

用整定电流的1.2倍或额定电压1.1倍进行冲击试验后,复试定值,与整定值的误差不应超过±3%。否则应检查可动部分的支架与调整机构是否有问题,或线圈内部是否层间短路等。 返回系数的调整

返回系数不满足要求时应予以调整。影响返回系数的因素较多,如轴间的光洁度、轴承清洁情况、静触点位置等。但影响较显著的是舌片端部与磁极间的间隙和舌片的位置。返回系数的调整方法有:

a、调整舌片的起始角和终止角:

调节继电器右下方的舌片起始位置限制螺杆,以改变舌片起始位置角,此时只能改变动作电流,而对返回电流几乎没有影响。故可用改变舌片的起始角来调整动作电流和返回系数。舌片起始位置离开磁极的距离愈大,返回系数愈小,反之,返回系数愈大。

调节继电器右上方的舌片终止位置限制螺杆,以改变舌片终止位置角,此时只能改变返回电流而对动作电流则无影响。故可用改变舌片的终止角来调整返回电流和返回系数。舌片终止角与磁极的间隙愈大,返回系数愈大;反之,返回系数愈小。 b、不调整舌片的起始角和终止角位置,而变更舌片两端的弯曲程度以改变舌片与

磁极间的距离,也能达到调整返回系数的目的。该距离越大返回系数也越大;反之返回系数越小。 c、适当调整触点压力也能改变返回系数,但应注意触点压力不宜过小。 动作值的调整 a、继电器的整定指示器在最大刻度值附近时,主要调整舌片的起始位置,以改变 动作值,为此可调整右下方的舌片起始位置限制螺杆。当动作值偏小时,调节限制螺杆 使舌片的起始位置远离磁极;反之则靠近磁极。

b、继电器的整定指示器在最小刻度值附近时,主要调整弹簧,以改变动作值。 c、适当调整触点压力也能改变动作值,但应注意触点压力不宜过小。

3、触点工作可靠性检验

应着重检查和消除触点的振动。

(1)过电流或过电压继电器触点振动的消除

a、如整定值设在刻度盘始端,当试验电流(或电压)接近于动作值或整定值时,发现触点振动可用以下

方法消除。

静触点弹片太硬或弹片厚度和弹性不均,容易在不同的振动频率下引起弹片的振动,或由于弹片不能随继电器本身抖动而自由弯曲,以至接触不良产生火花。此时应更换弹片。静触点弹片弯曲不正确,在继电器动作时,静触点可能将动触点桥弹回而 产生振动。此时可用镊子将静触点弹片适当调整。如果可动触点桥摆动角度过大,以致引起触点不容许的振动时,可将触点桥的限制钩加以适当弯曲消除之。变更触点相遇角度也能减小触点的振动和抖动。此角度一般约为 55°~65°。

b、当用大电流(或高电压)检查时产生振动,其原因和消除方法如下:

当触点弹片较薄以致弹性过弱,在继电器动作时由于触点弹片过度弯曲,很容易使舌片与限制螺杆相碰而弹回,造成触点振动。继电器通过大电流时,可能使触点弹片变形,造成振动。消除方法是调整弹片的弯曲度,适当地缩短弹片的有效部分,使弹片变硬些。若用这种方法无效时,则应将静触点片更换。 在触点弹片与防振片间隙过大时,亦易使触点产生振动。此时应适当调整其间隙距离。

继电器转轴在轴承中的横向间隙过大,亦易使触点产生振动。此时应适当调整横向间隙或修理轴尖和选取与轴尖大小适应的轴承。

调整右侧限制螺杆的位置,以变更舌片的行程,使继电器触点在电流近于动作值时停止振动。然后检查当电流增大至整定电流的1.2倍时,是否有振动。

过分振动的原因也可能是触点桥对舌片的相对位置不适当所致。为此将可动触点夹片座的固定螺丝拧松,使可动触点在轴上旋转一个不大的角度,然后再将螺丝拧紧。调整时应保持足够的触点距离和触点间的共同滑行距离。

另外改变继电器纵向串动大小,也可减小振动。 (2)全电压下低电压继电器振动的消除

低电压继电器整定值都较低,而且长时间接入额定电压,由于转矩较大,继电器舌片可能按二倍电源频率振动,导致轴尖和轴承或触点的磨损。因此需要细致地调整,以消除振动。其方法如下: a、按上述消除触点振动的方法来调整静触点弹片和触点位置,或调整纵向串动的大小以消除振动。

b、将继电器右上方舌片终止位置的限制螺杆向外拧,直到继电器在全电压下舌片不与该螺杆相碰为止。此时应注意触点桥与静触点有无卡住,返回系数是否合乎要求。

c、在额定电压下,松开铝框架的固定螺丝,上下移动铝框架调整磁间隙,以找到一个触点振动最小的铝框架位置,再将铝框架固定,也就是人为地使舌片和磁极间的上 下间隙不均匀(一般是上间隙大于下间隙)来消除振动。但应注意该间隙不得小于0.5毫米,并防止舌片在动作过程中卡塞。 d、仅有常闭触点的继电器,可使舌片的起始位置移近磁极下面,以减小振动。 e、若振动仍未消除,则可以将舌片转轴取下,将舌片端部向内弯曲。 (3)电压继电器触点应满足下列要求 a、在额定电压下,继电器触点应无振动。 b、低电压继电器,当

从额定电压均匀下降到动作电压和零值时,触点应无振动和鸟啄现象。 c、过电压继电器,以1.05倍动作电压和1.1倍额定电压冲击

时,触点应无振动和鸟啄现象。 表2-2电压继电器实验结果记录表

六、技术数据

电流继电器触点应满

以1.05倍动作电流或保护出现的最大故障电流冲击时,触点应无振动和鸟啄现象。

1、继电器触点系统的组合形式见表2-3。 表2-3 2、继电器技术数据:电压继电器见表2-4

3、动作时间:过电流(或电压)继电器在1.2倍整定值时,动作时间不大于0.15秒;在3倍整定值时,动作

时间不大于0.03秒。低电压继电器在0.5倍整定值时,动作时间不大于0.15秒。

4、接点断开容量:在电压不大于250伏,电流不大于2安时的直流有感负荷电路(时间常数不大于53103秒)

中断开容量为40瓦;在交流电路中为200伏安。

5、重量:约为0.5公斤。

七、实验报告

实验结束后,针对过电流、过电压、低电压继电器实验要求及相应动作值、返回值、返回系数的具体整定方法,按实验报告编写的格式和要求及时写出电流继电器、电压继电器实验报告和本次实验的体会,并书面解答本实验思考题。

表2-4

实验三 电磁型时间继电器实验

一、实验目的

熟悉ds—20系列时间继电器的实际结构,工作原理,基本特性,掌握时限的整定和试验调整方法。

二、预习与思考

1、绝缘测试时发现绝缘电阻下降,且不符合要求,是什么原因引起的?

2、影响起动电压、返回电压的因素是什么?

3、在某一整定点的动作时间测定,所测得数值大于(或小于)该点的整定时间,并超出允许误差时,将用

什么方法进行调整?

4、根据你所学的知识说明时间继电器常用在哪些继电保护装置及自动化电路中?

三、原理说明

ds—20系列时间继电器用于各种继电保护和自动控制线路中,使被控制元件按时限控制原则进行动作。 ds—20系列时间继电器是带有延时机构的吸入式电磁继电器,其中ds—21~ds—24 是内附热稳定限流电

阻型时间继电器(线圈适于短时工作),ds—21/c~ds—24/c是外附热稳定限流电阻型时间继电器(线圈适于长时工作)。ds—25~28是交流时间继电器。 r ds-21~22时间继电器正面内部接线图

该继电器具有一付瞬时转换触点,一付滑动主触点和一付终止主触点。继电器内部接线见图3-1。

ds-21/c~22/c时间继电器正面内部接线图

图3-1 时间继电器内部接线图

当加电压于线圈两端时,衔铁克服塔形弹簧的反作用力被吸入,瞬时常开触点闭合,常闭触点断开,同时延时机构开始启动,先闭合滑动常开主触点,再延时后闭合终止常开主触点,从而得到所需延时,当线圈断电时,在塔形弹簧作用下,使衔铁和延时机构立刻返回原位。从电压加于线圈的瞬间起到延时闭合常开主触点止,这段时间就是继电器的延时时间,可通过整定螺钉来移动静接点位置进行调整,并由螺钉下的指针在刻度盘上指示要设定的时限。

四、实验设备

五、实习步骤和要求

1、内部结构检查

(1)观察继电器内部结构,检查各零件是否完好,各螺丝固定是否牢固,焊接质量及线头压接应保持良好。 (2)衔铁部分检查

手按衔铁使其缓慢动作应无明显磨擦,放手后靠塔形弹簧返回应灵活自如,否则应检查衔铁在黄铜套管内的活动情况,塔形弹簧在任何位置不许有重迭现象。 (3)时间机构检查

当衔铁压入时,时间机构开始走动,在到达刻度盘终止位置,即触点闭合为止的整个动作过程中应走动均匀,不得有忽快忽慢,跳动或中途卡住现象,如发现上述不正常现象,应先调整钟摆轴承螺丝,若无效可在老师指导下将钟表机构解体检查。 (4)接点检查

a、当用手压入衔铁时,瞬时转换触点中的常闭触点○181○7应断开,常开触点○171○6应闭合。

b、时间整定螺丝整定在刻度盘上的任一位置,用手压入衔铁后经过所整定的时间,动触点应在距离静触点首端的1/3处开始接触静触点,并在其上滑行到1/2处,即中心点停止。可靠地闭合静触点,释放衔铁时,应无卡涩现象,动触点也应返回原位。

c、动触点和静触点应清洁无变形或烧损,否则应打磨修理。

2、绝缘测试

用1000伏兆欧表测试导电回路对铁芯或磁导体的绝缘电阻及互不连接的回路之间的绝缘电阻,并将测得数据记入表3-1进行比较,做出绝缘测试结论。(绝缘电阻测试要求同实验一)

3、动作电压,返回电压测试

实验接线见图3-2,选用zb13挂箱的ds—23型时间继电器,整定范围(2.5s~10s) 动作电压ud的测试

按图2-2接好线,将可变电阻r置于输出电压最小位置,合上s1及s2,调节可变电阻r使输出电压由

最小位置慢慢地升高到时间继电器的衔铁完全被吸入为止,可变电阻r保持不变,断开开关s1,然后迅速合上开关s1,以冲击方式使继电器动作,如不能动作,再调整可变电阻r,增大输出电压,用冲击方式使继电器衔铁瞬时完全被吸入的最低冲击电压即为继电器的最低动作电压ud,断开开关s1,将动作电压ud填入表2--3内。ud应不大于70%ued(154v)。

对于ds—21/c~24/c型应不大于75%ued,ds--25~ds--28型应不大于85%ued。

图3-2 时间继电器实验接线图

注:测试上表第

6、7项绝缘电阻时 ,ds--23型时间继电器的时间整定螺钉均固定10s位置。

表3-1 ds-23型时间继电器绝缘测试记录表

返回电压uf的测试

合上s

1、s2加大电压至额定值220v,然后渐渐的调节可变电阻r降低输出电压,使电压降低到触点开启即继电器的衔铁返回到原来位置的最高电压即为uf,断开开关s1,将uf填入表2-3内。应使uf不低于0.05倍额定电压(11v)。

若动作电压过高,则检查返回弹簧力量是否过强,衔铁在黄铜套管内摩擦是否过大,衔铁是否生锈或有污垢,线圈是否有匝间短路现象。 若返回电压过低 ,检查摩擦是否过大,返回弹簧力量是否过弱。

4、动作时间测定

动作时间测定的目的是检查时间继电器的控制延时动作的准确程度,也能间接发现时间继电器的机械部分所存在的问题。

测定是在额定电压下,取所试验继电器允许时限整定范围内的大、中、小四点的整定时间值(见表2-2),在每点测定三次,其误差应符合表3—2。 用电秒表测定动作时间的实验接线见图3—2。 表3—2

按图3-2接好线后,将继电器定时标度放在较小刻度上(合上开关s

1、s2,调节可变电阻器r,使加

在继电器上的电压为额定电压ued(本实验所用时间继电器额定电压为直流220v)拉开s2,合上电秒表工作电源开关,并将电秒表复位,然后投入s2,使继电器与电秒表同时起动,继电器动作后经一定时限,触点(5)(6)闭合。将电秒表控制端“i”和“ii”短接,秒表停止记数,此时电秒表所指示的时间就是继电器的延时时间,把测得数据填入表3-3中,每一整定时间刻度应测定三次,取三次平均值作为该刻度的动作值。然后将定时标度分别置于中间刻度5s、7.5s及最大刻度10s上,按上述方法各重复三次,求平均值。动作时限应和刻度值相符,允许误差不得超过表3-2中的规定值,若误差大于规定时,可调节钟表机构摆轮上弹簧的松紧程度,具体应在教师指导下进行。

表3-3时间继电器实验记录

六、技术数据

ds—20系列时间继电器的有关技术数据编入表2--4中,供参考。 表2-4 为确保动作时间的精确测定,合上电秒表电源开关后应稍停片刻,然

后再合s2。秒表上的工作选择开关“k”应置于“连续”状态。

七、 实验报告

实验结束后,结合时间继电器的各项测试内容及时限整定的具体方法,按实验报告编写的格式和要求及时写出时间继电器实验报告和本次实验体会,并书面解答本实验的思考题。

实验四 中间继电器实验

一、实验目的

中间继电器种类很多,目前国内生产的就有二十多个系列,数百种产品。本实验选择了具有代表性的三个系列中的四种中间继电器进行实验测试,希望能通过本次实验熟悉中间继电器的实际结构、工作原理、基本特性,掌握对各类中间继电器的测试和调整方法。

二、预习与思考

1、为什么目前在一些保护屏上广泛采用dz-30b系列中间继电器,它与dz-10系列中间继电器比较有那些特点?

2、具有保持绕组的中间继电器为什么要进行极性检验?如何判明各绕组的同极性端子。

3、使用中间继电器一般根据哪几个指标进行选择?

4、发电厂、变电所的继电保护及自动装置中常用哪几种中间继电器?

三、原理说明 dz—30b、 dzb—10b、dzs--10b系列中间继电器用于直流操作的各种继电保护和自动控制线路中,作为辅助继电器以增加接点数量和接点容量。

1、dz—30b为电磁式瞬时动作继电器。当电压加在线圈两端时,衔铁向闭合位置运动,此时常开触点闭合,常闭触点断开。断开电源时,衔铁在接触片的反弹力下,返回到原始状态,常开触点断开,常闭触点闭合。继电器内部接线见图4—1 图4—1 dz-30b中间继电器内部接线图

2、dzb—10b系列是具有保持绕组的中间继电器,它基于电磁原理工作,按不同要求在同一铁芯上绕有两个以上的线圈,其中dzb-11b、12b、13b为电压启动、电流保持型;dzb-14b为电流启动、电压保持型。该继电器为瞬时动作继电器。当动作电压(或电流)加在线圈两端时,衔铁向闭合位置运动,此时,常开触点闭合,常闭触点断开,断开启动电源时,由于电压(或电流)保持绕组的磁场的存在所以衔铁仍然闭合,只有保持绕组断电后,衔铁在接触片的反弹力作用下返回到原始状态,常开触点断开,常闭触点闭合。继电器内部接线见图4—2。

3、dzs—10b系列是带有时限的中间继电器,它基于电磁原理工作。继电器分为动作延时和返回延时两种,本系列中的dzs—11b、13b为动作延时,dzs—12b、14b为返回延时继电器。在这种继电器线圈的上面或下面装有阻尼环,当线圈通电或断电时,阻尼环中感应电流所产生的磁通会阻碍主磁通的增加或减少,由此获得继电器动作延时或返回延时。继电器结构图见附图4—3,内部接线见图4—4。

图4—2 dzb-10b中间继电器内部接线图

图4—3 dzs-10b中间继电器结构图

图4—4 dzs-10b中间继电器内部接线图

四、实验设备

五、实验步骤和要求

1、内部结构及触点检查:

方法与实验二相同,但中间继电器接点较多,故在进行检查时应特别注意: (1)触点应在正位接触,各对触点应同时接触同时离开。 (2)触点接触后应有足够的压力和共同的行程,使其接触良好。 (3)转换触点在切换过程中应能满足保护使用上的要求。

2、线圈直流电阻测量:

用电桥或万用表的电阻档测量继电器线圈的直流电阻,将测得数值填入表4-4,并与表4-1,4-2,4-3中所对应继电器的额定技术数据进行比较,实测值不应超过制造 厂规定值的±10%。

3、绝缘测试

用1000伏兆欧表测试全部端子对铁心的绝缘电阻应不小于50兆欧;各绕组间的绝缘电阻应不小于10兆欧;绕组对接点及各接点间的绝缘电阻应不小于50兆欧。将测得数据填入表4--4。

4、继电器动作值与返回值检验:

实验接线见图4—

5、4-

6、4-

7、4-8。实验时调整可变电阻r、r

1、r2逐步增大输出电压(或电流),使继电器动作,然后断开开关s或s1,再瞬间合上开关s或s1看继电器能否动作,如不能动作,调节可变电阻加大输出电压(或电流)。在给继电器突然加入电压(或电流)时,使衔铁完全被吸入的最低电压(或电流)值,即为动作电压(电流)值,记入表4-4。继电器的动作电压不应大于额定电压的70%。动作电流不应大于其额定电流。出口中间继电器动作电压应为其额定电压的50%~70%。

图4—5电压起动型实验接线图

然后调整可变电阻r,减少电压(电流),使继电器的衔铁返回到原始位置的最大电压(电流)值即为返回值。记入表4—4。对于dz—30b及dzs—10b系列中间继电器返回电压不应小于额定电压的5%。对于dzb—10b系中间继电器的返回电压(电流)值不应小于额定值的2%。

5、保持值测试:

对于dzb—10b系列具有保持绕组的中间继电器,应测量保持线圈的保持值,试验接线见图4—

6、图4--7:

图4—6电流起动型电压保持型实验接线图

实验时,先闭合开关经s

1、s2,在动作线圈加入额定电压(电流)使继电器动作后,调整保持线圈回路的电流(电压),测出断开开关s2后,继电器能保持住的最小电流(电压),此即为继电器最小保持值,记入表4-4。电流保持型线圈的最小保持值不应大于额定电流的80%。电压保持型线圈的最小保持值不得大于额定电压的65%。但也不得过小,以免返回不可靠。

继电器的动作,返回和保持值与其要求的数值相差较大时,可以调整弹簧的拉力或者调整衔铁限制机构,以改变衔铁与铁心的气隙,使其达到要求。

继电器经过调整后,应重测动作值,返回值和保持值。

6、极性检验

带有保持线圈的中间继电器,新安装或线圈重绕后应作极性检验,以判明各线圈的同极性端子。线圈

极性可在保持值试验时判明,也可单独作极性试验予以判定。线圈极性应与制造厂所标极性一致。

7、返回时间测定

测定返回时间的实验接线见图4—8

图4—8测定继电器返回时间实验接线图 1)测定返回延时时间的注意事项:

实验接线可根据所用电秒表型式而定,但要求在测试时操作闸刀应保证触头同时接触与断开(可用瞬时中间继电器的触点来代替闸刀),以减少测量误差。

(1)、在额定电压下测定具有延时返回的中间继电器的返回时间时,对于经常通电的延时返回中间继电器,应

在热状态下测定其返回时间。

(2)、对于延时返回时间要求严格的继电器,应在80%及100%额定电压下测定返回时间。

(3)、在特殊需要的情况下,可测定瞬时动作中间继电器的动作时间和返回时间,可测定用于切换回路中的中

间继电器有关触点的切换时间,但一般情况下不测定。 2)测定返回延时时间步骤

按图4—8接好线,检查无误后,合上开关s,将电秒表复位,调整可变电阻r,增大输出电压,使其达到被测继电器的额定电压,

这时中间继电器dz-31b的常闭触点○8○9瞬时断开,中间继电器dzs-12b的常开触点○4

○5瞬时闭合,电秒表不计时。断开开关s,二继电器失电,继电器dz-31b的返回常闭触点○8○9复位闭合,电秒表开始计时,经一定延时后,中间继电器dzs-12b的常开触点断开,电秒表中止计时,此时,电秒表所指示时间即为继电器的返回延时时间,记入表4--4。 3)返回时间的调整方法

电磁式中间继电器的线圈在接入或断开电源时,由于线圈电感的影响,电流按指数律增长或衰减。铁芯中的涡流亦能抑制线圈中的电流增长或衰减,导致继电器的延时特性。返回时间一般采用下述方法进行调整: a、在圆柱铁芯根部套上较多的铜质阻尼环。 b、使用与阻尼环起同样作用的阻尼线圈。 c、减小继电器衔铁与铁芯间的间隙。 d、减少反作用弹簧的拉力。

阻尼环阻尼作用的大小是由时间常数t=l/r决定的,因所用阻尼环只有一匝,故电感不大,为了尽量减少电阻,就必须使用导电性能好和截面大的材料制造。阻尼环感应的电流所产生的磁通,与阻尼环放置位置有关,装在铁芯端部靠近气隙处时延时动作的作用大,装在铁芯根部则延时返回的作用大,可视具体情况进行调整。调整后应重测继电器的动作,返回和保持值。

六、技术数据

中间继电器的额定技术数据及触点形式列入表4—

1、4—

2、4—

3、供参考。 表4-1z--30系列中间继电器额定技术数据及触点形式:

表4-2(a)dzb-10b系列延时中间继电器延时方式和触点形式:

表4—2(b)dzb-10b系列延时中间继电器额定技术数据:

表4—3 dzb—10b系列中间继电器额定技术数据及触点形式:

七、实验报告

实验结束后认真总结,针对实验中四种继电器的具体测试方法,按要求及时写出中间继电器实验报告和本次实验体会,并书面解答本实验的思考题

表4—4 中间继电器实验记录表 实验五 6~10kv线路过电流保护实验

一、实验目的

1、掌握过流保护的电路原理,深入认识继电保护、自动装置的二次原理接线图和展开接线图。

2、学会识别本实验中继电保护实际设备与原理接线图和展开接线图的对应关系,为以后各项实验打下良好的基础。

3、进行实际接线操作, 掌握过流保护的整定调试和动作试验方法。

二、预习与思考

1、参阅有关教材做好预习,根据本次实验内容,参考图5-

1、图5-2设计并绘制过电流保护实验接线图,参照图5-3。

2、为什么要选定主要继电器的动作值,并且进行整定?

3、过电流保护中哪一种继电器属于测量元件?

三、原理说明

电力自动化与继电保护设备称为二次设备,二次设备经导线或控制电缆以一定的方式与其他电气设备相连接的电路称为二次回路,或叫二次接线。二次电路图中的原理接线图和展开接线图是广泛应用的两种二次接线图。它是以两种不同的型式表示同一套继电保护电路。

1、原理接线图

原理接线图用来表示继电保护和自动装置的工作原理。所有的电器都以整体的形式绘在一张图上,相互联系的电流回路、电压电路和直流回路都综合在一起,为了表明这种回路对一次回路的作用,将一次回路的有关部分也画在原理接线图里,这样就能对这个回路有一个明确的整体概念。图5—1表示6~10kv线路的过电流保护原理接线图,这也是最基本的继电保护电路。

从图中可以看出,整套保护装置由五只继电器组成,电流继电器

3、4的线圈接于a、c两相电流互感器的二次线圈回路中,即两相两继电器式接线。当发生三相短路或任意两相短路时,流过继电器的电流超过整定值,其常开触点闭合,接通了时间继电器5的线圈回路,直流电源电压加在时间继电器5的线圈上,使其起动,经过一定时限后其延时触点闭合,接通信号继电器6和保护出口中间继电器7的线圈回路、二继电器同时起动,信号继电器6触点闭合,发出6-10kv过流保护动作信号并自保持,中间继电器7起动后把断路器的辅助触点8和跳闸线圈9二者串联接到直流电源中,跳闸线圈9通电,跳闸电铁磁励磁,脱扣机构动作,使断路器跳闸,切断故障电路,断路器1跳闸后,辅助触点8分开,切断跳闸回路。

原理接线图主要用来表示继电保护和自动装置的工作原理和构成这套装置所需要的设备,它可作为二次回路设计的原始依据。由于原理接线图上各元件之间的联系是用整体连接表示的,没有画出它们的内部接线和引出端子的编号、回路的编号;直流仅标明电源的极性,没有标出从何熔断器下引出;信号部分在图中仅标出“至信号”,无具体接线。因此,只有原理接线图是不能进行二次回路施工的,还要其他一些二次图纸配合才可,而展开接线图就是其中的一种。

2、展开接线图

展开接线图是将整个电路图按交流电流回路、交流电压回路和直流回路分别画成几个彼此独立的部分,仪表和电器的电流线圈、电压线圈和触点要分开画在不同的回路里,为了避免混淆,属于同一元件的线圈和触点采用相同的文字符号。

展开接线图一般是分成交流电流回路、交流电压回路、直流操作回路和信号回路等几个主要组成部分。每一部分又分成若干行,交流回路按a、b、c的相序,直流回路按继电器的动作顺序各行从上至下排列。每一行中各元件的线圈和触点按实际连接顺序排列,每一回

路的右侧标有文字说明。

展开接线图中的图形符号和文字标号是按国家统一规定的图形符号和文字标号来表示的。

二次接线图中所有开关电器和继电器的触点都按照它们的正常状态来表示,即指开关电器在非动作状态和继电器线圈断电的状态。因此,所谓的常开(动合)触点就是继电器线圈不通电时,该触点断开,常闭(动断)触点则相反。

1—断路器; 2—电流互感器;

3、4—电流继电器; 5—时间继电器; 6—信号继电器; 7—保护出口中间继电器;8-断路器的辅助触点;9—跳闸线圈。

图5—2是根据图5—1所示的原理接线图而绘制的展开接线图。左侧是保护回路展开图,右侧是示意图。从中可看出,展开接线图由交流电流回路、直流操作回路和信号回路三部分组成。交流电流回路由电流互感器1lh的二次绕组供电,电流互感器仅装在a、c两相上,其二次绕组各接入一个电流继电器线圈,然后用一根公共线引回构成不完全星形接线。a

411、c411和n411为回路编号。 1lha 1lj a411 1lhb c411 2lj c相过流公共线a相过流

交流电流回路

n411 时间继电器 回路

直流操作回路 1lh保护表计

信号继电器中间继电器回路信号回路

保护出口电动分闸回路

路示意图 qs—隔离开关;qf—断路器;1lh、2lh—电流互感器;1lj、2lj—电流继电器; sj—时间继电器;xj—信号继电器;bcj-保护出口中间继电器;tq—跳闸线圈。

图5—2 6~10kv线路过电流保护展开图

直流操作回路中,画在两侧的竖线表示正、负电源,向上的箭头及编号101和102表示它们分别是从控制回路(+)(-)的熔断器fu1和fu2下面引来。横线条中上面两行为时间继电器起动回路,第三行为信号继电器和中间继电器起动回路,第四行为信号指示回路,第五行为跳闸回路。

3.实验原理说明

实验线路见图5-3,过电流保护的动作顺序如下:当调节单相自耦调压器和变阻器r,模拟被保护线路发生过电流时,电流继电器lj动作(注:实验中交流电流回路采用单相式),其常开触点闭合,接通时间继电器sj的线圈回路,sj则动作,经过一定时限后,其延时触点闭合,接通信号继电器xj和保护出口中间继电器bcj的线圈回路,bcj动作,常开触点闭合,接通了跳闸回路,(因断路器qf在合闸状态,其常开触点qf是闭合的)。于是跳闸线圈tq中有电流流过,使断路器跳闸,切断短路电流。同时,xj动作并自保持,接通光字牌gp,则光字牌亮,显示“6-10kv过流保护动作指示”。通过实验接线整定调试后,我们会深切体会到:展开接线图表达较为清晰,易于阅读,便于了解整套装置的动作程序和工作原理,特别在复杂电路中,其优点更为突出。

四、实验设备

五、实验步骤和要求

1、选择电流继电器的动作值(确定线圈接线方式)和时间继电器的动作时限。(例:设额定运行时的工作电流为3a,选择dl-24c/6型电流继电器,整定动作值4.2a;选择ds-22型时间继电器整定动作时限2.5s;也可根据老师要求进行整定。)

2、参照实验指导书中实验一和实验二的调试方法分别对电流继电器和时间继电器进行元件整定调试。

3、按图5—3过电流保护实验接线图进行接线。

4、将单相调压器,变流器,限流电阻,交流电流表等连接组成电流形成回路,将电流输出端接入电流继电器的线圈。

5、检查上述接线和设备,确定无误后,根据实验原理说明加入电流,进行保护动作试验,并认真观察动作过程,做好记录,深入理解各个继电器在该保护电路中的作用和动作次序。

六、注意事项

注意事项详见操作规程,希望每一位学生集中思想,注意观察,确保实验操作过程中的每一个环节的正确性和安全性。

图5—3 6~10kv线路过电流保护实验接线图

七、实验报告

1、本内容安装调试及动作试验结束后要认真进行分析总结,按实验报告要求及时写出过电

流保护的实验报告。

2、叙述过电流保护整定,试验的操作步骤。

3、分析说明过电流保护装置的实际应用和保护范围。

4、通过本实验谈谈你对实际设备与原理接线图和展开接线图对应关系的认识。

5、书面解答本实验的思考题。

一、实验目的

1、掌握发电机低电压起动过电流保护和过负荷保护的工作原理、整定值计算方法和调试技术。

2、理解发电机低电压起动过电流保护和过负荷保护的原理图,展开图及其保护装置中各继电器的功用。

3、学会发电机低电压起动过电流保护及过负荷保护的安装接线操作技术及整组实验方法。

二、预习与思考

1、根据本次实验要求,参考图6-

1、图6-2设计并绘制单相式发电机低电压起动过电流保护及过负荷保护实验接线图。

2、为什么要设置电压回路断线信号?

3、二个时间继电器如何配合?

4、低压起动过电流保护中哪几种继电器属于测量元件?

5、过负荷保护中哪个继电器是测量元件?

三、原理说明

1、低电压起动过电流保护

图6—1 发电机低电压起动过电流保护及过负荷保护原理图

由于发电机的负荷电流通常比较大,以致过电流保护装置反应外部故障时的灵敏度可能很低,为了提高灵敏度,对过电流保护采用低电压起动,使保护能有效地区分最大负荷电流与外部故障二种不同的情况,见图6—

1、图6—2。因为发电机在最大负荷电流下工作时,电压降低甚小,而外部元件(如输电线路、升压变压器等)发生短路故障时,电压则剧烈降低。利用这一特点,发电机过流保护采用低电压起动后就可以不去考虑避开最大负荷电流,而只要按发电机的正常工作电流整定保护装置的起动电流,从而使得保护装置的起动电流减小,灵敏度相应提高。

考虑到发电机是系统中最重要的元件,为了提高过流保护装置的可靠性,保护实验电路采用三相式接线。

为了使过流保护对发电机内部故障起后备保护作用,过电流保护所用的电流互感器应装设在发电机定子三相线圈中性点侧的各相引出线上。为了保证发电机在未并入系统前或与系统解列以后发生短路时,保护装置仍能正确工作,电压继电器应从装设在发电机出口处的电压互感器上取得电压,在实际保护接线中这些要点必须掌握。

在本保护中,当电压互感器二次回路断线时,低电压继电器起动中间继电器9,发出断线信号即中间继电器9同时起到交流电压回路断线监视作用。低电压起动过电流保护装置的动作电流idz,bh按下式整定: kk idz.bh= -----------ifh,e (6—1) kh 式中:kk——可靠系数,一般取1.15~1.25。 kh——返回系数,为0.85。 ifh,e——发电机折算到电流互感器二次测的额定负荷电流。

保护装置的低电压起动值,应躲开电动机自起动时发电机母线上的最低电压,一般

可以取:

udz,bh=(0.5~0.6)ue(6-2) 式中ue——发电机折算到电压互感器二次测的额定电压。

保护装置的动作时限应比连接在发电机电压母线上其它元件的保护装置的最大时限t max 还要大一个到两个时限级差△t,即

t = t max +(1~2)△t (6—3)

在有分段母线的情况下,保护装置通常分两段时限,保护装置动作后,以较小的时限作用于主变压器断路器、分段断路器和母联断路器(例:图6-1中12sj整定2秒),以较大的时限作用于发电机断路器和自动灭磁开关(例:图6-1中的10sj整定2.5秒),这样,当相邻发电机电压母线或高压母线发生故障并且相应的保护装置拒绝动作时,本段发电机的低压过流保护先将主变断路器、分段断路器和母联断开,使本段母线与故障部分分开,仍可保证本段母线的可靠供电,这是低电压起动过电流保护在动作时限配合必须注意的问题。 ab c 控制电源小母线熔 断 器

低电压起动的过流保护

过负荷保护

主开关跳闸

mk跳闸图6—2 发电机低电压起动过电流保护及过负荷保护展开图

2、过负荷保护

由于低电压起动的过流保护不能反应过负荷,因此还需同时装一套过负荷保护,见图6-1。保护由电流继电器1和时间继电器2组成。由于短时间的过负荷不致于使发电机遭到破坏,一般不需要将发电机断开,在发电厂中过负荷保护只作用于信号。由于过负荷的对称性,过负荷保护只需在一相中装设,过负荷保护与过电流保护可共用一组电流互感器。 保护的动作电流按下式整定: kk idz,bh= ---------------- ifh.e (6—4) kh 式中:kk——可靠系数,采用1.05 kh——返回系数,为0.85 ifh.e——发电机折算到电流电感器二次测额定电流

为了防止发电机外部元件短路时,过负荷保护发生误动作,因此过负荷保护动作时间应大于发电机过流保护的动作时间。实际运行中,为了在出现能自行消除的短时过负荷时不致发出信号,通常过负荷保护的动作时间整定为9~10秒。(例:图6-1中的2sj整定9秒)

1、选择电压、电流继电器动作值(确定接线方式),选择时间继电器的动作时间及动作时间配合系数。(例:选择dl-24c/0.6型为过负荷电流继电器,整定动作值为0.6a;ds -2s型为过负荷时间继电器整定动作时限为9秒;选择dl-24c/2为过流继电器,整定动作值为0.71a;ds-22型为过流时间继电器整定动作时限为2.5秒;选择dy-28c/160为低电压起动继电器,整定起动值为60v。也可根据教师要求由实验指导书中公式计算确定。)

2、对实验用的电压继电器、电流继电器、时间继电器进行整定调试。方法同上。

3、按图6-3发电机低电压启动过电流保护及过负荷保护实验接线图进行接线。

4、组合连接电流形成回路和电压形成回路,并将电流调试信号和电压调试信号分别接入电流继电器(过电流及过负荷回路)和电压继电器的相应端子。

5、检查上述接线和设备,确定无误后,逐步调整电流和电压进行动作试验,观察动作过程做好记录,分析理解各个继电器在本保护电路中的作用、动作顺序和时限配合

六、注意事项

注意事项详见操作规程,实验操作中严禁将电压调试信号误接入电流回路,实验中要集中思想、注意观察低电压起动过电流保护各个器件的工作情况,确保实验操作过程中的每一个环节的正确性。

图6—3 低电压起动过电流保护及过负荷保护实验接线图

七、实验报告

在整定调试及动作试验结束后,针对低电压起动过电流保护的主要整定方法和动作特性进行分析,及时写出实验报告,将测试记录结果填入表6-1中,并书面解答本实验思考题。

实验七 自动重合闸前加速保护实验

一、实验目的

1、熟悉自动重合闸前加速保护的原理接线。

2、理解自动重合闸前加速保护的组成型式,技术特性,掌握其实验操作方法。

二、预习和思考

1、图7-2中各个继电器的功用是什么?

2、在重合闸动作前是由哪几个继电器及其触点共同作用,实现前加速保护。

3、重合于永久性故障,保护再次起动,此时由哪几个继电器及其触点共同作用,恢复有选择性地再次切除故障的?

4、为什么加速继电器要具有延时返回的特点?

5、在前加速保护电路中,重合闸装置动作后,为什么jsj继电器要通过1lj的常开触点、jsj自身延时返回的常开触点进行自保持?

6、在输电线路重合闸电路中,采用前加速时,jsj是由什么触点起动的?

7、请分析自动重合闸前加速保护的优缺点。

三、原理说明

重合闸前加速保护是当线路上发生故障时,靠近电源侧的保护首先无选择性地瞬时动作使断路器跳闸,而后再借助自动重合闸来纠正这种非选择性动作。

重合闸前加速保护的动作原理可由图7-1说明,线路x-1上装有无选择性的电流速断保护1和过流保护2,线路x-2上装有过流保护4,zch仅装在靠近电源的线路x-1上。无选择性电流速断保护1的动作电流,按线路末端短路时的短路电流来整定,动作不带延时。过流保护

2、4的动作时限按阶梯原则整定,即t2>t4。 图 7-1 自动重合闸前加速保护原理说明图

当任何线路、母线(i除外)或变压器高压侧发生故障时,装在变电所i的无选择性电流速断保护1总是首先动作,不带延时地将1qf跳开,而后zch动作再将1qf重合,若所发生的故障是暂时性的,则重合成功,恢复供电;若故障为永久性的,由于电流速断已由zch的动作退出工作,因此,此时只有各过流保护再次起动,有选择性地切除故障。图7-2示出了zch前加速保护的原理接线图。其中1lj是电流速断,2lj是过流保护。从该图可以清楚地看出,线路x-1故障时,首先速断保护的1lj动作,其接点闭合,经jsj的常闭接点不带时限地动作于断路器使其跳闸,随后断路器辅助触点起动重合闸继电器,将断路器重合。重合闸动作的同时,起动加速继电器jsj,其常闭接点打开,若此时线路故障还存在,但因jsj的常闭接点已打开,只能由过流保护继电器2lj及sj带时限有选择性地动作于断路器跳闸,再次切除故障。

自动重合闸前加速保护有利于迅速消除故障,从而提高了重合闸的成功率,另外还具有只需装一套zch的优点。其缺点是增加了1qf的动作次数,一旦1qf或zch拒绝动作将会扩大停电范围。

图 7-2 自动重合闸前加速保护原理接线图

1、根据过电流保护的要求整定2lj的动作电流值,和sj的动作时限(例:取2lj动作电流为1a,sj为1.5s)。

2、根据速断保护的要求整定1lj的动作电流(例:取1lj动作电流为3a)。

3、根据时间继电器、加速继电器、保护出口继电器的技术参数选择相应的操作电源。

4、按图7-2自动重合闸前加速保护原理接线图分别绘制展开图和安装图,然后进行安装接线。

5、检查“前加速保护”接线的正确性,确定无误后,接入相应直流操作电源。

6、此时重合闸装置未启动,加速继电器jsj未动作。调节交流电流回路,给电流继电器输入一个大于整定值的电流,模拟线路xl-1故障,观察前加速动作情况,加速跳闸后重合闸启动,图7-3中用开关s1闭合模拟zch出口接点zj3的闭合来起动jsj,jsj常闭触 点打开。

7、模拟故障继续存在,但由于jsj常闭触点已经打开,所以只能由过电流保护2lj和sj带时限有选择性地进行跳闸,切除故障。

六、注意事项 在

操作试

理解自动重合闸前加速保护的电路原理,在操作过程中要集中思想进行正确接线,严格按照操作规程的要求,加入试验电流,进行动作试验,要确保实验中每一环节的正确性和安全性。

七、实验报告

分析前加速保护动作特性,结合上述思考题写出报告。

表7-1 i=

交流电流

回路

直流操作电源

保护

无时限电流速断保护

过流保护

数字式电秒表

前加速继电器起 动回路

操作及信

模拟起动前加速

自动重合闸动

作指示

号回路

保护出口及电动 分闸回路信号继电器指示 灯回路

信号继电器复归 回路

过电流保护动作 指示

图7—3 自动重合闸前加速保护实验接线图

实验八 自动重合闸后加速保护实验

一、实验目的

1、熟悉自动重合闸后加速保护的接线原理。

2、理解自动重合闸后加速保护的组成形式、技术特性,掌握其实验操作方法。

二、预习与思考

1、图8-2中各个继电器的功用是什么?

2、当线路发生故障时,由哪几个继电器及其触点首先按正常的继电保护动作时限有选择性地作用于断路器跳闸?

3、重合于持续性故障时,保护再次起动,此时由哪几个继电器及其触点共同作用,实现后加速?

4、在输电线路重合闸电路中,采用后加速时,加速回路中接入了jsj的什么触点?为什么?

5、请分析自动重合闸后加速保护的优缺点?

三、原理说明

重合闸后加速保护是当线路上发生故障时,首先按正常的继电保护动作,带时限有选择性地动作于断路器跳闸,然后zch动作将断路器重合,同时zch的动作将过流保护的时限

解除。这样,当断路器重合于永久性故障线路时,电流保护将无时限地作用于断路器跳闸。

实现后加速的方法是,在被保护各条线路上都装设有选择性的保护和自动重合闸装置,见图8-1。zch后加速保护的原理接线见图8-2。

线路故障时,由于延时返回继电器jsj尚未动作,其常开触点仍断开, 图8-1 自动重合闸后加速保护原理说明图

电流继电器lj动作后,起动时间继电器sj,经一定延时后,其接点闭合,起动出口中间继电器bcj,使qf跳闸。qf跳闸后,zch动作发出合闸脉冲。在发出合闸脉冲的同时,重合闸出口元件zj3的常开触点闭合。起动继电器jsj,见图8-2,jsj动作后,其触点闭合。若故障为持续性故障,则保护第二次动作时,经jsj的触点直接起动bcj而使断路器瞬时跳闸。

图8-2 自动重合闸后加速保护原理接线图

自动重合闸后加速保护可以防止事故扩大,但第一次保护动作仍有时限,因而也影响了zch的动作效果,另外后加速必须在每条线路上都装设一套zch装置,投资较大。

五、实验步骤和操作方法

1、根据过流保护的要求整定lj的动作电流和sj的动作时限。

2、由加速继电器、保护出口继电器和时间继电器的参数选择相应的操作电源。

3、按图8-3自动重合闸后加速保护实验接线图进行安装接线。

4、检查“后加速保护”接线的正确性,确定无误后,接入相应直流操作电源。

5、模拟线路故障,给电流继电器lj加入一个大于整定值的电流,此时加速继电器jsj未起动,因此lj起动sj,sj经过一定时限后起动bcj,使断路器跳闸,同时经xj发信号。

6、断路器跳闸后,重合闸发出合闸脉冲的同时,由出口元件触点zj起动jsj(图8-2中用开关s1闭合替代zch出口接点zj的闭合起动jsj),jsj动作后其延时断开的常开触点闭合,实现后加速。

7、模拟持续性故障,观察后加速动作情况。

六、注意事项

在操作前必须熟悉自动重合闸后加速保护的电路原理,在操作过程中要进行正确的安装接线,严格按照操作规程的要求,加入试验电流,进行动作试验,要确保实验过程的安全正确。

七、实验报告

分析后加速保护的动作特性,结合上述思考题写出实验报告。

交流电流

回路

图8-3 自动重合闸后加速保护实验接线图

实验九 电流综合保护实验

一、概 述

以上各实验中,我们学习了各种常规继电器、特殊继电器的结构、原理、电气特性,以及由它们所组成的各种保护电路、信号回路。并通过大量实验训练,加深了对原理的理解,提高了动手能力。但是实际中的电力自动化继电保护及自动装置中并不是由单一的保护电路、信号回路就能够实现所有的功能,而应根据不同保护对象及其对负荷供电的重要性,综合考虑继电保护动作后,如何与自动重合闸配合,重合闸采用前加速还是后加速等。因此本实验装置设计考虑了由前面所述实验电路,进行组合构成综合性实验电路进行提高实验技能训练。

本实验就是过电流保护电路与自动重合闸装置组成的综合实验实例,希望它对学生有所启发,并让学生认真思考如何将所学的各种继电保护电路、信号回路、自动重合闸装置等内容进行科学组合,构成综合实用的保护体系。希望它对进一步提高学生理论结合实际的能力有所帮助。

二、实验目的

熟悉过流保护与三相自动重合闸的电路原理,实际接线,逻辑功能, 掌握其基本特性和实验整定方法。

三、原理说明

三相自动重合闸主要由dh--3型重合闸继电器、跳跃闭锁继电器tbj、加速继电器jsj、信号继电器xj、切换片qp等元件所组成。

dh--3型重合闸继电器为一只组合式继电器,内中包括一只时间元件sj、一只中间元件zj、一只电容c、一只信号灯xd、充电电阻4r、放电电阻6r、时间元件附加电阻5r、指示灯附加电阻17r等,见图9—1虚线框内所示。线路断路器控制开关采用小型控制开关(lwx1—w2.2.40/f6),其接点动作图见表9—1(为了提高实验效果,便于分析各种工作状态,本实验设计采用单接点转换开关分别替代控制开关的各对接点,见zb7组合挂箱)。

1、实验原理

①三相自动重合闸采用“不对位”启动方式

利用控制开关触点kk12--9与断路器触点qf3“不对位”判别正常跳闸或事故跳闸。 正常跳闸时:控制开关处于“跳闸后”位置,kk12—9触点断开,虽然qf3在断路器跳闸后闭合,szch也不起动。

事故跳闸时:控制开关处于“合闸后”位置,kk12--9闭合,故在断路器跳闸后qf3触点接通而使szch起动。

②利用电容c充电时间较长实现szch只动作一次。

适当选择电容c和充电电阻4r的参数,使充电至zj电压线圈动作,约需15~20s,

当重合不成功或在手动合闸到故障线路时,因电容c充电时间不够,故szch不会第二次合闸。

③手动跳闸时闭锁szch 利用kk10--9在“跳闸后”位置时闭合,构成电容经c经6r和kk10--9放电回路,实现手动跳闸时闭锁szch。 ④szch动作时间的整定可根据计算确定的重合闸时间,利用时间元件sj来整定szch动作时间常数。 ⑤自动复归

利用断路器辅助触点qf1在动作后自动切断zj自保持电流线圈,使szch复归;qf3触点使sj复归;电容c重新充电,经15~20s,szch又处于准备状态。 ⑥与继电保护的配合 在szch发出重合闸脉冲的同时,重合闸触点zj3使加速继电器jsj励磁,由jsj触点实现后加速保护。(根据需要也可实现前加速) ⑦szch的试验及动作信号

利用切换片qp可将出口切至试验信号灯bd,进行szch完好性试验。 ⑧电路能灵活地投切szch. 利用bk开关可方便的投入使用szch或撤出szch ⑨szch动作时由信号继电器xj发出信号。

2、动作过程 ①准备状态

在断路器投入之前,控制开关kk10-9处于“跳后”接通位置,这时加于电容c上的电压近似于电阻4r、6r串联电路在6r上的分压值,即 r6r uc≈-------- uz r6r +r4r 式中,uz--直流操作电源电压(本实验为220v) 因r6r≤r4r(r4r约为几兆欧,而r6r只有几百欧),故uc≈0。

在断路器合闸后,控制开关接点kk10-9处于“合后”断开位置,电容c即开始充电,经15~20秒充足电,szch处于准备状态,信号灯xd亮。 ②szch动作过程

断路器因线路事故跳闸,其辅助触点qf3闭合。因控制开关处于“合后”位置,kk12-9接通。符合“不对位原则”,故szch起动。首先时间继电器sj励磁。sj1瞬时断开触点用于自动接入电阻5r,降低sj线圈电流,保证sj线圈的热稳定;sj2延时闭合触点用于接通电容c对zj电压线圈的放电回路,故zj动作,发出重合闸脉冲。重合成功之后,由断路器辅助触点qf1和qf3分别使zj、sj复归;电容c重新充电,再次处于准备状态,完成一个重合闸循环。

zj采用带有电流自保持的中间继电器,是因为电容c放电过程很快,一般小于0.01秒,如无自保持回路,则可能在电容电压衰减后撤消重合闸命令,重合过程半途而废; 有了电流自保持回路,则zj一旦动作,就能保证命令执行。在重合闸出口回路使用zj

1、zj2多触点串联,是为增强断弧能力,防止触点粘接。 ③szch重合不成功过程

当重合到持续性故障线路时,继电保护再次动作使断路器跳闸,如果szch与保护配合采用zch后加速保护,则第二次跳闸是瞬时的。断路器再次跳闸后,szch启动回路再次接通,sj又再次启动,其延时闭合触点又接通c对电压线圈zj放电回路,但这时c充电不足,故szch不动作。

要指出的是:虽然sj2闭合时,直流操作电源电压会经过4r、sj

2、zj电压线圈形成通路,但由于4r阻值很大(约几兆欧),而zj电压线圈电阻只有几千欧,zj电压线圈承受分压值很小,故zj不会动作。

3、参数整定 (1)、重合闸动作时限重合动作时限,原则上越短越好, 但必须满足以下要求: 大于故障点反游离时间, 即: tdz+ thz > tyl 或 tdz= tyl - thz+△t (9—1) 式中:tdz --重合闸动作时限 tyl --故障点去游离时间 thz --断路器合闸时间

△t --时间裕度,一般取0.3~0.4秒. 大于断路器绝缘恢复具备再次合闸时间, 即: tdz≥tzb2c 或 tdz=tzb2c + △t (9—2) 式中 tzb2c--断路器绝缘恢复具备重合所需时间, 包括触头周围绝缘油绝缘强度的恢复和操作机构复原所需时间. 大于本线路电源侧最大动作时限的继电保护时间, 即

tdz+ thz > tf 或 tdz= tf+ thz+△t (9 —3) 式中 tf--最大动作时限的线路保护的返回时间; thz--见式(9—1). 大于环形网或平行线路对可靠地切除故障所要求时间,即 tm2zx+ ttz2m+ thz2m+tdz> tn2zd+ttz2n+tyl 或 tdz=tn2zd+ttz2n+tyl-(tm2zx+ttz2m+thz2m)+△t (9—4) 式中t n2zd --线路对侧(n侧)保护最大时限, 可取第ii.段保护时限0.5秒; tm2zx--线路对侧(m侧)保护最小时限, 可取第.i段保护时限; ttz2m ttz2n—m、n侧断路器跳闸时间;thz2m--m侧断路器合闸时间; tyl--故障点反游离时间;△t --时间裕度. 【实例】假设输电线路两侧均采用相同的油断路器, 断路器的工作参数: ttz =0.1s, thz=0.8s, tyl=0.2s, △t=0.4s重合闸动作时间为 tdz= 0.5 + 0.1+ 0.2-0-0.1-0.8 +0.4= 0.3s 为可靠地切除故障,提高重合闸成功率,单侧电源szch的动作时限一般取0.8~1.5s, 因此本实验重合闸动作时间整定1.5s。 ( 2 )、重合闸复归时间

重合闸复归时间是指电容c充电到继电器zj动作电压所需的时间。其必须满足以下要求: ①、重合失败,由后备保护再次跳闸,不会发生第二次合闸,由下式条件保证,即: tdz2j +ttz+tdz+thz

【实例】设直流电源电压uz=220v,zj动作电压udz.j=115v,充电电阻4r=3.4mω,电容c=8uf,则 uz 220 tf=rcln-------=3,400,00038310-6ln-------- = 27.2ln2.09 = 20s uz-udz2j220-115 重合闸复归时间(即电容器充电到中间元件动作所必须电压的时间)的测定按实验十八中的图18—2进行如果要调整szch复归时间,一般不改变c和4r,而是调整zj的动作电压udz2j ,调整继电器反作用弹簧力。

(3)、后加速继电器jsj的复归时间

后加速继电器jsj的复归时间是指继电器失去励磁后触点延时返回的时间,应大于保护动作时间和断路器跳闸时间之和,即

tf>tdz2j+ttz (9—6) 式中 tf—复归时间jsj tdz2j—保护动作时间 ttz—断路器跳闸时间 【实例】设tdz2.j=0.1s,ttz=0.1s,则tf>0.1+0.1=0.2s,一般取0.3~0.4s 后加速继电器jsj失励后触点延时返回时间,按实验四中图4--8接线测定。

五、实验步骤和操作方法

1、根据参数整定原则确定过流保护与重合闸继电器的动作值,并进行整定,本实验可整定过流保护的电流起动值为3a,过流保护的动作时限为2秒,重合闸继电器动作时间为1.5秒。

2、按图9—1(a)和图9—1(b)过流保护与三相自动重合闸综合实验接线图进行安装接线。

3、检查实验接线的正确性,确定无误后,连接相应的直流操作电源。

4、模拟输电线路发生暂时性故障启动重合闸。

①、见图21—1(b)调节可调变阻器r1和rf,使二变阻器接入电路的电阻为最大阻值,r1=12.6ω, rf =110ω。然后闭合短路开关qa,合上断路器qf和单相交流电源开关k,调节单相自耦调压器和可调变阻器r1,使交流电流表上的指示值为3.5a。给电流继电器加入一个大于启动值的电流。断开短路开关qa,调节可调变阻器rf,慢慢减小rf阻值,使交流电流表上的读数为额定电流2a。此时输电线路处于正常供电状态。 ②、根据控制开关kk触点动作图表,将控制开关kk切换于“合闸后”位置,即(9) --(12)接点闭合,合上bk开关(1)--(2)接点闭合,投入重合闸继电器,经过20秒,重合闸继电器指示灯亮,表明重合闸继电器中的电容c已储能完毕,装置已处在准备动作状态。

③、闭合短路开关qa,当断路器跳闸后,迅速断开短路开关qa,随后重合闸装置将进

行自动重合。这期间要注意观察过流保护和三相自动重合闸的动作全过程。整个动作过程完成后要及时进行分析,写出动作流程。

5、模拟输电线路发生永久性故障的动作过程。操作方法同4,不同之处是短路开关qa闭合后不断开。

四、实验设备

图9—1 电流保护综合实验交流侧接线图

图9—2 电流保护综合实验直流侧接线图

六、实验分析与操作接线的考核内容

1、如何将重合闸继电器动作时间整定为1.5秒,如何将过流保护电流继电器lj的动作电流整定为3a和过流保护动作时间为2秒。

2、假定重合闸装置已处在准备动作状态,分析下列情况下的动作行为并写出实验步骤和操

作方法,绘制实验记录表,并进行实验操作,由教师考核评分。 (1)、当线路上发生暂时性故障时; (2)、当线路上发生永久性故障时; (3)、手动跳闸时; (4)、当线路上存在永久性故障而手动合闸时; (5)、用kk手动合闸10秒钟后线路出现故障; (6)、用kk手动合闸25秒钟后线路出现故障; (7)、线路上多次出现雷击故障时(相当于每隔25秒出现一次暂时性故障); (8)、闭锁自动重合闸后,线路出现永久性或暂时性故障时。

3、防跳继电器的作用

(1)投入防跳继电器使线路出现永久性故障而zj

1、zj2触点不能自动断开时(即使继电器

处于动作状态);

(2)切除防跳继电器使线路出现永久性故障而zj

1、zj2触点不能自动断开时。

4、重合闸和继电保护之间配合工作 分别测量加速继电器在不加速,后加速位置而线路出现永久性故障和暂时性故障的故

障切除时间;根据实验结果分析比较重合闸,后加速及不加速的优缺点。

七、实验报告

1、分析上列各实验的动作行为。

2、本重合闸装置采用什么起动方式?它有哪些起动元件?

3、根据图9—

1、2的实验展开图画出原理图。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:教的度量教学设计下一篇:基层主管述职报告