污水处理常用工艺范文

2024-06-20

污水处理常用工艺范文第1篇

猪场排出去的污染物属有机物, 经厌氧发酵效果最佳,但经处理过的污水还未达到最佳标准, 不能直接排放,适量用于农田、鱼塘是极佳的营养液。因此猪场的污泥处理必须从生物学及生态学相结合来考虑,才是最经济、最有效的种养业相互促进发展的最佳方式。

猪场养殖废水无论采取何种工艺及措施来进行处理,都应该采取一定的预处理。技术有:沉淀、过滤及离心等固液分离技术来实现预处理。沉淀是废水预处理应用最广泛的方法之一,可在重力作用下悬浮物自然沉淀并且与水分离的处理工艺。猪厂污水是粪尿的结合在做处理之前经过沉淀分离处理。产出有机污泥和有机污水。分离开处理使在之后的处理过程中降低负荷。污泥处理方法主要采取措施如下:

(一)有机微生物发酵讲解方法

有机微生物发酵讲解已经是现在处理有机污染物的有效方法措施,基本原理是利用微生物发酵剂在一定条件下分解无用有机物,产生有用有机物重新利用。有机污泥经过微生物发酵菌剂处理分解后的生成有用的有机物,可以直接施撒到农田、果园作为相当好的有机肥使用,实现处理达标后循环使用,有效改善养殖环境,减少对周边环境的威胁。

(二)有机污水处理方法

1、自然处理法。利用大自然对污水进行自我净化的原理来发挥作用。

2、人工厌氧处理法。也称沼气工程主要是提高污泥浓度和改善废水与污泥混合效果为基础的一系列高负荷反应器生物发展来处理废水。

3、人工好氧处理法。基本原理是利用微生物在好氧条件下分解有机物,同时合成自身细胞,可生物讲解的有机物最终可被完全氧化为简单有机物。

4、厌氧-好氧处理法。

污水处理常用工艺范文第2篇

图2-2链条式机械格栅

图2-3移动式伸缩臂机械格栅

图2-4 钢丝绳牵引三索式差动卷筒机械格栅

图2-5 多斗式平流式沉砂池构造图

图2-6 曝气沉砂池剖面图

图2-7多尔沉沙池(见李亚峰,P21,图2-12)

图2-8圆形涡流式沉砂池水砂分离流线图(见李亚峰,P20,图2-9下部),

图2-9钟式沉砂池(见李亚峰,P20,图2-10)

图2-10佩斯塔沉砂池

图2-11 平流式水力旋流沉砂池构造图

图2-12为带行车式刮泥机的平流式沉淀池

图2-13进出水装置及锯齿溢流堰图

图2-14多斗排泥平流式沉淀池

图2-15带链条式刮泥机的平流式沉淀池图

2-16静水压力法排泥

2-17竖流式沉淀池构造图 图

图2-18中心进水周边出水辐流式沉淀池(见李亚峰P24,图2-16)

图2-19周边进水中心出水辐流式沉淀池(见李亚峰P24,图2-17)

图2-20周边进水周边出水辐流式沉淀池(见李亚峰P25,图2-18)

图2-21平移推流式

图2-22旋转推流式

图2-23曝气池廊道

图2-24采用回转式布水器的普通生物滤池

图2-25 高负荷生物滤池构造图

图2-26 塔式生物滤池构造图

图2-27生物转盘构造

图2-28 接触氧化池构造图

图2-29为间歇式重力浓缩池构造图。(见李亚峰P62,图3-1)

图2-30辐射式连续重力浓缩池(见李亚峰P63,图3-2)

图2-31 竖流式污泥浓缩池

图2-32 矩形气浮浓缩池(见李亚峰P64,图3-5(b))

图2-33 圆形气浮浓缩池(见李亚峰P64,图3-5(a))

图2-34 圆形消化池

图2-35 蛋形消化池

图2-36 消化池的进泥与排泥方式

图2-37 污泥干化床

图2-38 带式压滤机脱水工艺流程

图2-39压榨辊轴P型带式压滤机

图2-40压榨辊轴S型带式压滤机

图2-41 卧式螺旋卸料离心脱水机

图2-42 板框压滤机滤板、滤框和滤布组合图

图2-43 AB法污水处理工艺流程

图2-44 A1/O法污水处理工艺流程

图2-45 A2/O法污水处理工艺流程

图2-46 A2/O法污水处理工艺流程

图2-47 典型SBR反应器运行模式

图2-48 ICEAS反应池操作过程(见周金全P56图1-37)

图2-49 CAST反应池的运行工序(见见周金全P56图1-38)

图2-50 CASS反应池的运行工序(见李亚峰P41图2-37

图2-51 DAT-IAT工艺流程(见李亚峰P42图2-38)

图2-52 MSBR常规工艺流程图

图2-53 韩国incheon国际机场的MSBR工艺的平面布置及运行过程

图2-54 UNITANK工艺的运行过程(见李亚峰P42图2-39)

图2-55是氧化沟污水处理工艺流程(见周金全P46图1-22)

图2-56 普通Carrousel氧化沟系统

图2-57 卡罗塞尔2000氧化沟工艺

图2-58 卡罗塞尔3000氧化沟系统

图2-59 Orbal氧化沟系统

图2-60 D型氧化沟

图2-61 T型氧化沟

图2-62 DE型氧化沟的工艺流程(见李亚峰P45图2-46)

图2-63 VR型氧化沟系统

图2-64 侧渠式氧化沟

图2-65 BMTS型氧化沟

图2-66 船型氧化沟

图2-67 转刷曝气型氧化沟(见周金全P48图1-25)

法A段曝气池构造示意图

图2-69 AB法B段曝气池构造示意图

2-70 A1/O法构筑物示意图

图2-71 A2/O法构筑物示意图

图2-72 A2/O法构筑物示意图

图2-73 ICEAS反应器构造图

图2-74 CASS反应器构造图

图2-75 BZQ-W型球冠形膜微孔曝气器(见周金全P169图2-72)

图2-76 盘式橡胶膜微孔曝气器(见周金全P169图2-73)

图2-77 STEDCO200型橡胶膜微孔曝气器(见周金全P170图2-75)

图2-78 STEDCO300型橡胶膜微孔曝气器(见周金全P170图2-74)

图2-79 高密度聚乙烯复盘型(φ178×8)微孔曝气器(见周金全P171图2-76)

图2-80 高密度聚乙烯复盘型(φ180×8)微孔曝气器(见周金全P171图2-77)

图2-81 GY.ZZ型钟罩形刚玉微孔曝气器(见周金全P171图2-78)

图2-82 BG-I型圆拱形刚玉微孔曝气器(见周金全P171图2-79)

图2-83 GY.Q型球形刚玉微孔曝气器(见周金全P171图2-80)

图2-84 射流曝气系统

图2-85 固定管式滗水器(见周金全P184图2-101)

图2-86注气式柔性管滗水器(见周金全P185图2-102)

图2-87钢索式柔性管滗水器(见周金全P185图2-103)

图2-88 手动式滗水器(见周金全P186图2-104)

图2-89 双吊点螺旋杆传动套管式滗水器(见周金全P186图2-105)

图2-90 旋转式滗水器(见周金全P187图2-106)

图2-91肘节式滗水器(见周金全P187图2-107)

图2-92 泵吸式滗水器(见周金全P188图2-108)

图2-93 堰门式滗水器(见周金全P188图2-109)

图2-94 门控式柔性管滗水器(见周金全P188图2-110)

图2-95 螺杆传动旋转式滗水器(见周金全P189图2-111)

图2-96 SM型潜水搅拌机外形和结构示意图(见周金全P146图2-50)

图2-97 几种转刷曝气机

图2-98 曝气转盘

图2-99 PE17

2、PE193型泵型曝气机外形(见周金全P173图2-84)

图2-100 BE型泵型叶轮表面曝气机外形(见周金全P174图2-88)

图2-101 DY型倒伞形叶轮表面曝气机外形(见周金全P175图2-89)

图2-102 FT型浮筒式也叶轮表面曝气机外形(见周金全P175图2-90)

图2-103 自吸螺旋曝气机

图2-104射流曝气机

污水处理常用工艺范文第3篇

1.检验污水处理厂系统设计是否合理,施工是否达到设计要求;

2.确定最佳的运行条件,主要是各工艺参数的确定,如:水泵最佳运行水位,旋流沉砂池的旋流速度,反应池最佳污泥负荷、污泥龄、污泥回流比、污水回流比、剩余污泥排放量、最佳曝气量等;

3.发现存在问题并逐一分析解决,为今后的正式运行积累经验数据。

二、前提条件

1.充足的水源补给,外围泵站和管网应具备向污水处理厂连续输送污水的能力并同样完成了清水联动试车;

2.各种设备的联动试车完毕且功能完备,性能良好,满足工艺要求,联动试车过程中发现的问题应得到妥善处理;

3.全流程已进行了清水联动试车,并确认无直接影响培菌试运行的存在问题;

4.培菌过程所需的人员、材料和工具均已准备齐全;

5.各岗位工作人员必须经过培训和实习,达到熟悉本岗位职责,胜任本岗位工作的要求;

6.现场24小时均需有工作人员有场,工作人员实行三班四运行转工作制,日班现场人数需15人(连工程师),中夜班人数各需6人;

7.污泥处理系统已配套完成并明确脱水后污泥的处置。

三、培菌方案摘要

考虑到培菌费用的节省和便于集中人力、物力,计划整个培菌过程分三个阶段进行。第一阶段:先对1#反应池北池(5.5万吨/日)和2#反应池南池(5.5万吨/日)进行活性污泥培养;第二阶段:1#反应池北池和2#反应池南池活性污泥培养成熟后,进行1#反应池南池和2#反应池北池的培菌工作;第三阶段:稳定运行和除磷脱氮调试;最后进入连续生产运行。

四、培菌方法

采用间歇换水,连续换水结合法。

五、菌种来源及数量

菌种来自大坦沙污水处理厂

一、二期工程的污泥浓缩池,通过一台DN100的移动潜水泵把浓缩池污泥抽至4000L的泥浆运输车(共两台)内,再用泥浆运输车将浓缩后污泥分别运至1#反应池北池和2#反应池南池的侧边,再用DN100的移动潜水泵(每池一台,共二台)直接将泥泵至池内,经过对反应池体积的计算及工艺要求约需含水率97%的菌种5600M3(未包括调试过程中遇到的菌种死亡等特殊情况)。

六、培菌工期

培菌工作共需120天,其中第一阶段需45天,第二阶段需30天,第三阶段需要45天。

七、人员配置

根据培菌工作需要设定以下工作小组:

1.指挥小组:由公司领导组成;

2.培菌技术小组:需工艺工程师3名、机械工程师2名、仪表工程师1名、电气工程师2名;

3.操作小组:需工艺技术员5名、机械技术员4名,电气技术员3名,机械维修工4名、电气维修工3名,工艺技工6名;

八、工作分配

1.技术管理工作:制定培菌过程中各项技术方案,指导调整各项技术参数,根据实际工作进展调整培菌计划,监督落实培菌计划的完成,该工作由培菌技术小组负责;

2.运行管理工作:根据培菌计划现场执行各种相应操作,包括负责安装便携潜水泵输送菌种,控制各进、出水阀门,调节池中曝气量等。该工作由操作小组负责,日、中、夜三班连续运转;

九、培菌所需的材料和设备

1.通讯设备:对讲机8台;

2.菌种输送泵:3台(DN100);

3.泥浆运输车:两台(每台4000L);

4.菌种输送临时电源:四套;

5.机械维修工具一套及电工检修仪表一套;

6.便携式溶氧计一台。

十、培菌具体操作

反应池及二沉池编号示意图

1、第一阶段:1#反应池北池和2#反应池南池活性污泥培养

通过污泥泵(一台)把将

一、二期厂区活性污泥菌种抽至泥浆运输车内(两台)分别运至1#反应池南池和2#反应池北旁边,再用泵(每池一台污泥泵,共二台泵)抽入池内。

具体操作步骤如下:

(1)启高位进水井总进水阀和东、西配水总阀。

(2)开启格栅渠道1#~4#进水阀、关闭两个超越阀,并把四个出水可调堰门调至最低位。

(3)开启1#反应池北池和2#反应池南池所有进水阀,关闭和1#反应池北池和2#反应池南池的超越阀门,关闭1#反应池南池和2#反应池北池所有进水阀门及超越阀门。

(4)将1#反应池北池和2#反应池南池的出水可调堰门调至最低位。

(5)开启配水井2#、4#二沉池进水阀和出泥阀,关闭1#、3#、5#、6#二沉池进水阀和出泥阀。

(6)开启厂外泵站水泵向厂区送水,此时开启转鼓格栅和沉砂系统设备,污水经格栅和沉砂池后进入1#反应池北池和2#反应池南池。

(7)当污水淹没曝气管后,开启一台鼓风机并逐渐打开1#反应池北池和2#反应池南池的各段气阀,然后开始将菌种泵入池内,调节曝气量使污泥能充分搅拌处于悬浮状态即可。

(8)检查搅拌器安装尺寸,并逐台开启搅拌器,进行空载试验,检查搅拌器空载运行情况;

(9)水淹没搅拌器后,开启所有搅拌器进行搅拌。

(10)当污水水位上升将至出水堰高度时,关闭厂外泵站污水泵停止向厂区供水并继续投加菌种,调节曝气量,进入静态闷曝直到菌种投加完毕。

(11)菌种投加完毕后,静态闷曝12小时,然后再次启动厂外泵站污水泵向厂区供水,进入间歇换水阶段。间歇换水量每次为反应池水量的一半约2万m3,保持每小时流量4000m3,,每隔5小时开启(关闭)水泵。

(12)污水流进2#二沉池后,开动刮泥机通过排泥阀将污泥回流至污泥回流泵房,并视泥面液位开启污泥回流泵,将沉淀后的污泥输送回反应池内。

(13)检查混合液回流泵和污泥回流泵安装尺寸、支撑情况、轴承润滑情况;

(14)检查管路阀门设置是否合适,供配电系统是否完好;

(15)间歇换水方式持续约20天,通过测试污泥沉降比如SV>15,则可进入连续换水阶段。厂外泵站污水泵连续向厂区供水,流量控制为5万吨/天。曝气量控制为DO=1~2mg/l,直到1#反应池南池活性污泥成熟,MLSS达到3500mg/l后进入下一阶段。

2、第二阶段:1#反应池南池和2#反应池北池的活性污泥培养

因1#、2#反应池南、北池污泥回流泵房因污泥回流渠而连通,故1#反应池南池培菌时可直接用南池的污泥回流泵将北池的成熟活性污泥菌种投加进南池内,2#反应池北池培菌时可直接用北池的污泥回流泵将南池的成熟活性污泥菌种投加进北池内。

3、具体操作步骤:

(1)开启1#反应池南池和2#反应池北池的所有进水阀,将1#反应池南池和2#反应池北池的出水可调堰门调至最低位。

(2)厂外泵站加开一台污水泵向厂内供水。

(3)当污水淹没曝气管后,启动污泥回流泵,将活性污泥菌种用回流泵投加进需培菌的反应池内。

(4)加开一台鼓风机并逐渐打开各段气阀,调节曝气量使污泥能充分搅拌处于悬浮状态即可。

(5)当污水淹没搅拌器桨叶后,开启所有搅拌器进行搅拌。

(6)当污水水位上升至出水堰高度时,开启配水井1#、3#、5#、6#二沉池进水阀和出泥阀。

(7)当污水流进1#、3#、5#、6#二沉池并淹没刮泥机转动臂后,启动1#、3#、5#、6#刮泥机。

(8)当1#、3#二沉池水位上升至出水堰高度时,视1#反应池南池污泥液面情况加开一台污泥回流泵加速将菌种回流进南池。当5#、6#二沉池水位上升至出水堰高度时,视2#反应池北池污泥液面情况加开一台污泥回流泵加速将菌种回流进北池。

(9)通过调节1#反应池南、北池及三个二沉池的进配水阀门、污泥回流泵数量和各段曝气量,保持稳定运行直至南、北池污泥均成熟,测试沉降比SV>15,MLSS >3500mg/l后进入下一阶段。

4、第三阶段: 稳定运行阶段

本阶段主要工作如下:

(1)因上一阶段已完成培菌工作,本阶段各池根据工艺实际情况排放剩余污泥。 (2)调节各池进水阀、配水阀、气阀和污泥回流泵,保持各池均衡、稳定运转。

(3)开启1#、2#反应池污水回流阀并启动污水回流泵。

(4)在化验分析数据指导下,开始对除磷脱氮效果进行测试,逐步保证出水五大指标合格。

十一、试运行保障措施

1.成立指挥小组和下属二个工作小组

(1)指挥小组

(2)培菌技术小组,共8人

(3)操作小组,其中技术员12人,技术工人13人(24小时工作制,实行四班三运行转,日班保证有7人,中夜班各保证有6人。

2.建立例会制度

(1)指挥小组每三天召开例会,研究、讨论、协调解决试运行中出现的问题,及时根据运行实际高速试运行计划或步骤并向下属二个工作小组下达相应指令;

(2)二个工作小组根据指挥小组指令和试运行计划执行操作,对发现的问题每天召开小组会进行汇总和书面记录并由组长向指挥小组汇报;

3.建立问题汇报和反馈系统

十二、可能存在问题及解决办法

1. 活性污泥量不足:根据化验数据计算不足污泥量,尽快补充菌种;

2. 活性污泥死亡:分析具体原因,对气量、进水量、回流污泥量进行相应的调整;

3. 池面白泡过多:减少鼓风机台数或调小出气阀并加大污泥回流量;

4. 污泥沉淀性差:减少进水量及曝气量,增大污水停留时间;

5. 污泥反硝化上浮:减少曝气池末段曝气量,加大污泥回流量;

6. 出水SS偏高:降低进水负荷或减少曝气量,增大排泥量;

污水处理常用工艺范文第4篇

一、A/O工艺 1.基本原理

A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH

3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。 2.A/O内循环生物脱氮工艺特点

根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:

(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设臵有脱固定氨的装臵后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

(4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。

(5) 缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮 (内循环) 工艺流程,使污水处理装臵不但能达到脱氮的要求,而且其它指标也达到排放标准。 3. A/O工艺的缺点

1.由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低;

2、若要提高脱氮效率,必须加大内循环比,因而加大了运行费用。另外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%。

4、 影响因素

水力停留时间 (硝化>6h ,反硝化<2h )污泥浓度MLSS(>3000mg/L)污泥龄(>30d )N/MLSS负荷率(<0.03 )进水总氮浓度( <30mg/L)

二、A2/O工艺

1.基本原理

A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。

2. A2/O工艺特点

(1)污染物去除效率高,运行稳定,有较好的耐冲击负荷。

(2)污泥沉降性能好。

(3)厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。

(4)脱氮效果受混合液回流比大小的影响,除磷效果则受回流污泥中夹带DO和硝酸态氧的影响,因而脱氮除磷效率不可能很高。

(5)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。

(6)在厌氧—缺氧—好氧交替运行下,丝状菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀。

(7)污泥中磷含量高,一般为2.5%以上。 3.A2/O工艺的缺点

(1)反应池容积比A/O脱氮工艺还要大;

(2)污泥内回流量大,能耗较高; (3)用于中小型污水厂费用偏高; (4)沼气回收利用经济效益差; (5)污泥渗出液需化学除磷。

三、氧化沟

1氧化沟技术

氧化沟(oxidation ditch)又名连续循环曝气池(Continuous loop reactor),是活性污泥法的一种变形。氧化沟污水处理工艺是在20世纪50年代由荷兰卫生工程研究所研制成功的。自从1954年在荷兰首次投入使用以来。由于其出水水质好、运行稳定、管理方便等技术特点,已经在国内外广泛的应用于生活污水和工业污水的治理。至今,氧化沟技术己经历了半个多世纪的发展,在构造形式、曝气方式、运行方式等方面不断创新,出现了种类繁多、各具特色的氧化沟。从运行方式角度考虑,氧化沟技术发展主要有两方面:一方面是按时间顺序安排为主对污水进行处理;另一方面是按空间顺序安排为主对污水进行处理。属于前者的有交替和半交替工作式氧化沟;属于后者的有连续工作分建式和合建式氧化沟,见图1氧化沟工艺分类。目前应用较为广泛的氧化沟类型包括:帕斯韦尔(Pasveer)氧化沟、卡鲁塞尔(Carrousel)氧化沟 、奥尔伯(Orbal)氧化沟 、T型氧化沟(三沟式氧化沟)、DE型氧化沟和一体化氧化沟。

2氧化沟工艺在污水处理中的应用

从理论上讲,氧化沟既具有推流反应的特征,又具有完全混合反应的优势;前者使其具有出水优良的条件,后者使其具有抗冲击负荷的能力。正是因为有这个环流,且有能量分区的缘故,使它具有其它许多污水生物处理技术所拥有的众多优势,其中最为显著的优势是工作稳定可靠。由于具有出水水质好,运行稳定,管理方便以及区别于传统活性污泥法的一系列技术特征,氧化沟技术在污水处理中得到广泛应用。据不完全统计[4],目前,欧洲己有的氧化沟污水处理厂超过2 000多座,北美超过800座。氧化沟的处理能力由最初的服务人口仅360人,到如今的500万~1 000万人口当量。不仅氧化沟的数量在增长,而且其处理规模也在不断扩大,处理对象也发展到既能处理城市污水又能处理石油废水、化工废水、造纸废水、印染废水及食品加工废水等工业废水

。我国自20世纪80年代亦开始应用这项技术,随着污水处理事业的极大发展,全国各地先后建起了不同规模、不同型式的氧化沟污水处理厂。目前在我国,采用氧化沟处理城市污水和工业废水的污水处理厂已有近百家,见表1(我国典型氧化沟型式及应用及表)2(部分国内氧化沟污水处理厂型式及规模)。 3氧化沟工艺的研究新进展

通过对多种连续流生物除磷脱氮工艺时空关系的分析,并结合新的除磷脱氮理论,继续贯彻简易污水处理的思想,重庆大学的王涛、钟仁超、刘兆荣、麦松冰等人对氧化沟工艺进行了改良。

3.1改良氧化沟池型的构建原则

改良氧化沟池型的构建是在一体化简易污水处理技术的思想基础上,依托于卡鲁塞尔氧化沟、一体化氧化沟和奥贝尔氧化沟而建立的。它是以连续流的方式,不作专门的时空调配,通过空间分区和空间顺序及对溶解氧的优化控制,将污水净化(C、N、P的去除)和固液分离功能集于一体,以水力内回流的方式替代机械内回流的反应器。构建的总原则是以连续流的方式,在更少的和合理的空间中完成C、N、P和SS的同时去除。

3.2改良氧化沟池型

按上述构建原则,提出了如图2所示改良型氧化沟模型。污水流入外沟经回流调节闸板后流经中沟和内沟,在各沟道内循环数十次到数百次,最终由固液分离器进行泥水分离出水。外—中—内沟道分别为好氧/缺氧交替区、厌氧区和好氧区,完成有机物的降解和同时脱氮除磷该模型着重在保留奥贝尔氧化沟硝化反硝化优势,同时克服该工艺占地面积大的缺点。借鉴卡罗塞尔氧化沟跑道型沟道的构型和 水力内回流方式,减少了大回流比的机械设备;考虑将奥贝尔氧化沟的同心圆型沟道展开,去掉中心岛的无效占地,同时又保留其三沟道串连、层层推进的流态特点。另外,将一体化氧化沟中的侧沟固液分离器技术也揉合了进来,不设臵单独的二沉池并实现污泥的无泵自动回流。

3.3改良氧化沟的优化分析

(1)改良型氧化沟采用奥贝尔氧化沟三沟道串联的特性,将各分区考虑成串联,从而有利于难降解有机物的去除,并可减少污泥膨胀现象的发生[9]。

(2)改良型氧化沟借鉴奥贝尔氧化沟的溶解氧梯度分布,具有较好的脱氮功能。在外沟道形成交替的好氧和大区域的缺氧环境,较高程度地发生“同时硝化/反硝化”,即使在不设内回流的条件下,也能获得较好的脱氮效果。由于外沟道溶解氧平均值很低,氧传递作用是在亏氧条件下进行的,所以氧的传递效率有所提高,有一定的节能效果,一般约节省能耗15%~20%。加之外沟道内所特有的同时硝化/反硝化功能,节能效果更为明显。内沟道作为最终出水的把关,一般应保持较高的溶解氧,但内沟道容积最小,能耗相对较低。

(3)改良型氧化沟将奥贝尔氧化沟布臵相对困难的圆形或椭圆形沟型设计为环状跑道型,降低了占地面积和工程造价。同时取消了无效占地的中心岛,进一步节省占地面积和造价。

(4)改良型氧化沟借鉴卡罗塞尔氧化沟水力条件,使内沟的好氧区向外沟的缺氧区回流实现了水力内回流,简化了处理环节、节省了设备和能耗。

(5)改良型氧化沟借鉴一体化氧化沟将集曝气净化和固液分离于一体的优势,不单独建二沉池和污泥回流泵站,污泥自动回流,简单、节能且节省占地和基建投资。

4结论

(1)氧化沟由于其出水水质好、运行稳定、管理方便等技术特点,在我国污水处理厂中有着较为广泛的应用。

(2)改良型氧化沟模型借鉴了卡罗塞尔氧化沟的构型和内回流方式,引用了侧沟式一体化氧化沟的侧沟固液分离技术,同时保留了奥贝尔氧化沟三沟串连、层层推进的流态特点,是多种先进工艺的集成,是氧化沟技术研究的新进展。

(3)改良型氧化沟工艺具有系统简单、管理方便、节约能耗、节省占地和减少基建投资等优点。

以下为几种常见氧化沟的类型结构示意图:

1. 基本原理 氧化沟又名氧化渠,因其构筑物呈封闭的环形沟渠而得名。它是活性污泥法的一种变型。因为污水和活性污泥在曝气渠道中不断循环流动,因此有人称其为“循环曝气池”、“无终端曝气池”。氧化沟的水力停留时间长,有机负荷低,其本质上属于延时曝气系统。氧化沟一般由沟体、曝气设备、进出水装臵、导流和混合设备组成,沟体的平面形状一般呈环形,也可以是长方形、L形、圆形或其他形状,沟端面形状多为矩形和梯形。 2.氧化沟工艺特点

(1)构造形式多样性

基本形式氧化沟的曝气池呈封闭的沟渠形,而沟渠的形状和构造则多种多样,沟渠可以呈圆形和椭圆形等形状。可以是单沟系统或多沟系统;多沟系统可以是一组同心的互相连通的沟渠,也可以是相互平行,尺寸相同的一组沟渠。有与二次沉淀池分建的氧化沟也有合建的氧化沟,合建的氧化沟又有体内式和体外式之分,等等。多种多样的构造形式,赋予了氧化沟灵活机动的运行性能,使他可以按照任意一种活性污泥的运行方式运行,并结合其他工艺单元,以满足不同的出水水质要求。

(2)曝气设备的多样性

常用的曝气设备有转刷、转盘、表面曝气器和射流曝气等。不同的曝气装臵导致了不同的氧化沟型式,如采用表曝气机的卡鲁塞尔氧化沟,采用转刷的帕斯维尔氧化沟等等,与其他活性污泥法不同的是,曝气装臵只在沟渠的某一处或者几处安设,数目应按处理场规模、原污水水质及氧化沟构造决定,曝气装臵的作用除供应足够的氧气外,还要提供沟渠内不小于0.3m/s的水流速度,以维持循环及活性污泥的悬浮状态。

(3)曝气强度可调节

氧化沟的曝气强度可以通过两种方式调节。一是通过出水溢流堰调节:通过调节溢流堰的高度改变沟渠内水深,进而改变曝气装臵的淹没深度,使其充氧量适应运行的需要。淹没深度的变化对曝气设备的推动力也会产生影响,从而可以对进水流速起到一定的调节作用;其二是通过直接调节曝气器的转速:由于机电设备和自控技术的发展,目前氧化沟内的曝气器的转速时可以调节的,从而可以调节曝气强度的推动力。

(4)简化了预处理和污泥处理

氧化沟的水力停留时间和污泥龄都比一般生物处理法长,悬浮装有机物与溶解性有机物同时得到较彻底的稳定,姑氧化沟可以不设初沉池。由于氧化沟工艺污泥龄长,负荷低,排出的剩余污泥已得到高度稳定,剩余污泥量也较少。因此不再需要厌氧消化,而只需进行浓缩和脱水。

3.氧化沟工艺的缺点:

(1)污泥膨胀问题

当废水中的碳水化合物较多,N、P含量不平衡,pH值偏低,氧化沟中污泥负荷过高,溶解氧浓度不足,排泥不畅等易引发丝状菌性污泥膨胀;非丝状菌性污泥膨胀主要发生在废水水温较低而污泥负荷较高时。微生物的负荷高,细菌吸取了大量营养物质,由于温度低,代谢速度较慢,积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值很高,形成污泥膨胀。

(2)泡沫问题

由于进水中带有大量油脂,处理系统不能完全有效地将其除去,部分油脂富集于污泥中,经转刷充氧搅拌,产生大量泡沫;泥龄偏长,污泥老化,也易产生泡沫。

(3)污泥上浮问题

当废水中含油量过大,整个系统泥质变轻,在操作过程中不能很好控制其在二沉池的停留时间,易造成缺氧,产生腐化污泥上浮;当曝气时间过长,在池中发生高度硝化作用,使硝酸盐浓度高,在二沉池易发生反硝化作用,产生氮气,使污泥上浮;另外,废水中含油量过大,污泥可能挟油上浮。

(4)流速不均及污泥沉积问题

在氧化沟中,为了获得其独特的混合和处理效果,混合液必须以一定的流速在沟内循环流动。一般认为,最低流速应为0.15m/s,不发生沉积的平均流速应达到0.3~0.5m/s。氧化沟的曝气设备一般为曝气转刷和曝气转盘,转刷的浸没深度为250~300mm,转盘的浸没深度为480~ 530mm。与氧化沟水深(3.0~3.6m)相比,转刷只占了水深的1/10~1/12,转盘也只占了1/6~1/7,因此造成氧化沟上部流速较大(约为0.8~1.2m,甚至更大),而底部流速很小(特别是在水深的2/3或3/4以下,混合液几乎没有流速),致使沟底大量积泥(有时积泥厚度达1.0m),大大减少了氧化沟的有效容积,降低了处理效果,影响了出水水质。

四、SBR工艺 1.工艺原理

在反应器内预先培养驯化一定量的活性污泥,当废水进入反应器与活性污泥混合接触并有氧存在时,微生物利用废水中的有机物进行新陈代谢,将有机物降解并同时使微生物细胞增殖。将微生物细胞物质与水沉淀分离,废水即得到处理。其处理过程主要由初期的去除与吸附作用、微生物的代谢作用、絮凝体的形成与絮凝沉淀性能几个净化过程完成。

2.SBR工艺特点

(1)理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。

(2)运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。

(3)耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。

(4)工艺过程中的各工序可根据水质、水量进行调整,运行灵活。

(5)处理设备少,构造简单,便于操作和维护管理。

(6)反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。(7)SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。

(8)脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。 (9)工艺流程简单、造价低。主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布臵紧凑、占地面积省。 3. SBR工艺的缺点

(1)间歇周期运行,对自控要求高; (2)变水位运行,电耗增大; (3)脱氮除磷效率不太高; (4)污泥稳定性不如厌氧硝化好。

五、CAST工艺

1、CAST工艺原理

CASS生物处理法是周期循环活性污泥法的简称,CASS池分预反应区和主反应区。在预反应区内,微生物能通过酶的快速转移机理迅速吸附污水中大部分可溶性有机物,经历一个高负荷的基质快速积累过程,这对进水水质、水量、PH和有毒有害物质起到较好的缓冲作用,同时对丝状菌的生长起到抑制作用,可有效防止污泥膨胀;随后在主反应区经历一个较低负荷的基质降解过程。CASS工艺集反应、沉淀、排水、功能于一体,污染物的降解在时间上是一个推流过程,而微生物则处于好氧、缺氧、厌氧周期性变化之中,从而达到对污染物去除作用,同时还具有较好的脱氮、除磷功能。

2、CAST工艺特点 (1)运行灵活可靠

● 生物选择器可以根据污水水质情况,以好氧、缺氧和厌氧三种方式运行。选择器可以恒定容积也可以可变容积运行

● 可任意调节状态,发挥不同微生物的生理特性

● 选择器容积可变,避免产生污泥膨胀,提高了系统的可靠性

● 抗冲击负荷能力强,工业废水、城市污水处理都适用 (2)处理构筑物少,流程简单

● 池子总容积减少,土建工程费用低

● 不需设二次沉淀池及其刮泥设备,也不用设回流污泥泵站

(3)可实现除磷脱氮

● 调节生物选择器可变容积的曝气和非曝气顺序,提高了生物除磷脱氮效果

(4)节省投资

● 构筑物少,占地面积省

● 设备及控制系统简单

● 曝气强度小,不须大气量的供气设备

● 运行费用低 3.工艺缺点

(1)间歇周期运行,对自控要求较高;

(2)变水位运行,电耗增大;

(3)容积利用率较低;

污水处理常用工艺范文第5篇

海南省文昌市文城污水处理厂设计与运行

摘要:海南省重点项目文昌市文城污水处理厂设计建设规模为6×104 m3/d,采用循环活性污泥处理工艺(CAST)对污水处理厂收纳的城市污水进行处理,该处理工艺具有布置紧凑,抗冲击能力强,较适本工程的水量水质特点,通过对设计中的相关参数的总结分析,为今后污水处理厂的稳定运行提供借鉴。

关键词:污水处理;循环活性污泥法;生化处理

海南省文昌市文城污水处理厂设计建设规模为6×104 m3/d,厂址位于海南省文城镇以东、红旗溪与文昌河交汇处,生化处理工艺采用循环活性污泥法处理工艺,是海南省重点项目之一;近期处理规模3×104 m3/d,采用循环活性污泥处理工艺处理污水处理厂收纳的市政污水,该工程于2008 年建设2010 年8 月建成并投入试运行。厂本文拟通过设计层面上的总结分析,为今后污水处理厂设计及其出水水质稳定达标的提供借鉴。

1.工程进水水质

文城污水处理厂所处理的废水主要为市政污水,包括居民生活污水、商业设施排水、公共设施排水、一定量的食品加工及其它排水。该污水主要以有机污染物为主,同时含有一定的难降解物质以及一定的氮、磷等物质。属于可生物降解污水。其中,工业废水约占30%,生活污水约占70%,在结合周边城镇污水处理厂的进水水质并综合考虑之后该厂进水水质如表

1文城污水处理厂进水水质表1

该污水处理厂进水水质可生化性较好,考虑到排放要求,需要对进水中的有机物、氮、磷均要有一定的去除率,最终所选的处理工艺必须具有除磷脱氮的功效。经过对多种适用工艺的比选和论证,本着先进适用的原则,本工程采用循环式活性污泥法作为生化处理工艺;与其它处理工艺比较,该工艺以一组反应池整合了传统方法及其他改进方法中的调节池、初次沉淀池、曝气池及二次沉淀池,整体布置紧凑简单,无需复杂的管线传输,工艺路线简洁且更具有灵活性;在污水处理厂刚建成运行时,流量一般来说较设计值低,循环式活性污泥Page 1of

5系统可以调节液位计的设定值使用反应池部分容积,降低风压、减少风量,避免了不必要的电耗;循环式活性污泥法将生物选择理念与序批式活性污泥法有机的结合在一起,池中的易引起污泥膨胀的丝状菌因生物选择性和反应条件的不断循环变化而得到有效的抑制;传统活性污泥法及氧化沟法泥水分离方式均采用动态沉淀的方式,泥水分离效果不易保证,而循环式活性污泥法在沉降和滗水阶段不进水,沉淀和排水完全在静态环境下进行,可确保良好的固液分离效果,不仅能够充分保证较高的出水水质,而且能充分地保留更多的活性污泥,为保证处理效果创造了有利的条件;采用了成熟稳定的自动化控制和先进的监测仪器和设备降低了日常劳动强度;该工艺处理流程简单,控制灵活,可根据进水水质和出水水质控制指标及处理水量,改变运行周期及工艺处理方法。适应性很强;同时,该工艺在运行时序上类似于推流式,而在空间布置上又近似完全混合式,运行中既具有推流式反应推动力较大,去除(污染物)速度较快的特点,又兼有完全混合式抗冲击能力较强的特点,与以往的传统工艺相比存在着显著的优越性。其工艺流程见图

1进水

废渣

外排2.主要处理构筑物

(1)格栅及进水泵房。格栅井与进水泵集水井合建,格栅井内设两台回转式格栅除污机,每台格栅间隙16mm,宽度1300mm;格栅的启停由PLC根据栅前、后水位差自动控制,也可由现场人工就地控制。分离后的栅渣经提升收集后外运填埋。而鉴于城市发展对卫生安全及环境保护的要求,将格栅除污机建于室内,这样有利于进行臭气的收集处理。 垃圾填埋厂

进水泵集水井内设高效污水潜污泵4台,每台水泵流量840 m3/h,扬程18m, 可以根据水位控制水泵开停也可以使水泵按顺序轮换工作。同时,每台水泵可根据进水情况通过变频器实施变频,保持运行于高效点,达到节能降耗的目的。

(2)细格栅及旋流沉砂池。本工程细格栅间与旋流沉砂池合建,格栅间内设两台自清式格栅除污机,每台格栅间隙3mm,宽度1900mm,格栅倾角60°;细格栅由现场PLC根据格栅前后的水位差自动控制启停,经格栅分离出的栅渣由螺旋输送机输送至压榨机减容后装车外运。格栅间内的臭气经由收集装置排至除臭系统。

本工程设两座旋流式沉砂池,单座池径3650mm,池深4340mm,处理能力为1980m3/h。沉砂池日产砂量1.8m3,每座沉砂池各采用一台气提泵定期将池内沉砂排至砂水分离器,该气提泵分别配套一台罗茨鼓风机(风量1.83m3/min,升压0.06Mpa);进入砂水分离器的沉砂经砂水分离后装车外运。

(3)循环式活性污泥反应池(CAST池)配水井。为了保证CAST池内各池处理负荷基本一致,本设计在CAST池进水端设一座配水井,该井平面尺寸为4.5m×2.4m,高8.25m,超高1.0m。

(4)循环式活性污泥反应池(CAST池)。近期CAST池按3万m3/d规模设计,设一组CAST池,池内分4座反应池;预留一组4座CAST反应池位置作为远期发展之用;每座反应池的平面尺寸为69.3m×22m,最大水深5.0m,超高0.8m,总容积为7623 m3,每组反应池总有效容积30492 m3。每座反应池分为生选择区和主反应区,选择区的容积约占反应池总容积的10%~15%;反应池BOD5污泥负荷0.095 kgBOD5/(kgMLSS·d);池内混合液悬浮物质量浓度(MLSS)为4000mg/L;TN污泥负荷0.021kg/(kg·d);TP污泥负荷0.002kg/(kg·d);主反应区气水比为7.07。

循环式活性污泥反应池的设计运转周期为4小时,其中进水曝气2小时, 沉淀1小时,滗水1小时,每座反应池按时间顺序间歇运行,同组四座反应池轮流进水,从整体看,进水和出水是连续的,但各池是间歇的,每相邻两座CAST池为一个生化处理系统,同一时间只有不同系统的两池进水和曝气,只有一个池在沉淀或滗水。在进水的同时进行曝气、回流污泥,设计回流比20%~30%;设回流污泥泵5台(其中1台库房备用),单泵流量140 m3/h,扬程7.0 m,配用电机功率为7.5 kW;回流污泥泵将主反应区处于“饥饿”状态的活性污泥泵送至选择区,在污泥选择区通过设在其内的潜水搅拌机与来自旋流沉砂池的富含有机污染物的来水充分混合;潜水搅拌机共设9台,每座反应池的选择区内设2台,库房备用1台,

搅拌机由设备厂商根据选择区水力流态的分析确定型号及布置位置,桨叶直径Ø520mm,电机功率3.0kw;曝气强度和曝气历时可根据进水水质及主反应区内的溶解氧进行调整,主反应区的溶解氧值逐步达到2~3mg/L,使反应池有机物降解、同步硝化反硝化、生物过量摄磷等生化反应处于最佳的环境中;在完成曝气反应和静态沉淀后,反应池开始滗水和排泥;每座反应池设计最大滗水高度1.31m,平均滗水高度0.91m,设计最大滗水量1800 m3/h,在每座反应池末端设一台一拖二式的摇臂滗水器,将泥水分离后的水滗出池外;剩余污泥泵设置在反应池后端的泵井内,共4台,单泵流量75 m3/h,扬程15m;正常工作时,每座反应池对应一台剩余污泥泵,相邻两座反应池的剩余污泥泵干式安装在同一座泵坑内,在其中一台水泵出现故障情况下可以通过切换装置实现互相备用;剩余污泥泵在滗水阶段的后期通过池内的多点吸泥管将剩余污泥抽送至污泥缓冲池,经提升至污泥脱水机脱水缩容外运。

每座反应池的主反应区设置膜片式微孔曝气器2959个,供气量大,氧转移率高,单个曝气器设计供气量1~3m3/h。

生化池的进水、曝气、回流、沉淀、滗水、排泥可在控制室内按时间顺序进行集中控制。进水水量、水质的波动可以根据进、出水水量、水质通过调整鼓风量、曝气时间、污泥回流比、排泥量及运行周期等运行参数来控制。

(5)鼓风机房。主要为循环式活性污泥反应池的曝气装置提供气源,为了空气管路布置顺畅,尽量减少空气管路的压降,鼓风机房考虑近远期分别设置,近期鼓风机房内设3台罗茨鼓风机,2用1备,其中一台工作的鼓风机交替为同组2座反应池供气;另一台工作的鼓风机交替为其余同组另2座反应池供气;备用的鼓风机可替代任一台发生故障的工作鼓风机。

每台鼓风机设计流量Q=75 Nm3/min,设计升压P= 58.8 Kpa。鼓风机可根据设在循环式活性污泥反应池主反应区内的溶解氧的变化,通过变频调速自动调节供气量,实现在满足供气量要求下的节能降耗。

(6)紫外消毒渠。采用紫外消毒工艺,本工程近期设一座紫外消毒渠,远期再增设一座消毒渠。紫外消毒渠的设计流量为近期高日高时流量0.497m3/s。消毒渠长约5.60m,宽1.02m,水深1.3m。渠内设4个紫外消毒模块,消毒指标:粪大肠菌群数≤10 000 L-1,消毒渠旁共壁建一座超越渠,以便检修维护;消毒渠全部设备由自备的控制设备控制,运行操作简便,可无人长期管理。

(7)污泥脱水间。污泥脱水机间内的设备按近期规模配置,建筑尺寸按远期考虑。来

自CAST池的剩余污泥在此进行浓缩脱水,使其体积降至最低以便于运输处置。脱水间近期处理规模573 m3/d(含水率99.2 %),内设有卧式螺旋沉降离心机2台 (远期增设一台),单机转鼓直径Ø520 mm,及其配套螺旋输送机,污泥投配泵、污泥切割机,絮凝剂计量泵、冲洗水泵、自动絮凝剂制备装置(远期更换处理能力更大的设备以适应增加的污泥量)。

3.经济效益分析

由于设计期间,三材等建筑材料价格较高,该工程预算总投资约6359余万元,随着建材价格的调整,工程建设投资将会得到有效的控制;工程近期总用电负荷731kVA,单位水量能耗为0.288kWh/m3。污水处理的吨水能耗指标受很多因素影响,如进水情况,出水要求,处理工艺流程,工程所处的地理位置等。该污水处理厂能耗指标相比其它处理工艺略占优势,吨水能耗指标处于平均值。目前,文城污水处理厂已建成通水,并已投入试运行阶段,出水COD等污染物指标完全达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中规定的一级B标准,即工程的设计排放标准;该工程的建成和运行,将改善文昌市的水环境质量,保护市民的健康,促进工农业、旅游业的发展;该污水处理厂的建成对保证海南省文昌市经济建设及环境治理都有深远的效益。

4.结语

(1)通过工程设计及实地考察,循环活性污泥法处理工艺将SBR技术和生物选择器加以有机结合,具有优异的抑制污泥膨胀能力,降低了运行管理的难度,适用当地的运行管理水平;循环活性污泥法处理工艺因采用非限制曝气方式,即边进水边曝气的曝气方式,抗冲击负荷能力强,其控制灵活,可根据实际进水水质进行调整,适应工程进水水质特点,保证了出水水质稳定。

污水处理常用工艺范文第6篇

1.基本原理

A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH

3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。 2.A/O内循环生物脱氮工艺特点

根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:

(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5) 缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮 (内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。

3. A/O工艺的缺点

1.由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低;

2、若要提高脱氮效率,必须加大内循环比,因而加大了运行费用。另外,内循环液来自曝气池,含有一定的DO,使A段难以保持理想的缺氧状态,影响反硝化效果,脱氮率很难达到90%。

3、 影响因素

水力停留时间 (硝化>6h ,反硝化<2h )污泥浓度MLSS(>3000mg/L)污泥龄( >30d )N/MLSS负荷率(

<0.03 )进水总氮浓度( <30mg/L)

二、A2/O工艺

1.基本原理

A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。

2. A2/O工艺特点:

(1)污染物去除效率高,运行稳定,有较好的耐冲击负荷。

(2)污泥沉降性能好。

(3)厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。

(4)脱氮效果受混合液回流比大小的影响,除磷效果则受回流污泥中夹带DO和硝酸态氧的影响,因而脱氮除磷效率不可能很高。

(5)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。

(6)在厌氧—缺氧—好氧交替运行下,丝状菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀。

(7)污泥中磷含量高,一般为2.5%以上。 3.A2/O工艺的缺点

·反应池容积比A/O脱氮工艺还要大;

·污泥内回流量大,能耗较高;

·用于中小型污水厂费用偏高;

·沼气回收利用经济效益差;

·污泥渗出液需化学除磷。

三、氧化沟

1氧化沟技术

氧化沟(oxidation ditch)又名连续循环曝气池(Continuous loop reactor),是活性污泥法的一种变形。氧化沟污水处理工

艺是在20世纪50年代由荷兰卫生工程研究所研制成功的。自从1954年在荷兰首次投入使用以来。由于其出水水质好、运行稳定、 管理方便等技术特点,已经在国内外广泛的应用于生活污水和工业污水的治理[1]。至今,氧化沟技术己经历了半个多世纪的

发展,在构造形式、曝气方式、运行方式等方面不断创新,出现了种类繁多、各具特色的氧化沟[2]。

从运行方式角度考虑,氧化沟技术发展主要有两方面:一方面是按时间顺序安排为主对污水进行处理;另一方面是按空间顺序安

排为主对污水进行处理。属于前者的有交替和半交替工作式氧化沟;属于后者的有连续工作分建式和合建式氧化沟[3],见图1 氧化沟工艺分类。

目前应用较为广泛的氧化沟类型包括:帕斯韦尔(Pasveer)氧化沟、卡鲁塞尔(Carrousel)氧化沟 、奥尔伯(Orbal)氧化沟

、T型氧化沟(三沟式氧化沟)、DE型氧化沟和一体化氧化沟。 2,氧化沟工艺在污水处理中的应用

从理论上讲,氧化沟既具有推流反应的特征,又具有完全混合反应的优势;前者使其具有出水优良的条件,后者使其具有抗冲击

负荷的能力。正是因为有这个环流,且有能量分区的缘故,使它具有其它许多污水生物处理技术所拥有的众多优势,其中最为显

著的优势是工作稳定可靠。由于具有出水水质好,运行稳定,管理方便以及区别于传统活性污泥法的一系列技术特征,氧化沟技

术在污水处理中得到广泛应用。据不完全统计[4],目前,欧洲己有的氧化沟污水处理厂超过2 000多座,北美超过800座。氧

化沟的处理能力由最初的服务人口仅360人,到如今的500万~1 000万人口当量。不仅氧化沟的数量在增长,而且其处理规模也在

不断扩大,处理对象也发展到既能处理城市污水又能处理石油废水、化工废水、造纸废水、印染废水及食品加工废水等工业废水

。我国自20世纪80年代亦开始应用这项技术,随着污水处理事业的极大发展,全国各地先后建起了不同规模、不同型式的氧化沟

污水处理厂。目前在我国,采用氧化沟处理城市污水和工业废水的污水处理厂已有近百家,见表1(我国典型氧化沟型式及应用及 表)2(部分国内氧化沟污水处理厂型式及规模)。 3氧化沟工艺的研究新进展

通过对多种连续流生物除磷脱氮工艺时空关系的分析,并结合新的除磷脱氮理论,继续贯彻简易污水处理的思想,重庆大学的王

涛[5]、钟仁超[6]、刘兆荣[7]、麦松冰[8]等人对氧化沟工艺进行了改良。

3.1改良氧化沟池型的构建原则

改良氧化沟池型的构建是在一体化简易污水处理技术的思想基础上,依托于卡鲁塞尔氧化沟、一体化氧化沟和奥贝尔氧化沟而建

立的。它是以连续流的方式,不作专门的时空调配,通过空间分区和空间顺序及对溶解氧的优化控制,将污水净化(C、N、P的去

除)和固液分离功能集于一体,以水力内回流的方式替代机械内回流的反应器。构建的总原则是以连续流的方式,在更少的和合 理的空间中完成C、N、P和SS的同时去除。 3.2改良氧化沟池型 按上述构建原则,提出了如图2所示改良型氧化沟模型。污水流入外沟经回流调节闸板后流经中沟和内沟,在各沟道内循环数十

次到数百次,最终由固液分离器进行泥水分离出水。外—中—内沟道分别为好氧/缺氧交替区、厌氧区和好氧区,完成有机物的 降解和同时脱氮除磷。

该模型着重在保留奥贝尔氧化沟硝化反硝化优势,同时克服该工艺占地面积大的缺点。借鉴卡罗塞尔氧化沟跑道型沟道的构型和

水力内回流方式,减少了大回流比的机械设备;考虑将奥贝尔氧化沟的同心圆型沟道展开,去掉中心岛的无效占地,同时又保留

其三沟道串连、层层推进的流态特点。另外,将一体化氧化沟中的侧沟固液分离器技术也揉合了进来,不设置单独的二沉池并实 现污泥的无泵自动回流。 3.3改良氧化沟的优化分析 (1)改良型氧化沟采用奥贝尔氧化沟三沟道串联的特性,将各分区考虑成串联,从而有利于难降解有机物的去除,并可减少污 泥膨胀现象的发生[9]。 (2)改良型氧化沟借鉴奥贝尔氧化沟的溶解氧梯度分布,具有较好的脱氮功能。在外沟道形成交替的好氧和大区域的缺氧环境

,较高程度地发生“同时硝化/反硝化”,即使在不设内回流的条件下,也能获得较好的脱氮效果。由于外沟道溶解氧平均值很

低,氧传递作用是在亏氧条件下进行的,所以氧的传递效率有所提高,有一定的节能效果,一般约节省能耗15%~20%。加之外沟

道内所特有的同时硝化/反硝化功能,节能效果更为明显。内沟道作为最终出水的把关,一般应保持较高的溶解氧,但内沟道容 积最小,能耗相对较低。

(3)改良型氧化沟将奥贝尔氧化沟布置相对困难的圆形或椭圆形沟型设计为环状跑道型,降低了占地面积和工程造价。同时取

消了无效占地的中心岛,进一步节省占地面积和造价。

(4)改良型氧化沟借鉴卡罗塞尔氧化沟水力条件,使内沟的好氧区向外沟的缺氧区回流实现了水力内回流,简化了处理环节、 节省了设备和能耗。

(5)改良型氧化沟借鉴一体化氧化沟将集曝气净化和固液分离于一体的优势,不单独建二沉池和污泥回流泵站,污泥自动回流 ,简单、节能且节省占地和基建投资。 4结论

(1)氧化沟由于其出水水质好、运行稳定、管理方便等技术特点,在我国污水处理厂中有着较为广泛的应用。

(2)改良型氧化沟模型借鉴了卡罗塞尔氧化沟的构型和内回流方式,引用了侧沟式一体化氧化沟的侧沟固液分离技术,同时保

留了奥贝尔氧化沟三沟串连、层层推进的流态特点,是多种先进工艺的集成,是氧化沟技术研究的新进展。

(3)改良型氧化沟工艺具有系统简单、管理方便、节约能耗、节省占地和减少基建投资等优点。

以下为几种常见氧化沟的类型结构示意图:

多沟交替式氧化沟 卡鲁塞尔氧化沟 一体化氧化沟

奥贝尔氧化沟 1. 基本原理

氧化沟又名氧化渠,因其构筑物呈封闭的环形沟渠而得名。它是活性污泥法的一种变型。因为污水和活性污泥在曝气渠道中不断循环流动,因此有人称其为“循环曝气池”、“无终端曝气池”。氧化沟的水力停留时间长,有机负荷低,其本质上属于延时曝气系统。氧化沟一般由沟体、曝气设备、进出水装置、导流和混合设备组成,沟体的平面形状一般呈环形,也可以是长方形、L形、圆形或其他形状,沟端面形状多为矩形和梯形。

2.氧化沟工艺特点

(1)构造形式多样性

基本形式氧化沟的曝气池呈封闭的沟渠形,而沟渠的形状和构造则多种多样,沟渠可以呈圆形和椭圆形等形状。可以是单沟系统或多沟系统;多沟系统可以是一组同心的互相连通的沟渠,也可以是相互平行,尺寸相同的一组沟渠。有与二次沉淀池分建的氧化沟也有合建的氧化沟,合建的氧化沟又有体内式和体外式之分,等等。多种多样的构造形式,赋予了氧化沟灵活机动的运行性能,使他可以按照任意一种活性污泥的运行方式运行,并结合其他工艺单元,以满足不同的出水水质要求。

(2)曝气设备的多样性

常用的曝气设备有转刷、转盘、表面曝气器和射流曝气等。不同的曝气装置导致了不同的氧化沟型式,如采用表曝气机的卡鲁塞尔氧化沟,采用转刷的帕斯维尔氧化沟等等,与其他活性污泥法不同的是,曝气装置只在沟渠的某一处或者几处安设,数目应按处理场规模、原污水水质及氧化沟构造决定,曝气装置的作用除供应足够的氧气外,还要提供沟渠内不小于0.3m/s的水流速度,以维持循环及活性污泥的悬浮状态。

(3)曝气强度可调节

氧化沟的曝气强度可以通过两种方式调节。一是通过出水溢流堰调节:通过调节溢流堰的高度改变沟渠内水深,进而改变曝气装置的淹没深度,使其充氧量适应运行的需要。淹没深度的变化对曝气设备的推动力也会产生影响,从而可以对进水流速起到一定的调节作用;其二是通过直接调节曝气器的转速:由于机电设备和自控技术的发展,目前氧化沟内的曝气器的转速时可以调节的,从而可以调节曝气强度的推动力。

(4)简化了预处理和污泥处理

氧化沟的水力停留时间和污泥龄都比一般生物处理法长,悬浮装有机物与溶解性有机物同时得到较彻底的稳定,姑氧化沟可以不设初沉池。由于氧化沟工艺污泥龄长,负荷低,排出的剩余污泥已得到高度稳定,剩余污泥量也较少。因此不再需要厌氧消化,而只需进行浓缩和脱水。 3.氧化沟工艺的缺点:

(1)污泥膨胀问题

当废水中的碳水化合物较多,N、P含量不平衡,pH值偏低,氧化沟中污泥负荷过高,溶解氧浓度不足,排泥不畅等易引发丝状菌性污泥膨胀;非丝状菌性污泥膨胀主要发生在废水水温较低而污泥负荷较高时。微生物的负荷高,细菌吸取了大量营养物质,由于温度低,代谢速度较慢,积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值很高,形成污泥膨胀。

(2)泡沫问题

由于进水中带有大量油脂,处理系统不能完全有效地将其除去,部分油脂富集于污泥中,经转刷充氧搅拌,产生大量泡沫;泥龄偏长,污泥老化,也易产生泡沫。

(3)污泥上浮问题

当废水中含油量过大,整个系统泥质变轻,在操作过程中不能很好控制其在二沉池的停留时间,易造成缺氧,产生腐化污泥上浮;当曝气时间过长,在池中发生高度硝化作用,使硝酸盐浓度高,在二沉池易发生反硝化作用,产生氮气,使污泥上浮;另外,废水中含油量过大,污泥可能挟油上浮。

(4)流速不均及污泥沉积问题

在氧化沟中,为了获得其独特的混合和处理效果,混合液必须以一定的流速在沟内循环流动。一般认为,最低流速应为0.15m/s,不发生沉积的平均流速应达到0.3~0.5m/s。氧化沟的曝气设备一般为曝气转刷和曝气转盘,转刷的浸没深度为250~300mm,转盘的浸没深度为480~ 530mm。与氧化沟水深(3.0~3.6m)相比,转刷只占了水深的1/10~1/12,转盘也只占了1/6~1/7,因此造成氧化沟上部流速较大(约为0.8~1.2m,甚至更大),而底部流速很小(特别是在水深的2/3或3/4以下,混合液几乎没有流速),致使沟底大量积泥(有时积泥厚度达1.0m),大大减少了氧化沟的有效容积,降低了处理效果,影响了出水水质。

四、SBR工艺

1.工艺原理

在反应器内预先培养驯化一定量的活性污泥,当废水进入反应器与活性污泥混合接触并有氧存在时,微生物利用废水中的有机物进行新陈代谢,将有机物降解并同时使微生物细胞增殖。将微生物细胞物质与水沉淀分离,废水即得到处理。其处理过程主要由初期的去除与吸附作用、微生物的代谢作用、絮凝体的形成与絮凝沉淀性能几个净化过程完成。

2.SBR工艺特点

(1)理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。

(2)运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。

(3)耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。

(4)工艺过程中的各工序可根据水质、水量进行调整,运行灵活。 (5)处理设备少,构造简单,便于操作和维护管理。

(6)反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。

(7)SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。

(8)脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。

(9)工艺流程简单、造价低。主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。 3. SBR工艺的缺点

(1)间歇周期运行,对自控要求高;

(2)变水位运行,电耗增大; (3)脱氮除磷效率不太高;

(4)污泥稳定性不如厌氧硝化好。

五、CAST工艺

1、CAST工艺原理

CASS生物处理法是周期循环活性污泥法的简称,CASS池分预反应区和主反应区。在预反应区内,微生物能通过酶的快速转移机理迅速吸附污水中大部分可溶性有机物,经历一个高负荷的基质快速积累过程,这对进水水质、水量、PH和有毒有害物质起到较好的缓冲作用,同时对丝状菌的生长起到抑制作用,可有效防止污泥膨胀;随后在主反应区经历一个较低负荷的基质降解过程。CASS工艺集反应、沉淀、排水、功能于一体,污染物的降解在时间上是一个推流过程,而微生物则处于好氧、缺氧、厌氧周期性变化之中,从而达到对污染物去除作用,同时还具有较好的脱氮、除磷功能。

2、CAST工艺特点

(1)运行灵活可靠

● 生物选择器可以根据污水水质情况,以好氧、缺氧和厌氧三种方式运行。选择器可以恒定容积也可以可变容积运行

● 可任意调节状态,发挥不同微生物的生理特性

● 选择器容积可变,避免产生污泥膨胀,提高了系统的可靠性

● 抗冲击负荷能力强,工业废水、城市污水处理都适用

(2)处理构筑物少,流程简单

● 池子总容积减少,土建工程费用低

● 不需设二次沉淀池及其刮泥设备,也不用设回流污泥泵站

(3)可实现除磷脱氮

● 调节生物选择器可变容积的曝气和非曝气顺序,提高了生物除磷脱氮效果

(4)节省投资

● 构筑物少,占地面积省

● 设备及控制系统简单

● 曝气强度小,不须大气量的供气设备

● 运行费用低 3.工艺缺点

(1)间歇周期运行,对自控要求较高;

(2)变水位运行,电耗增大;

(3)容积利用率较低;

上一篇:为什么要参加高考范文下一篇:为什么要管教孩子范文