工艺员安全生产责任制范文

2024-02-17

工艺员安全生产责任制范文第1篇

1)荒煤气的主要成分有净焦炉煤气、水蒸气、煤焦油气、苯族烃、氨、萘、硫 化氢、其他硫化物、氰化氢等氰化物、吡啶盐等。

生产工艺的组成为:焦炉炭化室生成的荒煤气在化学产品回收车间进行冷却、输送、回收煤焦油、氨、硫、苯族烃等化学产品,同时净化煤气。煤气净化车间由冷凝鼓风工段、HPF脱硫工段、硫铵工段、终冷洗苯工段、粗苯蒸馏工段等工段组成,其煤气流程如下:荒煤气→初冷器→电捕焦油器→鼓风机→预冷 塔→脱硫塔→喷淋式饱和器→洗终冷塔→洗苯塔→净煤气。

煤在炼焦时,除有 75%左右变成焦炭外,还有25%左右生成多种化学产品及煤气。来自焦炉的荒煤气,经冷却和用各种吸收剂处理后,可以提取出煤焦油、氨、萘、硫化氢、氰化氢及粗苯等化学产品,并得到净焦炉煤气,氨可以用于制取硫酸铵和无水氨;煤气中所含的氢可用于制造合成氨、合成甲醇、双氧水、环己烷等,合成氨可进一步制成尿素、硝酸铵和碳酸氢铵等化肥;所含的乙烯可用于制取乙醇和三氯乙烷的原料,硫化氢是生产单斜硫和元素硫的原料,氰化氢可用于制取黄血盐钠或黄血盐钾;粗苯和煤焦油都是很复杂的半成品,经精制加工后,可得到的产品有:二硫化碳、苯、甲苯、三甲苯、古马隆、酚、甲酚和吡啶盐及沥青等,这些产品有广泛的用途,是合成 纤维、塑料、染料、合成橡胶、医药、农药、耐辐射材料、耐高温材料以及国防工业的重要原料。 来自焦炉82℃的荒煤气,与焦油和氨水沿吸煤气管道至气夜分离器,气夜分离 后荒煤气由上部出来,进入横管式初冷器分两段冷却。上段用循环水,下段用低温水将煤气冷却到 21-22℃。由横管式初冷器下部排出的煤气, 进入电捕焦油器, 除掉煤气中夹带的焦油,再由鼓风机压送至脱硫工段。

由气夜分离器分离下来的焦油和氨水首先进入机械化氨水澄清槽,在此进行氨 水、焦油和焦油渣的分离。上部的氨水流入循环氨水中间槽,再由循环氨水泵送到焦炉集气管喷洒冷却煤气,剩余氨水送至剩余氨水槽。澄清槽下部的焦油靠静压流入焦油分离器,进一步进行焦油和焦油渣的沉降分解,焦油用焦油泵送往油库工段焦油贮槽。机械化氨水澄清槽和焦油分离器底部沉降的焦油渣刮至焦油渣车,定期送往煤场,人工掺入炼焦煤中。进入剩余氨水槽的剩余氨水用剩余氨水泵送入除焦油器, 脱除焦油后自流到剩余氨水中间槽,再用剩余氨水中间泵送至硫铵工段剩余蒸氨装置,脱除的焦油自流到地下放空槽。2)主要设备的构造及工作原理 ①离心式鼓风机

7 / 10

离心式鼓风机由导叶轮、外壳和安装在轴上的工作叶轮所组成。煤气由鼓风机吸入后做高速旋转于转子的第一个工作叶轮中心, 煤气在离心力的作用下被甩到壳体的环形空隙中心处即产生减压,煤气就不断的被吸入,离开叶轮时煤气速度很高,当进入环形空隙中,其动压头一部分转变为静压头,煤气的运动速度减小,并通过导管进入第二个叶轮,产生与第一叶轮相同的作用,煤气的静压头再次被提高。从最后一个叶轮出来的煤气由壳体的环形空隙流入出口连接管被送入压出管路中。焦化厂所采用的离心式鼓风机按输送量大小分为150m3/min、300 m3/min、750 m3/min 、1200m3/min等多种规格,产生的总压头为

30-35kpa。②横管式初冷器

焦化系统生产中煤气横管式初冷器主要结构是包括初冷器壳体、冷却管管束。横管式初冷器壳体是由钢板焊制而成的直立的长方形器体,壳体的前后两侧是初冷器的管板,管板外装有封头。在壳体侧面上、中部有喷洒液接管,顶部为煤气入口,底部有煤气出口。在横管式初冷器的操作中,除了冷却焦炉煤气外,在冷却器顶部及中部喷洒冷凝液,来吸收焦炉煤气中的萘,并冲刷掉冷却管上沉积的萘,从而有效的提高了传热效率。③电捕焦油器

电捕焦油器器体是由钢板卷制而成的筒体与器顶封头、器底拱形底组合而成。 电捕焦油器的电场有正电极、负电极组合而成。其正极是又钢管制成,其钢管固定在上下管板上,管板与电捕焦油器筒体焊接而成。电场的负极,装在由绝缘箱垂下杆悬拉的吊架上,其吊杆吊架均有不锈钢制成,吊杆上装着阻力帽以阻止气体冲击绝缘箱。电场负极由不锈钢制成,电晕极板下悬吊着铅坠,以拉直电晕极,电晕极下部由不锈钢制成的下吊架固定位置,电晕极线分别穿入电场沉淀焦油饿正极钢管中心。

2、脱硫工段(HPF 脱硫法)

煤气→预冷器→脱硫塔→液封槽→ (脱硫液) 反应槽→再生塔→泡沫塔→ (清夜) 反应槽鼓风机后的煤气进入预冷塔与塔顶喷洒的循环冷却水逆向接触,被冷至 30℃, 预冷后的煤气进入脱硫塔, 与塔顶喷淋下来的脱硫液逆流接触以吸收煤气中的

8 / 10

硫 化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气被送入硫铵 工段。吸收了 H2S、HCN 的脱硫液自流至反应槽,然后用脱硫液泵送入再生塔,同时 自再生塔底部通入压缩空气,使溶液在塔内得到氧化再生。再生后的溶液从塔顶 经液位调节器自流回脱硫塔循环使用。

浮于再生塔顶部的硫磺泡沫,利用液位差自流入泡沫槽,硫泡沫经泡沫泵送入熔硫釜中,用中压整齐熔硫,清夜流入反应槽,硫磺装袋外销。为避免脱硫液盐类积累影响脱硫效果,排出少量废液送往配煤。

3、硫铵工段(喷淋式饱和器生产硫铵)

由脱硫及硫回收工段送来的煤气经预热器进入喷淋式硫铵饱和器上段的喷淋室, 在此煤气与循环母液充分接触,使其中氨被母液吸收,然后经硫铵饱和器内的除 酸器分离酸雾后送至洗脱苯工段。

在饱和器下部的母液,用母液循环泵连续抽出送至上段进行喷洒,吸收煤气中的氨, 并循环搅动母液以改善硫铵的结晶过程。饱和器母液中不断有硫铵结晶生成, 用结晶泵将其连同一部分母液送入结晶槽沉降,排放到离心机进行离心分离,滤除母液,得到结晶硫铵。离心分离出来的母液与结晶槽溢流出来的母液一同自流回饱和器。从离心机卸出来的硫铵洁净,由螺旋输送机送至沸腾干燥器。沸腾干燥器所需要的热空气是由送风机将空气送入热风器经蒸汽加热后进行沸腾干燥,干燥后的硫铵进入硫铵储槽,然后由包装磅秤称量、包装送入硫铵仓库。

4、终冷洗苯工段

自硫铵工段来的煤气,进入终冷塔分二段用循环冷却水与煤气逆向接触冷却煤 气,将煤气冷到一定温度送至洗苯塔。同时,在终冷塔上段加入一定碱液,进一步脱除煤气中的 H2S。下段排出的冷凝液送至氰污水处理工段,上段排出的含碱冷凝液送至硫铵工段蒸氨塔顶。从终冷塔出来的煤气进入洗苯塔, 经贫油洗涤脱除煤气中的粗苯后送往各煤气用户。由粗

苯蒸馏工段送来的贫油从洗苯塔的顶部喷洒,与煤气逆向接触吸收煤气 中的苯,塔底富油经富油泵送至粗苯蒸馏工段脱苯后循环使用。

5、粗苯蒸馏工段

从终冷洗苯装置送来的富油进入富油槽,然后用富油泵依次送经油汽换热器、贫 富油换热器,再经管式炉加热后进入脱苯塔,在此用再生器来的直接蒸汽进行汽 提和蒸馏。塔顶逸出的粗苯蒸汽经油汽换热器、粗苯冷凝冷却器后,进入

9 / 10

油水分离器。分出的粗苯进入粗苯回流槽,部分用粗苯回流泵送至塔顶作为回流液,其余进入粗苯中间槽,再用粗苯产品泵送至油库。存储粗苯

粗苯是煤热解生成的粗煤气中的产物之一,经脱氨后的焦炉煤气中含有苯系化合 物,其中以苯含量为主,称之为粗苯。粗苯为淡黄色透明液体,比水轻,不溶于水。储存时由于不饱和化合物,氧化和 聚合形成树脂物质溶于粗苯中,色泽变暗。自煤气回收粗苯最常用的方法是洗油吸收法。为达到 90%~96%的回收率,采用多段逆流吸收法。吸收温度不高于 20~25℃。 终冷后的煤气含粗苯 25~40g/m3, 进入粗苯吸收塔,塔上喷淋洗油,煤气自上而下流动,煤气与洗油逆流接触,洗油吸收粗苯成为富苯洗油,富油脱掉吸收的粗苯,称为贫油,贫油在洗苯塔吸收粗苯又成为富油。富油含苯 2~2.5%, 贫油含苯 0.2~0.4%。富油脱苯合适的方法是采用水蒸气蒸馏法。富油预热到 135~140℃再入脱苯塔,塔底通入水蒸气,常用压力为 0.5~0.6Mpa。也可采 用管式炉加热富油到 180℃再入脱苯塔。

实习总结:这次去焦化厂实习。主要包括前期的实习准备工作、参观实习阶

段和写实习报告三个步骤。前期需要我先了解新星冶炼公司焦化厂的概况、准备着装、查明路线等各种准备工作。到厂子以后,焦化厂的王主任给我讲解厂子概况以及安全知识。技术员给我介绍流程并参观了化产工艺,有粗笨、添加化肥、焦油、焦渣、这些工作环境危险,都要小心谨慎。通过这次新星冶炼公司焦化厂的实习,我弄清楚了焦化厂的组成、生产过程和主要设备。了解了自己专业的一个重要方向,为专业基础课的验证,专业课的学习建立感性化的认识。同时在这次实习过程中发现自己许多方面的知识不足, 为自己将来在学专业知识的过程能有针对性的弥补自己的缺陷。这次实习,我认为比讲课效果好多了,能更好的明白和掌握流程。实习锻炼了我们,让我们看到了真正的化工设备,了解了化工实际作业环境,同时发现了实际缺陷与不足,激发我们学习的积极性。这是一次成功的有意义的实践活动。

实习感想:现在要找工作企业往往会问我们工作经验, 在大学期间的实习就

是我们积累工作经验的绝佳机会,从这次实习我学到了许多东西,师傅们讲的好多知识,使我们对以后将要学的知识有了一个宏观的认识, 这都对我们今后的专业课的学习有巨大的帮助。焦化厂的化工原料利用率很高,不论是煤原料还是到氨水等原料,几乎都是循环再利用。使化工向绿色化工迈进了一步。化工厂里的设备布局简单合理,安全警示明显而有说服力。厂里的工人师傅们个

10 / 10

工艺员安全生产责任制范文第2篇

一、工作目标

全区所有涉及危险工艺的化工生产装置及其辅助设施力争在2011年底实现生产过程中危险环节关键操作的自动化控制。温度、压力、流量、液位及可燃、有毒气体浓度等工艺指标的超限报警及生产装置的安全联锁停车;大型和高度危险化工装置要在自动化控制的基础上装备紧急停车系统(ESD)或安全仪表系统(SIS)。

二、改造范围

(一)《国家安全监管总局关于公布首批重点监管的危险化工工艺目录的通知》(安监总管三〔2009〕116号,以下简称《目录》)公布的15种危险化工工艺的生产装置;

(二)涉及危险化工工艺生产的辅助设施;

(三)因工艺、设备和设施安全、稳定等,不需要配置自动化控制、超限报警及安全联锁停车设施或企业现有化工装置能够满足《目录》推荐的安全控制要求的,由企业委托有资质评估机构对企业现役化工装置安全现状进行专项评估,作出是否需纳入安装改造范围的结论,报盟市安监局。

三、改造内容

所有危险化学品建设项目和现有化工生产装置及其辅助设施要按照《目录》要求,对照本企业采用的危险化工工艺及其特点,确定重点监控的工艺参数和安全控制的基本要求,完善自动控制系统。

涉及改造范围内的生产装置辅助设施要与生产装置同步进行自动化改造,必须安装配备有毒、可燃气体泄漏和火灾报警系统;重大危险源涉及的压力、温度、液位(流量)、泄漏报警等要有远传和连续记录;液化气体、剧毒液体(液氯、液氨、液化石油气、液化天然气)等重点储罐要设置远程紧急切断装置。

四、工作措施

(一)认真研究制定具体自动化改造操作方案。各盟市安监局要进一步摸清辖区内涉及自动控制技术改造范围的危险化学品企业底数,填写《自动化控制改造调查汇总表》(见附件1),制定自动化改造工作方案。根据化工装置危险程度和当地实际,对企业安装改造的时限作出具体规定,列出工作进度表,分期分批组织实施。工作方案与汇总表一并于2011年6月31日前报送自治区安监局。

(二)强化安全生产行政许可措施。各级安监部门要将安装自动化控制及安全联锁系统作为安全生产的必要条件,严把安全生产准入关。

1、实施改造的企业,要在安装改造工程验收后,委托有资质评估机构编制自动化控制及安全联锁系统安装报告书(见附件2)报盟市安监局。凡不符合本意见规定安装改造要求的,按照逾期未安装进行处理。

2、新建、改建、扩建项目,涉及的化工装置属于安装改造范围的,必须同时设计、安装和使用相应的自动化控制及安全联锁装置。 危险化学品建设项目设立安全评价报告,要对工艺装置的安全风险进行分析,提出安装自动化控制及安全联锁系统的措施建议。危险化学品建设项目安全设施设计专篇,要根据工艺装置的安全风险分析、风险级别和措施建议,充分考虑和设计重要参数的测量、控制、报警、自动联锁保护及紧急停车等自动化控制及安全联锁设施和措施。未按以上要求执行的,不予通过安全审查。

危险化学品建设项目竣工验收安全评价报告、生产企业现状安全评价报告,要对安装自动化控制及安全联锁装置作出评价,内容包括:生产工艺控制参数及控制点、安全控制工作原理、采用的逻辑控制单元、检测变送单元等,设计、安装单位资质符合性,控制系统在试生产期间的检测检验和调试、运行等情况。已经试生产的,必须在试生产结束前配置相应的自动化控制及安全联锁装置,确因时间紧、工作量大等原因无法完成的,要作出安装改造的时限承诺(最长不超过6个月)并认真实施,否则,不予通过安全设施竣工验收。

(三)加强改造过程管理和人员的培训教育。各级安监部门要引导从业单位选择信誉高、专业实力强的机构开展自动化控制改造的评估、

设计、施工安装和仪表设备供应,不具备国家规定资质的设计、施工、评价单位或相关人员不得从事相关业务。要督促从业单位按照本意见要求,认真组织实施自动化改造。

工艺员安全生产责任制范文第3篇

9.2.1.1工艺是产品生产方法的指南,是计划、调度、质量管理、质量检验、原材料供应,工艺装备和设备等工作的技术依据。是优质、高效、人员低耗和安全生产的重要保证手段。

9.2.1.2工艺工作由质检部负责,应建立严格的管理制度和责任制,工艺人员要坚持科学态度,不断提高工艺水平,为生产服务。

9.2.1.3工艺工作要认真贯彻工艺规程典型化、工装标准化,通用化的原则。

9.2.2制度:

9.2.2.1工艺工作必须完善工艺手段,保证产品质量和降低成本,工艺过程合理、可靠、先进为原则。

9.2.2.2工艺文件必须保证正确、完整、统

一、清晰。

9.2.2.3生产人员必须严格执行工艺,任何人不得擅自修改操作规程、技术文件内容,如有某种原因无法按工艺生产时,应由技术主管签字方可生效。

9.2.2.4工艺标准的修改需经生产经理、质检部长批准。

9.2.2.5凡是工艺文件出现的差错,应由质检部负责,凡属不按工艺文件而出现的差错,应由操作者负责,追查责任事故。

9.2.2.6工艺技术员应不断对车间操作人员进行工作纪律教育,严格按工艺标准监督工艺执行。

9.2.2.7工艺文件的编写工作由质检部负责,并按工艺文件要求编写工艺质量要求。

工艺员安全生产责任制范文第4篇

摘要:铝合金棒材的熔铸工艺存在一定的质量问题,影响了后期的使用。通过改变加料顺序,温度控制、调整精炼、细化晶粒,来改善铝合金组织和表面的质量。严格的按照目标成分进行配料,考虑到产品质量,适当调整新材料、中间合金和回炉料在熔炼过程中元素的烧损。并且对精炼过程、熔铸过程、挤压工艺和时效工艺进行分析,生产出合格的铝合金型材。

关键词:铝合金;鋁棒材;组织和性能

文献标识码:A

doi:10.19311/j.cnki.16723198.2017.17.102

1引言

随着金属材料的发展和节能减排的要求,轻量化已经成为工业发展的主要方向,而铝合金的应用更加受到重视,而铝合金的熔铸工艺更是重中之重。铝合金熔铸关键技术在于提高合金的纯度,减少合金中杂质元素的含量。6082铝合金重量轻,在铝加工业和冷藏业为最理想的材料。本文通过大量试验,制定出满足客户要求的6082铝合金材料。

2熔铸工艺

2.1成分控制

根据客户的要求,6082铝合金化学成分满足国标要求,并且满足挤压后抗拉强度σb≥320MPa。适当的改变Mg2Si强化相的含量,但是也要满足塑性的要求δ≥10%,特控制Si含量0.9-1.0%,适当的添加Mn元素提高材料的再结晶温度Mn的含量控制在0.68-075%,具体的化学成分见表1所示。

2.2铸造前准备

铸造前首先检查铸造设备是否能正常运行,检查铸造流盘、转接板必须完整、流槽、清洁、干燥,流槽接口处用石棉布包裹封堵保温棉,不准外露,流槽封堵口采用耐火材料进行封堵。转接板用够十次必须更滑,并且严格做好更换记录。对结晶器进行维护,保证能正常使用,防止在石墨环和专业板出有石墨残存,每个结晶器清理干净。对过滤片进行清理,防止杂质带入,安装要没有缝隙,并对其进行加热,在加热过程中防止燃烧不充分产生碳粉。转炉前按照工艺流程进行核实,炉膛温度不低于铸造温度上限,熔体温度在铸造温度上限和下限之间。转炉后要把流槽清理干净之后进入精炼环节。

2.3精炼过程

保证精炼在露体温度范围内进行一般控制为720-760℃,采用氮气吹粉精炼法进行精炼,同时添加2kg的精炼剂,精炼时间不少于20分钟。精炼结束进行扒渣,静置,不少于30分钟,同时进行取样操作,调温,测氢等操作。

2.4铸造过程

成分温度均合格进入浇注环节。根据不同合金控制变质剂加入量,采用Al-Ti-B丝炉外在线加入。铸造过程中发现有过滤片漂浮,立即停止铸造,重新开始。铸造结束前,流槽和流盘内金属进行搅动,严禁中途加入金属,静置炉温度保持在铸造温度范围内。铸造工艺参数:铸造速度(45~60mm/min)、铸造温度(720~740℃)、水压(0.15~0.2MPa)。

2.5铸造结束

所铸每根棒坯按标识标定注明合金牌号、炉号。每一个铸次结束后应对流盘、流槽、转接板、结晶器进行清理、维护、保养,确保设备及工件处于完好状态。铸造完成后要对炉体进行清炉工作,即炉墙、炉底、炉角的渣及脏物彻底清理干净。做好设备卫生和指定区域卫生,确保地面无积水,工作场地整洁干净。

3均匀化工艺

3.1铸态组织

合金的铸态组织主要有主要由树枝状α(Al)固溶体、骨骼状非平衡共晶相β(AlMnFeSi)和晶界组成见图1所示。这种组织晶内偏析严重,属于非平衡态,对合金的塑性不利,所以必须进行均与化处理,才能保证良好的挤压性能。

3.2均匀化

均匀化处理进行保温后,对力学性能产生影响的就是冷却速度,冷却速度越快,铸棒的力学性能越高通过图2中a)慢速冷却和b)快速冷却对比可以看出,快速冷却使的基体中粗大的析出相变为更加细小颗粒状弥散分布的Mg2Si强化相。通过大量试验进行对比,保证挤压后型材有足够高的力学性能,最终制定出6082合金均匀化工艺为:均火温度(560±10)℃,保温时间8小时.冷却:强制冷却≥200℃/h。

4挤压工艺和时效工艺

经过大量试验一般铸棒的控制温度为460-510℃,挤压速度在11-14m/min,型材的出口温度在550℃时,其抗拉强度达到了最大值,所以挤压出口温度为540-560℃。

既要保证产品的力学性能,又要降低生产成本,综合考虑把实效温度定在170-192℃,时间为6-8小时,抗拉强度达到了320MPa,延伸率δ≥10%。

5结论

根据客户提出的产品要求(抗拉强度达到了320MPa,延伸率δ≥10%),得出了6082铝合金的合理的熔铸工艺,均火工艺、挤压工艺和时效工艺:

(1)按照配料单严控各元素的范围,使得生产的材质满足客户的要求。

(2)按照熔铸工艺要求,严控铸造过程中缺陷产生的原因,做到有序的进行加料、熔化、转炉、精炼,铸棒等工序。

(3)对铸棒进行均匀化处理(均火温度(560±10)℃,保温时间8小时.冷却:强制冷却≥200℃/h)、挤压工艺(挤压速度在11-14m/min,出口温度为540-560℃)、时效工艺(实效温度定在170-192℃,时间为6-8小时)。

参考文献

[1]马彪,刘金辉,等.6082铝合金型材生产工艺研究[J].有色金属加工,2015,(04).

[2]中国机械工程学会铸造专业学会编.铸造手册[M].北京:机械工业出版社,2002.

[3]邹永恒,陶虹,徐国明,等.6082铝合金热处理工艺参数的研究[J].金属热处理,2007,32(10):7176.

[4]罗苏,吴锡坤.铝型材加工实用技术手册[M].长沙:中南大学出版社,2006.

工艺员安全生产责任制范文第5篇

一、概述

我国高等级公路骨架网络迅速发展,其中,绝大部分是沥青路面。与此同时,在超载、气候变暖和车速提高的综合影响下,路面行车作用呈现高温、高荷载和高动水压力的三高趋势。各种新形式的水损坏和高温永久变形等路面早期损坏较大面积的出现在近年建成通车的道路上。某些改性沥青和纤维类材料的添加在一些特殊工程中取得了比较明显的效果,但其较高的成本限制了推广使用。然而,废旧轮胎橡胶粉改性沥青作为一种新型的改性沥青由于其独特的路用性能和环保效益及相对较低的成本投入,目前在美欧等发达国家得到了普遍的推广和应用。

橡胶沥青的生产工艺主要有干法和湿法两条技术路线,两条路线同时起步于20世纪60年代。干法是指橡胶粉与集料先拌和后再喷入沥青拌制的混合料,常称为橡胶改性沥青混凝土《Rubber Modified As-phalt Concrete);湿法是橡胶粉与沥青混合作为粘结剂再与矿料混合,一般称为橡胶沥青混凝土(Asphalt Rubber Concrete)。

目前,我国改性沥青常用的改性剂为SBS.LDPE.EVA和SBR等。利用废橡胶粉替代价格昂贵的SBS作沥青改性剂是一种既经济实用又简单有效的方法,不仅可以降低修路的成本,还可以变废为宝,消除“黑色污染”。因此,我国修筑公路及维修公路采用橡胶粉改性沥青的意义重大。

二、工程背景及工程情况

东湖路位于哈尔滨市开发区迎宾区,为机场高速路北侧区域的干道。本次工程设计起点为秦岭路,终点为昆仑路,全长487.2米,道路为双幅横断面型,每幅机动车道宽12米。

本路段是由哈市机场路附近区域进入环城高速的入口之一,现路面普遍出现网裂、沉陷、翻浆等现象,已属破坏状态,不能再满足正常的通车要求。因此应该及时给予补修,哈尔滨开发区市政相关部门经反复认证及对当前市场状况的考虑,最终决定采用新型筑路材料---橡胶沥青及相关的施工工艺。

1.结构设计:道路结构如下

(1)左幅:6cm橡胶沥青混凝土

20cm三灰碎石(石灰:水泥:粉煤灰:碎石=8.5:1.5:15:75)

20cm二灰土(石灰:粉煤灰:土=10:20:70)

20cm二灰土(石灰:粉煤灰:土=10:20:70)

石灰土稳定层(8%消石灰或6%生石灰粉末)

(2)右幅:4cm橡胶沥青混凝土

5cmAC-25C沥青混凝土

20cm三灰碎石(石灰:水泥:粉煤灰:碎石=8.5:1.5:15:75)

20cm二灰土(石灰:粉煤灰:土=10:20:70)

20cm二灰土(石灰:粉煤灰:土=10:20:70)

石灰土稳定层(8%消石灰或6%生石灰粉末)

2.材料准备

面层材料为:左幅6cm AC-16型橡胶沥青混凝土,右幅4cm AC-16F型橡胶沥青混凝土。本次橡胶沥青采用湿法的生产工艺。

2.1橡胶沥青生产

橡胶沥青生产设备采用全套进口移动式现场改性设备。设备生产能力为15t/h。设备主要组成部分为4个原材料入口、基质沥青快速升温装置、高速搅拌罐、反应罐(带底部搅拌)、中央控制和监控室。所有原材料均自动连续计量。输送速度自动控制。生产设备尺寸相当集装箱拖车。自带导热油系统、自带沥青输入输出泵。完全为独立单元。

2.2沥青与橡胶粉的拌和

橡胶沥青的制作是通过高速搅拌罐,在温度、时间、机械三者的综合作用与协调下,将4种原材料按比例混合,经过吸收、湿润、膨胀等物理和化学变化,使其粘度增加,软化点提高,从而获得高质量的改性沥青材料。橡胶沥青在190℃时的粘度在15—40dPa.s之间。

2.3质量检测

由于是现场改性,需要对橡胶沥青成品进行质量抽检.主要抽检指标是粘度。要针对不同的生产和储存情况.制定周密的成品抽检预案.确保最终用在混合料中的橡胶沥青粘度在规定的范围内。

3.橡胶沥青混凝土面层施工

橡胶粉改性沥青混合料采用传统的摊铺和压实方式,摊铺及压实工艺可参考普通改性沥青混合料。由于橡胶粉改性沥青混合料具有自身的特点,施工中应该注意以下几点,一是摊铺机的熨平板调整必须准确,因为橡胶粉改性沥青粘度非常大,容易出现拖痕;二是橡胶粉改性沥青混合料通常使用大吨位轮胎压路机和高频振动压路机组合碾压;三是橡胶粉改性沥青混合料运输到现场的温度通常为160—170℃,摊铺后混合料的温度仍然非常高,很容易被压路机带起,且被压路机轮子带起的沥青掉在路面上后容易形成油斑。因此建议压路机和摊铺机保持一定距离,以使混合料冷却到一定温度,并采用肥皂水湿润压轮以防止粘轮。

4.路面检测

项目完工开放交通前,试验室按照验收评定相关要求,组织了对部分验评项目的现场检测。从检测结果可以看出.橡胶沥青混合料摊铺取得了比较理想的结果。一方面,渗水系数和构造深度这对矛盾达到了理想的平衡状态,2个值都处在较高值位,超过了SMA的相关技术要求;另一方面,压实度普遍达到98%,说明在碾压及时的情况下,完全可以达到充分碾压。摆式摩擦的结果.则综合体现了构造深度和橡胶粉对摩擦力的效应。

5.项目效益评价

5.1节约成本

可减薄路面面层结构厚度:面层厚度如减至7.5—10cm,就可获得满意的使用效果,并可同时降低生产成本。在东湖路结构设计中,面层结构:一侧为6cmAC-16F型橡胶沥青混凝土,另一侧为4cmAC-16F型橡胶沥青混凝土和5cmAC-25型普通沥青混凝土,而正常的面层结构设计中,一般都为4cmAC—16I型中粒式沥青砼、5cmAC—25I型粗粒式沥青砼、6cmAC—30Ⅱ型粗粒式沥青砼,结构厚度为15cm才能保证路面的正常使用,由此可见,橡胶沥青混凝土路面的造价只占普通沥青混凝土路面的70%左右。

5.2改善使用性能

1)抗低温开裂:橡胶沥青低温回弹率高,粘韧性好,可抵抗低温开裂,尤其在北方高寒地区,对于降低路面开裂或维修旧路时的反射裂缝,非常有效。2)高温稳定性好:可解决高温时路面产生车辙、搓板等流变现象。3)抗老化性能好:对阳光中的红外线和紫外线不敏感。4)抗疲劳、耐磨损:轮胎的耐疲劳、耐磨损性能转移到橡胶沥青。5)橡胶沥青对石料选择宽容度大:对酸碱石料不敏感,以水煮法测量粘附性,都能达到5级标准。6)较好的抗水损坏能力——防止水损病害:残留稳定度、冻融劈裂强度比、冻融APA比等指标都(上接第42页)

表明,橡胶沥青混合料的抗水损坏性能达到了改性沥青的要求,比普通沥青有明显改善。7)降低道路行车的噪声——提高居民生活质量:利用橡胶本身特有的弹性和吸音特性,将橡胶沥青应用于路面,可使路面行车噪声降低3—6dB,相当于减少80%的行车量或节省一道3m高的隔音墙。

6.项目完工总结

由于东湖路位于哈尔滨绕城高速公路入口,多重载车辆经过,重载车辆荷载大都在百吨以上,在这种情况下,经过两个冻融期的使用,路面状况良好,无明显的车辙,坑洞,证明了减薄后的橡胶沥青混凝土路面优越的性能,完全能达到道路使用标准。具有很高的实际应用价值。

三、结语

(1)橡胶粉加人沥青混凝土,能全面提高路用性能,能很好迎合道路路面工程对高性能沥青混凝土不断增长的需求,同时实现低污染回收利用废旧轮胎,应用前景远大。

(2)室内的初步试验,表明橡胶粉能同时显著改善沥青混合料的高温稳定性、抗水损坏性能和低温性能,东湖路近两年严酷交通考验也表明了橡胶粉的对沥青混合料综合性能的提高。

(3)橡胶粉的施工工作性很好,施工温度的要求不超过其他改性沥青,运卸铺离析减少,施工工艺只须在现有机械设备基础上稍作调整,技术指标和手段需要少量的补充。

工艺员安全生产责任制范文第6篇

摘 要:化工工艺设计是化工行业较为关键的内容,对化工作业安全效益的顺利获得具有直接影响,关乎化工工业的安全。因此,文章以化工工艺安全设计为入手点,利用指标分析方法,从物料、流程、设备设施、条件等方面识别了化工工艺中存在的危险,并就相关危险点特征及危害范围提出了几点控制措施,希望能为化工工艺的安全运行提供保障。

关键词:化工工艺;安全设计;危险识别

在化工行业迅猛发展的进程中,工艺流程、条件日趋严苛,危险化学物料用量不断增加,在给化工企业带来巨额经济收益的同时,也产生了较大的安全事故隐患。而当前我国内部还没有可完整、科学评估化工工艺风险等级的安全评价手段,无法保证化工工艺的安全性。因此,从工艺安全设计视角入手,探索化工工艺危险的识别手段以及控制措施,就具有非常重要的意义。

1 化工工藝安全设计中的危险识别指标体系构建

在化工工艺安全设计过程中,评价指标体系的构造可看作具体与抽象交互影响的辩证逻辑思辨过程,即在全面认知研究对象情况的前提下,结合生产经验、标准规范,对化学工艺进行深层次、系统化、完善化处理。典型化工工艺可以划分为工艺所使用的物质危险性、化学反应过程风险[1]。后者主要是由于化工工艺流程中涉及了大量的热量交换,除工艺条件高温外,反应过程也会进行大量热释放,当系统反应散热速率在反应热生成速率以下时,反应体系温度会持续升高,由此带动反应速率持续增加,推动热生成速率的进一步加快。而系统“自热”的恶性循环会诱导反应失控,即反应过程涉及的物质由亚稳态转化为不稳定状态,甚至产生小分子大量存在的分解热,增加反应容器压力,招致反应器超压破裂、爆炸等不良后果。由此可知,化工工艺安全设计中危险识别指标的关键为,重点考虑化工工艺运作中显著释放热能而引发的热失控风险,具体指标可以划分为物料危险性、设备危险性、流程危险性等几个模块。

2 化工工艺安全设计中的危险识别结果分析

2.1 物料

化工工艺物料危险主要体现在物质爆炸极限、物质毒性、物质闪点等方面。从绿色化学、工艺本质安全视角可知,化工生产中不同类型物质的选择和恰当搭配,可以控制危险事故隐患[2]。

2.2 设备设施

设备设施特指化工工艺安全设计中所使用的工具,比如管道等。管道的主要职责为进行不同状态物料的运输,化工工艺所涉及的物料多具有强酸性、强碱性、易燃性或易爆性特点,若在运输阶段出现管道泄漏问题,将会造成严重的生态环境以及社会环境安全事故。

2.3 条件

化工工艺操作条件包括反应压力、反应温度、生产用量等多个部分。其中,高温高压、低温低压均对设备、工艺安全运行具有较大负面影响,而生产用量则通过工艺所可达到规模的直接体现对工艺安全造成影响。

2.4 流程

工艺流程危险主要表现为工艺运作过程中因化学反应热量交换而出现的热失控情况,与绝热温升、冷却功率、最大反应速率、承压能力有关。其中,冷却功率直接影响了工艺运作中的化学放热反应,一旦冷却功率不足,就会导致反应热无法被及时移走,增加工艺危险度[3]。

3 化工工艺安全设计中的危险控制措施

3.1 物料

化工生产原材料处理是化工工艺运作的基础环节,需要负责人依据工作规范进行原材料类比判定。根据所获得的信息,经过进一步提纯、混合、净化操作,完成原材料的标准化、科学化处理,达到提升化学反应活性、效率、质量的目的。为了精准控制化工工艺物料环节存在的危险,人员应围绕化工工艺物料特性,依托专业经验,从物理、化学等多个方面进行系统分析,从根源上消除化工工艺运作过程中的物料风险因子。一般为获得某一种目的的产品,对应原料、辅料并非唯一可用的,在有选择余地的情况下,应优先选择无危险性、危险性较小的物料。同时,对于精制化学反应后出现的粗品,其内部含有较多类型不一的杂质,应利用萃取、蒸馏等方式,对其进行进一步净化,保证化工物料应用安全。除此之外,为了避免对生态环境安全造成影响,技术人员应综合考虑废料是否可综合利用(无害化处理)、过程用催化剂(或助剂、原料、载体、溶剂)是否必要或可减少、是否可回收循环使用等因素,最大程度降低生产废弃料产生量,达到物尽其用的效果。

3.2 设备设施

在化工工艺运作过程中,化学反应设施设备是关键载体,对工艺运作质量以及生产效益具有直接影响[4]。根据化工工艺载体设备设施所处环节以及所承担功能的差异,使用方法、维保要求也具有较大差别。因此,人员应主动了解各环节化工工艺反应载体的用途,定期检查、剖析、记录化工物料在对应环节的表现差异,结合国家标准规范进行载体装置使用与维保方案的定期更新,保证化工工艺设备设施的安全运行。化工工艺设备设施等装置从本质上而言,是多个工艺操作单元的组合,技术人员可以将视线投向单元之间的安全衔接以及干扰消除视角,在其他单元正常状态维持的情况下,进行某一单元处理事故、故障的隔离处理方案设计,达到平稳停车目的。特别是在管道管理阶段,为了避免管道运输阶段因泄露而引发安全事故,需要人员在明确现有化工工艺路线所涉及管道性能、材料、作用的前提下,依据物料与管道一一对应的原则,科学匹配。若系统存在连续散发有毒气体、可燃气体、酸雾、粉尘的情况,应进行密闭带除尘、除雾、吸收装置的设置。同时,定期对管道泄露情况进行检查,及时采取惰性气体密封防腐处理方式,消除管道安全隐患问题。

此外,危险介质藏量与化工工艺安全事故发生率、损失量、影响范围呈正相关,因此,在设备设施应用过程中,技术人员应尽可能减少危险介质藏量。比如,利用连续反应代替间歇反应,在大型设备底部设置排量超过8m3/h的液化烃泵入口,利用膜式蒸馏代替蒸馏塔,利用离心抽提代替抽提塔,利用闪蒸干燥代替盘式干燥塔等。

3.3 条件

化工工艺过程条件的严苛程度并非无法变更,在富有余地的情况下,技术人员应尽可能缓和过程条件的严苛度。比如,采取更好的催化剂,利用气相进料代替液相进料,稀释进料浓度等,在一定程度上缓和化学反应的剧烈程度[5]。同时,鉴于化工工艺运行过程安全事故出现概率与条件参数具有较为密切的关系,且化工工艺条件参数的数量与其对工艺运行过程安全度的干扰成正比。因此,在化工工艺条件设计过程中,技术人员应贯彻删繁就简的原则,利用一个条件完成多种操作的模式代替多个条件分别完成一个功能的模式,在一定程度上增加生产可靠性、电气安全性以及本质安全水平。比如,对于散发有害气体、有害蒸汽的厂房,除通风设施设置外,应依据TJ36车间空气中有害物质最高容许深度要求,设定机械通风取风口确保送出空气中有害气体、粉尘低于车间空气有害物质最高容许深度值的30.00%。

3.4 流程

从化工工艺安全运作层面可知,科学、恰当地控制化工工艺流程,需要以化学反应热量交换为重点,综合考虑绝热温升、冷却功率、最大反应速率、承压能力等因素,进行逐一分析判定、控制[6]。具体控制作业开展前期,技术人员可以归纳整理化工工艺前期全部资料,将获取的制作厂家数据资料、物料基础设计包等信息进行整理汇总,同时收集所需的数据资料并研究资料的提供方法,根据所判定的提供方法进行化工工艺流程中危险环节的识别与组织控制。

一般,化工工艺流程多通过图示的方式表示,涵盖了化工生产工艺全部文件。比如,对于物料从原料到成品或半成品的工艺过程以及所涉及设备装置、管线的设置情况,可以利用工艺流程草图的方式设置。在工艺流程草图中,利用示意图表述化工工艺生产阶段所使用的设备机器,并利用数字、文字、字母进行相关设备名称、位号的填写。以某物料残液蒸馏处理的工艺方案流程草图为例,其主要为蒸汽+物料残液+上水→蒸馏釜→冷凝器→真空受槽→放空,或者蒸汽+物料残液+上水→循环冷却回水→液态物料去物料贮槽。由上述流程图可知,工艺中所使用的设备为冷却器、蒸馏釜、真空接受罐,流程为物料残液与水共同进入蒸馏釜内形成共沸物,在蒸汽加压作用下进行常压蒸馏处理。馏分进入冷却器,与水逆向换热冷却后先后进入真空受罐、物料贮罐。而从冷却器流出的馏分可以依靠真空泵的抽力向压力低的位置流动。在整个流程中,风险较大的环节为物料残液与水在蒸馏釜内共沸、馏分进入冷却器与水逆向换热,技术人员可以着重监控,细化管理方案,保证整个工艺流程安全进行。

4 结语

综上所述,化工工艺危险可以划分为工艺所使用的物质危险、化学反应的过程危险两个层面,具体涉及了物料、设备设施、流程、条件等。因此,化工工艺安全设计人员应适时利用指标分析方法,构建完善的化工工艺风险评价指标体系,确定各模块风险特征以及危害范围。根据识别结果,采取针对性控制措施,避免危险因子妨碍化工工艺安全运作。

参考文献

[1] 史哲齐,李继繁,王悦,等.基于TOPSIS-AHP法的石化企业环境风险筛选研究[J].南开大学学报:自然科学版,2020(1):17-25.

[2] 白洪涛.危险化工工艺风险辨识方法研究[J].石化技术,2018(05):50.

[3] 李天舒,姚齐峰,李红,等.用于易燃易爆危险化学品快速识别的手机拉曼系统[J].红外与激光工程,2019(007):196-201.

[4] 窦珊,张广宇,熊智华,等.基于多源数据融合的化工园区危险态势感知[J].化工学报,2019(02):40-46.

[5] 任常兴,张欣,张琰,等.危险化学品泄漏事故点火源辨识与分析[J].消防科学与技术,2018(006):831-834.

[6] 陈静.化工工艺过程危險辨识与安全管控要点探究[J].当代化工,2017(263):213-214.

上一篇:关于暑期培训心得体会范文下一篇:关于综合实践活动课程范文