木结构建筑范文

2023-09-20

木结构建筑范文第1篇

摘要:高层建筑基础承担着将高层建筑上部结构的荷载传递给地基的重要作用,在设计时,应将高层建筑上部结构、基础与地基协同考虑。在地震区,凡是地基基础好的,建筑结构所受到的破坏就轻,危害就小。在工程质量事故中,如果基础工程出现质量问题,补救起来相当困难,还会给工程造价和工期带来较大的影响。所以,在进行地基基礎设计时,除了保证基础本身应具有足够的强度和刚度外,还应考虑地基的强度、稳定性及变形的要求,为使基础设计更合理,应综合考虑上部结构、基础和地基的共同作用。

关键词:高层住宅;建筑结构;选型;设计管理

引言

随着城市化建设进程的不断加快,近年来,建筑的设计开始逐渐趋于功能多元化发展。同时,基于我国基本国情,高层建筑的建设力度大幅度增加,促使我国各城市中的可规划空间越来越多,有效推进了我国的城市规划进程。高层建筑的结构设计质量,可对其整体安全性以及功能起到决定性影响,确保相关各环节设计的质量有助于促进高层建筑更好的发展。

1高层住宅建筑结构的选型

高层住宅建筑的结构体系和选型方式直接决定了建筑结构在建设过程中和建成使用后的经济效益和施工的难度。一般来说,传统的高层住宅建筑结构体系是指建筑物的物理结构能抵抗纵向和水平方向荷载和各种力的作用而保持结构的稳定性。对于建筑物中各种受力部件之间的相互作用关系和组成结构的方式,都涵盖在结构体系当中。住宅建筑由于其用途具有特殊性,建筑的结构需要以稳定性为重点进行设计和建造。各种力的传播和竖向以及水平方向的荷载都能通过水平构件和竖向构件实时的传递到地基上,从而不会对建筑物造成直接的外力作用,以此实现建筑物的整体结构稳定。但随着当前建筑物高度的不断增加,由于自然环境的风力和水平地震力的外力作用而产生的横向荷载会显著大于其纵向的增长速率。为此,就需要有针对性的对建筑结构中抗侧力体系进行加强。使外力能够沿着垂直向下的方向传到基础层,避免侧向外力对建筑造成的影响。

一般来说,高层住宅结构体系根据抗侧力体系进行分类,主要包括框架、剪力墙、筒体式、筒中筒和脊骨式等多种形式。也有一些复杂的结构形式由以上基本形式组合演变而来的连体、悬挑、带加强层的复杂结构形式也在近年的高层住宅建筑当中频繁出现。目前城市高层住宅建筑中最常见的结构是钢筋混凝土、钢和二者的混合结构这三种形式。在高层建筑住宅的选型阶段,应根据高层建筑安全经济运行所需要的结构基础和造价预算,以及工程施工的工期长短来选择最适宜的结构体系类型。还需要注意结构体系的选择,以适应建筑理念的可持续发展,并达到国家消防建筑体系的标准,消防安全是设计和选择的指导因素。

2优化设计的原则

2.1安全性

结构优化设计不仅可以降低工程投入,节约建设成本,更重要的是可以保证结构的安全性能。如果仅以节约资金投入作为结构优化的判别依据,而不考虑结构的安全性,那么结构的优化将无任何价值和作用,并且不能保证结构安全的优化设计也是行不通的,因此,安全性是设计人员结构优化的根本原则和基础条件。

2.2功能性

房屋建筑的功能性可通过优化设计体现,在优化过程中,不能以除去建筑物内部承压梁的形式提升空间范围,房屋建筑的功能和居住环境的舒适度是优化设计的重要原则,尤其是在目前的经济条件下,对房屋设计进行选择时,消费者有更加具体的功能性要求,只有在满足房屋功能性要求的条件下,建筑结构才能发挥它的实际价值和作用。

2.3经济性

对建筑材料的优化使用是房屋设计经济性原则的主要方法,建筑施工是一个涉及多个领域的综合性大型工程,并且随着经济水平的快速发展,各个方面,如钢筋、混凝土、水泥、砌体等都需要投入大量的资金,进行工程建设时,各个分支的资金使用十分有限,这就要求在保证安全性的条件下,遵循经济性原则,通过节能材料的合理选择严格控制建筑成本,合理安排施工流程,减少不必要的成本投入。

3高层建筑结构优化设计策略

3.1高层建筑结构方案的优化选择

高层建筑结构设计前,首先应做好结构方案的选择和选型工作。设计行业有“方案成功是设计成功的一半”的思想和共识。进行高层建筑结构优化设计时,必须将结构方案的选择与定型工作列为重要的前提和基础,为高层建筑结构设计的其他工作提供必要的计算、技术前提和条件。结构方案选择中,要确立标准和价值目标,以此来适应高层建筑结构设计工作的要求和目标,综合与权衡各类要素和各方面的因素,提升优化高层建筑结构设计的科学性和合理性。一个优秀的结构方案和设计产品,首先要符合建筑技术和设计行业的基本要求和标准,这是选择结构方案的必要前提。在优化高层建筑结构方案过程中,既要与施工要求一致,也要与外部条件吻合。在优化和选择高层建筑结构方案的细节中,要综合考虑社会、地质、文化等因素,预防地下水位过高、土质情况不良、社会文化制约等因素所产生的对高层建筑结构建设工作的影响,以此提升高层建筑结构设计的科学性及合理性。

3.2重视高层建筑结构计算简图的数字化运用

随着数字技术尤其是计算机的快速发展,传统的计算分析和图纸逐渐被数字化技术取代,在结构设计参数影响分析和快速设计结构方案时,数字化技术表现出了良好的适用性与可靠性。例如,可利用GAMES软件构建模型,该软件具有操作简单、处理快捷等优点,并在混合整数、线性及非线性优化方面有广泛的应用价值。另外,可利用TBCAD等软件进行科学、有效的建模分析和方案的优化,从而更加直观、准确地展现建筑结构形式。数字化计算机软件为处理结构优化设计的必备工具,在处理解决各种复杂情况时表现出了较强的使用功能。

3.3优化结构设计的功能性

在高层建筑结构优化设计工作中,要有多维度的视角和多层次的认知,这样,才能确保建筑结构满足施工建设及日后使用的要求和需要。在高层建筑结构优化设计过程中,设计人员要明确优化的基本目标———让高层建筑取得施工和使用、应用和安全、功能和保障上的最佳状态。从高层建筑结构优化设计工作开始,必须强化结构设计的多功能性。要根据高层建筑的立项意图和建设方意见进行结构优化的细节设计。但是,在结构优化设计过程中,必须强调工作的科学性和设计的规范性,所设计的结构和功能才能在施工中得到顺利体现,结构的优化才能有安全、标准、实施上实现的可能,才能提升整个高层建筑结构的功能性和适应性。在优化高层建筑结构设计过程中,必须重视延性设计环节,进而体现高层建筑结构的延性参数和指标,使高层建筑结构在优化的前提下更好地适应施工中冲击、使用中撞击、结构坍塌、框架形变等问题,以良好的延性冗余提升高层建筑结构的稳定性和功能性。在高层建筑结构优化设计过程中,要提升整体的水平力,这是优化工作的关键要素和重要参数。通过结构优化,提升高层建筑结构水平力的稳定性,将单一方向的荷载分解为高层建筑结构整体的受力,确保高层建筑结构水平方向的连续性和安全性。要在优化设计工作中,始终强调结构整体的稳定性。要通过结构强化、系统优化、功能分化等措施,提升结构的稳定性,进而适应建筑物在施工和使用中对各方面的影响,以此提高整体稳定性和连续性。

结束语:

总而言之,高层建筑结构设计人员要立足于加快城市建设进程和社会经济快速增长的大局,要看到高层建筑物在结构、功能和资源上的优势,有针对性地采取优化设计策略,以严谨的精神、科学的手段、系统的措施进行高层建筑结构的优化设计工作,从初始阶段就奠定好精品高层建筑结构的基础,对高层建筑结构施工建设产生更加直接、更加规范的引导和影响,系统强化,全面保障高层建筑结构施工质量和建设成果。

参考文献:

[1]岳文萍,周强茂,刘飞飞.高层建筑结构设计的问题及对策探讨[J].住宅与房地产,2016,(03):90-91.

[2]赵东晓.高层建筑结构设计的问题与对策研究[J].商品混凝土,2012,(09):132-133.

[3]张振新.高层建筑结构设计中的问题及对策研究[J].工程技术研究,2017,(07):218-219.

木结构建筑范文第2篇

【摘要】随着人们生活水平的提高,建筑技术日新月异的发展,人们对建筑的需求日渐呈现出多样化。在新的形势下,智能土木结构的出现,在一定程度上满足了人们的建筑需求。在现代建筑结构中,智能土木结构促进了土木工程的应用,提升了建筑性能。在本文中,笔者介绍了智能土木结构概念、类型及其在现代建筑结构中的应用。

【关键词】现代建筑结构;智能土木结构;应用;类型

当前,人们对建筑功能的要求越来越多,对居住舒适度的要求也越来越高。由于传统建筑结构多为物理力学性能结构,人们对结构控制的难度比较大,结构一旦失效,可能出现多种多样的问题。而智能土木结构的出现,很大程度上改变了这一现状,在结构中应用信息采集、传输功能材料与元器件等,提升了建筑结构的整体性能。

一、智能土木结构的内涵及其分类

(一)智能土木结构的内涵

在基本材料中融入具备仿生命功能的材料,使结构具备人们所期望的智能结构,就是智能材料结构。在土木工程结构中,应用智能结构,称之为智能土木结构。从整体来看,智能土木结构是一种仿生结构体系,综合应用了传感器、控制器、主结构与驱动器,实现了结构自控、损伤自修复,并具有较强的环境适应能力,同时可在发生危险时,有效进行自我保护。

智能土木结构出现后,结构耐久性、安全性与强度评估更加完整和准确,不仅提高了土木结构预测能力,而且在很大程度上减少了维护费用。在现代建筑结构中,智能土木结构以其优越性,具备宽广的应用潜江,在桥梁、大坝与高层建筑等现代建筑结构中均有着良好的应用。

(二)智能土木结构分类

(1)嵌入式结构。在基体材料中嵌入集动作、传染与控制功能的仪器与材料,并利用计算机技术实现对内部结构信息的采集与检测、加工处理,并将处理结果传输给控制处理器,这种结构称为嵌入式智能土木结构。

(2)基体与智能材料耦合结构。一些材料本身具备智能功能,可随自身力学与物理状态的改变而改变自身某些性能,比如碳纤维混凝土材料,导电性能可随自身受力情况的变化而改变,因此为获取结构内部信息提供了便利性。

二、智能土木结构在现代建筑结构中的实际应用

(一)智能传感元件的应用

在现代建筑结构中,迈入或粘贴一些智能传感软件,实现对建筑物的健康监测,是智能传感元件在现代建筑结构中应用的一个典范。将智能土木结构中的智能传感元件应用到建筑健康监测中,可检测与综合评价建筑的安全性、稳固性,同时也能保证检测结果的准确性,获取准确的数据,进而判断建筑的健康状况,预测建筑的寿命,为建筑维修或直接报废提供数据资料。

对于部分大规模建筑结构而言,建筑结构修建周期长,且应用设备比较陈旧,传统传感器无法适应内部环境,这时采用高性能传感器检测建筑结构健康,具有重要的作用,而光纤、智能材料等在土木结构中的应用,开创了土木工程发展的新时代,具有划时代的意义,使得建筑结构的发展出现了新契机。

(二)工程健康检测的实施

在建筑结构损伤与检测检测中,智能土木结构发挥着不可替代的作用,智能土木结构的出现具有重要的意义。在建筑结构健康检测中,一般会使用目测方法,同时还能够利用超声波、X射线与声发射等无损检测方法,从而提高建筑物健康检测的准确性,了解建筑内部结构的破损情况,可为建筑结构的维修提供准确依据,提高检测效率与准确性。比如建筑结构内部发生损伤后,外部就会出现裂缝或裂纹,而在外部力量的作用下,裂缝或裂纹会加剧内部结构的损伤,并以声速扩散,而这些均可以被特殊材料制作而成的传感元件所感知,通过分析相关检测数据,管理人员便可掌握内部结构的损害情况,进而及时规划建筑结构,避免发生安全事故。

(三)现代建筑节能支持

在现代建筑结构中,智能土木结构非但具备安全检测功能,同时还可为智能建筑提供节能技术。在目前建筑结构中,节能技术已经得到了广泛应用,而在建筑耗能规模较大的当今今天,建筑师们提出了节能建筑概念。因此,在智能建筑设计与建设过程中,尽可能应用节能器具与材料,利用智能土木结构的监测控制能力,在外部环境出现变化时,及时与合理调整建筑耗能,对于降低建筑能耗具有重要的意义。绿色建筑实现的前提,即在现代建筑中利用节能技术,促进建筑节能与绿色环保。

三、智能土木结构在现代建筑中提升的策略

(一)提升智能传感技术

为了更好在现代建筑结构中应用智能土木结构,应提高智能传感技术,以实现传感元件的性能优化。这是势在必行的事情。从仿生学角度看,对于现代建筑物来说,传感器如同其本身的感受器官,提升建筑感受能力,则应注重智能传感技术的提高,从技术的系统性入手,增强智能传感器的感知、识别与处理能力,并在此基础上,增强智能传感器系统的可靠性与灵敏度。

在现代建筑工程中,应用智能传感元件,应保证不对建筑外形结构产生影响,同时也要保证建筑结构的相容性,将对建筑物的影响降到最低,增强建筑抗干扰能力。

(二)智能控制集成系统的发展

如果将建筑比作人体,则智能控制系统相当于人体的大脑神经中枢,属于最高级的部分,智能控制系统不仅决定着感觉系统与运动系统程序,而且还担负着整个脑神经的高级运转协调功能。在现代建筑智能土木结构中安装智能集成系统,可使得建筑对一些比如强降雨、风暴等迅速作出反应,减少损失与人员伤亡。所以,相关研究部门应重视智能控制集成系统的开发、研究与应用,以更好实现对整个环境的控制,保证建筑结构的安全性。

(三)加大对结构应用的研究

智能土木结构属于一种新的结构类型,在现代建筑结构中,智能土木结构虽然有着良好的应用效果,但是整体来看,该结构的应用仍处于初级阶段,结构应用中还存在着不少的问题和不足,比如结构选择不当、技术应用水平低等问题,阻碍了智能土木结构在现代建筑结构中应用的发展。为了提高智能土木结构的应用水平,应加大对结构应用的研究,准确把握智能土木结构内涵、类型及其适用条件,根据建筑功能、性质与规模的不同,合理选择智能土木结构的类型,提升结构应用的水平。

另外,由于智能土木结构可为建筑提供节能技术,实现建筑的生态环保。所以为了降低建筑能耗,还应加大对节能技术应用的研究,提高太阳能、地热能与风能的利用率,降低化石燃料的使用率,降低建筑对周围环境的影响。

结 语

总之,随着智能技术与建筑的发展,在现代建筑结构中,各种智能技术得到了良好应用。而其中,智能土木结构综合应用了多种技术与材料,其在建筑结构中的应用,提高了建筑健康检测能力与安全性,满足了人们对建筑智能化的要求。在本文中,笔者首先分析了智能土木结构的内涵、分类,然后介绍了现代建筑结构中智能土木結构的应用,最后笔者结合自身工作经验,提出了智能土木结构应用水平提升的策略,包括提高智能传感技术水平、发展控制集成系统等。

参考文献:

[1]李沁羽.智能土木建筑技术的发展与应用[J].科技创新导报,2013,19:1124-1125.

[2]吕秀丽.浅谈智能土木结构[J].城市建设理论研究(电子版),2011,22:1098-1099.

[3]焦朋,吴顺聚.土建技术中的建筑施工[J].城市建设理论研究(电子版),2013,18:214-215.

[4]吴海华.现代建筑结构中智能土木结构的应用[J].硅谷,2015,01:123-124.

[5]司马小.浅谈智能土木结构理论[J].现代城市理论研究,2014,23:145-146.

木结构建筑范文第3篇

摘 要:随着我国建筑业的进步,建筑结构设计也朝着功能多样化、结构复杂化、高层化的方向发展。在现代城市建筑中,带转换层的小型高层建筑越来越多。这种新的建筑结构形式不仅可以使建筑结构更加灵活多样,还可以丰富建筑的使用功能,从而满足用户对建筑的多样化需求。然而,带有转换层的小型高层建筑在一定程度上增加了结构设计的难度。这就要求结构设计人员充分了解转换层的结构特点和具体功能,严格遵守小高层建筑和转换层的设计规范,提高结构设计的效率和质量,保证带转换层的小型高层建筑的稳定、安全,促进我国建筑结构设计整体水平的提高。本文就转换层的小型高层建筑结构设计进行了探讨,以供参考。

关键词:转换层;小高层建筑;结构设计

通常,为了结构的合理性,高层建筑需要在建筑的下部增加更多的墙体,以保证相应的承载力。然而,在实际建筑中,上部需要一些墙体来满足住宅的要求,而下部需要拆除许多墙体以获得更大的空间,因此这些结构会产生一些矛盾。因此,有必要在高层建筑中设计转换层,以保证结构的使用性和安全性。

一、转换层定义及功能

为了满足人们的需求,需要在高层建筑的上层设置较多的墙体,轴线的布置较为复杂,而下部需要较大的空间,应该尽量的减少墙体,保证柱网足够大。在这种情况下,上层的荷载可能不会直接传递给地基,会对结构的安全性产生影响。对此应该利用转换结构来将竖向荷载传递给水平转换构件,这就是带有转换层的高层建筑结构。

首先,通过转换层能够将上部的剪力墙荷载传递给下部的框架,属于上下层结构类型的转换,这种结构类型主要出现在剪力墙和框架—剪力墙结构中,这种方式能够保证内部自由空间的充足;另外还有上下层结构柱网和轴线的改变方式,这种方式使转换层上下的结构形式不会发生变化,但是利用转换层能够增加下部结构的柱距,保证柱网的扩大,这种形式主要在外框筒的下层来进行设置,保证下部获得较大的使用空间;还有就是能够对上下层结构同时进行转换的结构类型和柱网,这种方式是上述两种方式的结合,不但能够将转换层上部的剪力墙结构转化成框支剪力墙,还能将上部剪力墙和下部柱网的轴线错开,这样就能够保证上下层不同使用功能的灵活性。

二、转换层的结构形式

根据复杂的高层建筑功能的需要,选择恰当的结构转换层,不但可以节省材料的用量,而且也可以减少建造费用。同时还能够将建筑与结构灵活的统一起来,实现建筑之美。那么,转换层的结构有哪些形式呢?内部结构方面。从建筑内部结构方面来讲,为实现复杂小高层建筑内部上层和下层结构形式以及柱网的变化,梁式转换层、板式转换层、箱式转换层、桁架式转换层和空腹桁架式转换层都是我们可以采用的转换形式。外围结构方面。对于外围结构来讲,由于建筑功能的需要,通常会在建筑的底部扩大柱距,而一般采用的方式也包括梁式转换、桁架式转换,但同时还有墙式转换、间接式转换、合柱式转换以及拱式转换等方式。另外,还有V形柱式结构转换和斜柱式结构转换,这两种转换方式应用的随机性和灵活性更强,但同时对于技术水平的要求也更高,所以并没有得到普遍应用。

三、转换层的小高层建筑结构设计核心探究

3.1转换层的小高层建筑的抗震结构设计要点

在转换层的小高层建筑结构的设计中,由于转换层结构的抗震能力会受到很多因素的制约,因此当小高层建筑对抗震性能有较高的要求时,应尽量避免采用转换层结构。在转换层的小高层建筑结构设计实践中发现,不同的转换层高度、其上层结构和转换层之间的侧向刚度比以及其上下结构刚度比等因素都会对建筑结构的抗震能力产生重要的影响。

3.2转换层的小高层建筑的纵向结构设计要点

在设计转换层的小高层建筑结构的剪力墙时应保证其上下部分的受力相互一致,同时在设置剪力墙时还应合理选择开孔位置。此外应合理控制剪力墙底部的受力情况,避免出现负荷过大的问题而影响建筑结构整体的稳定性和安全性。在设计中应提高受力分配的均匀性,从而保证建筑结构的承载能力。设计人员可以采用混凝土结构的转换柱来作为转换层的纵向支撑构件,而混凝土转换柱不仅重量相对较轻,成本比较低,而且可以提高转换层的空间利用率。

3.3转换层的小高层建筑的横向结构设计要点

在转换层的小高层建筑的横向结构中,设计人员应对平面结构进行优化设计。在设置剪力墙时应尽量选择楼梯间或电梯间附近以及建筑空间的四周,以提高平面布局的合理性。同时应对剪力墙结构的受力控制在合理范围内,以提高转换层结构的承载性能,从而保证建筑结构的整体受力能力能够达到设计要求。

3.4设计转换层的小高层建筑结构时的注意事项

(1)对小高层的整体受力情况要进行详细的分析。在进行转换层的小高层建筑结构的设计时,由于转换层的受力情况比较复杂,而且小高层建筑各層的使用功能也各不相同,因此设计人员应充分考虑各种影响因素,对转换层以及小高层建筑各层的受力情况分别进行详细的计算。(2)剪力墙的设置要科学合理。在转换层的小高层建筑结构设计中,设计人员应合理布置剪力墙结构的框架支柱,保证其间距均匀,且其间距应为约11cm。同时在剪力墙结构的设计中还应综合考虑小高层建筑整体结构的稳定性,并确保其地下部分的抗压性能能够达到设计要求。此外,在设计转换梁时,应充分考虑其承载能力以及应力因素的影响,对转换梁的两端采取科学的处理方式,以提高其稳定性和安全性。

结 语:

总而言之,转换层的小高层建筑对结构设计提出了较高的要求,因此结构设计人员应严格遵守建筑结构设计规范,并结合建筑工程的相关设计标准以及功能要求,对建筑结构进行全面详细的分析计算,合理选择转换层的具体结构形式以及各项结构参数,充分发挥转换层应用的作用,提高建筑结构的整体稳定性和安全性,实现多元化的建筑功能,从而使建筑结构设计能够更好的适应建筑行业现代化发展的需要。

参考文献:

[1]谢钰.建筑施工转换层施工技术分析[J].中国科技投资,2021(8):149,180.

[2]朱凌宇.建筑工程转换层技术分析[J].砖瓦世界,2021(14):96.

[3]陈虎,张良平,谢亚驹.某超高层搭接块转换层结构受力性能研究[J].建筑结构,2021,51(13):9-14.

木结构建筑范文第4篇

1 基础隔震的抗震分析

隔震支座的水平动刚度KH和垂直动刚度KV分别为

式中, ε为动刚度和静刚度之比, 一般取1.2;G, E为分别为橡胶静剪切和压缩模量;F为支座面积;n为橡胶片数;H为橡胶片厚度。结构基底安装m个橡胶支座, 其剪切刚度KB和转动刚度Kθ分别为

式中, I为隔震支座至结构基底中线距离。

一般建筑结构可按多质点体系进行分析。结构的运动方程为

式中

计算时应考虑隔震支座的水平剪切刚度和转动刚度。按振型分解反应谱方法计算地震作用时, 先求解结构的自由振动, 待解得结构固有周期和振型后, 再计算地震作用下结构的内力。

2 层间隔震抗震分析

2.1 高层建筑顶部层间隔震减震结构的设计思想

通过把隔震层设置在高层建筑结构的上部, 把建筑分成上下两个部分, 利用上下结构的动力相互作用和隔震层的阻尼作用进行减震。与基础隔震结构相比, 这种隔震方案具有以下优点。

(1) 与基础隔震相比, 层间隔震结构不需要特意为隔震层在地震时发生的较大位移预留空间, 也不必设置与预留空间相对应的构造措施;与一般楼层相比, 隔震层的水平刚度很小, 地震时将发生较大的变形。对于基础隔震结构, 隔震层通常位于室外地面以下, 为了保证地震时隔震层能发挥作用, 《规范》规定, 上部结构的周边应设置防震缝, 缝宽不宜小于各隔震支座在罕遇地震下的最大水平位移值的1.2倍, 上部结构与地面之间, 宜设置明确的水平隔离缝;当设置隔离缝有困难时, 应设置可靠的水平滑移垫层。在走廊、楼梯、电梯等部位, 应无任何障碍物。而对于顶部隔震, 由于隔震层设置中上部柱顶, 结构的大变形发生在没有障碍的空中, 也就不存在预留空间及相应的构造问题。

(2) 降低结构的土建造价。

对于基础隔震结构, 在隔震层顶部需要增设一层厚度大于140mm的梁板式楼盖, 且楼盖的梁板刚度和承载力均应大于一般楼面梁板的刚度和承载力。这样, 结构的自重会因此而有明显的增加。而顶部隔震则不需要增设这样的楼盖。在隔震层设置在较低位置时, 隔震支座的选取主要是由使隔震支座在竖向荷载作用下的压应力不超过容许值来控制的, 因此减少一层楼板就会减小隔震支座的数量或尺寸。所以, 层间隔震结构不但能减小一层楼板的费用, 还可减小隔震支座的费用, 具有较为显著的经济效益。对于在结构屋顶上面设置调频质量阻尼器 (TMD) 进行地震反应控制的方案, 一般需要额外的附加质量, 并为附加质量提供足够大的运动空间, 这是TMD的不足之处。若将屋盖或上部结构当做附加质量, 在屋盖下面或几层楼层下面采用隔震支座作为弹簧阻尼系统, 则在保证控制效果的同时, 弥补TMD的不足, 还可以降低造价。

(3) 顶部隔震可以提高结构的抗倾覆能力。

对于高层建筑而言, 一般高宽比比较大, 即倾覆力矩大, 基底容易产生拉应力, 而隔震支座的抗拉性能又较差, 《规范》规定, 隔震支座不允许出现拉应力, 这样一来, 提高高层建筑隔震体系的隔震层位置, 可以使结构的抗倾覆力矩与倾覆力矩的比值增大, 保证隔震结构在地震时不发生倾覆破坏。

(4) 施工方便。

采用隔震技术的房屋, 通过隔震层处的水暖管道均需设置成软管。隔震层设置在层间时, 软管部分就可以设置在地面以上, 便于软管部分的施工、维修和更换。对旧有房屋进行抗震加固时, 若采用基础隔震形式, 需要在基础顶部将原有结构断开, 进行施工, 比较复杂。而在原有结构的顶部设置隔震层, 施工过程会方便很多。在以下几种工程中, 可以采用顶部隔震结构形式, 进行地震反应的控制。

2.2 建筑顶部隔震结构的减震分析

衡量顶部隔震结构减震效果的方法是通过比较结构在地震反应下采用顶部隔震形式时与普通结构形式下地震反应的大小。本章中采用通用有限元软件ANSYS从一个规则结构入手, 建立三维有限元模型, 将高层建筑顶部隔震体系与普通结构的计算结果进行比较研究顶部隔震体系的减震效果。其中, 普通体系是指一般的框架一抗震墙结构体系。模型中框架柱和框架梁均采用Beam4单元, 剪力墙及楼板均采用Shell63单元, 橡胶隔震支座单元采用多种弹簧阻尼单元组合模拟。

3 结语

本文将橡胶隔震支座作为结构基底的剪切弹簧和扭转弹簧, 采用矩阵位移法进行结构动力分析, 这种方法简便, 适合工程设计使用。采用橡胶隔震支座, 减少地震对结构的冲击, 是一种极为有效的防震措施, 应进一步研究该法在实际工程应用中的间题, 以便逐步试点, 推广应用。对层间隔震而言, 从高层建筑框架—剪力墙主体结构实例入手, 将高层建筑顶部隔震结构与不隔震结构的计算结果进行比较。经分析发现:顶部隔震减震结构体系, 利用了上部对下部结构的反馈作用, 有效减小了主体结构的地震响应;即高层建筑顶部隔震形式的结构, 如果选择合理的结构的重力荷载比、隔震层水平刚度和阻尼比, 在单向地震作用下可以有效地减小结构的位移、楼层总位移、层间剪力以及加速度等地震反应。顶部隔震减震结构体系具有高效、经济等优点, 而且有许多实际工程需求, 但系统的研究理论和设计方法还没有形成, 本文在研究中发现, 尤其在罕遇地震下, 隔震层的位移突变问题仍比较明显。因此, 对刚度突变问题引起的层间隔震的安全问题做进一步研究仍是十分必要的。

摘要:将结构物简化为多质点体系, 考虑隔震支座的水平刚度、垂直刚度和转动刚度, 按反应谱方法进行了高层剪力墙结构和砖结构抗震计算, 结果表明, 隔震结构可以大幅度地降低地震作用。另外, 利用结构自身的顶部作为TMD质量块, 并用叠层橡胶支座和摩擦阻尼器设置在建筑物中上部的楼层之间, 利用隔震层上部的质量和隔震层部件组成TMD减震系统来控制地震反应。

关键词:建筑结构,抗震设计,基础隔震,顶部层间隔震

参考文献

[1] 苏经宇, 曾德民.我国建筑结构隔震技术的研究与应用[J].地震工程与工程振动, 2001, 21 (4) :94~101.

[2] 中华人民共和国建设部.GB500n一2001.建筑抗震设计规范[S].北京:中国建筑工业出版社, 2001.

[3] 童伟民, 周韦瑞.断路器及其减震体系的抗震研究地震工程与工程振动, 2008, 2 (1) :53~56.

[4] 刘文光.橡胶隔震支座力学性能和隔震结构地震反应分析研究[D].北京:北京工业大学, 2003.

木结构建筑范文第5篇

摘要:对村镇的建筑所具有的的抗洪性能进行进一步的系统研究是非常有必要的,具有十分重要的作用。通过对洪水作用下的CFRP加固村镇砖混建筑进行有限元模型的建立,利用有限元软件建立模型对CFRP加固的村镇砖混建筑与加固前的村镇砖混建筑进行对比分析,对因为洪水而造成的生命财产损失的减少和建立幸福和谐的社会主义新农村提供保障。

关键词:CFRP加固;村镇砖混;建筑有限元;洪水作用

在我国,具有高发生频率、经济损失巨大的自然灾害之一就是洪水,每年都有大量的村镇建筑在洪水中遭到严重的破坏甚至是倒塌,因此,对村镇的建筑所具有的的抗洪性能进行进一步的系统研究是非常有必要的,具有十分重要的作用。通过对洪水作用下的CFRP加固村镇砖混建筑进行有限元模型的建立,利用有限元软件建立模型对CFRP加固的村镇砖混建筑与加固前的村镇砖混建筑进行对比分析,对因为洪水而造成的生命财产损失的减少和建立幸福和谐的社会主义新农村提供保障。

一、洪水作用下CFRP加固的村镇砖混建筑有限元概述

(一)洪水对村镇砖混建筑的作用力分析模块

村镇砖混建筑结构的抗洪性能主要受到墙体性能的决定,而洪水对村镇砖混建筑进行冲击破坏的形式包括以下两种:1.对于平原地区的浅基础村很砖混建筑,当洪水的流速达到相应的临界流速的时候,那么地基的表层土壤就会开始的进行流失,当地基被冲击刷到一定深度的时候,那么建筑的结构墙体就会得到悬空,假如在砖混结构内不具备地梁,那么就会在墙体之间出现来盈利,从而超过了墙体所具有的抗拉强度而发生倒塌;如果在砖混结构内具有地梁而且正好其刚度也比较大的时候,那么如果冲刷的范围比较小,建筑的结构还是会保持一定的平衡,但是当冲刷的范围达到一定的程度时,那么整个建筑就会出现倾斜,严重的时候还会发生倒塌。2.对于在山区沟谷两侧的村镇砖混建筑来说,当沟谷中的洪水位比较高的时候,那么洪水就会从地势比较低的一端开始对建筑的地基进行冲刷。

(二)洪水作用下村镇砖混建筑的倒塌危险性快速评估模块

村镇砖混建筑在洪水作用下受到破坏甚至是倒塌除了对财产造成巨大的损失之外还会对人民的生命安全财产产生威胁,因此在对村镇砖混建筑在洪水作用下发生倒塌的威胁性评估中具有三个方面最基本的作用和意义:1.能够及时的对危险的村镇砖混建筑进行加固或是进行搬迁;2.可以将安全的村镇砖混建筑作为临时的避难场所;3.对于一些没有进行加固过的威胁建筑,当发生洪水危害的时候人员能够得到尽快的疏散离开。

二、洪水对村镇砖混建筑的作用力

(一)洪水的动水压力

通常情况下,洪水对建筑物的作用力主要是指动水压力、静水压力和浮力等,对于静水压力和浮力的计算比较容易,而当洪水的流速在0.9m/s以上的时候,就应该对洪水所产生的动水压力进行考虑了。一般来说,洪水对建筑物的墙体等各种构件所产生的动水压力在其整个的迎水面来说分布是十分不均匀的,而其具体的分布是由众多的因素所决定的。

(二)洪水冲击村镇砖混建筑平面墙体的拖曳系数

洪水对于村镇砖混建筑的墙体所造成的威胁是最大的,而且大部分的村镇砖混建筑的墙体基本上都是平面的,因此一般都只是考虑到洪水对平面墙体进行冲击时所产生的拖曳系数。若当洪水作用在墙面上的时候不是垂直作用而是与墙面之间形成一个夹角的时候,那么其拖曳系数就应该适当的进行降低;若一个建筑与其相邻的建筑之间所产生的距离比起两个建筑墙体加起来的长度和一半还小的时候,那么拓也悉数就应该提升一个级别。此时,动水压力所产生的合力就是洪水位之下的墙体面积和动水压力两者的乘积。如果墙体上具有较大面积的空洞的时候,那么在计算面积的时候就应该将空洞的面积进行扣除,而且也不需要对空洞给拖曳系统所造成的影响进行考虑。

三、建立洪水作用下的村镇砖混建筑有限元模型

(一)洪水作用下的村镇砖混建筑的基本假设

通常建立洪水作用下的村镇砖混建筑有限元模型为了能够尽可能的减少计算量,那么可以在建立之前进行一些基本的假设:1.假设洪水所产生的动水压力可以简化成为在迎水面上得到均布的荷载,而且墙体与基础设施之间没有发生相对的位移;2.假设碳纤维布能够与墙体进行良好的粘结,墙体在开裂之前两者之间没有发生相对的滑移;3.假设碳纤维布是一种能够始终具有弹性的理想中的弹性材料。

(二)单元的类型以及破坏准则

一般来说,在建立有限元模型的时候都是采用整体的连续模型来进行墙体的模拟,而将砂浆和砖都作为一系列新的连续墙体所需要的材料来考虑,通过采用单元来对墙体进行模拟,材料的参数可以通过砂浆和砖的材料参数来进行确定。通常情况下会将应力应变两个方面作为构件的破坏准则。如果当墙体的单元主应力大于11.25MPa或者是剪应力大于0.27MPa的时候,那么就认为此单元受到破坏;如果当单元所产生的位移大于0.06m的时候,那么就可以认为是砌体的单元所产生的位移比较大,将会从结构上进行滑落。

(三)网格的划分和约束荷载

1.应力比较。通过对未加固的模型和用CFRP加固的模型两者之间的抗洪性能进行比较,可以分析出当迎水面墙体在受到洪水的冲击之后所产生的位移和应力是最大的。当未加固的模型在达到破坏准则之后就不再继续适应于承载而宣告被破坏,但是在相同的荷载条件之下,用CFRP加固的模型其所產生的变形显得比较小,具有良好的受力状态,因此可以对洪水的荷载继续承受。与此同时,当未加固的模型在洪水的荷载作用下,其迎水面上的纵横墙的交界处的砌体墙所产生的拉应力会比较大,而且迎水面在墙体的底部应力相对来说也是比较集中的,但是用CFRP加固后的模型其砌体墙上的迎水面所产生的应力分布相对来说是比较均匀的,而且具有良好的受力状态。

2.位移比较。在洪水的荷载作用下,砌体结构的房屋所发生的最大位移是出现在迎水面上的房屋横墙之间所具有的墙体之上的,因此,横墙之间合理的距离是能够对洪水菏泽所产生的侵袭进行有效的抵抗的,从而延缓了当出现洪水灾害时村镇砖混建筑发生损坏的时间。而用CFRP加固后的模型能够对墙体的刚度进行有效的提高,从而是墙体的变形得到减小。加上墙体的位移是随着洪水的冲力荷载作用增大而增加的,并不会出现线性的变化,因此在相同的洪水荷载的作用下,没有加固的模型所产生的最大位移都会比用CFRP加固后的模型所产生的最大位移要大。

总结:

综上所述,因为洪水对村镇砖混建筑的墙体的冲击力比较大,因此导致村镇砖混建筑的倒塌原因之一就是受到洪水的直接冲击。通过进行模型试验以及数值的模拟,对在洪水作用下的村镇砖混建筑的动水压力和CFRP加固的村镇砖混建筑的加固效果具有非常重要的作用,对因为洪水而造成的生命财产损失的减少和建立幸福和谐的社会主义新农村提供保障。

参考文献:

[1]谢威,蒋美蓉.钢筋混凝土构件CFRP加固抗爆性能探讨[J].山西建筑.2013(01).

[2]马兴涛,刘永军,孙永梅.洪水作用下CFRP加固的村镇砖混建筑有限元分析[J].水利与建筑工程学报.2012(04).

[3]陈大伟,杨绍虎.二次受力下CFRP加固钢筋混凝土梁有限元分析[J].工程与建设.2012(02).

[4]杨曌,戴绍斌.CFRP加固砖墙试验研究及有限元分析[J].工业建筑.2009(05).

[5]刘永军,周静海,孟宪宏.村镇建筑抗洪性能评价系统研究与开发[J].土木建筑工程信息技术.2011(03).

木结构建筑范文第6篇

【摘要】随着社会经济的高速发展与城市化进程的增快,高层建筑的运用愈发广泛,目前国内已经针对高层建筑体的抗震性能开展了深入研究,积攒下了丰富的工程实践经验。据以往研究与经验得知,高层建筑需要具有较大的强度、优秀的延性以及较佳的整体性,在经过合理的抗震设计下确保其整体结构的足够安全。

【关键词】高层建筑;结构体系;抗震设计

【DOI】10.12334/j.issn.1002-8536.2021.25.060

建筑工程领域发展日新月异,为了更好的满足多样化建筑功能需求,高层建筑的结构模式也变得愈发复杂、种类繁多。不仅有传统式的框架、剪力墙、筒体结构之外,超高层、复杂高层、钢结构高层建筑等也逐渐走入人们的事业,应用得越来越普遍。而伴随着建筑高度的提升以及不规则的结构类型,这给建筑的结构设计工作带来了更大的挑战,使得设计难度变大,因此必须要展开更为系统、更加深入的探究。

1、当前高层建筑结构设计存在的问题

1.1 主体结构高度问题

从抗震层面分析,结构抗侧移刚度是选取结构形式时首要考虑的要素,且随着高层建筑高度的提升,结构在受到地震作用力与其他荷载作用力之下发生的水平位移急速扩大,从而对于结构的抗侧刚度要求也与之一同变大。在面对不同的高层结构系统应当设置合理的高度来确保高层建筑的整体质量与结构稳定性。但是,在进行高层建筑的高度设计工作时,往往会由于设计人员未对该行业的有关准则与规范加以全面了解,从而对于设计的基础需求无法做到准确的把握,这就容易使得其对高度的设计存在不合理的情况,进而也就不能让建筑结构的最优效果充分展现出来[1]。

1.2 结构体系问题

在决定高层建筑的结构方案之时,需要按照建筑使用功能与抗震要求适当选取结构体系。一般而言,高层建筑在设计与结构类型的选取以及结构布置时都容易出现一定的问题,且问题的发生主要是由于结构形式的不适宜而引起的建筑整体结构受力形态存在问题,最终引发了一系列问题,严重威胁到高层建筑结构的抗震效果。此外,不同建筑体所处地区的地震烈度会存在一些差异,所以可按照抗震规范来选取最为合适的结构体系,保证结构形式的科学合理性,否则便可能因为设计问题而导致存在安全隐患。另外,在开展建筑结构设计工作时,还要尽量确保其与规则结构要求相符,要合理布设抗震缝,不得设置成不规则的形式。

1.3 结构参数设计不合理

对抗震结构加以设计的关键目的为,当地震灾害发生时可以最大化减轻灾害造成的经济损失。在新成立的工程项目中,使用设计软件实行结构设计,最为重要的一个环节便是合理选择参数,若是参数选择不当,不仅可能导致无法满足抗震需求,使得结构应力分布不够均匀,甚至还会让建筑结构的耗能能力下降。相关设计人员必须要在对规范标准充分熟悉之后,全面掌握所有涉及到的参数的含义,再对计算结构实行可靠性分析,在通过反复调整优化之后,确保设计方案的最优性才能进入到下一环节的设计工作。就当前的实际状况而言,还需要对建筑结构的薄弱层或者是薄弱构件加以强化,使其形成以结构抗震、减震作为辅助作用的结构形式。

2、高层建筑结构抗震设计的有效对策

2.1以位移为基础的抗震结构设计

在国内当前阶段的高层建筑抗震结构设计中,主要是以承载力作为基础。基于位移来对结构抗震实行设计,这一理念最初是于上世纪九十年代左右提出的,并且其属于一种能够实现在功能基础上进行抗震设计的关键措施。按照抗震结构设计需求需要采取定量分析法,利用此方法能够让结构变形能力满足预期地震作用力影响下的变形要求。要想实现此种抗震设计,就先要对简单结构的构件变形与配筋关系展开详细探究,而且还要能够按照变形需求来对构件加以设计,其后当抗震结构均具有一定的弹塑性之后,再对构件和其变形关系展开一系列分析,此环节便要借助二阶段抗震结构设计法来完成设计工作,此种设计方式为建筑结构的抗震设计今后的发展提供了一条重要途径。

2.2控制地震对高层建筑物的扭转效应

当发生地震灾害之时,因为地壳运动会受到地震波的影响作用,从而产生强大的扭转效应,在防范此问题带来的危害时,不仅要强化规则特性,还应确保几何中心与刚性中心之间的重合程度,而且同时还要保证解耦股的均匀性,从而才能有效控制好结构的扭转效应,增强高层建筑体的抗震能力。目前在高层建筑的结构设计中,首先便需强化建筑体的分体设计,基于统筹兼顾的思维作为辅助,在注重考虑建筑体的安全性和稳定程度的前提下,借助分体设计来减轻地震形成的扭转效应[2]。

2.3采取“中震”、“大震”设计

对于抗震薄弱区域要采用加强措施与提升结构或是构件的承载力性能,这两种方法都是结构抗震设计中的关键措施。在国内较为常用的为前种方式,至于在复杂工程项目或是超限建筑中,实施“中震”设计方法即为在结构抗震薄弱区域进行加强处理之后,再合理提升关键区域的结构强度或是构件的承受力,从而使得建筑结构与构件延性和承载力水平获得更大程度的提升,以此强化建筑结构的抗震能力[3]。

2.4依据抗震标准,规范平面及竖向设计

平面规则和建筑体的稳定性也有着潜在的关联,这是设计工作人员在进行建筑结构设计时必须要考虑在内的要素。一般而言,抗震建筑的平面都会有规定的标准,例如,凹凸口的深度和宽度、平面长度不得太长、不可使用角部重叠或是细腰状的平面设计方案。所以,结构平面的设计应当尽可能的做到简单、规则且对称,防止刚度、质量与承载作用力分布不均[4]。在进行有许多凹凸口的、形状十分复杂的平面的设计时,应当实行特殊设计,或是采取有效的补救措施,从而最大化的确保建筑体的稳定效果。在进行高层建筑的抗震结构竖向设计时,应当防止存在太大的外挑或是收进,应当尽可能的使其具有规则性、均匀性,对于结构侧向刚度也需要实现从上到下由小均匀变大,竖向抗侧力构件要做到上下连贯通畅。

结语:

高层建筑是当代城市发展的重要基础构成,也是许多城市中的标志性建筑体。伴随着国内城市化进程的不断推进,为了使得人们对于建筑美观性、舒适度等需求的充分满足,需要对高层建筑的结构设计与建设技术进行不断研究与改进。高层建筑的结构设计在理论和实践中的研究工作是一项重要任务,在今后很长一段时间内仍然需要投入一定的精力进行不断探索。

参考文献:

[1]李英民,姬淑艳,唐洋洋,等.山地建筑結构特殊问题与研究进展[J].建筑结构,2019,49(19):76-82.

[2]肖从真,王翠坤,黄小坤.高层建筑结构抗震设计方法及结构体系创新[J].建筑科学,2018,34(09):33-41.

[3]朱炳寅.建筑结构设计问答及分析(第三版).2017.

[4]管民生,蔡威,李沁,等.某超限高层结构基于性能的抗震设计[J].工程抗震与加固改造,2016,38(04):21-28.

上一篇:春天的花范文下一篇:我有我的自由范文