零作用误差范文

2022-05-23

第一篇:零作用误差范文

零误差

江州区法警大队全年警务工作 “零差错”上交完美答卷

1月18日,江州区法院召开2010年度工作总结暨表彰大会。该院法警大队在会上以全年警务工作“零差错”的优异成绩向参会的各级政法系统领导汇报,并得到了领导的认可和一致好评!

回顾2010年,江州区法院法警大队在该院党组的正确领导下,充分发挥其职能,坚持服从、服务于审判工作大局的方针,把安全保卫、参与和配合各业务部门办案作为工作的出发点和落脚点,科学安排工作,克服人员不足问题,狠抓押解、庭审、看管、安检、协助强制执行等多项职能的发挥,为法院各项审判业务工作的深入开展做出了积极的贡献。

该院警队年内为刑事审判值庭239件,提押、看管、押解被告人394人次,民事值庭36人次,协助上级法院审理重大刑事案件21人次,安检旁听群众3100多人次,参与强制执行230人次,均未发生任何差错和事故,警务工作实现“零差错”圆满地完成了今年的各项工作任务。

院党组书记、院长李良在会上对法警工作表示肯定,同时提出希望法警大队在成绩面前不要自我陶醉,在工作中要保持高昂的斗志,争取2011年的警务工作再创佳绩。

法警大队 凌涛 13768808039

第二篇:垂直度误差、位置度误差的测量

任务五 垂直度误差、位置度误差的测量 【课题名称】

平面零件的误差测量 【教学目标与要求】

一、 知识目标

了解线、面垂直度误差和面对称度误差的检测工具及测量方法。

二、 能力目标

能够正确使用百分表进行测量,并准确计算误差值。

三、 素质目标

熟悉平面零件形位误差的检测原理、测量工具和使用方法,并能准确计算其误差。

四、 教学要求

能够按照误差要求正确地选择检测工具,并能够掌握测量工具的使用方法,对工件进行准确的测量。 【教学重点】

百分表的使用,各种形位误差的检测方法。 【难点分析】

百分表的使用,各种形位误差的检测方法。 【分析学生】

该内容的难度较大,比较难理解,需要多做解释,学生才能够掌握。

【教学设计思路】 本次课内容较多,且内容难懂,建议分成2学时,以保证有更多的练习机会,由于实训条件所限,可以分组进行测量,对于垂直度的检测也应先讲测量原理和方法,再让学生实测,最后介绍如何调零位计算误差值,边讲边练再总结提高。 【教学安排】

2学时

先讲后练,以练为主,加强巡视指导。 【教学过程】

一. 复习旧课

在形状和位置误差中,直线度、平面度的误差在平面零件中出现比较多,大家是否还能记住这些形位公差的含义呢?

二、 导入新课

需要应用什么测量工具来检测零件的垂直度和对称度呢?对于测量出来的数值又需要进行怎么样的处理才能得出正确的误差值?这是本次课程的主要内容。

三、讲授新课

垂直度和对称度误差的测量应用百分表或千分表作为量具,用标准平扳为基准面,借助于表座、方箱或直角尺座工具,将被测工件安放在基准面上进行检测。

线与面和面与面之间垂直度的检测方法相同,后者需要多测量几次。

1.测量平面之间的垂直度,需要借助于方箱或直角尺座,将被测工件固定起来,分别检测其平面对标准平板的垂直度,即可测量出这两平面间的垂直度。

2.测量工件平面间的对称度的方法。先检测a表面的三个坐标点a

1、a2和a3的数值,翻转工件,使c面处于a面的位置,再测量三个坐标点c

1、c2和c3点的数值,上下两平面对应点a1与c1,a2与c2,a3与c3的数值差即是a和c平面之间对称度的差值。

测量时应当注意保持百分表的表杆垂直于被测表面,其检测结果才是准确的数值。

3.位置度的测量要先找好基准,以基准来确定工件的位置度是否存在误差。

具体测量步骤教材。

四、小结

平面之间的平行度、垂直度和对称度误差都是位置误差,都可用百分表或千分表来测量。测量时应保证表杆垂直于被测表面,标准平板、方箱和直角尺座的精度都应当比较高,否则会影响测量的结果。移动百分表时,应注意保持平稳,速度尽可能慢些,同时被测表面应当保持平整干净。

五、布置作业

填好检测记录,计算误差数值。

第三篇:如何用误差理论减少测量中的误差

摘要:有测量就有误差,虽然误差不能完全的消除,但是可以尽量的减小误差,首先要对各种误差有所了解,针对不同的误差采取不同的方法进行减小。

1.随机误差

1.1随机误差的概念:是同一测量条件下,重复测量中以不可预知方式变化的测量误差分量。

1.2随机误差的特征

1)绝对值相等的正误差与负误差出现的次数相等,即误差的对称性。 2)绝对值小的误差比绝对值大的误差出现的次数多,即误差的单峰性。 3)在一定的测量条件下,随机误差的绝对值不会超过一定界限,即误差的有界性。

4)随着测量次数的增加,随机误差的算术平均值趋于零,即误差的抵偿性。 多数随机误差具有以上特性,这种误差的分布规律,人们称之为正态分布特性。

1.3减少随机误差的方法 1.3.1算数平均值

由于随机误差的抵偿性,当测量次数足够多时,正负误差的绝对值相等,因此多次测量的算术平均值作为被测量的测量结果,能减小随机误差的影响。

1n设x1,x2,,xn为n次测量值,则算术平均值xxi

ni11.3.2实验标准(偏)差

由于随机误差的存在,等精度测量中各测得值一般皆不相同,它们围绕着测量列的平均值有一定的分散性,测量的标准差可用实验标准(偏)差表征,由贝赛尔公式计算

1ns(xi-x)2 n111这里的标准差不是测量列中任何一个具体测得值的随机误差,标准差的大小说明在一定条件下的等精度测量随机误差的概率分布情况。标准差大,随机误差的分布范围宽,精密度低;标准差小,随机误差的分布范围窄,精密度高。 1.3.3算术平均值的标准偏差

如果在相同条件下对同一量值做多组测量,每一测量列都有一算术平均值,由于随机误差的存在,各个测量列的平均值各不相同,它们围绕着真值有一定的分散性,因此可用算术平均值的标准差来表征算术平均值的分散性。

ssxn

n1(xix)2 n(n1)i12.系统误差

2.1系统误差的概念:是同一测量条件下,重复测量中保持恒定或以可预知方式变化的测量误差分量。

2.2系统误差来源及对测量结果的影响

系统误差是由固定不变的或按某种规律变化的因素造成的,这些误差因素可能是由于

1)测量装置方面的原因:仪器设计上的缺欠,仪器零件制造和安装的不正确,仪器附件的制造偏差。

2)测量环境的原因:测量过程中温度、湿度等按一定的规律变化。 3)测量方法的原因:采用近似的测量方法或近似的计算公式引起的误差。 4)测量人员的原因:由于测量人的个人特点导致的测量误差。

系统误差具有确定的规律性,这与随机误差有根本区别。不过,有些系统误差的规律是并未掌握的。因而没有一个规则化的处理方法,这给处理系统误差带来困难。按其表现的规律特征,可分为恒定系统误差和变值系统误差。

2.3系统误差的分类

1)恒定系统误差:多次测量时,条件完全不变,或条件改变并不影响测量结果,因而各次测量的结果中该误差恒定不变。恒定系统误差以大小和符号固定的形式存在于每个测量值和算术平均值之中。它仅影响测量的算术平均值,并不影响其随机误差的分布规律及分布范围。

2)变值系统误差:指在整个测量过程中,误差的大小和符号按某一确定规律变化的误差。它不仅影响测量的算术平均值,而且改变其随机误差的分布规律和分布范围。 2.4系统误差的发现方法 2.4.1实验对比检验系统误差

为了验证某一测量仪器或测量方法是否存在系差,可用高一级精度的仪器或测量方法给出标准量进行对比检验。这种检定不仅能发现测量中是否存在系差,而且能够确定具体数值。有时,由于测量精度高或被测参数复杂,难以找到高一级精度的测量仪器或测量方法提供的标准量。此时,可用同精度的其它仪器或测量方法给出的测量结果作对比,若发现明显差别,表明二者之间有系差。

2.4.2通过理论分析判断系统误差

对测量器具、测量原理、方法及数据处理等方面进行具体分析,能够找到测量中的各系差因素。有时可根据测量的具体内容找出系差所遵从的函数关系,由此计算出测量的系差的具体数值,利用修正法予以消除。

2.4.3对测量数据进行直接判断

通过观察测量数据的变化趋势,直接发现测量中的系统误差。这一方法较为粗略,但简单易行。

2.4.4用统计方法进行检验

按随机误差的统计规律做出某种统计判断,如果不相符合,则说明包含系统误差。由于这种判别方法不涉及测量本身,仅针对测里数据,因而便于使用。但每种统计方法都不是完美的,其应用是有限的,在此只给出常用的几种。

1)残差校验法

将残差vi分为前后数目相等的两部分v

1、v

2、vk和vk

1、vk

2、vn。分别求和并作比较,若Vii1kik1V显著不为零,则怀疑存在系统误差。这种方法适

in于判别线性变化的系统误差。

2)阿贝·赫梅特判别法

对残差vi做统计量uv1v2v2v3vn1vnvvi1n1ii1

若un-1s2则判定该组数据含有系统误差。这种方法适于判别周期性的系统误差。

3)残差总和判别法 若残差vi有vi2sn则怀疑有系统误差的存在。

i1n4)标准差比较法

对测量结果,用不同公式计算其标准差,然后通过比较可发现系统误差。用贝赛尔公式计算为:

s1vi1n2in1

用别捷尔公式计算标准差为: s21.253s22 1s1n1vi1nin(n1)

若则怀疑存在系统误差。

3.粗大误差

3.1粗大误差的概念:指超出在规定条件下预期的误差。 3.2粗大误差的产生原因

测量数据中包含随机误差和系统误差是正常的,只要测量误差在一定的范围内,测量结果就是正确的。但当测量者在测量时由于疏忽造成错误读取示值,错误纪录测量值,错误操作以及使用有缺欠的计量器具时,会出现粗大误差,此数据的误差分量明显偏大,即明显歪曲测量结果。任意一测量数据都含有测量误差,并服从某一分布,它使测量结

果具有一定的分散性。因此,任凭直观判断,难于区分含有粗大误差的异常数据和正常数据。

3.3粗大误差的判别方法 3.3.1莱以特准则(3准则)

若对某一物理量等精度重复测量n次,得测量值x1,x2,,xn。如果某测得值的残差大于3倍的标准差,即v3时,该数据为异常数据,应剔除。莱以特准则的合理性是显然的,对服从正态分布的随机误差,其残差落在(-3,3)以外的概率仅为0.27%,当在有限次测量中发生的可能性很小,认为是不可能发生的。

3.3.2肖维勒准则

若对某一物理量等精度重复测量n次,得测量值x1,x2,,xn。若认为xi为可疑数据,若此数据的残差vZc,则此数据为异常数据,应剔除。实用中Zc<3,这在一定程度上弥补了3口准则的不足。Zc是与测量次数n有关的系数,具体的查表。

3.3.3格罗布斯准则

若对某一物理量等精度重复测量n次,得测量值x1,x2,,xn。为判别测得值中是否含有异常数据,将测得值由小到大排列成统计量xi。

x1x2xn

若认为x1是可疑的,则有统计量为

g1xx1

若认为xn是可疑的,则有统计量为

gnxxn

当g1g0n,a,认为测量值x1是异常数据,应剔除。 当gngnn,a,认为测量值xn是异常数据,应剔除。

g0n,a为测量次数为n显著度为a时的统计量临界值,可查表。 3.3.4 t检验准则(罗曼诺夫斯基准则) 罗曼诺夫斯基准则又称t检验准则,其特点是首先剔除一个可疑的测得值,然后按t分布检验被剔除的测量值是否为异常值。若对某一物理量等精度重复测量n次,得测量值x1,x2,,xn。若认为xj为可疑数据,将其剔除后计算平均值x(计算时不包含xj),并求得测量列的标准差(计算时不包含vjxjx)。若xjxKn,a,则认为xj为异常数据,应剔除。其中Kn,a为测量次数为n和显著度为a时的t检验系数,可查表得到。

小结:由于产生系统误差的因素是多方面的,又很复杂,我们还不能找到一套适用于所有系统误差的通用方法。但是根据三种误差的来源、特征以及寻找其方法,我们可以用给出的不同方法对其适当的减少。

读书的好处

1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。——达尔文

5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。——颜真卿

7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到

9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。——陈寿

11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。——高尔基

14、书到用时方恨少、事非经过不知难。——陆游

15、读一本好书,就如同和一个高尚的人在交谈——歌德

16、读一切好书,就是和许多高尚的人谈话。——笛卡儿

17、学习永远不晚。——高尔基

18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。——刘向

19、学而不思则惘,思而不学则殆。——孔子

20、读书给人以快乐、给人以光彩、给人以才干。——培根

第四篇:误差实验报告

实验一 误差的基本概念 一、实验目的 通过实验熟悉 MATLAB 的基本操作,了解误差的定义及表示法、熟悉误差的来源、误差分类以及有效数字与数据运算。

二、实验原理 1、误差的基本概念:所谓误差就是测量值与真实值之间的差,可以用下式表示 误差=测得值-真值 绝对误差:某量值的测得值和真值之差为绝对误差,通常简称为误差。

绝对误差=测得值-真值 相对误差:绝对误差与被测量的真值之比称为相对误差,因测得值与真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。

相对误差=绝对误差/真值≈绝对误差/测得值 2、精度 反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。

3、有效数字与数据运算

含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。

数字舍入规则如下:

①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加 1。

②若舍去部分的数值,小于保留部分的末位的半个单位,则末位加 1。

③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。即当末位为偶数时则末位不变,当末位为奇数时则末位加 1。

三、实验内容 1、用自己熟悉的语言编程实现对绝对误差和相对误差的求解。

实验程序:

实验结果:

2、按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有效数字进行凑整。(保留四位有效数字可使用 matlab 控制运算精度函数 vpa)

实验程序:

实验结果:

原有数据 3.14159 2.71729 4.51050 3.21551 6.378501 舍入后数据

实验二 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法 二、实验原理 (1)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。

1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以 n 而得的值成为算术平均值。

设 1l,2l,…,nl为 n 次测量所得的值,则算术平均值

1 2 1...nin ill l lxn n  

算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值 x 必然趋近于真值0L。

iv  il- x

il——第 i 个测量值, i = 1,2,..., ; n

iv——il的残余误差(简称残差)

2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。

残余误差代数和为:1 1n ni ii iv l nx    当 x 为未经凑整的准确数时,则有:1niiv0

1)残余误差代数和应符合:

当1niil= nx ,求得的 x 为非凑整的准确数时,1niiv为零; 当1niil> nx ,求得的 x 为凑整的非准确数时,1niiv为正;其大小为求 x 时的余数。

当1niil< nx ,求得的 x 为凑整的非准确数时,1niiv为负;其大小为求 x 时的亏数。

2)残余误差代数和绝对值应符合:

当 n 为偶数时,1niiv 2nA; 当 n 为奇数时,1niiv0.52nA    式中 A 为实际求得的算术平均值 x 末位数的一个单位。

(2)测量的标准差 测量的标准偏差称为标准差,也可以称之为均方根误差。

1、测量列中单次测量的标准差 22 2 21 2 1...nin in n      式中

n —测量次数(应充分大)

i —测得值与被测量值的真值之差 211niivn 2、测量列算术平均值的标准差:xn  三、实验内容:

对某一轴径等精度测量 8 次,得到下表数据,求测量结果。

序号 il/mm

iv/mm

2 2/iv mm 1 2 3 4 5 24.674 24.675 24.673 24.676 24.671

6 7 8 24.678 24.672 24.674

假定该测量列不存在固定的系统误差,则可按下列步骤求测量结果。

1、算术平均值 2、求残余误差 3、校核算术平均值及其残余误差 4、判断系统误差 5、求测量列单次测量的标准差 6、判别粗大误差 7、求算术平均值的标准差 8、求算术平均值的极限误差 9、写出最后测量结果 实验程序:

实验结果:

实验三

线性参数的最小二乘法处理 一、实验目的 最小二乘法原理是一种在多学科领域中获得广泛应用的数据处理方法。通过实验要求掌握最小二乘法基本原理、正规方程以及组合测量的最小二乘法处理办法。

二、实验原理 (1)测量结果的最可信赖值应在残余误差平方和为最小的条件下求出,这就是最小二乘法原理。即 2 2 2 21 2...[ ]nv v v v    =最小 (2)正规方程 最小二乘法可以将误差方程转化为有确定解的代数方程组(其方程式的数目正好等于未知数的个数),从而可求解出这些未知参数。这个有确定解的代数方程组称为最小二乘法估计的正规方程。

(3)精度估计 为了确定最小二乘估计量1 2, ,...,tx x x的精度,首先需要给出直接测量所得测量数据的精度。测量数据的精度也以标准差  来表示。因为无法求得  的真值,只能依据有限次的测量结果给出  的估计值,所谓精度估计,实际上是求出估计值。

(4)组合测量是通过直接测量待测参数的各种组合量,然后对这些测量数据进行处理,从而求得待测参数的估计量,并给出其精度估计。

三、实验内容 如下图所示已知直接测量刻线的各种组合量,要求检定刻线 A、B、C、D 间距离1x 、2x、3x,测量数据的标准差以及估计量的标准差。

(1)

1x

2x

3x

A

B

C

D

6l

4l

1l

2l

3l

5l 1l=2.018mm

2l=1.986mm

3l=2.020mm 4l= 4.020mm

5l=3.984mm

6l=6.030mm 实验程序:

实验结果:

第五篇:误差的处理

粗大误差处理方法

在一组条件完全相同的重复试验中,个别的测量值可能会出现异常。如测量值过大或过小,这些过大或过小的测量数据是不正常的,或称为可疑的。对于这些可疑数据应该用数理统计的方法判别其真伪,并决定取舍。常用的方法有拉依达法、肖维纳特(Chavenet)法。 格拉布斯(Grubbs)法等。

一、拉依达法

当试验次数较多时,可简单地用3倍标准偏差(3S)作为确定可疑数据取舍的标准。当某一测量数据(xi)与其测量结果的算术平均值(x-‘)之差大于3倍标准偏差时,用公式表示为:

︳xi -x-‘︳>3S

则该测量数据应舍弃。

这是美国混凝土标准中所采用的方法,由于该方法是以3倍标准偏差作为判别标准,所以亦称3倍标准偏差法,简称3S法。

取3S的理由是:根据随机变量的正态分布规律,在多次试验中,测量值落在 x-‘一3S与x-‘ 十3S之间的概率为99.73%,出现在此范围之外的概率仅为0.27%,也就是在近400次试验中才能遇到一次,这种事件为小概率事件,出现的可能性很小,几乎是不可能。因而在实际试验中,一旦出现,就认为该测量数据是不可靠的,应将其舍弃。

另外,当测量值与平均值之差大于2倍标准偏差(即 ︳xi -x-‘︳> 2S)时,则该测量值应保留,但需存疑。如发现生产(施工)、试验过程屯有可疑的变异时,该测量值则应予舍弃。

拉依达法简单方便,不需查表,但要求较宽,当试验检测次数较多或要求不高时可以应用,当试验检测次数较少时(如n<10)在一组测量值中即使混有异常值,也无法舍弃。

二、肖维纳特法

进行n次试验,其测量值服从正态分布,以概率1/(2n)设定一判别范围(一knS,knS),当偏差(测量值xi与其算术平均值x-‘之差)超出该范围时,就意味着该测量值xi是可疑的,应予舍弃。判别范围由下式确定:

肖维纳特法可疑数据舍弃的标准为:

︳xi一 x-‘︳/S≥kn

三、格拉布斯法

格拉布斯法假定测量结果服从正态分布,根据顺序统计量来确定可疑数据的取舍。

进行n次重复试验,试验结果为x

1、x

2、…、xi、…、xn ,而且xi服从正态分布。

为了检验 (i=1,2,…,n)中是否有可疑值,可将 按其值由小到大顺序重新排列,根据顺序统计原则,给出标准化顺序统计量g:

当最小值x(1)可疑时,则: g=( x-‘一x(1) )/S

当最大值x(n)可疑时,则: g=( x(n) 一 x-‘ )/S

根据格拉布斯统计量的分布,在指定的显著性水平β(一般β=0.05)下,求得判别可疑值的临界值g0( β,n) ,格拉布斯法的判别标准为:

g≥g0( β,n)

利用格拉布斯法每次只能舍弃一个可疑值,若有两个以上的可疑数据,应该一个一个数据的舍弃,舍弃第一个数据后,试验次数由n变为n一1,以此为基础再判别第二个可疑数据。

四. 分布图法

将多次独立测量的测量结果按从小到大排列为

X1,X2,…,XN 定义中位数 Xm为:

定义上四分位点F0为区间[Xm, XN]的中位数;

下四分位点F1为区间[X1 , Xm]的中位数。

四分位数离散度 dF = F0-F1 则,认定无效数据的判定区间为:

其中

为常数,与测量精度有关,在本程序中取定为2。

淘汰点定义为:

区间[,

]的测量数据被认为是有效的一致性测量数据,利用这一有效区间的数据选定可以排除50%的离异值干扰。而且中位数Xm和四分位数离散度dF的选择与极值点的大小无关,仅与数据的分布位置有关。有效区间的获取与需要排除的可疑值关系不大。因此,用分布图法来获得的一致性策略数据的方法能够增强对不确定因素的适应度。具有一定的鲁棒性。

本程序中采用的粗大误差排除方法是:

1. 拉依达法

为了实现的简洁性以及误差判别的精确性,省略了后期的2S的判断,而将3S准则修订为2.8S准则,有利于严格的排除可能的粗大误差。 2. 分布图法

没有采用 肖维纳特法 与 格拉布斯法 的原因:这两种方法都需要查表求参数,不利于计算机的自动实现。

本文来自 99学术网(www.99xueshu.com),转载请保留网址和出处

上一篇:民事诉讼总范文下一篇:茅台酒鉴赏范文